ffs_alloc.c revision 1.32 1 /* $NetBSD: ffs_alloc.c,v 1.32 2000/03/29 08:46:57 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53
54 #include <uvm/uvm_extern.h>
55
56 #include <ufs/ufs/quota.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/inode.h>
59 #include <ufs/ufs/ufs_extern.h>
60 #include <ufs/ufs/ufs_bswap.h>
61
62 #include <ufs/ffs/fs.h>
63 #include <ufs/ffs/ffs_extern.h>
64
65 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
66 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
67 ufs_daddr_t));
68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
69 static ino_t ffs_dirpref __P((struct fs *));
70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 static void ffs_fserr __P((struct fs *, u_int, char *));
72 static u_long ffs_hashalloc
73 __P((struct inode *, int, long, int,
74 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
75 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
76 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
77 ufs_daddr_t, int));
78 #if defined(DIAGNOSTIC) || defined(DEBUG)
79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 #endif
81
82 /* in ffs_tables.c */
83 extern int inside[], around[];
84 extern u_char *fragtbl[];
85
86 /*
87 * Allocate a block in the file system.
88 *
89 * The size of the requested block is given, which must be some
90 * multiple of fs_fsize and <= fs_bsize.
91 * A preference may be optionally specified. If a preference is given
92 * the following hierarchy is used to allocate a block:
93 * 1) allocate the requested block.
94 * 2) allocate a rotationally optimal block in the same cylinder.
95 * 3) allocate a block in the same cylinder group.
96 * 4) quadradically rehash into other cylinder groups, until an
97 * available block is located.
98 * If no block preference is given the following heirarchy is used
99 * to allocate a block:
100 * 1) allocate a block in the cylinder group that contains the
101 * inode for the file.
102 * 2) quadradically rehash into other cylinder groups, until an
103 * available block is located.
104 */
105 int
106 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
107 register struct inode *ip;
108 ufs_daddr_t lbn, bpref;
109 int size;
110 struct ucred *cred;
111 ufs_daddr_t *bnp;
112 {
113 register struct fs *fs;
114 ufs_daddr_t bno;
115 int cg;
116 #ifdef QUOTA
117 int error;
118 #endif
119
120 *bnp = 0;
121 fs = ip->i_fs;
122 #ifdef DIAGNOSTIC
123 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
124 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
125 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
126 panic("ffs_alloc: bad size");
127 }
128 if (cred == NOCRED)
129 panic("ffs_alloc: missing credential\n");
130 #endif /* DIAGNOSTIC */
131 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
132 goto nospace;
133 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
134 goto nospace;
135 #ifdef QUOTA
136 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
137 return (error);
138 #endif
139 if (bpref >= fs->fs_size)
140 bpref = 0;
141 if (bpref == 0)
142 cg = ino_to_cg(fs, ip->i_number);
143 else
144 cg = dtog(fs, bpref);
145 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 ffs_alloccg);
147 if (bno > 0) {
148 ip->i_ffs_blocks += btodb(size);
149 ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 *bnp = bno;
151 return (0);
152 }
153 #ifdef QUOTA
154 /*
155 * Restore user's disk quota because allocation failed.
156 */
157 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
158 #endif
159 nospace:
160 ffs_fserr(fs, cred->cr_uid, "file system full");
161 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
162 return (ENOSPC);
163 }
164
165 /*
166 * Reallocate a fragment to a bigger size
167 *
168 * The number and size of the old block is given, and a preference
169 * and new size is also specified. The allocator attempts to extend
170 * the original block. Failing that, the regular block allocator is
171 * invoked to get an appropriate block.
172 */
173 int
174 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
175 register struct inode *ip;
176 ufs_daddr_t lbprev;
177 ufs_daddr_t bpref;
178 int osize, nsize;
179 struct ucred *cred;
180 struct buf **bpp;
181 {
182 register struct fs *fs;
183 struct buf *bp;
184 int cg, request, error;
185 ufs_daddr_t bprev, bno;
186
187 *bpp = 0;
188 fs = ip->i_fs;
189 #ifdef DIAGNOSTIC
190 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
191 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
192 printf(
193 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
194 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
195 panic("ffs_realloccg: bad size");
196 }
197 if (cred == NOCRED)
198 panic("ffs_realloccg: missing credential\n");
199 #endif /* DIAGNOSTIC */
200 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
201 goto nospace;
202 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
203 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
204 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
205 panic("ffs_realloccg: bad bprev");
206 }
207 /*
208 * Allocate the extra space in the buffer.
209 */
210 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
211 brelse(bp);
212 return (error);
213 }
214 #ifdef QUOTA
215 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
216 brelse(bp);
217 return (error);
218 }
219 #endif
220 /*
221 * Check for extension in the existing location.
222 */
223 cg = dtog(fs, bprev);
224 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
225 if (bp->b_blkno != fsbtodb(fs, bno))
226 panic("bad blockno");
227 ip->i_ffs_blocks += btodb(nsize - osize);
228 ip->i_flag |= IN_CHANGE | IN_UPDATE;
229 allocbuf(bp, nsize);
230 bp->b_flags |= B_DONE;
231 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
232 *bpp = bp;
233 return (0);
234 }
235 /*
236 * Allocate a new disk location.
237 */
238 if (bpref >= fs->fs_size)
239 bpref = 0;
240 switch ((int)fs->fs_optim) {
241 case FS_OPTSPACE:
242 /*
243 * Allocate an exact sized fragment. Although this makes
244 * best use of space, we will waste time relocating it if
245 * the file continues to grow. If the fragmentation is
246 * less than half of the minimum free reserve, we choose
247 * to begin optimizing for time.
248 */
249 request = nsize;
250 if (fs->fs_minfree < 5 ||
251 fs->fs_cstotal.cs_nffree >
252 fs->fs_dsize * fs->fs_minfree / (2 * 100))
253 break;
254 #ifdef DEBUG
255 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
256 fs->fs_fsmnt);
257 #endif
258 fs->fs_optim = FS_OPTTIME;
259 break;
260 case FS_OPTTIME:
261 /*
262 * At this point we have discovered a file that is trying to
263 * grow a small fragment to a larger fragment. To save time,
264 * we allocate a full sized block, then free the unused portion.
265 * If the file continues to grow, the `ffs_fragextend' call
266 * above will be able to grow it in place without further
267 * copying. If aberrant programs cause disk fragmentation to
268 * grow within 2% of the free reserve, we choose to begin
269 * optimizing for space.
270 */
271 request = fs->fs_bsize;
272 if (fs->fs_cstotal.cs_nffree <
273 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
274 break;
275 #ifdef DEBUG
276 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 fs->fs_fsmnt);
278 #endif
279 fs->fs_optim = FS_OPTSPACE;
280 break;
281 default:
282 printf("dev = 0x%x, optim = %d, fs = %s\n",
283 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
284 panic("ffs_realloccg: bad optim");
285 /* NOTREACHED */
286 }
287 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
288 ffs_alloccg);
289 if (bno > 0) {
290 bp->b_blkno = fsbtodb(fs, bno);
291 (void) uvm_vnp_uncache(ITOV(ip));
292 if (!DOINGSOFTDEP(ITOV(ip)))
293 ffs_blkfree(ip, bprev, (long)osize);
294 if (nsize < request)
295 ffs_blkfree(ip, bno + numfrags(fs, nsize),
296 (long)(request - nsize));
297 ip->i_ffs_blocks += btodb(nsize - osize);
298 ip->i_flag |= IN_CHANGE | IN_UPDATE;
299 allocbuf(bp, nsize);
300 bp->b_flags |= B_DONE;
301 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
302 *bpp = bp;
303 return (0);
304 }
305 #ifdef QUOTA
306 /*
307 * Restore user's disk quota because allocation failed.
308 */
309 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
310 #endif
311 brelse(bp);
312 nospace:
313 /*
314 * no space available
315 */
316 ffs_fserr(fs, cred->cr_uid, "file system full");
317 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
318 return (ENOSPC);
319 }
320
321 /*
322 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
323 *
324 * The vnode and an array of buffer pointers for a range of sequential
325 * logical blocks to be made contiguous is given. The allocator attempts
326 * to find a range of sequential blocks starting as close as possible to
327 * an fs_rotdelay offset from the end of the allocation for the logical
328 * block immediately preceeding the current range. If successful, the
329 * physical block numbers in the buffer pointers and in the inode are
330 * changed to reflect the new allocation. If unsuccessful, the allocation
331 * is left unchanged. The success in doing the reallocation is returned.
332 * Note that the error return is not reflected back to the user. Rather
333 * the previous block allocation will be used.
334 */
335 #ifdef DEBUG
336 #include <sys/sysctl.h>
337 int prtrealloc = 0;
338 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
339 #endif
340
341 int doasyncfree = 1;
342 extern int doreallocblks;
343
344 int
345 ffs_reallocblks(v)
346 void *v;
347 {
348 struct vop_reallocblks_args /* {
349 struct vnode *a_vp;
350 struct cluster_save *a_buflist;
351 } */ *ap = v;
352 struct fs *fs;
353 struct inode *ip;
354 struct vnode *vp;
355 struct buf *sbp, *ebp;
356 ufs_daddr_t *bap, *sbap, *ebap = NULL;
357 struct cluster_save *buflist;
358 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
359 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
360 int i, len, start_lvl, end_lvl, pref, ssize;
361
362 vp = ap->a_vp;
363 ip = VTOI(vp);
364 fs = ip->i_fs;
365 if (fs->fs_contigsumsize <= 0)
366 return (ENOSPC);
367 buflist = ap->a_buflist;
368 len = buflist->bs_nchildren;
369 start_lbn = buflist->bs_children[0]->b_lblkno;
370 end_lbn = start_lbn + len - 1;
371 #ifdef DIAGNOSTIC
372 for (i = 0; i < len; i++)
373 if (!ffs_checkblk(ip,
374 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
375 panic("ffs_reallocblks: unallocated block 1");
376 for (i = 1; i < len; i++)
377 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
378 panic("ffs_reallocblks: non-logical cluster");
379 blkno = buflist->bs_children[0]->b_blkno;
380 ssize = fsbtodb(fs, fs->fs_frag);
381 for (i = 1; i < len - 1; i++)
382 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
383 panic("ffs_reallocblks: non-physical cluster %d", i);
384 #endif
385 /*
386 * If the latest allocation is in a new cylinder group, assume that
387 * the filesystem has decided to move and do not force it back to
388 * the previous cylinder group.
389 */
390 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
391 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
392 return (ENOSPC);
393 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
394 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
395 return (ENOSPC);
396 /*
397 * Get the starting offset and block map for the first block.
398 */
399 if (start_lvl == 0) {
400 sbap = &ip->i_ffs_db[0];
401 soff = start_lbn;
402 } else {
403 idp = &start_ap[start_lvl - 1];
404 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
405 brelse(sbp);
406 return (ENOSPC);
407 }
408 sbap = (ufs_daddr_t *)sbp->b_data;
409 soff = idp->in_off;
410 }
411 /*
412 * Find the preferred location for the cluster.
413 */
414 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
415 /*
416 * If the block range spans two block maps, get the second map.
417 */
418 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
419 ssize = len;
420 } else {
421 #ifdef DIAGNOSTIC
422 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
423 panic("ffs_reallocblk: start == end");
424 #endif
425 ssize = len - (idp->in_off + 1);
426 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
427 goto fail;
428 ebap = (ufs_daddr_t *)ebp->b_data;
429 }
430 /*
431 * Search the block map looking for an allocation of the desired size.
432 */
433 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
434 len, ffs_clusteralloc)) == 0)
435 goto fail;
436 /*
437 * We have found a new contiguous block.
438 *
439 * First we have to replace the old block pointers with the new
440 * block pointers in the inode and indirect blocks associated
441 * with the file.
442 */
443 #ifdef DEBUG
444 if (prtrealloc)
445 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
446 start_lbn, end_lbn);
447 #endif
448 blkno = newblk;
449 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
450 ufs_daddr_t ba;
451
452 if (i == ssize) {
453 bap = ebap;
454 soff = -i;
455 }
456 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
457 #ifdef DIAGNOSTIC
458 if (!ffs_checkblk(ip,
459 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
460 panic("ffs_reallocblks: unallocated block 2");
461 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
462 panic("ffs_reallocblks: alloc mismatch");
463 #endif
464 #ifdef DEBUG
465 if (prtrealloc)
466 printf(" %d,", ba);
467 #endif
468 if (DOINGSOFTDEP(vp)) {
469 if (sbap == &ip->i_ffs_db[0] && i < ssize)
470 softdep_setup_allocdirect(ip, start_lbn + i,
471 blkno, ba, fs->fs_bsize, fs->fs_bsize,
472 buflist->bs_children[i]);
473 else
474 softdep_setup_allocindir_page(ip, start_lbn + i,
475 i < ssize ? sbp : ebp, soff + i, blkno,
476 ba, buflist->bs_children[i]);
477 }
478 *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
479 }
480 /*
481 * Next we must write out the modified inode and indirect blocks.
482 * For strict correctness, the writes should be synchronous since
483 * the old block values may have been written to disk. In practise
484 * they are almost never written, but if we are concerned about
485 * strict correctness, the `doasyncfree' flag should be set to zero.
486 *
487 * The test on `doasyncfree' should be changed to test a flag
488 * that shows whether the associated buffers and inodes have
489 * been written. The flag should be set when the cluster is
490 * started and cleared whenever the buffer or inode is flushed.
491 * We can then check below to see if it is set, and do the
492 * synchronous write only when it has been cleared.
493 */
494 if (sbap != &ip->i_ffs_db[0]) {
495 if (doasyncfree)
496 bdwrite(sbp);
497 else
498 bwrite(sbp);
499 } else {
500 ip->i_flag |= IN_CHANGE | IN_UPDATE;
501 if (!doasyncfree)
502 VOP_UPDATE(vp, NULL, NULL, 1);
503 }
504 if (ssize < len) {
505 if (doasyncfree)
506 bdwrite(ebp);
507 else
508 bwrite(ebp);
509 }
510 /*
511 * Last, free the old blocks and assign the new blocks to the buffers.
512 */
513 #ifdef DEBUG
514 if (prtrealloc)
515 printf("\n\tnew:");
516 #endif
517 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
518 if (!DOINGSOFTDEP(vp))
519 ffs_blkfree(ip,
520 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
521 fs->fs_bsize);
522 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
523 #ifdef DEBUG
524 if (!ffs_checkblk(ip,
525 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
526 panic("ffs_reallocblks: unallocated block 3");
527 if (prtrealloc)
528 printf(" %d,", blkno);
529 #endif
530 }
531 #ifdef DEBUG
532 if (prtrealloc) {
533 prtrealloc--;
534 printf("\n");
535 }
536 #endif
537 return (0);
538
539 fail:
540 if (ssize < len)
541 brelse(ebp);
542 if (sbap != &ip->i_ffs_db[0])
543 brelse(sbp);
544 return (ENOSPC);
545 }
546
547 /*
548 * Allocate an inode in the file system.
549 *
550 * If allocating a directory, use ffs_dirpref to select the inode.
551 * If allocating in a directory, the following hierarchy is followed:
552 * 1) allocate the preferred inode.
553 * 2) allocate an inode in the same cylinder group.
554 * 3) quadradically rehash into other cylinder groups, until an
555 * available inode is located.
556 * If no inode preference is given the following heirarchy is used
557 * to allocate an inode:
558 * 1) allocate an inode in cylinder group 0.
559 * 2) quadradically rehash into other cylinder groups, until an
560 * available inode is located.
561 */
562 int
563 ffs_valloc(v)
564 void *v;
565 {
566 struct vop_valloc_args /* {
567 struct vnode *a_pvp;
568 int a_mode;
569 struct ucred *a_cred;
570 struct vnode **a_vpp;
571 } */ *ap = v;
572 register struct vnode *pvp = ap->a_pvp;
573 register struct inode *pip;
574 register struct fs *fs;
575 register struct inode *ip;
576 mode_t mode = ap->a_mode;
577 ino_t ino, ipref;
578 int cg, error;
579
580 *ap->a_vpp = NULL;
581 pip = VTOI(pvp);
582 fs = pip->i_fs;
583 if (fs->fs_cstotal.cs_nifree == 0)
584 goto noinodes;
585
586 if ((mode & IFMT) == IFDIR)
587 ipref = ffs_dirpref(fs);
588 else
589 ipref = pip->i_number;
590 if (ipref >= fs->fs_ncg * fs->fs_ipg)
591 ipref = 0;
592 cg = ino_to_cg(fs, ipref);
593 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
594 if (ino == 0)
595 goto noinodes;
596 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
597 if (error) {
598 VOP_VFREE(pvp, ino, mode);
599 return (error);
600 }
601 ip = VTOI(*ap->a_vpp);
602 if (ip->i_ffs_mode) {
603 printf("mode = 0%o, inum = %d, fs = %s\n",
604 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
605 panic("ffs_valloc: dup alloc");
606 }
607 if (ip->i_ffs_blocks) { /* XXX */
608 printf("free inode %s/%d had %d blocks\n",
609 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
610 ip->i_ffs_blocks = 0;
611 }
612 ip->i_ffs_flags = 0;
613 /*
614 * Set up a new generation number for this inode.
615 */
616 ip->i_ffs_gen++;
617 return (0);
618 noinodes:
619 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
620 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
621 return (ENOSPC);
622 }
623
624 /*
625 * Find a cylinder to place a directory.
626 *
627 * The policy implemented by this algorithm is to select from
628 * among those cylinder groups with above the average number of
629 * free inodes, the one with the smallest number of directories.
630 */
631 static ino_t
632 ffs_dirpref(fs)
633 register struct fs *fs;
634 {
635 int cg, minndir, mincg, avgifree;
636
637 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
638 minndir = fs->fs_ipg;
639 mincg = 0;
640 for (cg = 0; cg < fs->fs_ncg; cg++)
641 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
642 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
643 mincg = cg;
644 minndir = fs->fs_cs(fs, cg).cs_ndir;
645 }
646 return ((ino_t)(fs->fs_ipg * mincg));
647 }
648
649 /*
650 * Select the desired position for the next block in a file. The file is
651 * logically divided into sections. The first section is composed of the
652 * direct blocks. Each additional section contains fs_maxbpg blocks.
653 *
654 * If no blocks have been allocated in the first section, the policy is to
655 * request a block in the same cylinder group as the inode that describes
656 * the file. If no blocks have been allocated in any other section, the
657 * policy is to place the section in a cylinder group with a greater than
658 * average number of free blocks. An appropriate cylinder group is found
659 * by using a rotor that sweeps the cylinder groups. When a new group of
660 * blocks is needed, the sweep begins in the cylinder group following the
661 * cylinder group from which the previous allocation was made. The sweep
662 * continues until a cylinder group with greater than the average number
663 * of free blocks is found. If the allocation is for the first block in an
664 * indirect block, the information on the previous allocation is unavailable;
665 * here a best guess is made based upon the logical block number being
666 * allocated.
667 *
668 * If a section is already partially allocated, the policy is to
669 * contiguously allocate fs_maxcontig blocks. The end of one of these
670 * contiguous blocks and the beginning of the next is physically separated
671 * so that the disk head will be in transit between them for at least
672 * fs_rotdelay milliseconds. This is to allow time for the processor to
673 * schedule another I/O transfer.
674 */
675 ufs_daddr_t
676 ffs_blkpref(ip, lbn, indx, bap)
677 struct inode *ip;
678 ufs_daddr_t lbn;
679 int indx;
680 ufs_daddr_t *bap;
681 {
682 register struct fs *fs;
683 register int cg;
684 int avgbfree, startcg;
685 ufs_daddr_t nextblk;
686
687 fs = ip->i_fs;
688 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
689 if (lbn < NDADDR + NINDIR(fs)) {
690 cg = ino_to_cg(fs, ip->i_number);
691 return (fs->fs_fpg * cg + fs->fs_frag);
692 }
693 /*
694 * Find a cylinder with greater than average number of
695 * unused data blocks.
696 */
697 if (indx == 0 || bap[indx - 1] == 0)
698 startcg =
699 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
700 else
701 startcg = dtog(fs,
702 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
703 startcg %= fs->fs_ncg;
704 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
705 for (cg = startcg; cg < fs->fs_ncg; cg++)
706 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
707 fs->fs_cgrotor = cg;
708 return (fs->fs_fpg * cg + fs->fs_frag);
709 }
710 for (cg = 0; cg <= startcg; cg++)
711 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
712 fs->fs_cgrotor = cg;
713 return (fs->fs_fpg * cg + fs->fs_frag);
714 }
715 return (NULL);
716 }
717 /*
718 * One or more previous blocks have been laid out. If less
719 * than fs_maxcontig previous blocks are contiguous, the
720 * next block is requested contiguously, otherwise it is
721 * requested rotationally delayed by fs_rotdelay milliseconds.
722 */
723 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
724 if (indx < fs->fs_maxcontig ||
725 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
726 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
727 return (nextblk);
728 if (fs->fs_rotdelay != 0)
729 /*
730 * Here we convert ms of delay to frags as:
731 * (frags) = (ms) * (rev/sec) * (sect/rev) /
732 * ((sect/frag) * (ms/sec))
733 * then round up to the next block.
734 */
735 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
736 (NSPF(fs) * 1000), fs->fs_frag);
737 return (nextblk);
738 }
739
740 /*
741 * Implement the cylinder overflow algorithm.
742 *
743 * The policy implemented by this algorithm is:
744 * 1) allocate the block in its requested cylinder group.
745 * 2) quadradically rehash on the cylinder group number.
746 * 3) brute force search for a free block.
747 */
748 /*VARARGS5*/
749 static u_long
750 ffs_hashalloc(ip, cg, pref, size, allocator)
751 struct inode *ip;
752 int cg;
753 long pref;
754 int size; /* size for data blocks, mode for inodes */
755 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
756 {
757 register struct fs *fs;
758 long result;
759 int i, icg = cg;
760
761 fs = ip->i_fs;
762 /*
763 * 1: preferred cylinder group
764 */
765 result = (*allocator)(ip, cg, pref, size);
766 if (result)
767 return (result);
768 /*
769 * 2: quadratic rehash
770 */
771 for (i = 1; i < fs->fs_ncg; i *= 2) {
772 cg += i;
773 if (cg >= fs->fs_ncg)
774 cg -= fs->fs_ncg;
775 result = (*allocator)(ip, cg, 0, size);
776 if (result)
777 return (result);
778 }
779 /*
780 * 3: brute force search
781 * Note that we start at i == 2, since 0 was checked initially,
782 * and 1 is always checked in the quadratic rehash.
783 */
784 cg = (icg + 2) % fs->fs_ncg;
785 for (i = 2; i < fs->fs_ncg; i++) {
786 result = (*allocator)(ip, cg, 0, size);
787 if (result)
788 return (result);
789 cg++;
790 if (cg == fs->fs_ncg)
791 cg = 0;
792 }
793 return (NULL);
794 }
795
796 /*
797 * Determine whether a fragment can be extended.
798 *
799 * Check to see if the necessary fragments are available, and
800 * if they are, allocate them.
801 */
802 static ufs_daddr_t
803 ffs_fragextend(ip, cg, bprev, osize, nsize)
804 struct inode *ip;
805 int cg;
806 long bprev;
807 int osize, nsize;
808 {
809 register struct fs *fs;
810 register struct cg *cgp;
811 struct buf *bp;
812 long bno;
813 int frags, bbase;
814 int i, error;
815
816 fs = ip->i_fs;
817 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
818 return (NULL);
819 frags = numfrags(fs, nsize);
820 bbase = fragnum(fs, bprev);
821 if (bbase > fragnum(fs, (bprev + frags - 1))) {
822 /* cannot extend across a block boundary */
823 return (NULL);
824 }
825 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
826 (int)fs->fs_cgsize, NOCRED, &bp);
827 if (error) {
828 brelse(bp);
829 return (NULL);
830 }
831 cgp = (struct cg *)bp->b_data;
832 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
833 brelse(bp);
834 return (NULL);
835 }
836 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
837 bno = dtogd(fs, bprev);
838 for (i = numfrags(fs, osize); i < frags; i++)
839 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
840 brelse(bp);
841 return (NULL);
842 }
843 /*
844 * the current fragment can be extended
845 * deduct the count on fragment being extended into
846 * increase the count on the remaining fragment (if any)
847 * allocate the extended piece
848 */
849 for (i = frags; i < fs->fs_frag - bbase; i++)
850 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
851 break;
852 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
853 if (i != frags)
854 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
855 for (i = numfrags(fs, osize); i < frags; i++) {
856 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
857 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
858 fs->fs_cstotal.cs_nffree--;
859 fs->fs_cs(fs, cg).cs_nffree--;
860 }
861 fs->fs_fmod = 1;
862 if (DOINGSOFTDEP(ITOV(ip)))
863 softdep_setup_blkmapdep(bp, fs, bprev);
864 bdwrite(bp);
865 return (bprev);
866 }
867
868 /*
869 * Determine whether a block can be allocated.
870 *
871 * Check to see if a block of the appropriate size is available,
872 * and if it is, allocate it.
873 */
874 static ufs_daddr_t
875 ffs_alloccg(ip, cg, bpref, size)
876 struct inode *ip;
877 int cg;
878 ufs_daddr_t bpref;
879 int size;
880 {
881 struct cg *cgp;
882 struct buf *bp;
883 ufs_daddr_t bno, blkno;
884 int error, frags, allocsiz, i;
885 struct fs *fs = ip->i_fs;
886 #ifdef FFS_EI
887 const int needswap = UFS_FSNEEDSWAP(fs);
888 #endif
889
890 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
891 return (NULL);
892 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
893 (int)fs->fs_cgsize, NOCRED, &bp);
894 if (error) {
895 brelse(bp);
896 return (NULL);
897 }
898 cgp = (struct cg *)bp->b_data;
899 if (!cg_chkmagic(cgp, needswap) ||
900 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
901 brelse(bp);
902 return (NULL);
903 }
904 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
905 if (size == fs->fs_bsize) {
906 bno = ffs_alloccgblk(ip, bp, bpref);
907 bdwrite(bp);
908 return (bno);
909 }
910 /*
911 * check to see if any fragments are already available
912 * allocsiz is the size which will be allocated, hacking
913 * it down to a smaller size if necessary
914 */
915 frags = numfrags(fs, size);
916 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
917 if (cgp->cg_frsum[allocsiz] != 0)
918 break;
919 if (allocsiz == fs->fs_frag) {
920 /*
921 * no fragments were available, so a block will be
922 * allocated, and hacked up
923 */
924 if (cgp->cg_cs.cs_nbfree == 0) {
925 brelse(bp);
926 return (NULL);
927 }
928 bno = ffs_alloccgblk(ip, bp, bpref);
929 bpref = dtogd(fs, bno);
930 for (i = frags; i < fs->fs_frag; i++)
931 setbit(cg_blksfree(cgp, needswap), bpref + i);
932 i = fs->fs_frag - frags;
933 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
934 fs->fs_cstotal.cs_nffree += i;
935 fs->fs_cs(fs, cg).cs_nffree += i;
936 fs->fs_fmod = 1;
937 ufs_add32(cgp->cg_frsum[i], 1, needswap);
938 bdwrite(bp);
939 return (bno);
940 }
941 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
942 #if 0
943 /*
944 * XXX fvdl mapsearch will panic, and never return -1
945 * also: returning NULL as ufs_daddr_t ?
946 */
947 if (bno < 0) {
948 brelse(bp);
949 return (NULL);
950 }
951 #endif
952 for (i = 0; i < frags; i++)
953 clrbit(cg_blksfree(cgp, needswap), bno + i);
954 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
955 fs->fs_cstotal.cs_nffree -= frags;
956 fs->fs_cs(fs, cg).cs_nffree -= frags;
957 fs->fs_fmod = 1;
958 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
959 if (frags != allocsiz)
960 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
961 blkno = cg * fs->fs_fpg + bno;
962 if (DOINGSOFTDEP(ITOV(ip)))
963 softdep_setup_blkmapdep(bp, fs, blkno);
964 bdwrite(bp);
965 return blkno;
966 }
967
968 /*
969 * Allocate a block in a cylinder group.
970 *
971 * This algorithm implements the following policy:
972 * 1) allocate the requested block.
973 * 2) allocate a rotationally optimal block in the same cylinder.
974 * 3) allocate the next available block on the block rotor for the
975 * specified cylinder group.
976 * Note that this routine only allocates fs_bsize blocks; these
977 * blocks may be fragmented by the routine that allocates them.
978 */
979 static ufs_daddr_t
980 ffs_alloccgblk(ip, bp, bpref)
981 struct inode *ip;
982 struct buf *bp;
983 ufs_daddr_t bpref;
984 {
985 struct cg *cgp;
986 ufs_daddr_t bno, blkno;
987 int cylno, pos, delta;
988 short *cylbp;
989 register int i;
990 struct fs *fs = ip->i_fs;
991 #ifdef FFS_EI
992 const int needswap = UFS_FSNEEDSWAP(fs);
993 #endif
994
995 cgp = (struct cg *)bp->b_data;
996 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
997 bpref = ufs_rw32(cgp->cg_rotor, needswap);
998 goto norot;
999 }
1000 bpref = blknum(fs, bpref);
1001 bpref = dtogd(fs, bpref);
1002 /*
1003 * if the requested block is available, use it
1004 */
1005 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1006 fragstoblks(fs, bpref))) {
1007 bno = bpref;
1008 goto gotit;
1009 }
1010 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1011 /*
1012 * Block layout information is not available.
1013 * Leaving bpref unchanged means we take the
1014 * next available free block following the one
1015 * we just allocated. Hopefully this will at
1016 * least hit a track cache on drives of unknown
1017 * geometry (e.g. SCSI).
1018 */
1019 goto norot;
1020 }
1021 /*
1022 * check for a block available on the same cylinder
1023 */
1024 cylno = cbtocylno(fs, bpref);
1025 if (cg_blktot(cgp, needswap)[cylno] == 0)
1026 goto norot;
1027 /*
1028 * check the summary information to see if a block is
1029 * available in the requested cylinder starting at the
1030 * requested rotational position and proceeding around.
1031 */
1032 cylbp = cg_blks(fs, cgp, cylno, needswap);
1033 pos = cbtorpos(fs, bpref);
1034 for (i = pos; i < fs->fs_nrpos; i++)
1035 if (ufs_rw16(cylbp[i], needswap) > 0)
1036 break;
1037 if (i == fs->fs_nrpos)
1038 for (i = 0; i < pos; i++)
1039 if (ufs_rw16(cylbp[i], needswap) > 0)
1040 break;
1041 if (ufs_rw16(cylbp[i], needswap) > 0) {
1042 /*
1043 * found a rotational position, now find the actual
1044 * block. A panic if none is actually there.
1045 */
1046 pos = cylno % fs->fs_cpc;
1047 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1048 if (fs_postbl(fs, pos)[i] == -1) {
1049 printf("pos = %d, i = %d, fs = %s\n",
1050 pos, i, fs->fs_fsmnt);
1051 panic("ffs_alloccgblk: cyl groups corrupted");
1052 }
1053 for (i = fs_postbl(fs, pos)[i];; ) {
1054 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1055 bno = blkstofrags(fs, (bno + i));
1056 goto gotit;
1057 }
1058 delta = fs_rotbl(fs)[i];
1059 if (delta <= 0 ||
1060 delta + i > fragstoblks(fs, fs->fs_fpg))
1061 break;
1062 i += delta;
1063 }
1064 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1065 panic("ffs_alloccgblk: can't find blk in cyl");
1066 }
1067 norot:
1068 /*
1069 * no blocks in the requested cylinder, so take next
1070 * available one in this cylinder group.
1071 */
1072 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1073 if (bno < 0)
1074 return (NULL);
1075 cgp->cg_rotor = ufs_rw32(bno, needswap);
1076 gotit:
1077 blkno = fragstoblks(fs, bno);
1078 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1079 ffs_clusteracct(fs, cgp, blkno, -1);
1080 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1081 fs->fs_cstotal.cs_nbfree--;
1082 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1083 cylno = cbtocylno(fs, bno);
1084 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1085 needswap);
1086 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1087 fs->fs_fmod = 1;
1088 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1089 if (DOINGSOFTDEP(ITOV(ip)))
1090 softdep_setup_blkmapdep(bp, fs, blkno);
1091 return (blkno);
1092 }
1093
1094 /*
1095 * Determine whether a cluster can be allocated.
1096 *
1097 * We do not currently check for optimal rotational layout if there
1098 * are multiple choices in the same cylinder group. Instead we just
1099 * take the first one that we find following bpref.
1100 */
1101 static ufs_daddr_t
1102 ffs_clusteralloc(ip, cg, bpref, len)
1103 struct inode *ip;
1104 int cg;
1105 ufs_daddr_t bpref;
1106 int len;
1107 {
1108 register struct fs *fs;
1109 register struct cg *cgp;
1110 struct buf *bp;
1111 int i, got, run, bno, bit, map;
1112 u_char *mapp;
1113 int32_t *lp;
1114
1115 fs = ip->i_fs;
1116 if (fs->fs_maxcluster[cg] < len)
1117 return (NULL);
1118 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1119 NOCRED, &bp))
1120 goto fail;
1121 cgp = (struct cg *)bp->b_data;
1122 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1123 goto fail;
1124 /*
1125 * Check to see if a cluster of the needed size (or bigger) is
1126 * available in this cylinder group.
1127 */
1128 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1129 for (i = len; i <= fs->fs_contigsumsize; i++)
1130 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1131 break;
1132 if (i > fs->fs_contigsumsize) {
1133 /*
1134 * This is the first time looking for a cluster in this
1135 * cylinder group. Update the cluster summary information
1136 * to reflect the true maximum sized cluster so that
1137 * future cluster allocation requests can avoid reading
1138 * the cylinder group map only to find no clusters.
1139 */
1140 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1141 for (i = len - 1; i > 0; i--)
1142 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1143 break;
1144 fs->fs_maxcluster[cg] = i;
1145 goto fail;
1146 }
1147 /*
1148 * Search the cluster map to find a big enough cluster.
1149 * We take the first one that we find, even if it is larger
1150 * than we need as we prefer to get one close to the previous
1151 * block allocation. We do not search before the current
1152 * preference point as we do not want to allocate a block
1153 * that is allocated before the previous one (as we will
1154 * then have to wait for another pass of the elevator
1155 * algorithm before it will be read). We prefer to fail and
1156 * be recalled to try an allocation in the next cylinder group.
1157 */
1158 if (dtog(fs, bpref) != cg)
1159 bpref = 0;
1160 else
1161 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1162 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1163 map = *mapp++;
1164 bit = 1 << (bpref % NBBY);
1165 for (run = 0, got = bpref;
1166 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1167 if ((map & bit) == 0) {
1168 run = 0;
1169 } else {
1170 run++;
1171 if (run == len)
1172 break;
1173 }
1174 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1175 bit <<= 1;
1176 } else {
1177 map = *mapp++;
1178 bit = 1;
1179 }
1180 }
1181 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1182 goto fail;
1183 /*
1184 * Allocate the cluster that we have found.
1185 */
1186 #ifdef DIAGNOSTIC
1187 for (i = 1; i <= len; i++)
1188 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1189 got - run + i))
1190 panic("ffs_clusteralloc: map mismatch");
1191 #endif
1192 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1193 if (dtog(fs, bno) != cg)
1194 panic("ffs_clusteralloc: allocated out of group");
1195 len = blkstofrags(fs, len);
1196 for (i = 0; i < len; i += fs->fs_frag)
1197 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1198 panic("ffs_clusteralloc: lost block");
1199 bdwrite(bp);
1200 return (bno);
1201
1202 fail:
1203 brelse(bp);
1204 return (0);
1205 }
1206
1207 /*
1208 * Determine whether an inode can be allocated.
1209 *
1210 * Check to see if an inode is available, and if it is,
1211 * allocate it using the following policy:
1212 * 1) allocate the requested inode.
1213 * 2) allocate the next available inode after the requested
1214 * inode in the specified cylinder group.
1215 */
1216 static ufs_daddr_t
1217 ffs_nodealloccg(ip, cg, ipref, mode)
1218 struct inode *ip;
1219 int cg;
1220 ufs_daddr_t ipref;
1221 int mode;
1222 {
1223 register struct cg *cgp;
1224 struct buf *bp;
1225 int error, start, len, loc, map, i;
1226 register struct fs *fs = ip->i_fs;
1227 #ifdef FFS_EI
1228 const int needswap = UFS_FSNEEDSWAP(fs);
1229 #endif
1230
1231 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1232 return (NULL);
1233 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1234 (int)fs->fs_cgsize, NOCRED, &bp);
1235 if (error) {
1236 brelse(bp);
1237 return (NULL);
1238 }
1239 cgp = (struct cg *)bp->b_data;
1240 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1241 brelse(bp);
1242 return (NULL);
1243 }
1244 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1245 if (ipref) {
1246 ipref %= fs->fs_ipg;
1247 if (isclr(cg_inosused(cgp, needswap), ipref))
1248 goto gotit;
1249 }
1250 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1251 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1252 NBBY);
1253 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1254 if (loc == 0) {
1255 len = start + 1;
1256 start = 0;
1257 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1258 if (loc == 0) {
1259 printf("cg = %d, irotor = %d, fs = %s\n",
1260 cg, ufs_rw32(cgp->cg_irotor, needswap),
1261 fs->fs_fsmnt);
1262 panic("ffs_nodealloccg: map corrupted");
1263 /* NOTREACHED */
1264 }
1265 }
1266 i = start + len - loc;
1267 map = cg_inosused(cgp, needswap)[i];
1268 ipref = i * NBBY;
1269 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1270 if ((map & i) == 0) {
1271 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1272 goto gotit;
1273 }
1274 }
1275 printf("fs = %s\n", fs->fs_fsmnt);
1276 panic("ffs_nodealloccg: block not in map");
1277 /* NOTREACHED */
1278 gotit:
1279 if (DOINGSOFTDEP(ITOV(ip)))
1280 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1281 setbit(cg_inosused(cgp, needswap), ipref);
1282 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1283 fs->fs_cstotal.cs_nifree--;
1284 fs->fs_cs(fs, cg).cs_nifree--;
1285 fs->fs_fmod = 1;
1286 if ((mode & IFMT) == IFDIR) {
1287 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1288 fs->fs_cstotal.cs_ndir++;
1289 fs->fs_cs(fs, cg).cs_ndir++;
1290 }
1291 bdwrite(bp);
1292 return (cg * fs->fs_ipg + ipref);
1293 }
1294
1295 /*
1296 * Free a block or fragment.
1297 *
1298 * The specified block or fragment is placed back in the
1299 * free map. If a fragment is deallocated, a possible
1300 * block reassembly is checked.
1301 */
1302 void
1303 ffs_blkfree(ip, bno, size)
1304 register struct inode *ip;
1305 ufs_daddr_t bno;
1306 long size;
1307 {
1308 register struct cg *cgp;
1309 struct buf *bp;
1310 ufs_daddr_t blkno;
1311 int i, error, cg, blk, frags, bbase;
1312 register struct fs *fs = ip->i_fs;
1313 const int needswap = UFS_FSNEEDSWAP(fs);
1314
1315 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1316 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1317 printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1318 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1319 panic("blkfree: bad size");
1320 }
1321 cg = dtog(fs, bno);
1322 if ((u_int)bno >= fs->fs_size) {
1323 printf("bad block %d, ino %d\n", bno, ip->i_number);
1324 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1325 return;
1326 }
1327 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1328 (int)fs->fs_cgsize, NOCRED, &bp);
1329 if (error) {
1330 brelse(bp);
1331 return;
1332 }
1333 cgp = (struct cg *)bp->b_data;
1334 if (!cg_chkmagic(cgp, needswap)) {
1335 brelse(bp);
1336 return;
1337 }
1338 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1339 bno = dtogd(fs, bno);
1340 if (size == fs->fs_bsize) {
1341 blkno = fragstoblks(fs, bno);
1342 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1343 printf("dev = 0x%x, block = %d, fs = %s\n",
1344 ip->i_dev, bno, fs->fs_fsmnt);
1345 panic("blkfree: freeing free block");
1346 }
1347 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1348 ffs_clusteracct(fs, cgp, blkno, 1);
1349 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1350 fs->fs_cstotal.cs_nbfree++;
1351 fs->fs_cs(fs, cg).cs_nbfree++;
1352 i = cbtocylno(fs, bno);
1353 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1354 needswap);
1355 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1356 } else {
1357 bbase = bno - fragnum(fs, bno);
1358 /*
1359 * decrement the counts associated with the old frags
1360 */
1361 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1362 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1363 /*
1364 * deallocate the fragment
1365 */
1366 frags = numfrags(fs, size);
1367 for (i = 0; i < frags; i++) {
1368 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1369 printf("dev = 0x%x, block = %d, fs = %s\n",
1370 ip->i_dev, bno + i, fs->fs_fsmnt);
1371 panic("blkfree: freeing free frag");
1372 }
1373 setbit(cg_blksfree(cgp, needswap), bno + i);
1374 }
1375 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1376 fs->fs_cstotal.cs_nffree += i;
1377 fs->fs_cs(fs, cg).cs_nffree += i;
1378 /*
1379 * add back in counts associated with the new frags
1380 */
1381 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1382 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1383 /*
1384 * if a complete block has been reassembled, account for it
1385 */
1386 blkno = fragstoblks(fs, bbase);
1387 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1388 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1389 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1390 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1391 ffs_clusteracct(fs, cgp, blkno, 1);
1392 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1393 fs->fs_cstotal.cs_nbfree++;
1394 fs->fs_cs(fs, cg).cs_nbfree++;
1395 i = cbtocylno(fs, bbase);
1396 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1397 bbase)], 1,
1398 needswap);
1399 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1400 }
1401 }
1402 fs->fs_fmod = 1;
1403 bdwrite(bp);
1404 }
1405
1406 #if defined(DIAGNOSTIC) || defined(DEBUG)
1407 /*
1408 * Verify allocation of a block or fragment. Returns true if block or
1409 * fragment is allocated, false if it is free.
1410 */
1411 static int
1412 ffs_checkblk(ip, bno, size)
1413 struct inode *ip;
1414 ufs_daddr_t bno;
1415 long size;
1416 {
1417 struct fs *fs;
1418 struct cg *cgp;
1419 struct buf *bp;
1420 int i, error, frags, free;
1421
1422 fs = ip->i_fs;
1423 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1424 printf("bsize = %d, size = %ld, fs = %s\n",
1425 fs->fs_bsize, size, fs->fs_fsmnt);
1426 panic("checkblk: bad size");
1427 }
1428 if ((u_int)bno >= fs->fs_size)
1429 panic("checkblk: bad block %d", bno);
1430 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1431 (int)fs->fs_cgsize, NOCRED, &bp);
1432 if (error) {
1433 brelse(bp);
1434 return 0;
1435 }
1436 cgp = (struct cg *)bp->b_data;
1437 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1438 brelse(bp);
1439 return 0;
1440 }
1441 bno = dtogd(fs, bno);
1442 if (size == fs->fs_bsize) {
1443 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1444 fragstoblks(fs, bno));
1445 } else {
1446 frags = numfrags(fs, size);
1447 for (free = 0, i = 0; i < frags; i++)
1448 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1449 free++;
1450 if (free != 0 && free != frags)
1451 panic("checkblk: partially free fragment");
1452 }
1453 brelse(bp);
1454 return (!free);
1455 }
1456 #endif /* DIAGNOSTIC */
1457
1458 /*
1459 * Free an inode.
1460 */
1461 int
1462 ffs_vfree(v)
1463 void *v;
1464 {
1465 struct vop_vfree_args /* {
1466 struct vnode *a_pvp;
1467 ino_t a_ino;
1468 int a_mode;
1469 } */ *ap = v;
1470
1471 if (DOINGSOFTDEP(ap->a_pvp)) {
1472 softdep_freefile(ap);
1473 return (0);
1474 }
1475 return (ffs_freefile(ap));
1476 }
1477
1478 /*
1479 * Do the actual free operation.
1480 * The specified inode is placed back in the free map.
1481 */
1482 int
1483 ffs_freefile(v)
1484 void *v;
1485 {
1486 struct vop_vfree_args /* {
1487 struct vnode *a_pvp;
1488 ino_t a_ino;
1489 int a_mode;
1490 } */ *ap = v;
1491 register struct cg *cgp;
1492 register struct inode *pip = VTOI(ap->a_pvp);
1493 register struct fs *fs = pip->i_fs;
1494 ino_t ino = ap->a_ino;
1495 struct buf *bp;
1496 int error, cg;
1497 #ifdef FFS_EI
1498 const int needswap = UFS_FSNEEDSWAP(fs);
1499 #endif
1500
1501 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1502 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1503 pip->i_dev, ino, fs->fs_fsmnt);
1504 cg = ino_to_cg(fs, ino);
1505 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1506 (int)fs->fs_cgsize, NOCRED, &bp);
1507 if (error) {
1508 brelse(bp);
1509 return (error);
1510 }
1511 cgp = (struct cg *)bp->b_data;
1512 if (!cg_chkmagic(cgp, needswap)) {
1513 brelse(bp);
1514 return (0);
1515 }
1516 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1517 ino %= fs->fs_ipg;
1518 if (isclr(cg_inosused(cgp, needswap), ino)) {
1519 printf("dev = 0x%x, ino = %d, fs = %s\n",
1520 pip->i_dev, ino, fs->fs_fsmnt);
1521 if (fs->fs_ronly == 0)
1522 panic("ifree: freeing free inode");
1523 }
1524 clrbit(cg_inosused(cgp, needswap), ino);
1525 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1526 cgp->cg_irotor = ufs_rw32(ino, needswap);
1527 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1528 fs->fs_cstotal.cs_nifree++;
1529 fs->fs_cs(fs, cg).cs_nifree++;
1530 if ((ap->a_mode & IFMT) == IFDIR) {
1531 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1532 fs->fs_cstotal.cs_ndir--;
1533 fs->fs_cs(fs, cg).cs_ndir--;
1534 }
1535 fs->fs_fmod = 1;
1536 bdwrite(bp);
1537 return (0);
1538 }
1539
1540 /*
1541 * Find a block of the specified size in the specified cylinder group.
1542 *
1543 * It is a panic if a request is made to find a block if none are
1544 * available.
1545 */
1546 static ufs_daddr_t
1547 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1548 register struct fs *fs;
1549 register struct cg *cgp;
1550 ufs_daddr_t bpref;
1551 int allocsiz;
1552 {
1553 ufs_daddr_t bno;
1554 int start, len, loc, i;
1555 int blk, field, subfield, pos;
1556 int ostart, olen;
1557 #ifdef FFS_EI
1558 const int needswap = UFS_FSNEEDSWAP(fs);
1559 #endif
1560
1561 /*
1562 * find the fragment by searching through the free block
1563 * map for an appropriate bit pattern
1564 */
1565 if (bpref)
1566 start = dtogd(fs, bpref) / NBBY;
1567 else
1568 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1569 len = howmany(fs->fs_fpg, NBBY) - start;
1570 ostart = start;
1571 olen = len;
1572 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1573 (u_char *)fragtbl[fs->fs_frag],
1574 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1575 if (loc == 0) {
1576 len = start + 1;
1577 start = 0;
1578 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1579 (u_char *)fragtbl[fs->fs_frag],
1580 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1581 if (loc == 0) {
1582 printf("start = %d, len = %d, fs = %s\n",
1583 ostart, olen, fs->fs_fsmnt);
1584 printf("offset=%d %ld\n",
1585 ufs_rw32(cgp->cg_freeoff, needswap),
1586 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1587 panic("ffs_alloccg: map corrupted");
1588 /* NOTREACHED */
1589 }
1590 }
1591 bno = (start + len - loc) * NBBY;
1592 cgp->cg_frotor = ufs_rw32(bno, needswap);
1593 /*
1594 * found the byte in the map
1595 * sift through the bits to find the selected frag
1596 */
1597 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1598 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1599 blk <<= 1;
1600 field = around[allocsiz];
1601 subfield = inside[allocsiz];
1602 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1603 if ((blk & field) == subfield)
1604 return (bno + pos);
1605 field <<= 1;
1606 subfield <<= 1;
1607 }
1608 }
1609 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1610 panic("ffs_alloccg: block not in map");
1611 return (-1);
1612 }
1613
1614 /*
1615 * Update the cluster map because of an allocation or free.
1616 *
1617 * Cnt == 1 means free; cnt == -1 means allocating.
1618 */
1619 void
1620 ffs_clusteracct(fs, cgp, blkno, cnt)
1621 struct fs *fs;
1622 struct cg *cgp;
1623 ufs_daddr_t blkno;
1624 int cnt;
1625 {
1626 int32_t *sump;
1627 int32_t *lp;
1628 u_char *freemapp, *mapp;
1629 int i, start, end, forw, back, map, bit;
1630 #ifdef FFS_EI
1631 const int needswap = UFS_FSNEEDSWAP(fs);
1632 #endif
1633
1634 if (fs->fs_contigsumsize <= 0)
1635 return;
1636 freemapp = cg_clustersfree(cgp, needswap);
1637 sump = cg_clustersum(cgp, needswap);
1638 /*
1639 * Allocate or clear the actual block.
1640 */
1641 if (cnt > 0)
1642 setbit(freemapp, blkno);
1643 else
1644 clrbit(freemapp, blkno);
1645 /*
1646 * Find the size of the cluster going forward.
1647 */
1648 start = blkno + 1;
1649 end = start + fs->fs_contigsumsize;
1650 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1651 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1652 mapp = &freemapp[start / NBBY];
1653 map = *mapp++;
1654 bit = 1 << (start % NBBY);
1655 for (i = start; i < end; i++) {
1656 if ((map & bit) == 0)
1657 break;
1658 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1659 bit <<= 1;
1660 } else {
1661 map = *mapp++;
1662 bit = 1;
1663 }
1664 }
1665 forw = i - start;
1666 /*
1667 * Find the size of the cluster going backward.
1668 */
1669 start = blkno - 1;
1670 end = start - fs->fs_contigsumsize;
1671 if (end < 0)
1672 end = -1;
1673 mapp = &freemapp[start / NBBY];
1674 map = *mapp--;
1675 bit = 1 << (start % NBBY);
1676 for (i = start; i > end; i--) {
1677 if ((map & bit) == 0)
1678 break;
1679 if ((i & (NBBY - 1)) != 0) {
1680 bit >>= 1;
1681 } else {
1682 map = *mapp--;
1683 bit = 1 << (NBBY - 1);
1684 }
1685 }
1686 back = start - i;
1687 /*
1688 * Account for old cluster and the possibly new forward and
1689 * back clusters.
1690 */
1691 i = back + forw + 1;
1692 if (i > fs->fs_contigsumsize)
1693 i = fs->fs_contigsumsize;
1694 ufs_add32(sump[i], cnt, needswap);
1695 if (back > 0)
1696 ufs_add32(sump[back], -cnt, needswap);
1697 if (forw > 0)
1698 ufs_add32(sump[forw], -cnt, needswap);
1699
1700 /*
1701 * Update cluster summary information.
1702 */
1703 lp = &sump[fs->fs_contigsumsize];
1704 for (i = fs->fs_contigsumsize; i > 0; i--)
1705 if (ufs_rw32(*lp--, needswap) > 0)
1706 break;
1707 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1708 }
1709
1710 /*
1711 * Fserr prints the name of a file system with an error diagnostic.
1712 *
1713 * The form of the error message is:
1714 * fs: error message
1715 */
1716 static void
1717 ffs_fserr(fs, uid, cp)
1718 struct fs *fs;
1719 u_int uid;
1720 char *cp;
1721 {
1722
1723 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1724 }
1725