Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.35.4.2
      1 /*	$NetBSD: ffs_alloc.c,v 1.35.4.2 2001/11/25 19:23:27 he Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #if defined(_KERNEL) && !defined(_LKM)
     39 #include "opt_ffs.h"
     40 #include "opt_quota.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/mount.h>
     49 #include <sys/kernel.h>
     50 #include <sys/syslog.h>
     51 
     52 #include <vm/vm.h>
     53 
     54 #include <uvm/uvm_extern.h>
     55 
     56 #include <ufs/ufs/quota.h>
     57 #include <ufs/ufs/ufsmount.h>
     58 #include <ufs/ufs/inode.h>
     59 #include <ufs/ufs/ufs_extern.h>
     60 #include <ufs/ufs/ufs_bswap.h>
     61 
     62 #include <ufs/ffs/fs.h>
     63 #include <ufs/ffs/ffs_extern.h>
     64 
     65 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     66 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     67 					ufs_daddr_t));
     68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     69 static ino_t ffs_dirpref __P((struct fs *, ino_t));
     70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71 static void ffs_fserr __P((struct fs *, u_int, char *));
     72 static u_long ffs_hashalloc
     73 		__P((struct inode *, int, long, int,
     74 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     75 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     76 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     77 				      ufs_daddr_t, int));
     78 #if defined(DIAGNOSTIC) || defined(DEBUG)
     79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80 #endif
     81 
     82 /* if 1, changes in optimalization strategy are logged */
     83 int ffs_log_changeopt = 0;
     84 
     85 /* in ffs_tables.c */
     86 extern int inside[], around[];
     87 extern u_char *fragtbl[];
     88 
     89 /*
     90  * Allocate a block in the file system.
     91  *
     92  * The size of the requested block is given, which must be some
     93  * multiple of fs_fsize and <= fs_bsize.
     94  * A preference may be optionally specified. If a preference is given
     95  * the following hierarchy is used to allocate a block:
     96  *   1) allocate the requested block.
     97  *   2) allocate a rotationally optimal block in the same cylinder.
     98  *   3) allocate a block in the same cylinder group.
     99  *   4) quadradically rehash into other cylinder groups, until an
    100  *      available block is located.
    101  * If no block preference is given the following heirarchy is used
    102  * to allocate a block:
    103  *   1) allocate a block in the cylinder group that contains the
    104  *      inode for the file.
    105  *   2) quadradically rehash into other cylinder groups, until an
    106  *      available block is located.
    107  */
    108 int
    109 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    110 	struct inode *ip;
    111 	ufs_daddr_t lbn, bpref;
    112 	int size;
    113 	struct ucred *cred;
    114 	ufs_daddr_t *bnp;
    115 {
    116 	struct fs *fs;
    117 	ufs_daddr_t bno;
    118 	int cg;
    119 #ifdef QUOTA
    120 	int error;
    121 #endif
    122 
    123 	*bnp = 0;
    124 	fs = ip->i_fs;
    125 #ifdef DIAGNOSTIC
    126 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    127 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    128 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    129 		panic("ffs_alloc: bad size");
    130 	}
    131 	if (cred == NOCRED)
    132 		panic("ffs_alloc: missing credential\n");
    133 #endif /* DIAGNOSTIC */
    134 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    135 		goto nospace;
    136 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    137 		goto nospace;
    138 #ifdef QUOTA
    139 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    140 		return (error);
    141 #endif
    142 	if (bpref >= fs->fs_size)
    143 		bpref = 0;
    144 	if (bpref == 0)
    145 		cg = ino_to_cg(fs, ip->i_number);
    146 	else
    147 		cg = dtog(fs, bpref);
    148 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    149 	    			     ffs_alloccg);
    150 	if (bno > 0) {
    151 		ip->i_ffs_blocks += btodb(size);
    152 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    153 		*bnp = bno;
    154 		return (0);
    155 	}
    156 #ifdef QUOTA
    157 	/*
    158 	 * Restore user's disk quota because allocation failed.
    159 	 */
    160 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    161 #endif
    162 nospace:
    163 	ffs_fserr(fs, cred->cr_uid, "file system full");
    164 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    165 	return (ENOSPC);
    166 }
    167 
    168 /*
    169  * Reallocate a fragment to a bigger size
    170  *
    171  * The number and size of the old block is given, and a preference
    172  * and new size is also specified. The allocator attempts to extend
    173  * the original block. Failing that, the regular block allocator is
    174  * invoked to get an appropriate block.
    175  */
    176 int
    177 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    178 	struct inode *ip;
    179 	ufs_daddr_t lbprev;
    180 	ufs_daddr_t bpref;
    181 	int osize, nsize;
    182 	struct ucred *cred;
    183 	struct buf **bpp;
    184 {
    185 	struct fs *fs;
    186 	struct buf *bp;
    187 	int cg, request, error;
    188 	ufs_daddr_t bprev, bno;
    189 
    190 	*bpp = 0;
    191 	fs = ip->i_fs;
    192 #ifdef DIAGNOSTIC
    193 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    194 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    195 		printf(
    196 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    197 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    198 		panic("ffs_realloccg: bad size");
    199 	}
    200 	if (cred == NOCRED)
    201 		panic("ffs_realloccg: missing credential\n");
    202 #endif /* DIAGNOSTIC */
    203 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    204 		goto nospace;
    205 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    206 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    207 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    208 		panic("ffs_realloccg: bad bprev");
    209 	}
    210 	/*
    211 	 * Allocate the extra space in the buffer.
    212 	 */
    213 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    214 		brelse(bp);
    215 		return (error);
    216 	}
    217 #ifdef QUOTA
    218 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    219 		brelse(bp);
    220 		return (error);
    221 	}
    222 #endif
    223 	/*
    224 	 * Check for extension in the existing location.
    225 	 */
    226 	cg = dtog(fs, bprev);
    227 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    228 		if (bp->b_blkno != fsbtodb(fs, bno))
    229 			panic("bad blockno");
    230 		ip->i_ffs_blocks += btodb(nsize - osize);
    231 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    232 		allocbuf(bp, nsize);
    233 		bp->b_flags |= B_DONE;
    234 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    235 		*bpp = bp;
    236 		return (0);
    237 	}
    238 	/*
    239 	 * Allocate a new disk location.
    240 	 */
    241 	if (bpref >= fs->fs_size)
    242 		bpref = 0;
    243 	switch ((int)fs->fs_optim) {
    244 	case FS_OPTSPACE:
    245 		/*
    246 		 * Allocate an exact sized fragment. Although this makes
    247 		 * best use of space, we will waste time relocating it if
    248 		 * the file continues to grow. If the fragmentation is
    249 		 * less than half of the minimum free reserve, we choose
    250 		 * to begin optimizing for time.
    251 		 */
    252 		request = nsize;
    253 		if (fs->fs_minfree < 5 ||
    254 		    fs->fs_cstotal.cs_nffree >
    255 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    256 			break;
    257 
    258 		if (ffs_log_changeopt) {
    259 			log(LOG_NOTICE,
    260 				"%s: optimization changed from SPACE to TIME\n",
    261 				fs->fs_fsmnt);
    262 		}
    263 
    264 		fs->fs_optim = FS_OPTTIME;
    265 		break;
    266 	case FS_OPTTIME:
    267 		/*
    268 		 * At this point we have discovered a file that is trying to
    269 		 * grow a small fragment to a larger fragment. To save time,
    270 		 * we allocate a full sized block, then free the unused portion.
    271 		 * If the file continues to grow, the `ffs_fragextend' call
    272 		 * above will be able to grow it in place without further
    273 		 * copying. If aberrant programs cause disk fragmentation to
    274 		 * grow within 2% of the free reserve, we choose to begin
    275 		 * optimizing for space.
    276 		 */
    277 		request = fs->fs_bsize;
    278 		if (fs->fs_cstotal.cs_nffree <
    279 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    280 			break;
    281 
    282 		if (ffs_log_changeopt) {
    283 			log(LOG_NOTICE,
    284 				"%s: optimization changed from TIME to SPACE\n",
    285 				fs->fs_fsmnt);
    286 		}
    287 
    288 		fs->fs_optim = FS_OPTSPACE;
    289 		break;
    290 	default:
    291 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    292 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    293 		panic("ffs_realloccg: bad optim");
    294 		/* NOTREACHED */
    295 	}
    296 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    297 	    			     ffs_alloccg);
    298 	if (bno > 0) {
    299 		bp->b_blkno = fsbtodb(fs, bno);
    300 		(void) uvm_vnp_uncache(ITOV(ip));
    301 		if (!DOINGSOFTDEP(ITOV(ip)))
    302 			ffs_blkfree(ip, bprev, (long)osize);
    303 		if (nsize < request)
    304 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    305 			    (long)(request - nsize));
    306 		ip->i_ffs_blocks += btodb(nsize - osize);
    307 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    308 		allocbuf(bp, nsize);
    309 		bp->b_flags |= B_DONE;
    310 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    311 		*bpp = bp;
    312 		return (0);
    313 	}
    314 #ifdef QUOTA
    315 	/*
    316 	 * Restore user's disk quota because allocation failed.
    317 	 */
    318 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    319 #endif
    320 	brelse(bp);
    321 nospace:
    322 	/*
    323 	 * no space available
    324 	 */
    325 	ffs_fserr(fs, cred->cr_uid, "file system full");
    326 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    327 	return (ENOSPC);
    328 }
    329 
    330 /*
    331  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    332  *
    333  * The vnode and an array of buffer pointers for a range of sequential
    334  * logical blocks to be made contiguous is given. The allocator attempts
    335  * to find a range of sequential blocks starting as close as possible to
    336  * an fs_rotdelay offset from the end of the allocation for the logical
    337  * block immediately preceeding the current range. If successful, the
    338  * physical block numbers in the buffer pointers and in the inode are
    339  * changed to reflect the new allocation. If unsuccessful, the allocation
    340  * is left unchanged. The success in doing the reallocation is returned.
    341  * Note that the error return is not reflected back to the user. Rather
    342  * the previous block allocation will be used.
    343  */
    344 #ifdef DEBUG
    345 #include <sys/sysctl.h>
    346 int prtrealloc = 0;
    347 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    348 #endif
    349 
    350 int doasyncfree = 1;
    351 extern int doreallocblks;
    352 
    353 int
    354 ffs_reallocblks(v)
    355 	void *v;
    356 {
    357 	struct vop_reallocblks_args /* {
    358 		struct vnode *a_vp;
    359 		struct cluster_save *a_buflist;
    360 	} */ *ap = v;
    361 	struct fs *fs;
    362 	struct inode *ip;
    363 	struct vnode *vp;
    364 	struct buf *sbp, *ebp;
    365 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    366 	struct cluster_save *buflist;
    367 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    368 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    369 	int i, len, start_lvl, end_lvl, pref, ssize;
    370 
    371 	vp = ap->a_vp;
    372 	ip = VTOI(vp);
    373 	fs = ip->i_fs;
    374 	if (fs->fs_contigsumsize <= 0)
    375 		return (ENOSPC);
    376 	buflist = ap->a_buflist;
    377 	len = buflist->bs_nchildren;
    378 	start_lbn = buflist->bs_children[0]->b_lblkno;
    379 	end_lbn = start_lbn + len - 1;
    380 #ifdef DIAGNOSTIC
    381 	for (i = 0; i < len; i++)
    382 		if (!ffs_checkblk(ip,
    383 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    384 			panic("ffs_reallocblks: unallocated block 1");
    385 	for (i = 1; i < len; i++)
    386 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    387 			panic("ffs_reallocblks: non-logical cluster");
    388 	blkno = buflist->bs_children[0]->b_blkno;
    389 	ssize = fsbtodb(fs, fs->fs_frag);
    390 	for (i = 1; i < len - 1; i++)
    391 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    392 			panic("ffs_reallocblks: non-physical cluster %d", i);
    393 #endif
    394 	/*
    395 	 * If the latest allocation is in a new cylinder group, assume that
    396 	 * the filesystem has decided to move and do not force it back to
    397 	 * the previous cylinder group.
    398 	 */
    399 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    400 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    401 		return (ENOSPC);
    402 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    403 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    404 		return (ENOSPC);
    405 	/*
    406 	 * Get the starting offset and block map for the first block.
    407 	 */
    408 	if (start_lvl == 0) {
    409 		sbap = &ip->i_ffs_db[0];
    410 		soff = start_lbn;
    411 	} else {
    412 		idp = &start_ap[start_lvl - 1];
    413 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    414 			brelse(sbp);
    415 			return (ENOSPC);
    416 		}
    417 		sbap = (ufs_daddr_t *)sbp->b_data;
    418 		soff = idp->in_off;
    419 	}
    420 	/*
    421 	 * Find the preferred location for the cluster.
    422 	 */
    423 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    424 	/*
    425 	 * If the block range spans two block maps, get the second map.
    426 	 */
    427 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    428 		ssize = len;
    429 	} else {
    430 #ifdef DIAGNOSTIC
    431 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    432 			panic("ffs_reallocblk: start == end");
    433 #endif
    434 		ssize = len - (idp->in_off + 1);
    435 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    436 			goto fail;
    437 		ebap = (ufs_daddr_t *)ebp->b_data;
    438 	}
    439 	/*
    440 	 * Search the block map looking for an allocation of the desired size.
    441 	 */
    442 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    443 	    len, ffs_clusteralloc)) == 0)
    444 		goto fail;
    445 	/*
    446 	 * We have found a new contiguous block.
    447 	 *
    448 	 * First we have to replace the old block pointers with the new
    449 	 * block pointers in the inode and indirect blocks associated
    450 	 * with the file.
    451 	 */
    452 #ifdef DEBUG
    453 	if (prtrealloc)
    454 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    455 		    start_lbn, end_lbn);
    456 #endif
    457 	blkno = newblk;
    458 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    459 		ufs_daddr_t ba;
    460 
    461 		if (i == ssize) {
    462 			bap = ebap;
    463 			soff = -i;
    464 		}
    465 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    466 #ifdef DIAGNOSTIC
    467 		if (!ffs_checkblk(ip,
    468 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    469 			panic("ffs_reallocblks: unallocated block 2");
    470 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    471 			panic("ffs_reallocblks: alloc mismatch");
    472 #endif
    473 #ifdef DEBUG
    474 		if (prtrealloc)
    475 			printf(" %d,", ba);
    476 #endif
    477  		if (DOINGSOFTDEP(vp)) {
    478  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    479  				softdep_setup_allocdirect(ip, start_lbn + i,
    480  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    481  				    buflist->bs_children[i]);
    482  			else
    483  				softdep_setup_allocindir_page(ip, start_lbn + i,
    484  				    i < ssize ? sbp : ebp, soff + i, blkno,
    485  				    ba, buflist->bs_children[i]);
    486  		}
    487 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    488 	}
    489 	/*
    490 	 * Next we must write out the modified inode and indirect blocks.
    491 	 * For strict correctness, the writes should be synchronous since
    492 	 * the old block values may have been written to disk. In practise
    493 	 * they are almost never written, but if we are concerned about
    494 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    495 	 *
    496 	 * The test on `doasyncfree' should be changed to test a flag
    497 	 * that shows whether the associated buffers and inodes have
    498 	 * been written. The flag should be set when the cluster is
    499 	 * started and cleared whenever the buffer or inode is flushed.
    500 	 * We can then check below to see if it is set, and do the
    501 	 * synchronous write only when it has been cleared.
    502 	 */
    503 	if (sbap != &ip->i_ffs_db[0]) {
    504 		if (doasyncfree)
    505 			bdwrite(sbp);
    506 		else
    507 			bwrite(sbp);
    508 	} else {
    509 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    510 		if (!doasyncfree)
    511 			VOP_UPDATE(vp, NULL, NULL, 1);
    512 	}
    513 	if (ssize < len) {
    514 		if (doasyncfree)
    515 			bdwrite(ebp);
    516 		else
    517 			bwrite(ebp);
    518 	}
    519 	/*
    520 	 * Last, free the old blocks and assign the new blocks to the buffers.
    521 	 */
    522 #ifdef DEBUG
    523 	if (prtrealloc)
    524 		printf("\n\tnew:");
    525 #endif
    526 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    527 		if (!DOINGSOFTDEP(vp))
    528 			ffs_blkfree(ip,
    529 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    530 			    fs->fs_bsize);
    531 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    532 #ifdef DEBUG
    533 		if (!ffs_checkblk(ip,
    534 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    535 			panic("ffs_reallocblks: unallocated block 3");
    536 		if (prtrealloc)
    537 			printf(" %d,", blkno);
    538 #endif
    539 	}
    540 #ifdef DEBUG
    541 	if (prtrealloc) {
    542 		prtrealloc--;
    543 		printf("\n");
    544 	}
    545 #endif
    546 	return (0);
    547 
    548 fail:
    549 	if (ssize < len)
    550 		brelse(ebp);
    551 	if (sbap != &ip->i_ffs_db[0])
    552 		brelse(sbp);
    553 	return (ENOSPC);
    554 }
    555 
    556 /*
    557  * Allocate an inode in the file system.
    558  *
    559  * If allocating a directory, use ffs_dirpref to select the inode.
    560  * If allocating in a directory, the following hierarchy is followed:
    561  *   1) allocate the preferred inode.
    562  *   2) allocate an inode in the same cylinder group.
    563  *   3) quadradically rehash into other cylinder groups, until an
    564  *      available inode is located.
    565  * If no inode preference is given the following heirarchy is used
    566  * to allocate an inode:
    567  *   1) allocate an inode in cylinder group 0.
    568  *   2) quadradically rehash into other cylinder groups, until an
    569  *      available inode is located.
    570  */
    571 int
    572 ffs_valloc(v)
    573 	void *v;
    574 {
    575 	struct vop_valloc_args /* {
    576 		struct vnode *a_pvp;
    577 		int a_mode;
    578 		struct ucred *a_cred;
    579 		struct vnode **a_vpp;
    580 	} */ *ap = v;
    581 	struct vnode *pvp = ap->a_pvp;
    582 	struct inode *pip;
    583 	struct fs *fs;
    584 	struct inode *ip;
    585 	mode_t mode = ap->a_mode;
    586 	ino_t ino, ipref;
    587 	int cg, error;
    588 
    589 	*ap->a_vpp = NULL;
    590 	pip = VTOI(pvp);
    591 	fs = pip->i_fs;
    592 	if (fs->fs_cstotal.cs_nifree == 0)
    593 		goto noinodes;
    594 
    595 	ipref = pip->i_number;
    596 	if ((mode & IFMT) == IFDIR)
    597 		ipref = ffs_dirpref(fs, ipref);
    598 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    599 		ipref = 0;
    600 	cg = ino_to_cg(fs, ipref);
    601 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    602 	if (ino == 0)
    603 		goto noinodes;
    604 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    605 	if (error) {
    606 		VOP_VFREE(pvp, ino, mode);
    607 		return (error);
    608 	}
    609 	ip = VTOI(*ap->a_vpp);
    610 	if (ip->i_ffs_mode) {
    611 		printf("mode = 0%o, inum = %d, fs = %s\n",
    612 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    613 		panic("ffs_valloc: dup alloc");
    614 	}
    615 	if (ip->i_ffs_blocks) {				/* XXX */
    616 		printf("free inode %s/%d had %d blocks\n",
    617 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    618 		ip->i_ffs_blocks = 0;
    619 	}
    620 	ip->i_ffs_flags = 0;
    621 	/*
    622 	 * Set up a new generation number for this inode.
    623 	 */
    624 	ip->i_ffs_gen++;
    625 	return (0);
    626 noinodes:
    627 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    628 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    629 	return (ENOSPC);
    630 }
    631 
    632 /*
    633  * Find a cylinder in which to place a directory.
    634  *
    635  * The policy implemented by this algorithm is to select from among
    636  * those cylinder groups with above the average number of free inodes
    637  * and a "reasonable" number of free blocks, the one with the smallest
    638  * number of directories.  If there are no cylinder groups with a
    639  * reasonable number of free blocks, we select a CG with *any* free
    640  * blocks or free frags.
    641  *
    642  * "Reasonable" here is arbitrarily defined as "at least 25% of the
    643  * average amount of free space."
    644  *
    645  * This complex policy is intended to avoid pathological (linear
    646  * search) allocation performance when a filesystem contains many
    647  * small cylinder groups with few directory inodes and no free blocks;
    648  * this was observed in practice with the old allocation policy (which
    649  * ignored the distribution of free blocks).  Under the old policy,
    650  * when a new filesystem is populated with a number of files somewhat
    651  * larger than the CG size, and then a second tree containing a large
    652  * number of files and directories is created, mkdir() performance
    653  * would degrade catastrophically, taking many seconds and involving
    654  * thousands of disk reads to complete.
    655  *
    656  * XXX TODO: we currently ignore our "ipref" argument; we may want to
    657  * add a heuristic to determine whether to place a directory in the
    658  * same CG as its parent to reduce the amount of seeking required in
    659  * the course of tree-walks.
    660  */
    661 static ino_t
    662 ffs_dirpref(fs, ipref)
    663 	struct fs *fs;
    664 	ino_t ipref;
    665 {
    666 	int cg, minndir, mincg, avgifree, bfreethresh;
    667 	int minndirf, mincgf;
    668 	struct csum *cs;
    669 
    670 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    671 	bfreethresh = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    672 	bfreethresh >>= 2;
    673 	minndir = fs->fs_ipg;
    674 	minndirf = fs->fs_ipg;
    675 	mincg = 0;
    676 	mincgf = 0;
    677 	for (cg = 0; cg < fs->fs_ncg; cg++) {
    678 		cs = &fs->fs_cs(fs, cg);
    679 		if (cs->cs_nifree >= avgifree) {
    680 			if ((cs->cs_ndir < minndir) &&
    681 			    (cs->cs_nbfree > bfreethresh)) {
    682 				mincg = cg;
    683 				minndir = cs->cs_ndir;
    684 			}
    685 			if ((cs->cs_ndir < minndirf) &&
    686 			    ((cs->cs_nffree + cs->cs_nbfree) > 0)) {
    687 				mincgf = cg;
    688 				minndirf = cs->cs_ndir;
    689 			}
    690 		}
    691 	}
    692 	if (minndir == fs->fs_ipg)
    693 		mincg = mincgf;
    694 	return ((ino_t)(fs->fs_ipg * mincg));
    695 }
    696 
    697 /*
    698  * Select the desired position for the next block in a file.  The file is
    699  * logically divided into sections. The first section is composed of the
    700  * direct blocks. Each additional section contains fs_maxbpg blocks.
    701  *
    702  * If no blocks have been allocated in the first section, the policy is to
    703  * request a block in the same cylinder group as the inode that describes
    704  * the file. If no blocks have been allocated in any other section, the
    705  * policy is to place the section in a cylinder group with a greater than
    706  * average number of free blocks.  An appropriate cylinder group is found
    707  * by using a rotor that sweeps the cylinder groups. When a new group of
    708  * blocks is needed, the sweep begins in the cylinder group following the
    709  * cylinder group from which the previous allocation was made. The sweep
    710  * continues until a cylinder group with greater than the average number
    711  * of free blocks is found. If the allocation is for the first block in an
    712  * indirect block, the information on the previous allocation is unavailable;
    713  * here a best guess is made based upon the logical block number being
    714  * allocated.
    715  *
    716  * If a section is already partially allocated, the policy is to
    717  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    718  * contiguous blocks and the beginning of the next is physically separated
    719  * so that the disk head will be in transit between them for at least
    720  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    721  * schedule another I/O transfer.
    722  */
    723 ufs_daddr_t
    724 ffs_blkpref(ip, lbn, indx, bap)
    725 	struct inode *ip;
    726 	ufs_daddr_t lbn;
    727 	int indx;
    728 	ufs_daddr_t *bap;
    729 {
    730 	struct fs *fs;
    731 	int cg;
    732 	int avgbfree, startcg;
    733 	ufs_daddr_t nextblk;
    734 
    735 	fs = ip->i_fs;
    736 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    737 		if (lbn < NDADDR + NINDIR(fs)) {
    738 			cg = ino_to_cg(fs, ip->i_number);
    739 			return (fs->fs_fpg * cg + fs->fs_frag);
    740 		}
    741 		/*
    742 		 * Find a cylinder with greater than average number of
    743 		 * unused data blocks.
    744 		 */
    745 		if (indx == 0 || bap[indx - 1] == 0)
    746 			startcg =
    747 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    748 		else
    749 			startcg = dtog(fs,
    750 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    751 		startcg %= fs->fs_ncg;
    752 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    753 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    754 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    755 				fs->fs_cgrotor = cg;
    756 				return (fs->fs_fpg * cg + fs->fs_frag);
    757 			}
    758 		for (cg = 0; cg <= startcg; cg++)
    759 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    760 				fs->fs_cgrotor = cg;
    761 				return (fs->fs_fpg * cg + fs->fs_frag);
    762 			}
    763 		return (0);
    764 	}
    765 	/*
    766 	 * One or more previous blocks have been laid out. If less
    767 	 * than fs_maxcontig previous blocks are contiguous, the
    768 	 * next block is requested contiguously, otherwise it is
    769 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    770 	 */
    771 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    772 	if (indx < fs->fs_maxcontig ||
    773 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    774 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    775 		return (nextblk);
    776 	if (fs->fs_rotdelay != 0)
    777 		/*
    778 		 * Here we convert ms of delay to frags as:
    779 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    780 		 *	((sect/frag) * (ms/sec))
    781 		 * then round up to the next block.
    782 		 */
    783 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    784 		    (NSPF(fs) * 1000), fs->fs_frag);
    785 	return (nextblk);
    786 }
    787 
    788 /*
    789  * Implement the cylinder overflow algorithm.
    790  *
    791  * The policy implemented by this algorithm is:
    792  *   1) allocate the block in its requested cylinder group.
    793  *   2) quadradically rehash on the cylinder group number.
    794  *   3) brute force search for a free block.
    795  */
    796 /*VARARGS5*/
    797 static u_long
    798 ffs_hashalloc(ip, cg, pref, size, allocator)
    799 	struct inode *ip;
    800 	int cg;
    801 	long pref;
    802 	int size;	/* size for data blocks, mode for inodes */
    803 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    804 {
    805 	struct fs *fs;
    806 	long result;
    807 	int i, icg = cg;
    808 
    809 	fs = ip->i_fs;
    810 	/*
    811 	 * 1: preferred cylinder group
    812 	 */
    813 	result = (*allocator)(ip, cg, pref, size);
    814 	if (result)
    815 		return (result);
    816 	/*
    817 	 * 2: quadratic rehash
    818 	 */
    819 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    820 		cg += i;
    821 		if (cg >= fs->fs_ncg)
    822 			cg -= fs->fs_ncg;
    823 		result = (*allocator)(ip, cg, 0, size);
    824 		if (result)
    825 			return (result);
    826 	}
    827 	/*
    828 	 * 3: brute force search
    829 	 * Note that we start at i == 2, since 0 was checked initially,
    830 	 * and 1 is always checked in the quadratic rehash.
    831 	 */
    832 	cg = (icg + 2) % fs->fs_ncg;
    833 	for (i = 2; i < fs->fs_ncg; i++) {
    834 		result = (*allocator)(ip, cg, 0, size);
    835 		if (result)
    836 			return (result);
    837 		cg++;
    838 		if (cg == fs->fs_ncg)
    839 			cg = 0;
    840 	}
    841 	return (0);
    842 }
    843 
    844 /*
    845  * Determine whether a fragment can be extended.
    846  *
    847  * Check to see if the necessary fragments are available, and
    848  * if they are, allocate them.
    849  */
    850 static ufs_daddr_t
    851 ffs_fragextend(ip, cg, bprev, osize, nsize)
    852 	struct inode *ip;
    853 	int cg;
    854 	long bprev;
    855 	int osize, nsize;
    856 {
    857 	struct fs *fs;
    858 	struct cg *cgp;
    859 	struct buf *bp;
    860 	long bno;
    861 	int frags, bbase;
    862 	int i, error;
    863 
    864 	fs = ip->i_fs;
    865 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    866 		return (0);
    867 	frags = numfrags(fs, nsize);
    868 	bbase = fragnum(fs, bprev);
    869 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    870 		/* cannot extend across a block boundary */
    871 		return (0);
    872 	}
    873 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    874 		(int)fs->fs_cgsize, NOCRED, &bp);
    875 	if (error) {
    876 		brelse(bp);
    877 		return (0);
    878 	}
    879 	cgp = (struct cg *)bp->b_data;
    880 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    881 		brelse(bp);
    882 		return (0);
    883 	}
    884 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    885 	bno = dtogd(fs, bprev);
    886 	for (i = numfrags(fs, osize); i < frags; i++)
    887 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    888 			brelse(bp);
    889 			return (0);
    890 		}
    891 	/*
    892 	 * the current fragment can be extended
    893 	 * deduct the count on fragment being extended into
    894 	 * increase the count on the remaining fragment (if any)
    895 	 * allocate the extended piece
    896 	 */
    897 	for (i = frags; i < fs->fs_frag - bbase; i++)
    898 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    899 			break;
    900 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    901 	if (i != frags)
    902 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    903 	for (i = numfrags(fs, osize); i < frags; i++) {
    904 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    905 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    906 		fs->fs_cstotal.cs_nffree--;
    907 		fs->fs_cs(fs, cg).cs_nffree--;
    908 	}
    909 	fs->fs_fmod = 1;
    910 	if (DOINGSOFTDEP(ITOV(ip)))
    911 		softdep_setup_blkmapdep(bp, fs, bprev);
    912 	bdwrite(bp);
    913 	return (bprev);
    914 }
    915 
    916 /*
    917  * Determine whether a block can be allocated.
    918  *
    919  * Check to see if a block of the appropriate size is available,
    920  * and if it is, allocate it.
    921  */
    922 static ufs_daddr_t
    923 ffs_alloccg(ip, cg, bpref, size)
    924 	struct inode *ip;
    925 	int cg;
    926 	ufs_daddr_t bpref;
    927 	int size;
    928 {
    929 	struct cg *cgp;
    930 	struct buf *bp;
    931 	ufs_daddr_t bno, blkno;
    932 	int error, frags, allocsiz, i;
    933 	struct fs *fs = ip->i_fs;
    934 #ifdef FFS_EI
    935 	const int needswap = UFS_FSNEEDSWAP(fs);
    936 #endif
    937 
    938 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    939 		return (0);
    940 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    941 		(int)fs->fs_cgsize, NOCRED, &bp);
    942 	if (error) {
    943 		brelse(bp);
    944 		return (0);
    945 	}
    946 	cgp = (struct cg *)bp->b_data;
    947 	if (!cg_chkmagic(cgp, needswap) ||
    948 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    949 		brelse(bp);
    950 		return (0);
    951 	}
    952 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    953 	if (size == fs->fs_bsize) {
    954 		bno = ffs_alloccgblk(ip, bp, bpref);
    955 		bdwrite(bp);
    956 		return (bno);
    957 	}
    958 	/*
    959 	 * check to see if any fragments are already available
    960 	 * allocsiz is the size which will be allocated, hacking
    961 	 * it down to a smaller size if necessary
    962 	 */
    963 	frags = numfrags(fs, size);
    964 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    965 		if (cgp->cg_frsum[allocsiz] != 0)
    966 			break;
    967 	if (allocsiz == fs->fs_frag) {
    968 		/*
    969 		 * no fragments were available, so a block will be
    970 		 * allocated, and hacked up
    971 		 */
    972 		if (cgp->cg_cs.cs_nbfree == 0) {
    973 			brelse(bp);
    974 			return (0);
    975 		}
    976 		bno = ffs_alloccgblk(ip, bp, bpref);
    977 		bpref = dtogd(fs, bno);
    978 		for (i = frags; i < fs->fs_frag; i++)
    979 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    980 		i = fs->fs_frag - frags;
    981 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    982 		fs->fs_cstotal.cs_nffree += i;
    983 		fs->fs_cs(fs, cg).cs_nffree += i;
    984 		fs->fs_fmod = 1;
    985 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    986 		bdwrite(bp);
    987 		return (bno);
    988 	}
    989 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    990 #if 0
    991 	/*
    992 	 * XXX fvdl mapsearch will panic, and never return -1
    993 	 *          also: returning NULL as ufs_daddr_t ?
    994 	 */
    995 	if (bno < 0) {
    996 		brelse(bp);
    997 		return (0);
    998 	}
    999 #endif
   1000 	for (i = 0; i < frags; i++)
   1001 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1002 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1003 	fs->fs_cstotal.cs_nffree -= frags;
   1004 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1005 	fs->fs_fmod = 1;
   1006 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1007 	if (frags != allocsiz)
   1008 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1009 	blkno = cg * fs->fs_fpg + bno;
   1010 	if (DOINGSOFTDEP(ITOV(ip)))
   1011 		softdep_setup_blkmapdep(bp, fs, blkno);
   1012 	bdwrite(bp);
   1013 	return blkno;
   1014 }
   1015 
   1016 /*
   1017  * Allocate a block in a cylinder group.
   1018  *
   1019  * This algorithm implements the following policy:
   1020  *   1) allocate the requested block.
   1021  *   2) allocate a rotationally optimal block in the same cylinder.
   1022  *   3) allocate the next available block on the block rotor for the
   1023  *      specified cylinder group.
   1024  * Note that this routine only allocates fs_bsize blocks; these
   1025  * blocks may be fragmented by the routine that allocates them.
   1026  */
   1027 static ufs_daddr_t
   1028 ffs_alloccgblk(ip, bp, bpref)
   1029 	struct inode *ip;
   1030 	struct buf *bp;
   1031 	ufs_daddr_t bpref;
   1032 {
   1033 	struct cg *cgp;
   1034 	ufs_daddr_t bno, blkno;
   1035 	int cylno, pos, delta;
   1036 	short *cylbp;
   1037 	int i;
   1038 	struct fs *fs = ip->i_fs;
   1039 #ifdef FFS_EI
   1040 	const int needswap = UFS_FSNEEDSWAP(fs);
   1041 #endif
   1042 
   1043 	cgp = (struct cg *)bp->b_data;
   1044 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1045 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1046 		goto norot;
   1047 	}
   1048 	bpref = blknum(fs, bpref);
   1049 	bpref = dtogd(fs, bpref);
   1050 	/*
   1051 	 * if the requested block is available, use it
   1052 	 */
   1053 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1054 		fragstoblks(fs, bpref))) {
   1055 		bno = bpref;
   1056 		goto gotit;
   1057 	}
   1058 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1059 		/*
   1060 		 * Block layout information is not available.
   1061 		 * Leaving bpref unchanged means we take the
   1062 		 * next available free block following the one
   1063 		 * we just allocated. Hopefully this will at
   1064 		 * least hit a track cache on drives of unknown
   1065 		 * geometry (e.g. SCSI).
   1066 		 */
   1067 		goto norot;
   1068 	}
   1069 	/*
   1070 	 * check for a block available on the same cylinder
   1071 	 */
   1072 	cylno = cbtocylno(fs, bpref);
   1073 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1074 		goto norot;
   1075 	/*
   1076 	 * check the summary information to see if a block is
   1077 	 * available in the requested cylinder starting at the
   1078 	 * requested rotational position and proceeding around.
   1079 	 */
   1080 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1081 	pos = cbtorpos(fs, bpref);
   1082 	for (i = pos; i < fs->fs_nrpos; i++)
   1083 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1084 			break;
   1085 	if (i == fs->fs_nrpos)
   1086 		for (i = 0; i < pos; i++)
   1087 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1088 				break;
   1089 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1090 		/*
   1091 		 * found a rotational position, now find the actual
   1092 		 * block. A panic if none is actually there.
   1093 		 */
   1094 		pos = cylno % fs->fs_cpc;
   1095 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1096 		if (fs_postbl(fs, pos)[i] == -1) {
   1097 			printf("pos = %d, i = %d, fs = %s\n",
   1098 			    pos, i, fs->fs_fsmnt);
   1099 			panic("ffs_alloccgblk: cyl groups corrupted");
   1100 		}
   1101 		for (i = fs_postbl(fs, pos)[i];; ) {
   1102 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1103 				bno = blkstofrags(fs, (bno + i));
   1104 				goto gotit;
   1105 			}
   1106 			delta = fs_rotbl(fs)[i];
   1107 			if (delta <= 0 ||
   1108 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1109 				break;
   1110 			i += delta;
   1111 		}
   1112 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1113 		panic("ffs_alloccgblk: can't find blk in cyl");
   1114 	}
   1115 norot:
   1116 	/*
   1117 	 * no blocks in the requested cylinder, so take next
   1118 	 * available one in this cylinder group.
   1119 	 */
   1120 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1121 	if (bno < 0)
   1122 		return (0);
   1123 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1124 gotit:
   1125 	blkno = fragstoblks(fs, bno);
   1126 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1127 	ffs_clusteracct(fs, cgp, blkno, -1);
   1128 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1129 	fs->fs_cstotal.cs_nbfree--;
   1130 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1131 	cylno = cbtocylno(fs, bno);
   1132 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1133 	    needswap);
   1134 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1135 	fs->fs_fmod = 1;
   1136 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1137 	if (DOINGSOFTDEP(ITOV(ip)))
   1138 		softdep_setup_blkmapdep(bp, fs, blkno);
   1139 	return (blkno);
   1140 }
   1141 
   1142 /*
   1143  * Determine whether a cluster can be allocated.
   1144  *
   1145  * We do not currently check for optimal rotational layout if there
   1146  * are multiple choices in the same cylinder group. Instead we just
   1147  * take the first one that we find following bpref.
   1148  */
   1149 static ufs_daddr_t
   1150 ffs_clusteralloc(ip, cg, bpref, len)
   1151 	struct inode *ip;
   1152 	int cg;
   1153 	ufs_daddr_t bpref;
   1154 	int len;
   1155 {
   1156 	struct fs *fs;
   1157 	struct cg *cgp;
   1158 	struct buf *bp;
   1159 	int i, got, run, bno, bit, map;
   1160 	u_char *mapp;
   1161 	int32_t *lp;
   1162 
   1163 	fs = ip->i_fs;
   1164 	if (fs->fs_maxcluster[cg] < len)
   1165 		return (0);
   1166 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1167 	    NOCRED, &bp))
   1168 		goto fail;
   1169 	cgp = (struct cg *)bp->b_data;
   1170 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1171 		goto fail;
   1172 	/*
   1173 	 * Check to see if a cluster of the needed size (or bigger) is
   1174 	 * available in this cylinder group.
   1175 	 */
   1176 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1177 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1178 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1179 			break;
   1180 	if (i > fs->fs_contigsumsize) {
   1181 		/*
   1182 		 * This is the first time looking for a cluster in this
   1183 		 * cylinder group. Update the cluster summary information
   1184 		 * to reflect the true maximum sized cluster so that
   1185 		 * future cluster allocation requests can avoid reading
   1186 		 * the cylinder group map only to find no clusters.
   1187 		 */
   1188 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1189 		for (i = len - 1; i > 0; i--)
   1190 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1191 				break;
   1192 		fs->fs_maxcluster[cg] = i;
   1193 		goto fail;
   1194 	}
   1195 	/*
   1196 	 * Search the cluster map to find a big enough cluster.
   1197 	 * We take the first one that we find, even if it is larger
   1198 	 * than we need as we prefer to get one close to the previous
   1199 	 * block allocation. We do not search before the current
   1200 	 * preference point as we do not want to allocate a block
   1201 	 * that is allocated before the previous one (as we will
   1202 	 * then have to wait for another pass of the elevator
   1203 	 * algorithm before it will be read). We prefer to fail and
   1204 	 * be recalled to try an allocation in the next cylinder group.
   1205 	 */
   1206 	if (dtog(fs, bpref) != cg)
   1207 		bpref = 0;
   1208 	else
   1209 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1210 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1211 	map = *mapp++;
   1212 	bit = 1 << (bpref % NBBY);
   1213 	for (run = 0, got = bpref;
   1214 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1215 		if ((map & bit) == 0) {
   1216 			run = 0;
   1217 		} else {
   1218 			run++;
   1219 			if (run == len)
   1220 				break;
   1221 		}
   1222 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1223 			bit <<= 1;
   1224 		} else {
   1225 			map = *mapp++;
   1226 			bit = 1;
   1227 		}
   1228 	}
   1229 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1230 		goto fail;
   1231 	/*
   1232 	 * Allocate the cluster that we have found.
   1233 	 */
   1234 #ifdef DIAGNOSTIC
   1235 	for (i = 1; i <= len; i++)
   1236 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1237 		    got - run + i))
   1238 			panic("ffs_clusteralloc: map mismatch");
   1239 #endif
   1240 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1241 	if (dtog(fs, bno) != cg)
   1242 		panic("ffs_clusteralloc: allocated out of group");
   1243 	len = blkstofrags(fs, len);
   1244 	for (i = 0; i < len; i += fs->fs_frag)
   1245 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1246 			panic("ffs_clusteralloc: lost block");
   1247 	bdwrite(bp);
   1248 	return (bno);
   1249 
   1250 fail:
   1251 	brelse(bp);
   1252 	return (0);
   1253 }
   1254 
   1255 /*
   1256  * Determine whether an inode can be allocated.
   1257  *
   1258  * Check to see if an inode is available, and if it is,
   1259  * allocate it using the following policy:
   1260  *   1) allocate the requested inode.
   1261  *   2) allocate the next available inode after the requested
   1262  *      inode in the specified cylinder group.
   1263  */
   1264 static ufs_daddr_t
   1265 ffs_nodealloccg(ip, cg, ipref, mode)
   1266 	struct inode *ip;
   1267 	int cg;
   1268 	ufs_daddr_t ipref;
   1269 	int mode;
   1270 {
   1271 	struct cg *cgp;
   1272 	struct buf *bp;
   1273 	int error, start, len, loc, map, i;
   1274 	struct fs *fs = ip->i_fs;
   1275 #ifdef FFS_EI
   1276 	const int needswap = UFS_FSNEEDSWAP(fs);
   1277 #endif
   1278 
   1279 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1280 		return (0);
   1281 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1282 		(int)fs->fs_cgsize, NOCRED, &bp);
   1283 	if (error) {
   1284 		brelse(bp);
   1285 		return (0);
   1286 	}
   1287 	cgp = (struct cg *)bp->b_data;
   1288 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1289 		brelse(bp);
   1290 		return (0);
   1291 	}
   1292 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1293 	if (ipref) {
   1294 		ipref %= fs->fs_ipg;
   1295 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1296 			goto gotit;
   1297 	}
   1298 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1299 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1300 		NBBY);
   1301 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1302 	if (loc == 0) {
   1303 		len = start + 1;
   1304 		start = 0;
   1305 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1306 		if (loc == 0) {
   1307 			printf("cg = %d, irotor = %d, fs = %s\n",
   1308 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1309 				fs->fs_fsmnt);
   1310 			panic("ffs_nodealloccg: map corrupted");
   1311 			/* NOTREACHED */
   1312 		}
   1313 	}
   1314 	i = start + len - loc;
   1315 	map = cg_inosused(cgp, needswap)[i];
   1316 	ipref = i * NBBY;
   1317 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1318 		if ((map & i) == 0) {
   1319 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1320 			goto gotit;
   1321 		}
   1322 	}
   1323 	printf("fs = %s\n", fs->fs_fsmnt);
   1324 	panic("ffs_nodealloccg: block not in map");
   1325 	/* NOTREACHED */
   1326 gotit:
   1327 	if (DOINGSOFTDEP(ITOV(ip)))
   1328 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1329 	setbit(cg_inosused(cgp, needswap), ipref);
   1330 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1331 	fs->fs_cstotal.cs_nifree--;
   1332 	fs->fs_cs(fs, cg).cs_nifree--;
   1333 	fs->fs_fmod = 1;
   1334 	if ((mode & IFMT) == IFDIR) {
   1335 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1336 		fs->fs_cstotal.cs_ndir++;
   1337 		fs->fs_cs(fs, cg).cs_ndir++;
   1338 	}
   1339 	bdwrite(bp);
   1340 	return (cg * fs->fs_ipg + ipref);
   1341 }
   1342 
   1343 /*
   1344  * Free a block or fragment.
   1345  *
   1346  * The specified block or fragment is placed back in the
   1347  * free map. If a fragment is deallocated, a possible
   1348  * block reassembly is checked.
   1349  */
   1350 void
   1351 ffs_blkfree(ip, bno, size)
   1352 	struct inode *ip;
   1353 	ufs_daddr_t bno;
   1354 	long size;
   1355 {
   1356 	struct cg *cgp;
   1357 	struct buf *bp;
   1358 	ufs_daddr_t blkno;
   1359 	int i, error, cg, blk, frags, bbase;
   1360 	struct fs *fs = ip->i_fs;
   1361 	const int needswap = UFS_FSNEEDSWAP(fs);
   1362 
   1363 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1364 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1365 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1366 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1367 		panic("blkfree: bad size");
   1368 	}
   1369 	cg = dtog(fs, bno);
   1370 	if ((u_int)bno >= fs->fs_size) {
   1371 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1372 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1373 		return;
   1374 	}
   1375 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1376 		(int)fs->fs_cgsize, NOCRED, &bp);
   1377 	if (error) {
   1378 		brelse(bp);
   1379 		return;
   1380 	}
   1381 	cgp = (struct cg *)bp->b_data;
   1382 	if (!cg_chkmagic(cgp, needswap)) {
   1383 		brelse(bp);
   1384 		return;
   1385 	}
   1386 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1387 	bno = dtogd(fs, bno);
   1388 	if (size == fs->fs_bsize) {
   1389 		blkno = fragstoblks(fs, bno);
   1390 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1391 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1392 			    ip->i_dev, bno, fs->fs_fsmnt);
   1393 			panic("blkfree: freeing free block");
   1394 		}
   1395 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1396 		ffs_clusteracct(fs, cgp, blkno, 1);
   1397 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1398 		fs->fs_cstotal.cs_nbfree++;
   1399 		fs->fs_cs(fs, cg).cs_nbfree++;
   1400 		i = cbtocylno(fs, bno);
   1401 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1402 		    needswap);
   1403 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1404 	} else {
   1405 		bbase = bno - fragnum(fs, bno);
   1406 		/*
   1407 		 * decrement the counts associated with the old frags
   1408 		 */
   1409 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1410 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1411 		/*
   1412 		 * deallocate the fragment
   1413 		 */
   1414 		frags = numfrags(fs, size);
   1415 		for (i = 0; i < frags; i++) {
   1416 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1417 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1418 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1419 				panic("blkfree: freeing free frag");
   1420 			}
   1421 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1422 		}
   1423 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1424 		fs->fs_cstotal.cs_nffree += i;
   1425 		fs->fs_cs(fs, cg).cs_nffree += i;
   1426 		/*
   1427 		 * add back in counts associated with the new frags
   1428 		 */
   1429 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1430 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1431 		/*
   1432 		 * if a complete block has been reassembled, account for it
   1433 		 */
   1434 		blkno = fragstoblks(fs, bbase);
   1435 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1436 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1437 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1438 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1439 			ffs_clusteracct(fs, cgp, blkno, 1);
   1440 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1441 			fs->fs_cstotal.cs_nbfree++;
   1442 			fs->fs_cs(fs, cg).cs_nbfree++;
   1443 			i = cbtocylno(fs, bbase);
   1444 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1445 								bbase)], 1,
   1446 			    needswap);
   1447 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1448 		}
   1449 	}
   1450 	fs->fs_fmod = 1;
   1451 	bdwrite(bp);
   1452 }
   1453 
   1454 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1455 /*
   1456  * Verify allocation of a block or fragment. Returns true if block or
   1457  * fragment is allocated, false if it is free.
   1458  */
   1459 static int
   1460 ffs_checkblk(ip, bno, size)
   1461 	struct inode *ip;
   1462 	ufs_daddr_t bno;
   1463 	long size;
   1464 {
   1465 	struct fs *fs;
   1466 	struct cg *cgp;
   1467 	struct buf *bp;
   1468 	int i, error, frags, free;
   1469 
   1470 	fs = ip->i_fs;
   1471 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1472 		printf("bsize = %d, size = %ld, fs = %s\n",
   1473 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1474 		panic("checkblk: bad size");
   1475 	}
   1476 	if ((u_int)bno >= fs->fs_size)
   1477 		panic("checkblk: bad block %d", bno);
   1478 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1479 		(int)fs->fs_cgsize, NOCRED, &bp);
   1480 	if (error) {
   1481 		brelse(bp);
   1482 		return 0;
   1483 	}
   1484 	cgp = (struct cg *)bp->b_data;
   1485 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1486 		brelse(bp);
   1487 		return 0;
   1488 	}
   1489 	bno = dtogd(fs, bno);
   1490 	if (size == fs->fs_bsize) {
   1491 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1492 			fragstoblks(fs, bno));
   1493 	} else {
   1494 		frags = numfrags(fs, size);
   1495 		for (free = 0, i = 0; i < frags; i++)
   1496 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1497 				free++;
   1498 		if (free != 0 && free != frags)
   1499 			panic("checkblk: partially free fragment");
   1500 	}
   1501 	brelse(bp);
   1502 	return (!free);
   1503 }
   1504 #endif /* DIAGNOSTIC */
   1505 
   1506 /*
   1507  * Free an inode.
   1508  */
   1509 int
   1510 ffs_vfree(v)
   1511 	void *v;
   1512 {
   1513 	struct vop_vfree_args /* {
   1514 		struct vnode *a_pvp;
   1515 		ino_t a_ino;
   1516 		int a_mode;
   1517 	} */ *ap = v;
   1518 
   1519 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1520 		softdep_freefile(ap);
   1521 		return (0);
   1522 	}
   1523 	return (ffs_freefile(ap));
   1524 }
   1525 
   1526 /*
   1527  * Do the actual free operation.
   1528  * The specified inode is placed back in the free map.
   1529  */
   1530 int
   1531 ffs_freefile(v)
   1532 	void *v;
   1533 {
   1534 	struct vop_vfree_args /* {
   1535 		struct vnode *a_pvp;
   1536 		ino_t a_ino;
   1537 		int a_mode;
   1538 	} */ *ap = v;
   1539 	struct cg *cgp;
   1540 	struct inode *pip = VTOI(ap->a_pvp);
   1541 	struct fs *fs = pip->i_fs;
   1542 	ino_t ino = ap->a_ino;
   1543 	struct buf *bp;
   1544 	int error, cg;
   1545 #ifdef FFS_EI
   1546 	const int needswap = UFS_FSNEEDSWAP(fs);
   1547 #endif
   1548 
   1549 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1550 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1551 		    pip->i_dev, ino, fs->fs_fsmnt);
   1552 	cg = ino_to_cg(fs, ino);
   1553 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1554 		(int)fs->fs_cgsize, NOCRED, &bp);
   1555 	if (error) {
   1556 		brelse(bp);
   1557 		return (error);
   1558 	}
   1559 	cgp = (struct cg *)bp->b_data;
   1560 	if (!cg_chkmagic(cgp, needswap)) {
   1561 		brelse(bp);
   1562 		return (0);
   1563 	}
   1564 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1565 	ino %= fs->fs_ipg;
   1566 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1567 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1568 		    pip->i_dev, ino, fs->fs_fsmnt);
   1569 		if (fs->fs_ronly == 0)
   1570 			panic("ifree: freeing free inode");
   1571 	}
   1572 	clrbit(cg_inosused(cgp, needswap), ino);
   1573 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1574 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1575 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1576 	fs->fs_cstotal.cs_nifree++;
   1577 	fs->fs_cs(fs, cg).cs_nifree++;
   1578 	if ((ap->a_mode & IFMT) == IFDIR) {
   1579 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1580 		fs->fs_cstotal.cs_ndir--;
   1581 		fs->fs_cs(fs, cg).cs_ndir--;
   1582 	}
   1583 	fs->fs_fmod = 1;
   1584 	bdwrite(bp);
   1585 	return (0);
   1586 }
   1587 
   1588 /*
   1589  * Find a block of the specified size in the specified cylinder group.
   1590  *
   1591  * It is a panic if a request is made to find a block if none are
   1592  * available.
   1593  */
   1594 static ufs_daddr_t
   1595 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1596 	struct fs *fs;
   1597 	struct cg *cgp;
   1598 	ufs_daddr_t bpref;
   1599 	int allocsiz;
   1600 {
   1601 	ufs_daddr_t bno;
   1602 	int start, len, loc, i;
   1603 	int blk, field, subfield, pos;
   1604 	int ostart, olen;
   1605 #ifdef FFS_EI
   1606 	const int needswap = UFS_FSNEEDSWAP(fs);
   1607 #endif
   1608 
   1609 	/*
   1610 	 * find the fragment by searching through the free block
   1611 	 * map for an appropriate bit pattern
   1612 	 */
   1613 	if (bpref)
   1614 		start = dtogd(fs, bpref) / NBBY;
   1615 	else
   1616 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1617 	len = howmany(fs->fs_fpg, NBBY) - start;
   1618 	ostart = start;
   1619 	olen = len;
   1620 	loc = scanc((u_int)len,
   1621 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1622 		(const u_char *)fragtbl[fs->fs_frag],
   1623 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1624 	if (loc == 0) {
   1625 		len = start + 1;
   1626 		start = 0;
   1627 		loc = scanc((u_int)len,
   1628 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1629 			(const u_char *)fragtbl[fs->fs_frag],
   1630 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1631 		if (loc == 0) {
   1632 			printf("start = %d, len = %d, fs = %s\n",
   1633 			    ostart, olen, fs->fs_fsmnt);
   1634 			printf("offset=%d %ld\n",
   1635 				ufs_rw32(cgp->cg_freeoff, needswap),
   1636 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1637 			panic("ffs_alloccg: map corrupted");
   1638 			/* NOTREACHED */
   1639 		}
   1640 	}
   1641 	bno = (start + len - loc) * NBBY;
   1642 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1643 	/*
   1644 	 * found the byte in the map
   1645 	 * sift through the bits to find the selected frag
   1646 	 */
   1647 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1648 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1649 		blk <<= 1;
   1650 		field = around[allocsiz];
   1651 		subfield = inside[allocsiz];
   1652 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1653 			if ((blk & field) == subfield)
   1654 				return (bno + pos);
   1655 			field <<= 1;
   1656 			subfield <<= 1;
   1657 		}
   1658 	}
   1659 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1660 	panic("ffs_alloccg: block not in map");
   1661 	return (-1);
   1662 }
   1663 
   1664 /*
   1665  * Update the cluster map because of an allocation or free.
   1666  *
   1667  * Cnt == 1 means free; cnt == -1 means allocating.
   1668  */
   1669 void
   1670 ffs_clusteracct(fs, cgp, blkno, cnt)
   1671 	struct fs *fs;
   1672 	struct cg *cgp;
   1673 	ufs_daddr_t blkno;
   1674 	int cnt;
   1675 {
   1676 	int32_t *sump;
   1677 	int32_t *lp;
   1678 	u_char *freemapp, *mapp;
   1679 	int i, start, end, forw, back, map, bit;
   1680 #ifdef FFS_EI
   1681 	const int needswap = UFS_FSNEEDSWAP(fs);
   1682 #endif
   1683 
   1684 	if (fs->fs_contigsumsize <= 0)
   1685 		return;
   1686 	freemapp = cg_clustersfree(cgp, needswap);
   1687 	sump = cg_clustersum(cgp, needswap);
   1688 	/*
   1689 	 * Allocate or clear the actual block.
   1690 	 */
   1691 	if (cnt > 0)
   1692 		setbit(freemapp, blkno);
   1693 	else
   1694 		clrbit(freemapp, blkno);
   1695 	/*
   1696 	 * Find the size of the cluster going forward.
   1697 	 */
   1698 	start = blkno + 1;
   1699 	end = start + fs->fs_contigsumsize;
   1700 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1701 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1702 	mapp = &freemapp[start / NBBY];
   1703 	map = *mapp++;
   1704 	bit = 1 << (start % NBBY);
   1705 	for (i = start; i < end; i++) {
   1706 		if ((map & bit) == 0)
   1707 			break;
   1708 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1709 			bit <<= 1;
   1710 		} else {
   1711 			map = *mapp++;
   1712 			bit = 1;
   1713 		}
   1714 	}
   1715 	forw = i - start;
   1716 	/*
   1717 	 * Find the size of the cluster going backward.
   1718 	 */
   1719 	start = blkno - 1;
   1720 	end = start - fs->fs_contigsumsize;
   1721 	if (end < 0)
   1722 		end = -1;
   1723 	mapp = &freemapp[start / NBBY];
   1724 	map = *mapp--;
   1725 	bit = 1 << (start % NBBY);
   1726 	for (i = start; i > end; i--) {
   1727 		if ((map & bit) == 0)
   1728 			break;
   1729 		if ((i & (NBBY - 1)) != 0) {
   1730 			bit >>= 1;
   1731 		} else {
   1732 			map = *mapp--;
   1733 			bit = 1 << (NBBY - 1);
   1734 		}
   1735 	}
   1736 	back = start - i;
   1737 	/*
   1738 	 * Account for old cluster and the possibly new forward and
   1739 	 * back clusters.
   1740 	 */
   1741 	i = back + forw + 1;
   1742 	if (i > fs->fs_contigsumsize)
   1743 		i = fs->fs_contigsumsize;
   1744 	ufs_add32(sump[i], cnt, needswap);
   1745 	if (back > 0)
   1746 		ufs_add32(sump[back], -cnt, needswap);
   1747 	if (forw > 0)
   1748 		ufs_add32(sump[forw], -cnt, needswap);
   1749 
   1750 	/*
   1751 	 * Update cluster summary information.
   1752 	 */
   1753 	lp = &sump[fs->fs_contigsumsize];
   1754 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1755 		if (ufs_rw32(*lp--, needswap) > 0)
   1756 			break;
   1757 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1758 }
   1759 
   1760 /*
   1761  * Fserr prints the name of a file system with an error diagnostic.
   1762  *
   1763  * The form of the error message is:
   1764  *	fs: error message
   1765  */
   1766 static void
   1767 ffs_fserr(fs, uid, cp)
   1768 	struct fs *fs;
   1769 	u_int uid;
   1770 	char *cp;
   1771 {
   1772 
   1773 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1774 }
   1775