Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.37
      1 /*	$NetBSD: ffs_alloc.c,v 1.37 2000/11/27 08:39:54 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #if defined(_KERNEL) && !defined(_LKM)
     39 #include "opt_ffs.h"
     40 #include "opt_quota.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/mount.h>
     49 #include <sys/kernel.h>
     50 #include <sys/syslog.h>
     51 
     52 #include <ufs/ufs/quota.h>
     53 #include <ufs/ufs/ufsmount.h>
     54 #include <ufs/ufs/inode.h>
     55 #include <ufs/ufs/ufs_extern.h>
     56 #include <ufs/ufs/ufs_bswap.h>
     57 
     58 #include <ufs/ffs/fs.h>
     59 #include <ufs/ffs/ffs_extern.h>
     60 
     61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     62 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     63 					ufs_daddr_t));
     64 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     65 static ino_t ffs_dirpref __P((struct fs *));
     66 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     67 static void ffs_fserr __P((struct fs *, u_int, char *));
     68 static u_long ffs_hashalloc
     69 		__P((struct inode *, int, long, int,
     70 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     71 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     72 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     73 				      ufs_daddr_t, int));
     74 #if defined(DIAGNOSTIC) || defined(DEBUG)
     75 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     76 #endif
     77 
     78 /* if 1, changes in optimalization strategy are logged */
     79 int ffs_log_changeopt = 0;
     80 
     81 /* in ffs_tables.c */
     82 extern int inside[], around[];
     83 extern u_char *fragtbl[];
     84 
     85 /*
     86  * Allocate a block in the file system.
     87  *
     88  * The size of the requested block is given, which must be some
     89  * multiple of fs_fsize and <= fs_bsize.
     90  * A preference may be optionally specified. If a preference is given
     91  * the following hierarchy is used to allocate a block:
     92  *   1) allocate the requested block.
     93  *   2) allocate a rotationally optimal block in the same cylinder.
     94  *   3) allocate a block in the same cylinder group.
     95  *   4) quadradically rehash into other cylinder groups, until an
     96  *      available block is located.
     97  * If no block preference is given the following heirarchy is used
     98  * to allocate a block:
     99  *   1) allocate a block in the cylinder group that contains the
    100  *      inode for the file.
    101  *   2) quadradically rehash into other cylinder groups, until an
    102  *      available block is located.
    103  */
    104 int
    105 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    106 	struct inode *ip;
    107 	ufs_daddr_t lbn, bpref;
    108 	int size;
    109 	struct ucred *cred;
    110 	ufs_daddr_t *bnp;
    111 {
    112 	struct fs *fs = ip->i_fs;
    113 	ufs_daddr_t bno;
    114 	int cg;
    115 #ifdef QUOTA
    116 	int error;
    117 #endif
    118 
    119 #ifdef UVM_PAGE_TRKOWN
    120 	if (ITOV(ip)->v_type == VREG && lbn > 0) {
    121 		struct vm_page *pg;
    122 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    123 		voff_t off = trunc_page(lblktosize(fs, lbn));
    124 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    125 
    126 		simple_lock(&uobj->vmobjlock);
    127 		while (off < endoff) {
    128 			pg = uvm_pagelookup(uobj, off);
    129 			KASSERT(pg != NULL);
    130 			KASSERT(pg->owner == curproc->p_pid);
    131 			KASSERT((pg->flags & PG_CLEAN) == 0);
    132 			off += PAGE_SIZE;
    133 		}
    134 		simple_unlock(&uobj->vmobjlock);
    135 	}
    136 #endif
    137 
    138 	*bnp = 0;
    139 #ifdef DIAGNOSTIC
    140 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    141 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    142 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    143 		panic("ffs_alloc: bad size");
    144 	}
    145 	if (cred == NOCRED)
    146 		panic("ffs_alloc: missing credential\n");
    147 #endif /* DIAGNOSTIC */
    148 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    149 		goto nospace;
    150 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    151 		goto nospace;
    152 #ifdef QUOTA
    153 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    154 		return (error);
    155 #endif
    156 	if (bpref >= fs->fs_size)
    157 		bpref = 0;
    158 	if (bpref == 0)
    159 		cg = ino_to_cg(fs, ip->i_number);
    160 	else
    161 		cg = dtog(fs, bpref);
    162 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    163 	    			     ffs_alloccg);
    164 	if (bno > 0) {
    165 		ip->i_ffs_blocks += btodb(size);
    166 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    167 		*bnp = bno;
    168 		return (0);
    169 	}
    170 #ifdef QUOTA
    171 	/*
    172 	 * Restore user's disk quota because allocation failed.
    173 	 */
    174 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    175 #endif
    176 nospace:
    177 	ffs_fserr(fs, cred->cr_uid, "file system full");
    178 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    179 	return (ENOSPC);
    180 }
    181 
    182 /*
    183  * Reallocate a fragment to a bigger size
    184  *
    185  * The number and size of the old block is given, and a preference
    186  * and new size is also specified. The allocator attempts to extend
    187  * the original block. Failing that, the regular block allocator is
    188  * invoked to get an appropriate block.
    189  */
    190 int
    191 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    192 	struct inode *ip;
    193 	ufs_daddr_t lbprev;
    194 	ufs_daddr_t bpref;
    195 	int osize, nsize;
    196 	struct ucred *cred;
    197 	struct buf **bpp;
    198 	ufs_daddr_t *blknop;
    199 {
    200 	struct fs *fs = ip->i_fs;
    201 	struct buf *bp;
    202 	int cg, request, error;
    203 	ufs_daddr_t bprev, bno;
    204 
    205 #ifdef UVM_PAGE_TRKOWN
    206 	if (ITOV(ip)->v_type == VREG) {
    207 		struct vm_page *pg;
    208 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    209 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    210 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    211 
    212 		simple_lock(&uobj->vmobjlock);
    213 		while (off < endoff) {
    214 			pg = uvm_pagelookup(uobj, off);
    215 			KASSERT(pg != NULL);
    216 			KASSERT(pg->owner == curproc->p_pid);
    217 			KASSERT((pg->flags & PG_CLEAN) == 0);
    218 			off += PAGE_SIZE;
    219 		}
    220 		simple_unlock(&uobj->vmobjlock);
    221 	}
    222 #endif
    223 
    224 #ifdef DIAGNOSTIC
    225 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    226 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    227 		printf(
    228 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    229 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    230 		panic("ffs_realloccg: bad size");
    231 	}
    232 	if (cred == NOCRED)
    233 		panic("ffs_realloccg: missing credential\n");
    234 #endif /* DIAGNOSTIC */
    235 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    236 		goto nospace;
    237 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    238 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    239 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    240 		panic("ffs_realloccg: bad bprev");
    241 	}
    242 	/*
    243 	 * Allocate the extra space in the buffer.
    244 	 */
    245 	if (bpp != NULL &&
    246 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    247 		brelse(bp);
    248 		return (error);
    249 	}
    250 #ifdef QUOTA
    251 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    252 		brelse(bp);
    253 		return (error);
    254 	}
    255 #endif
    256 	/*
    257 	 * Check for extension in the existing location.
    258 	 */
    259 	cg = dtog(fs, bprev);
    260 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    261 		ip->i_ffs_blocks += btodb(nsize - osize);
    262 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    263 
    264 		if (bpp != NULL) {
    265 			if (bp->b_blkno != fsbtodb(fs, bno))
    266 				panic("bad blockno");
    267 			allocbuf(bp, nsize);
    268 			bp->b_flags |= B_DONE;
    269 			memset(bp->b_data + osize, 0, nsize - osize);
    270 			*bpp = bp;
    271 		}
    272 		if (blknop != NULL) {
    273 			*blknop = bno;
    274 		}
    275 		return (0);
    276 	}
    277 	/*
    278 	 * Allocate a new disk location.
    279 	 */
    280 	if (bpref >= fs->fs_size)
    281 		bpref = 0;
    282 	switch ((int)fs->fs_optim) {
    283 	case FS_OPTSPACE:
    284 		/*
    285 		 * Allocate an exact sized fragment. Although this makes
    286 		 * best use of space, we will waste time relocating it if
    287 		 * the file continues to grow. If the fragmentation is
    288 		 * less than half of the minimum free reserve, we choose
    289 		 * to begin optimizing for time.
    290 		 */
    291 		request = nsize;
    292 		if (fs->fs_minfree < 5 ||
    293 		    fs->fs_cstotal.cs_nffree >
    294 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    295 			break;
    296 
    297 		if (ffs_log_changeopt) {
    298 			log(LOG_NOTICE,
    299 				"%s: optimization changed from SPACE to TIME\n",
    300 				fs->fs_fsmnt);
    301 		}
    302 
    303 		fs->fs_optim = FS_OPTTIME;
    304 		break;
    305 	case FS_OPTTIME:
    306 		/*
    307 		 * At this point we have discovered a file that is trying to
    308 		 * grow a small fragment to a larger fragment. To save time,
    309 		 * we allocate a full sized block, then free the unused portion.
    310 		 * If the file continues to grow, the `ffs_fragextend' call
    311 		 * above will be able to grow it in place without further
    312 		 * copying. If aberrant programs cause disk fragmentation to
    313 		 * grow within 2% of the free reserve, we choose to begin
    314 		 * optimizing for space.
    315 		 */
    316 		request = fs->fs_bsize;
    317 		if (fs->fs_cstotal.cs_nffree <
    318 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    319 			break;
    320 
    321 		if (ffs_log_changeopt) {
    322 			log(LOG_NOTICE,
    323 				"%s: optimization changed from TIME to SPACE\n",
    324 				fs->fs_fsmnt);
    325 		}
    326 
    327 		fs->fs_optim = FS_OPTSPACE;
    328 		break;
    329 	default:
    330 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    331 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    332 		panic("ffs_realloccg: bad optim");
    333 		/* NOTREACHED */
    334 	}
    335 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    336 	    			     ffs_alloccg);
    337 	if (bno > 0) {
    338 		if (!DOINGSOFTDEP(ITOV(ip)))
    339 			ffs_blkfree(ip, bprev, (long)osize);
    340 		if (nsize < request)
    341 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    342 			    (long)(request - nsize));
    343 		ip->i_ffs_blocks += btodb(nsize - osize);
    344 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    345 		if (bpp != NULL) {
    346 			bp->b_blkno = fsbtodb(fs, bno);
    347 			allocbuf(bp, nsize);
    348 			bp->b_flags |= B_DONE;
    349 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    350 			*bpp = bp;
    351 		}
    352 		if (blknop != NULL) {
    353 			*blknop = bno;
    354 		}
    355 		return (0);
    356 	}
    357 #ifdef QUOTA
    358 	/*
    359 	 * Restore user's disk quota because allocation failed.
    360 	 */
    361 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    362 #endif
    363 	if (bpp != NULL) {
    364 		brelse(bp);
    365 	}
    366 
    367 nospace:
    368 	/*
    369 	 * no space available
    370 	 */
    371 	ffs_fserr(fs, cred->cr_uid, "file system full");
    372 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    373 	return (ENOSPC);
    374 }
    375 
    376 /*
    377  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    378  *
    379  * The vnode and an array of buffer pointers for a range of sequential
    380  * logical blocks to be made contiguous is given. The allocator attempts
    381  * to find a range of sequential blocks starting as close as possible to
    382  * an fs_rotdelay offset from the end of the allocation for the logical
    383  * block immediately preceeding the current range. If successful, the
    384  * physical block numbers in the buffer pointers and in the inode are
    385  * changed to reflect the new allocation. If unsuccessful, the allocation
    386  * is left unchanged. The success in doing the reallocation is returned.
    387  * Note that the error return is not reflected back to the user. Rather
    388  * the previous block allocation will be used.
    389  */
    390 #ifdef DEBUG
    391 #include <sys/sysctl.h>
    392 int prtrealloc = 0;
    393 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    394 #endif
    395 
    396 int doasyncfree = 1;
    397 int doreallocblks;
    398 
    399 int
    400 ffs_reallocblks(v)
    401 	void *v;
    402 {
    403 	struct vop_reallocblks_args /* {
    404 		struct vnode *a_vp;
    405 		struct cluster_save *a_buflist;
    406 	} */ *ap = v;
    407 	struct fs *fs;
    408 	struct inode *ip;
    409 	struct vnode *vp;
    410 	struct buf *sbp, *ebp;
    411 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    412 	struct cluster_save *buflist;
    413 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    414 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    415 	int i, len, start_lvl, end_lvl, pref, ssize;
    416 
    417 	/* XXXUBC don't reallocblks for now */
    418 	return ENOSPC;
    419 
    420 	vp = ap->a_vp;
    421 	ip = VTOI(vp);
    422 	fs = ip->i_fs;
    423 	if (fs->fs_contigsumsize <= 0)
    424 		return (ENOSPC);
    425 	buflist = ap->a_buflist;
    426 	len = buflist->bs_nchildren;
    427 	start_lbn = buflist->bs_children[0]->b_lblkno;
    428 	end_lbn = start_lbn + len - 1;
    429 #ifdef DIAGNOSTIC
    430 	for (i = 0; i < len; i++)
    431 		if (!ffs_checkblk(ip,
    432 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    433 			panic("ffs_reallocblks: unallocated block 1");
    434 	for (i = 1; i < len; i++)
    435 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    436 			panic("ffs_reallocblks: non-logical cluster");
    437 	blkno = buflist->bs_children[0]->b_blkno;
    438 	ssize = fsbtodb(fs, fs->fs_frag);
    439 	for (i = 1; i < len - 1; i++)
    440 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    441 			panic("ffs_reallocblks: non-physical cluster %d", i);
    442 #endif
    443 	/*
    444 	 * If the latest allocation is in a new cylinder group, assume that
    445 	 * the filesystem has decided to move and do not force it back to
    446 	 * the previous cylinder group.
    447 	 */
    448 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    449 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    450 		return (ENOSPC);
    451 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    452 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    453 		return (ENOSPC);
    454 	/*
    455 	 * Get the starting offset and block map for the first block.
    456 	 */
    457 	if (start_lvl == 0) {
    458 		sbap = &ip->i_ffs_db[0];
    459 		soff = start_lbn;
    460 	} else {
    461 		idp = &start_ap[start_lvl - 1];
    462 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    463 			brelse(sbp);
    464 			return (ENOSPC);
    465 		}
    466 		sbap = (ufs_daddr_t *)sbp->b_data;
    467 		soff = idp->in_off;
    468 	}
    469 	/*
    470 	 * Find the preferred location for the cluster.
    471 	 */
    472 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    473 	/*
    474 	 * If the block range spans two block maps, get the second map.
    475 	 */
    476 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    477 		ssize = len;
    478 	} else {
    479 #ifdef DIAGNOSTIC
    480 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    481 			panic("ffs_reallocblk: start == end");
    482 #endif
    483 		ssize = len - (idp->in_off + 1);
    484 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    485 			goto fail;
    486 		ebap = (ufs_daddr_t *)ebp->b_data;
    487 	}
    488 	/*
    489 	 * Search the block map looking for an allocation of the desired size.
    490 	 */
    491 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    492 	    len, ffs_clusteralloc)) == 0)
    493 		goto fail;
    494 	/*
    495 	 * We have found a new contiguous block.
    496 	 *
    497 	 * First we have to replace the old block pointers with the new
    498 	 * block pointers in the inode and indirect blocks associated
    499 	 * with the file.
    500 	 */
    501 #ifdef DEBUG
    502 	if (prtrealloc)
    503 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    504 		    start_lbn, end_lbn);
    505 #endif
    506 	blkno = newblk;
    507 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    508 		ufs_daddr_t ba;
    509 
    510 		if (i == ssize) {
    511 			bap = ebap;
    512 			soff = -i;
    513 		}
    514 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    515 #ifdef DIAGNOSTIC
    516 		if (!ffs_checkblk(ip,
    517 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    518 			panic("ffs_reallocblks: unallocated block 2");
    519 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    520 			panic("ffs_reallocblks: alloc mismatch");
    521 #endif
    522 #ifdef DEBUG
    523 		if (prtrealloc)
    524 			printf(" %d,", ba);
    525 #endif
    526  		if (DOINGSOFTDEP(vp)) {
    527  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    528  				softdep_setup_allocdirect(ip, start_lbn + i,
    529  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    530  				    buflist->bs_children[i]);
    531  			else
    532  				softdep_setup_allocindir_page(ip, start_lbn + i,
    533  				    i < ssize ? sbp : ebp, soff + i, blkno,
    534  				    ba, buflist->bs_children[i]);
    535  		}
    536 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    537 	}
    538 	/*
    539 	 * Next we must write out the modified inode and indirect blocks.
    540 	 * For strict correctness, the writes should be synchronous since
    541 	 * the old block values may have been written to disk. In practise
    542 	 * they are almost never written, but if we are concerned about
    543 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    544 	 *
    545 	 * The test on `doasyncfree' should be changed to test a flag
    546 	 * that shows whether the associated buffers and inodes have
    547 	 * been written. The flag should be set when the cluster is
    548 	 * started and cleared whenever the buffer or inode is flushed.
    549 	 * We can then check below to see if it is set, and do the
    550 	 * synchronous write only when it has been cleared.
    551 	 */
    552 	if (sbap != &ip->i_ffs_db[0]) {
    553 		if (doasyncfree)
    554 			bdwrite(sbp);
    555 		else
    556 			bwrite(sbp);
    557 	} else {
    558 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    559 		if (!doasyncfree)
    560 			VOP_UPDATE(vp, NULL, NULL, 1);
    561 	}
    562 	if (ssize < len) {
    563 		if (doasyncfree)
    564 			bdwrite(ebp);
    565 		else
    566 			bwrite(ebp);
    567 	}
    568 	/*
    569 	 * Last, free the old blocks and assign the new blocks to the buffers.
    570 	 */
    571 #ifdef DEBUG
    572 	if (prtrealloc)
    573 		printf("\n\tnew:");
    574 #endif
    575 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    576 		if (!DOINGSOFTDEP(vp))
    577 			ffs_blkfree(ip,
    578 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    579 			    fs->fs_bsize);
    580 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    581 #ifdef DEBUG
    582 		if (!ffs_checkblk(ip,
    583 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    584 			panic("ffs_reallocblks: unallocated block 3");
    585 		if (prtrealloc)
    586 			printf(" %d,", blkno);
    587 #endif
    588 	}
    589 #ifdef DEBUG
    590 	if (prtrealloc) {
    591 		prtrealloc--;
    592 		printf("\n");
    593 	}
    594 #endif
    595 	return (0);
    596 
    597 fail:
    598 	if (ssize < len)
    599 		brelse(ebp);
    600 	if (sbap != &ip->i_ffs_db[0])
    601 		brelse(sbp);
    602 	return (ENOSPC);
    603 }
    604 
    605 /*
    606  * Allocate an inode in the file system.
    607  *
    608  * If allocating a directory, use ffs_dirpref to select the inode.
    609  * If allocating in a directory, the following hierarchy is followed:
    610  *   1) allocate the preferred inode.
    611  *   2) allocate an inode in the same cylinder group.
    612  *   3) quadradically rehash into other cylinder groups, until an
    613  *      available inode is located.
    614  * If no inode preference is given the following heirarchy is used
    615  * to allocate an inode:
    616  *   1) allocate an inode in cylinder group 0.
    617  *   2) quadradically rehash into other cylinder groups, until an
    618  *      available inode is located.
    619  */
    620 int
    621 ffs_valloc(v)
    622 	void *v;
    623 {
    624 	struct vop_valloc_args /* {
    625 		struct vnode *a_pvp;
    626 		int a_mode;
    627 		struct ucred *a_cred;
    628 		struct vnode **a_vpp;
    629 	} */ *ap = v;
    630 	struct vnode *pvp = ap->a_pvp;
    631 	struct inode *pip;
    632 	struct fs *fs;
    633 	struct inode *ip;
    634 	mode_t mode = ap->a_mode;
    635 	ino_t ino, ipref;
    636 	int cg, error;
    637 
    638 	*ap->a_vpp = NULL;
    639 	pip = VTOI(pvp);
    640 	fs = pip->i_fs;
    641 	if (fs->fs_cstotal.cs_nifree == 0)
    642 		goto noinodes;
    643 
    644 	if ((mode & IFMT) == IFDIR)
    645 		ipref = ffs_dirpref(fs);
    646 	else
    647 		ipref = pip->i_number;
    648 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    649 		ipref = 0;
    650 	cg = ino_to_cg(fs, ipref);
    651 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    652 	if (ino == 0)
    653 		goto noinodes;
    654 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    655 	if (error) {
    656 		VOP_VFREE(pvp, ino, mode);
    657 		return (error);
    658 	}
    659 	ip = VTOI(*ap->a_vpp);
    660 	if (ip->i_ffs_mode) {
    661 		printf("mode = 0%o, inum = %d, fs = %s\n",
    662 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    663 		panic("ffs_valloc: dup alloc");
    664 	}
    665 	if (ip->i_ffs_blocks) {				/* XXX */
    666 		printf("free inode %s/%d had %d blocks\n",
    667 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    668 		ip->i_ffs_blocks = 0;
    669 	}
    670 	ip->i_ffs_flags = 0;
    671 	/*
    672 	 * Set up a new generation number for this inode.
    673 	 */
    674 	ip->i_ffs_gen++;
    675 	return (0);
    676 noinodes:
    677 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    678 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    679 	return (ENOSPC);
    680 }
    681 
    682 /*
    683  * Find a cylinder to place a directory.
    684  *
    685  * The policy implemented by this algorithm is to select from
    686  * among those cylinder groups with above the average number of
    687  * free inodes, the one with the smallest number of directories.
    688  */
    689 static ino_t
    690 ffs_dirpref(fs)
    691 	struct fs *fs;
    692 {
    693 	int cg, minndir, mincg, avgifree;
    694 
    695 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    696 	minndir = fs->fs_ipg;
    697 	mincg = 0;
    698 	for (cg = 0; cg < fs->fs_ncg; cg++)
    699 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    700 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    701 			mincg = cg;
    702 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    703 		}
    704 	return ((ino_t)(fs->fs_ipg * mincg));
    705 }
    706 
    707 /*
    708  * Select the desired position for the next block in a file.  The file is
    709  * logically divided into sections. The first section is composed of the
    710  * direct blocks. Each additional section contains fs_maxbpg blocks.
    711  *
    712  * If no blocks have been allocated in the first section, the policy is to
    713  * request a block in the same cylinder group as the inode that describes
    714  * the file. If no blocks have been allocated in any other section, the
    715  * policy is to place the section in a cylinder group with a greater than
    716  * average number of free blocks.  An appropriate cylinder group is found
    717  * by using a rotor that sweeps the cylinder groups. When a new group of
    718  * blocks is needed, the sweep begins in the cylinder group following the
    719  * cylinder group from which the previous allocation was made. The sweep
    720  * continues until a cylinder group with greater than the average number
    721  * of free blocks is found. If the allocation is for the first block in an
    722  * indirect block, the information on the previous allocation is unavailable;
    723  * here a best guess is made based upon the logical block number being
    724  * allocated.
    725  *
    726  * If a section is already partially allocated, the policy is to
    727  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    728  * contiguous blocks and the beginning of the next is physically separated
    729  * so that the disk head will be in transit between them for at least
    730  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    731  * schedule another I/O transfer.
    732  */
    733 ufs_daddr_t
    734 ffs_blkpref(ip, lbn, indx, bap)
    735 	struct inode *ip;
    736 	ufs_daddr_t lbn;
    737 	int indx;
    738 	ufs_daddr_t *bap;
    739 {
    740 	struct fs *fs;
    741 	int cg;
    742 	int avgbfree, startcg;
    743 	ufs_daddr_t nextblk;
    744 
    745 	fs = ip->i_fs;
    746 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    747 		if (lbn < NDADDR + NINDIR(fs)) {
    748 			cg = ino_to_cg(fs, ip->i_number);
    749 			return (fs->fs_fpg * cg + fs->fs_frag);
    750 		}
    751 		/*
    752 		 * Find a cylinder with greater than average number of
    753 		 * unused data blocks.
    754 		 */
    755 		if (indx == 0 || bap[indx - 1] == 0)
    756 			startcg =
    757 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    758 		else
    759 			startcg = dtog(fs,
    760 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    761 		startcg %= fs->fs_ncg;
    762 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    763 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    764 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    765 				fs->fs_cgrotor = cg;
    766 				return (fs->fs_fpg * cg + fs->fs_frag);
    767 			}
    768 		for (cg = 0; cg <= startcg; cg++)
    769 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    770 				fs->fs_cgrotor = cg;
    771 				return (fs->fs_fpg * cg + fs->fs_frag);
    772 			}
    773 		return (0);
    774 	}
    775 	/*
    776 	 * One or more previous blocks have been laid out. If less
    777 	 * than fs_maxcontig previous blocks are contiguous, the
    778 	 * next block is requested contiguously, otherwise it is
    779 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    780 	 */
    781 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    782 	if (indx < fs->fs_maxcontig ||
    783 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    784 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    785 		return (nextblk);
    786 	if (fs->fs_rotdelay != 0)
    787 		/*
    788 		 * Here we convert ms of delay to frags as:
    789 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    790 		 *	((sect/frag) * (ms/sec))
    791 		 * then round up to the next block.
    792 		 */
    793 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    794 		    (NSPF(fs) * 1000), fs->fs_frag);
    795 	return (nextblk);
    796 }
    797 
    798 /*
    799  * Implement the cylinder overflow algorithm.
    800  *
    801  * The policy implemented by this algorithm is:
    802  *   1) allocate the block in its requested cylinder group.
    803  *   2) quadradically rehash on the cylinder group number.
    804  *   3) brute force search for a free block.
    805  */
    806 /*VARARGS5*/
    807 static u_long
    808 ffs_hashalloc(ip, cg, pref, size, allocator)
    809 	struct inode *ip;
    810 	int cg;
    811 	long pref;
    812 	int size;	/* size for data blocks, mode for inodes */
    813 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    814 {
    815 	struct fs *fs;
    816 	long result;
    817 	int i, icg = cg;
    818 
    819 	fs = ip->i_fs;
    820 	/*
    821 	 * 1: preferred cylinder group
    822 	 */
    823 	result = (*allocator)(ip, cg, pref, size);
    824 	if (result)
    825 		return (result);
    826 	/*
    827 	 * 2: quadratic rehash
    828 	 */
    829 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    830 		cg += i;
    831 		if (cg >= fs->fs_ncg)
    832 			cg -= fs->fs_ncg;
    833 		result = (*allocator)(ip, cg, 0, size);
    834 		if (result)
    835 			return (result);
    836 	}
    837 	/*
    838 	 * 3: brute force search
    839 	 * Note that we start at i == 2, since 0 was checked initially,
    840 	 * and 1 is always checked in the quadratic rehash.
    841 	 */
    842 	cg = (icg + 2) % fs->fs_ncg;
    843 	for (i = 2; i < fs->fs_ncg; i++) {
    844 		result = (*allocator)(ip, cg, 0, size);
    845 		if (result)
    846 			return (result);
    847 		cg++;
    848 		if (cg == fs->fs_ncg)
    849 			cg = 0;
    850 	}
    851 	return (0);
    852 }
    853 
    854 /*
    855  * Determine whether a fragment can be extended.
    856  *
    857  * Check to see if the necessary fragments are available, and
    858  * if they are, allocate them.
    859  */
    860 static ufs_daddr_t
    861 ffs_fragextend(ip, cg, bprev, osize, nsize)
    862 	struct inode *ip;
    863 	int cg;
    864 	long bprev;
    865 	int osize, nsize;
    866 {
    867 	struct fs *fs;
    868 	struct cg *cgp;
    869 	struct buf *bp;
    870 	long bno;
    871 	int frags, bbase;
    872 	int i, error;
    873 
    874 	fs = ip->i_fs;
    875 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    876 		return (0);
    877 	frags = numfrags(fs, nsize);
    878 	bbase = fragnum(fs, bprev);
    879 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    880 		/* cannot extend across a block boundary */
    881 		return (0);
    882 	}
    883 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    884 		(int)fs->fs_cgsize, NOCRED, &bp);
    885 	if (error) {
    886 		brelse(bp);
    887 		return (0);
    888 	}
    889 	cgp = (struct cg *)bp->b_data;
    890 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    891 		brelse(bp);
    892 		return (0);
    893 	}
    894 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    895 	bno = dtogd(fs, bprev);
    896 	for (i = numfrags(fs, osize); i < frags; i++)
    897 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    898 			brelse(bp);
    899 			return (0);
    900 		}
    901 	/*
    902 	 * the current fragment can be extended
    903 	 * deduct the count on fragment being extended into
    904 	 * increase the count on the remaining fragment (if any)
    905 	 * allocate the extended piece
    906 	 */
    907 	for (i = frags; i < fs->fs_frag - bbase; i++)
    908 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    909 			break;
    910 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    911 	if (i != frags)
    912 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    913 	for (i = numfrags(fs, osize); i < frags; i++) {
    914 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    915 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    916 		fs->fs_cstotal.cs_nffree--;
    917 		fs->fs_cs(fs, cg).cs_nffree--;
    918 	}
    919 	fs->fs_fmod = 1;
    920 	if (DOINGSOFTDEP(ITOV(ip)))
    921 		softdep_setup_blkmapdep(bp, fs, bprev);
    922 	bdwrite(bp);
    923 	return (bprev);
    924 }
    925 
    926 /*
    927  * Determine whether a block can be allocated.
    928  *
    929  * Check to see if a block of the appropriate size is available,
    930  * and if it is, allocate it.
    931  */
    932 static ufs_daddr_t
    933 ffs_alloccg(ip, cg, bpref, size)
    934 	struct inode *ip;
    935 	int cg;
    936 	ufs_daddr_t bpref;
    937 	int size;
    938 {
    939 	struct cg *cgp;
    940 	struct buf *bp;
    941 	ufs_daddr_t bno, blkno;
    942 	int error, frags, allocsiz, i;
    943 	struct fs *fs = ip->i_fs;
    944 #ifdef FFS_EI
    945 	const int needswap = UFS_FSNEEDSWAP(fs);
    946 #endif
    947 
    948 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    949 		return (0);
    950 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    951 		(int)fs->fs_cgsize, NOCRED, &bp);
    952 	if (error) {
    953 		brelse(bp);
    954 		return (0);
    955 	}
    956 	cgp = (struct cg *)bp->b_data;
    957 	if (!cg_chkmagic(cgp, needswap) ||
    958 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    959 		brelse(bp);
    960 		return (0);
    961 	}
    962 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    963 	if (size == fs->fs_bsize) {
    964 		bno = ffs_alloccgblk(ip, bp, bpref);
    965 		bdwrite(bp);
    966 		return (bno);
    967 	}
    968 	/*
    969 	 * check to see if any fragments are already available
    970 	 * allocsiz is the size which will be allocated, hacking
    971 	 * it down to a smaller size if necessary
    972 	 */
    973 	frags = numfrags(fs, size);
    974 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    975 		if (cgp->cg_frsum[allocsiz] != 0)
    976 			break;
    977 	if (allocsiz == fs->fs_frag) {
    978 		/*
    979 		 * no fragments were available, so a block will be
    980 		 * allocated, and hacked up
    981 		 */
    982 		if (cgp->cg_cs.cs_nbfree == 0) {
    983 			brelse(bp);
    984 			return (0);
    985 		}
    986 		bno = ffs_alloccgblk(ip, bp, bpref);
    987 		bpref = dtogd(fs, bno);
    988 		for (i = frags; i < fs->fs_frag; i++)
    989 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    990 		i = fs->fs_frag - frags;
    991 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    992 		fs->fs_cstotal.cs_nffree += i;
    993 		fs->fs_cs(fs, cg).cs_nffree += i;
    994 		fs->fs_fmod = 1;
    995 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    996 		bdwrite(bp);
    997 		return (bno);
    998 	}
    999 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1000 #if 0
   1001 	/*
   1002 	 * XXX fvdl mapsearch will panic, and never return -1
   1003 	 *          also: returning NULL as ufs_daddr_t ?
   1004 	 */
   1005 	if (bno < 0) {
   1006 		brelse(bp);
   1007 		return (0);
   1008 	}
   1009 #endif
   1010 	for (i = 0; i < frags; i++)
   1011 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1012 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1013 	fs->fs_cstotal.cs_nffree -= frags;
   1014 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1015 	fs->fs_fmod = 1;
   1016 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1017 	if (frags != allocsiz)
   1018 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1019 	blkno = cg * fs->fs_fpg + bno;
   1020 	if (DOINGSOFTDEP(ITOV(ip)))
   1021 		softdep_setup_blkmapdep(bp, fs, blkno);
   1022 	bdwrite(bp);
   1023 	return blkno;
   1024 }
   1025 
   1026 /*
   1027  * Allocate a block in a cylinder group.
   1028  *
   1029  * This algorithm implements the following policy:
   1030  *   1) allocate the requested block.
   1031  *   2) allocate a rotationally optimal block in the same cylinder.
   1032  *   3) allocate the next available block on the block rotor for the
   1033  *      specified cylinder group.
   1034  * Note that this routine only allocates fs_bsize blocks; these
   1035  * blocks may be fragmented by the routine that allocates them.
   1036  */
   1037 static ufs_daddr_t
   1038 ffs_alloccgblk(ip, bp, bpref)
   1039 	struct inode *ip;
   1040 	struct buf *bp;
   1041 	ufs_daddr_t bpref;
   1042 {
   1043 	struct cg *cgp;
   1044 	ufs_daddr_t bno, blkno;
   1045 	int cylno, pos, delta;
   1046 	short *cylbp;
   1047 	int i;
   1048 	struct fs *fs = ip->i_fs;
   1049 #ifdef FFS_EI
   1050 	const int needswap = UFS_FSNEEDSWAP(fs);
   1051 #endif
   1052 
   1053 	cgp = (struct cg *)bp->b_data;
   1054 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1055 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1056 		goto norot;
   1057 	}
   1058 	bpref = blknum(fs, bpref);
   1059 	bpref = dtogd(fs, bpref);
   1060 	/*
   1061 	 * if the requested block is available, use it
   1062 	 */
   1063 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1064 		fragstoblks(fs, bpref))) {
   1065 		bno = bpref;
   1066 		goto gotit;
   1067 	}
   1068 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1069 		/*
   1070 		 * Block layout information is not available.
   1071 		 * Leaving bpref unchanged means we take the
   1072 		 * next available free block following the one
   1073 		 * we just allocated. Hopefully this will at
   1074 		 * least hit a track cache on drives of unknown
   1075 		 * geometry (e.g. SCSI).
   1076 		 */
   1077 		goto norot;
   1078 	}
   1079 	/*
   1080 	 * check for a block available on the same cylinder
   1081 	 */
   1082 	cylno = cbtocylno(fs, bpref);
   1083 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1084 		goto norot;
   1085 	/*
   1086 	 * check the summary information to see if a block is
   1087 	 * available in the requested cylinder starting at the
   1088 	 * requested rotational position and proceeding around.
   1089 	 */
   1090 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1091 	pos = cbtorpos(fs, bpref);
   1092 	for (i = pos; i < fs->fs_nrpos; i++)
   1093 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1094 			break;
   1095 	if (i == fs->fs_nrpos)
   1096 		for (i = 0; i < pos; i++)
   1097 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1098 				break;
   1099 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1100 		/*
   1101 		 * found a rotational position, now find the actual
   1102 		 * block. A panic if none is actually there.
   1103 		 */
   1104 		pos = cylno % fs->fs_cpc;
   1105 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1106 		if (fs_postbl(fs, pos)[i] == -1) {
   1107 			printf("pos = %d, i = %d, fs = %s\n",
   1108 			    pos, i, fs->fs_fsmnt);
   1109 			panic("ffs_alloccgblk: cyl groups corrupted");
   1110 		}
   1111 		for (i = fs_postbl(fs, pos)[i];; ) {
   1112 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1113 				bno = blkstofrags(fs, (bno + i));
   1114 				goto gotit;
   1115 			}
   1116 			delta = fs_rotbl(fs)[i];
   1117 			if (delta <= 0 ||
   1118 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1119 				break;
   1120 			i += delta;
   1121 		}
   1122 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1123 		panic("ffs_alloccgblk: can't find blk in cyl");
   1124 	}
   1125 norot:
   1126 	/*
   1127 	 * no blocks in the requested cylinder, so take next
   1128 	 * available one in this cylinder group.
   1129 	 */
   1130 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1131 	if (bno < 0)
   1132 		return (0);
   1133 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1134 gotit:
   1135 	blkno = fragstoblks(fs, bno);
   1136 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1137 	ffs_clusteracct(fs, cgp, blkno, -1);
   1138 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1139 	fs->fs_cstotal.cs_nbfree--;
   1140 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1141 	cylno = cbtocylno(fs, bno);
   1142 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1143 	    needswap);
   1144 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1145 	fs->fs_fmod = 1;
   1146 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1147 	if (DOINGSOFTDEP(ITOV(ip)))
   1148 		softdep_setup_blkmapdep(bp, fs, blkno);
   1149 	return (blkno);
   1150 }
   1151 
   1152 /*
   1153  * Determine whether a cluster can be allocated.
   1154  *
   1155  * We do not currently check for optimal rotational layout if there
   1156  * are multiple choices in the same cylinder group. Instead we just
   1157  * take the first one that we find following bpref.
   1158  */
   1159 static ufs_daddr_t
   1160 ffs_clusteralloc(ip, cg, bpref, len)
   1161 	struct inode *ip;
   1162 	int cg;
   1163 	ufs_daddr_t bpref;
   1164 	int len;
   1165 {
   1166 	struct fs *fs;
   1167 	struct cg *cgp;
   1168 	struct buf *bp;
   1169 	int i, got, run, bno, bit, map;
   1170 	u_char *mapp;
   1171 	int32_t *lp;
   1172 
   1173 	fs = ip->i_fs;
   1174 	if (fs->fs_maxcluster[cg] < len)
   1175 		return (0);
   1176 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1177 	    NOCRED, &bp))
   1178 		goto fail;
   1179 	cgp = (struct cg *)bp->b_data;
   1180 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1181 		goto fail;
   1182 	/*
   1183 	 * Check to see if a cluster of the needed size (or bigger) is
   1184 	 * available in this cylinder group.
   1185 	 */
   1186 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1187 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1188 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1189 			break;
   1190 	if (i > fs->fs_contigsumsize) {
   1191 		/*
   1192 		 * This is the first time looking for a cluster in this
   1193 		 * cylinder group. Update the cluster summary information
   1194 		 * to reflect the true maximum sized cluster so that
   1195 		 * future cluster allocation requests can avoid reading
   1196 		 * the cylinder group map only to find no clusters.
   1197 		 */
   1198 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1199 		for (i = len - 1; i > 0; i--)
   1200 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1201 				break;
   1202 		fs->fs_maxcluster[cg] = i;
   1203 		goto fail;
   1204 	}
   1205 	/*
   1206 	 * Search the cluster map to find a big enough cluster.
   1207 	 * We take the first one that we find, even if it is larger
   1208 	 * than we need as we prefer to get one close to the previous
   1209 	 * block allocation. We do not search before the current
   1210 	 * preference point as we do not want to allocate a block
   1211 	 * that is allocated before the previous one (as we will
   1212 	 * then have to wait for another pass of the elevator
   1213 	 * algorithm before it will be read). We prefer to fail and
   1214 	 * be recalled to try an allocation in the next cylinder group.
   1215 	 */
   1216 	if (dtog(fs, bpref) != cg)
   1217 		bpref = 0;
   1218 	else
   1219 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1220 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1221 	map = *mapp++;
   1222 	bit = 1 << (bpref % NBBY);
   1223 	for (run = 0, got = bpref;
   1224 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1225 		if ((map & bit) == 0) {
   1226 			run = 0;
   1227 		} else {
   1228 			run++;
   1229 			if (run == len)
   1230 				break;
   1231 		}
   1232 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1233 			bit <<= 1;
   1234 		} else {
   1235 			map = *mapp++;
   1236 			bit = 1;
   1237 		}
   1238 	}
   1239 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1240 		goto fail;
   1241 	/*
   1242 	 * Allocate the cluster that we have found.
   1243 	 */
   1244 #ifdef DIAGNOSTIC
   1245 	for (i = 1; i <= len; i++)
   1246 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1247 		    got - run + i))
   1248 			panic("ffs_clusteralloc: map mismatch");
   1249 #endif
   1250 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1251 	if (dtog(fs, bno) != cg)
   1252 		panic("ffs_clusteralloc: allocated out of group");
   1253 	len = blkstofrags(fs, len);
   1254 	for (i = 0; i < len; i += fs->fs_frag)
   1255 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1256 			panic("ffs_clusteralloc: lost block");
   1257 	bdwrite(bp);
   1258 	return (bno);
   1259 
   1260 fail:
   1261 	brelse(bp);
   1262 	return (0);
   1263 }
   1264 
   1265 /*
   1266  * Determine whether an inode can be allocated.
   1267  *
   1268  * Check to see if an inode is available, and if it is,
   1269  * allocate it using the following policy:
   1270  *   1) allocate the requested inode.
   1271  *   2) allocate the next available inode after the requested
   1272  *      inode in the specified cylinder group.
   1273  */
   1274 static ufs_daddr_t
   1275 ffs_nodealloccg(ip, cg, ipref, mode)
   1276 	struct inode *ip;
   1277 	int cg;
   1278 	ufs_daddr_t ipref;
   1279 	int mode;
   1280 {
   1281 	struct cg *cgp;
   1282 	struct buf *bp;
   1283 	int error, start, len, loc, map, i;
   1284 	struct fs *fs = ip->i_fs;
   1285 #ifdef FFS_EI
   1286 	const int needswap = UFS_FSNEEDSWAP(fs);
   1287 #endif
   1288 
   1289 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1290 		return (0);
   1291 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1292 		(int)fs->fs_cgsize, NOCRED, &bp);
   1293 	if (error) {
   1294 		brelse(bp);
   1295 		return (0);
   1296 	}
   1297 	cgp = (struct cg *)bp->b_data;
   1298 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1299 		brelse(bp);
   1300 		return (0);
   1301 	}
   1302 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1303 	if (ipref) {
   1304 		ipref %= fs->fs_ipg;
   1305 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1306 			goto gotit;
   1307 	}
   1308 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1309 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1310 		NBBY);
   1311 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1312 	if (loc == 0) {
   1313 		len = start + 1;
   1314 		start = 0;
   1315 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1316 		if (loc == 0) {
   1317 			printf("cg = %d, irotor = %d, fs = %s\n",
   1318 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1319 				fs->fs_fsmnt);
   1320 			panic("ffs_nodealloccg: map corrupted");
   1321 			/* NOTREACHED */
   1322 		}
   1323 	}
   1324 	i = start + len - loc;
   1325 	map = cg_inosused(cgp, needswap)[i];
   1326 	ipref = i * NBBY;
   1327 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1328 		if ((map & i) == 0) {
   1329 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1330 			goto gotit;
   1331 		}
   1332 	}
   1333 	printf("fs = %s\n", fs->fs_fsmnt);
   1334 	panic("ffs_nodealloccg: block not in map");
   1335 	/* NOTREACHED */
   1336 gotit:
   1337 	if (DOINGSOFTDEP(ITOV(ip)))
   1338 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1339 	setbit(cg_inosused(cgp, needswap), ipref);
   1340 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1341 	fs->fs_cstotal.cs_nifree--;
   1342 	fs->fs_cs(fs, cg).cs_nifree--;
   1343 	fs->fs_fmod = 1;
   1344 	if ((mode & IFMT) == IFDIR) {
   1345 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1346 		fs->fs_cstotal.cs_ndir++;
   1347 		fs->fs_cs(fs, cg).cs_ndir++;
   1348 	}
   1349 	bdwrite(bp);
   1350 	return (cg * fs->fs_ipg + ipref);
   1351 }
   1352 
   1353 /*
   1354  * Free a block or fragment.
   1355  *
   1356  * The specified block or fragment is placed back in the
   1357  * free map. If a fragment is deallocated, a possible
   1358  * block reassembly is checked.
   1359  */
   1360 void
   1361 ffs_blkfree(ip, bno, size)
   1362 	struct inode *ip;
   1363 	ufs_daddr_t bno;
   1364 	long size;
   1365 {
   1366 	struct cg *cgp;
   1367 	struct buf *bp;
   1368 	ufs_daddr_t blkno;
   1369 	int i, error, cg, blk, frags, bbase;
   1370 	struct fs *fs = ip->i_fs;
   1371 	const int needswap = UFS_FSNEEDSWAP(fs);
   1372 
   1373 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1374 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1375 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1376 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1377 		panic("blkfree: bad size");
   1378 	}
   1379 	cg = dtog(fs, bno);
   1380 	if ((u_int)bno >= fs->fs_size) {
   1381 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1382 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1383 		return;
   1384 	}
   1385 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1386 		(int)fs->fs_cgsize, NOCRED, &bp);
   1387 	if (error) {
   1388 		brelse(bp);
   1389 		return;
   1390 	}
   1391 	cgp = (struct cg *)bp->b_data;
   1392 	if (!cg_chkmagic(cgp, needswap)) {
   1393 		brelse(bp);
   1394 		return;
   1395 	}
   1396 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1397 	bno = dtogd(fs, bno);
   1398 	if (size == fs->fs_bsize) {
   1399 		blkno = fragstoblks(fs, bno);
   1400 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1401 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1402 			    ip->i_dev, bno, fs->fs_fsmnt);
   1403 			panic("blkfree: freeing free block");
   1404 		}
   1405 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1406 		ffs_clusteracct(fs, cgp, blkno, 1);
   1407 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1408 		fs->fs_cstotal.cs_nbfree++;
   1409 		fs->fs_cs(fs, cg).cs_nbfree++;
   1410 		i = cbtocylno(fs, bno);
   1411 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1412 		    needswap);
   1413 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1414 	} else {
   1415 		bbase = bno - fragnum(fs, bno);
   1416 		/*
   1417 		 * decrement the counts associated with the old frags
   1418 		 */
   1419 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1420 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1421 		/*
   1422 		 * deallocate the fragment
   1423 		 */
   1424 		frags = numfrags(fs, size);
   1425 		for (i = 0; i < frags; i++) {
   1426 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1427 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1428 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1429 				panic("blkfree: freeing free frag");
   1430 			}
   1431 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1432 		}
   1433 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1434 		fs->fs_cstotal.cs_nffree += i;
   1435 		fs->fs_cs(fs, cg).cs_nffree += i;
   1436 		/*
   1437 		 * add back in counts associated with the new frags
   1438 		 */
   1439 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1440 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1441 		/*
   1442 		 * if a complete block has been reassembled, account for it
   1443 		 */
   1444 		blkno = fragstoblks(fs, bbase);
   1445 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1446 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1447 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1448 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1449 			ffs_clusteracct(fs, cgp, blkno, 1);
   1450 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1451 			fs->fs_cstotal.cs_nbfree++;
   1452 			fs->fs_cs(fs, cg).cs_nbfree++;
   1453 			i = cbtocylno(fs, bbase);
   1454 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1455 								bbase)], 1,
   1456 			    needswap);
   1457 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1458 		}
   1459 	}
   1460 	fs->fs_fmod = 1;
   1461 	bdwrite(bp);
   1462 }
   1463 
   1464 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1465 /*
   1466  * Verify allocation of a block or fragment. Returns true if block or
   1467  * fragment is allocated, false if it is free.
   1468  */
   1469 static int
   1470 ffs_checkblk(ip, bno, size)
   1471 	struct inode *ip;
   1472 	ufs_daddr_t bno;
   1473 	long size;
   1474 {
   1475 	struct fs *fs;
   1476 	struct cg *cgp;
   1477 	struct buf *bp;
   1478 	int i, error, frags, free;
   1479 
   1480 	fs = ip->i_fs;
   1481 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1482 		printf("bsize = %d, size = %ld, fs = %s\n",
   1483 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1484 		panic("checkblk: bad size");
   1485 	}
   1486 	if ((u_int)bno >= fs->fs_size)
   1487 		panic("checkblk: bad block %d", bno);
   1488 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1489 		(int)fs->fs_cgsize, NOCRED, &bp);
   1490 	if (error) {
   1491 		brelse(bp);
   1492 		return 0;
   1493 	}
   1494 	cgp = (struct cg *)bp->b_data;
   1495 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1496 		brelse(bp);
   1497 		return 0;
   1498 	}
   1499 	bno = dtogd(fs, bno);
   1500 	if (size == fs->fs_bsize) {
   1501 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1502 			fragstoblks(fs, bno));
   1503 	} else {
   1504 		frags = numfrags(fs, size);
   1505 		for (free = 0, i = 0; i < frags; i++)
   1506 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1507 				free++;
   1508 		if (free != 0 && free != frags)
   1509 			panic("checkblk: partially free fragment");
   1510 	}
   1511 	brelse(bp);
   1512 	return (!free);
   1513 }
   1514 #endif /* DIAGNOSTIC */
   1515 
   1516 /*
   1517  * Free an inode.
   1518  */
   1519 int
   1520 ffs_vfree(v)
   1521 	void *v;
   1522 {
   1523 	struct vop_vfree_args /* {
   1524 		struct vnode *a_pvp;
   1525 		ino_t a_ino;
   1526 		int a_mode;
   1527 	} */ *ap = v;
   1528 
   1529 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1530 		softdep_freefile(ap);
   1531 		return (0);
   1532 	}
   1533 	return (ffs_freefile(ap));
   1534 }
   1535 
   1536 /*
   1537  * Do the actual free operation.
   1538  * The specified inode is placed back in the free map.
   1539  */
   1540 int
   1541 ffs_freefile(v)
   1542 	void *v;
   1543 {
   1544 	struct vop_vfree_args /* {
   1545 		struct vnode *a_pvp;
   1546 		ino_t a_ino;
   1547 		int a_mode;
   1548 	} */ *ap = v;
   1549 	struct cg *cgp;
   1550 	struct inode *pip = VTOI(ap->a_pvp);
   1551 	struct fs *fs = pip->i_fs;
   1552 	ino_t ino = ap->a_ino;
   1553 	struct buf *bp;
   1554 	int error, cg;
   1555 #ifdef FFS_EI
   1556 	const int needswap = UFS_FSNEEDSWAP(fs);
   1557 #endif
   1558 
   1559 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1560 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1561 		    pip->i_dev, ino, fs->fs_fsmnt);
   1562 	cg = ino_to_cg(fs, ino);
   1563 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1564 		(int)fs->fs_cgsize, NOCRED, &bp);
   1565 	if (error) {
   1566 		brelse(bp);
   1567 		return (error);
   1568 	}
   1569 	cgp = (struct cg *)bp->b_data;
   1570 	if (!cg_chkmagic(cgp, needswap)) {
   1571 		brelse(bp);
   1572 		return (0);
   1573 	}
   1574 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1575 	ino %= fs->fs_ipg;
   1576 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1577 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1578 		    pip->i_dev, ino, fs->fs_fsmnt);
   1579 		if (fs->fs_ronly == 0)
   1580 			panic("ifree: freeing free inode");
   1581 	}
   1582 	clrbit(cg_inosused(cgp, needswap), ino);
   1583 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1584 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1585 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1586 	fs->fs_cstotal.cs_nifree++;
   1587 	fs->fs_cs(fs, cg).cs_nifree++;
   1588 	if ((ap->a_mode & IFMT) == IFDIR) {
   1589 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1590 		fs->fs_cstotal.cs_ndir--;
   1591 		fs->fs_cs(fs, cg).cs_ndir--;
   1592 	}
   1593 	fs->fs_fmod = 1;
   1594 	bdwrite(bp);
   1595 	return (0);
   1596 }
   1597 
   1598 /*
   1599  * Find a block of the specified size in the specified cylinder group.
   1600  *
   1601  * It is a panic if a request is made to find a block if none are
   1602  * available.
   1603  */
   1604 static ufs_daddr_t
   1605 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1606 	struct fs *fs;
   1607 	struct cg *cgp;
   1608 	ufs_daddr_t bpref;
   1609 	int allocsiz;
   1610 {
   1611 	ufs_daddr_t bno;
   1612 	int start, len, loc, i;
   1613 	int blk, field, subfield, pos;
   1614 	int ostart, olen;
   1615 #ifdef FFS_EI
   1616 	const int needswap = UFS_FSNEEDSWAP(fs);
   1617 #endif
   1618 
   1619 	/*
   1620 	 * find the fragment by searching through the free block
   1621 	 * map for an appropriate bit pattern
   1622 	 */
   1623 	if (bpref)
   1624 		start = dtogd(fs, bpref) / NBBY;
   1625 	else
   1626 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1627 	len = howmany(fs->fs_fpg, NBBY) - start;
   1628 	ostart = start;
   1629 	olen = len;
   1630 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1631 		(u_char *)fragtbl[fs->fs_frag],
   1632 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1633 	if (loc == 0) {
   1634 		len = start + 1;
   1635 		start = 0;
   1636 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1637 			(u_char *)fragtbl[fs->fs_frag],
   1638 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1639 		if (loc == 0) {
   1640 			printf("start = %d, len = %d, fs = %s\n",
   1641 			    ostart, olen, fs->fs_fsmnt);
   1642 			printf("offset=%d %ld\n",
   1643 				ufs_rw32(cgp->cg_freeoff, needswap),
   1644 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1645 			panic("ffs_alloccg: map corrupted");
   1646 			/* NOTREACHED */
   1647 		}
   1648 	}
   1649 	bno = (start + len - loc) * NBBY;
   1650 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1651 	/*
   1652 	 * found the byte in the map
   1653 	 * sift through the bits to find the selected frag
   1654 	 */
   1655 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1656 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1657 		blk <<= 1;
   1658 		field = around[allocsiz];
   1659 		subfield = inside[allocsiz];
   1660 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1661 			if ((blk & field) == subfield)
   1662 				return (bno + pos);
   1663 			field <<= 1;
   1664 			subfield <<= 1;
   1665 		}
   1666 	}
   1667 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1668 	panic("ffs_alloccg: block not in map");
   1669 	return (-1);
   1670 }
   1671 
   1672 /*
   1673  * Update the cluster map because of an allocation or free.
   1674  *
   1675  * Cnt == 1 means free; cnt == -1 means allocating.
   1676  */
   1677 void
   1678 ffs_clusteracct(fs, cgp, blkno, cnt)
   1679 	struct fs *fs;
   1680 	struct cg *cgp;
   1681 	ufs_daddr_t blkno;
   1682 	int cnt;
   1683 {
   1684 	int32_t *sump;
   1685 	int32_t *lp;
   1686 	u_char *freemapp, *mapp;
   1687 	int i, start, end, forw, back, map, bit;
   1688 #ifdef FFS_EI
   1689 	const int needswap = UFS_FSNEEDSWAP(fs);
   1690 #endif
   1691 
   1692 	if (fs->fs_contigsumsize <= 0)
   1693 		return;
   1694 	freemapp = cg_clustersfree(cgp, needswap);
   1695 	sump = cg_clustersum(cgp, needswap);
   1696 	/*
   1697 	 * Allocate or clear the actual block.
   1698 	 */
   1699 	if (cnt > 0)
   1700 		setbit(freemapp, blkno);
   1701 	else
   1702 		clrbit(freemapp, blkno);
   1703 	/*
   1704 	 * Find the size of the cluster going forward.
   1705 	 */
   1706 	start = blkno + 1;
   1707 	end = start + fs->fs_contigsumsize;
   1708 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1709 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1710 	mapp = &freemapp[start / NBBY];
   1711 	map = *mapp++;
   1712 	bit = 1 << (start % NBBY);
   1713 	for (i = start; i < end; i++) {
   1714 		if ((map & bit) == 0)
   1715 			break;
   1716 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1717 			bit <<= 1;
   1718 		} else {
   1719 			map = *mapp++;
   1720 			bit = 1;
   1721 		}
   1722 	}
   1723 	forw = i - start;
   1724 	/*
   1725 	 * Find the size of the cluster going backward.
   1726 	 */
   1727 	start = blkno - 1;
   1728 	end = start - fs->fs_contigsumsize;
   1729 	if (end < 0)
   1730 		end = -1;
   1731 	mapp = &freemapp[start / NBBY];
   1732 	map = *mapp--;
   1733 	bit = 1 << (start % NBBY);
   1734 	for (i = start; i > end; i--) {
   1735 		if ((map & bit) == 0)
   1736 			break;
   1737 		if ((i & (NBBY - 1)) != 0) {
   1738 			bit >>= 1;
   1739 		} else {
   1740 			map = *mapp--;
   1741 			bit = 1 << (NBBY - 1);
   1742 		}
   1743 	}
   1744 	back = start - i;
   1745 	/*
   1746 	 * Account for old cluster and the possibly new forward and
   1747 	 * back clusters.
   1748 	 */
   1749 	i = back + forw + 1;
   1750 	if (i > fs->fs_contigsumsize)
   1751 		i = fs->fs_contigsumsize;
   1752 	ufs_add32(sump[i], cnt, needswap);
   1753 	if (back > 0)
   1754 		ufs_add32(sump[back], -cnt, needswap);
   1755 	if (forw > 0)
   1756 		ufs_add32(sump[forw], -cnt, needswap);
   1757 
   1758 	/*
   1759 	 * Update cluster summary information.
   1760 	 */
   1761 	lp = &sump[fs->fs_contigsumsize];
   1762 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1763 		if (ufs_rw32(*lp--, needswap) > 0)
   1764 			break;
   1765 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1766 }
   1767 
   1768 /*
   1769  * Fserr prints the name of a file system with an error diagnostic.
   1770  *
   1771  * The form of the error message is:
   1772  *	fs: error message
   1773  */
   1774 static void
   1775 ffs_fserr(fs, uid, cp)
   1776 	struct fs *fs;
   1777 	u_int uid;
   1778 	char *cp;
   1779 {
   1780 
   1781 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1782 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1783 }
   1784