ffs_alloc.c revision 1.4 1 /* $NetBSD: ffs_alloc.c,v 1.4 1994/10/20 04:20:55 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46
47 #include <vm/vm.h>
48
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54
55 extern u_long nextgennumber;
56
57 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
58 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
59 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
60 static ino_t ffs_dirpref __P((struct fs *));
61 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
62 static void ffs_fserr __P((struct fs *, u_int, char *));
63 static u_long ffs_hashalloc
64 __P((struct inode *, int, long, int, u_int32_t (*)()));
65 static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67
68 /*
69 * Allocate a block in the file system.
70 *
71 * The size of the requested block is given, which must be some
72 * multiple of fs_fsize and <= fs_bsize.
73 * A preference may be optionally specified. If a preference is given
74 * the following hierarchy is used to allocate a block:
75 * 1) allocate the requested block.
76 * 2) allocate a rotationally optimal block in the same cylinder.
77 * 3) allocate a block in the same cylinder group.
78 * 4) quadradically rehash into other cylinder groups, until an
79 * available block is located.
80 * If no block preference is given the following heirarchy is used
81 * to allocate a block:
82 * 1) allocate a block in the cylinder group that contains the
83 * inode for the file.
84 * 2) quadradically rehash into other cylinder groups, until an
85 * available block is located.
86 */
87 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
88 register struct inode *ip;
89 daddr_t lbn, bpref;
90 int size;
91 struct ucred *cred;
92 daddr_t *bnp;
93 {
94 register struct fs *fs;
95 daddr_t bno;
96 int cg, error;
97
98 *bnp = 0;
99 fs = ip->i_fs;
100 #ifdef DIAGNOSTIC
101 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
102 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
103 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
104 panic("ffs_alloc: bad size");
105 }
106 if (cred == NOCRED)
107 panic("ffs_alloc: missing credential\n");
108 #endif /* DIAGNOSTIC */
109 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
110 goto nospace;
111 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
112 goto nospace;
113 #ifdef QUOTA
114 if (error = chkdq(ip, (long)btodb(size), cred, 0))
115 return (error);
116 #endif
117 if (bpref >= fs->fs_size)
118 bpref = 0;
119 if (bpref == 0)
120 cg = ino_to_cg(fs, ip->i_number);
121 else
122 cg = dtog(fs, bpref);
123 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
124 (u_int32_t (*)())ffs_alloccg);
125 if (bno > 0) {
126 ip->i_blocks += btodb(size);
127 ip->i_flag |= IN_CHANGE | IN_UPDATE;
128 *bnp = bno;
129 return (0);
130 }
131 #ifdef QUOTA
132 /*
133 * Restore user's disk quota because allocation failed.
134 */
135 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
136 #endif
137 nospace:
138 ffs_fserr(fs, cred->cr_uid, "file system full");
139 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
140 return (ENOSPC);
141 }
142
143 /*
144 * Reallocate a fragment to a bigger size
145 *
146 * The number and size of the old block is given, and a preference
147 * and new size is also specified. The allocator attempts to extend
148 * the original block. Failing that, the regular block allocator is
149 * invoked to get an appropriate block.
150 */
151 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
152 register struct inode *ip;
153 daddr_t lbprev;
154 daddr_t bpref;
155 int osize, nsize;
156 struct ucred *cred;
157 struct buf **bpp;
158 {
159 register struct fs *fs;
160 struct buf *bp;
161 int cg, request, error;
162 daddr_t bprev, bno;
163
164 *bpp = 0;
165 fs = ip->i_fs;
166 #ifdef DIAGNOSTIC
167 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
168 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
169 printf(
170 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
171 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
172 panic("ffs_realloccg: bad size");
173 }
174 if (cred == NOCRED)
175 panic("ffs_realloccg: missing credential\n");
176 #endif /* DIAGNOSTIC */
177 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
178 goto nospace;
179 if ((bprev = ip->i_db[lbprev]) == 0) {
180 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
181 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
182 panic("ffs_realloccg: bad bprev");
183 }
184 /*
185 * Allocate the extra space in the buffer.
186 */
187 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
188 brelse(bp);
189 return (error);
190 }
191 #ifdef QUOTA
192 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
193 brelse(bp);
194 return (error);
195 }
196 #endif
197 /*
198 * Check for extension in the existing location.
199 */
200 cg = dtog(fs, bprev);
201 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
202 if (bp->b_blkno != fsbtodb(fs, bno))
203 panic("bad blockno");
204 ip->i_blocks += btodb(nsize - osize);
205 ip->i_flag |= IN_CHANGE | IN_UPDATE;
206 allocbuf(bp, nsize);
207 bp->b_flags |= B_DONE;
208 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
209 *bpp = bp;
210 return (0);
211 }
212 /*
213 * Allocate a new disk location.
214 */
215 if (bpref >= fs->fs_size)
216 bpref = 0;
217 switch ((int)fs->fs_optim) {
218 case FS_OPTSPACE:
219 /*
220 * Allocate an exact sized fragment. Although this makes
221 * best use of space, we will waste time relocating it if
222 * the file continues to grow. If the fragmentation is
223 * less than half of the minimum free reserve, we choose
224 * to begin optimizing for time.
225 */
226 request = nsize;
227 if (fs->fs_minfree < 5 ||
228 fs->fs_cstotal.cs_nffree >
229 fs->fs_dsize * fs->fs_minfree / (2 * 100))
230 break;
231 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
232 fs->fs_fsmnt);
233 fs->fs_optim = FS_OPTTIME;
234 break;
235 case FS_OPTTIME:
236 /*
237 * At this point we have discovered a file that is trying to
238 * grow a small fragment to a larger fragment. To save time,
239 * we allocate a full sized block, then free the unused portion.
240 * If the file continues to grow, the `ffs_fragextend' call
241 * above will be able to grow it in place without further
242 * copying. If aberrant programs cause disk fragmentation to
243 * grow within 2% of the free reserve, we choose to begin
244 * optimizing for space.
245 */
246 request = fs->fs_bsize;
247 if (fs->fs_cstotal.cs_nffree <
248 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
249 break;
250 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
251 fs->fs_fsmnt);
252 fs->fs_optim = FS_OPTSPACE;
253 break;
254 default:
255 printf("dev = 0x%x, optim = %d, fs = %s\n",
256 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
257 panic("ffs_realloccg: bad optim");
258 /* NOTREACHED */
259 }
260 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
261 (u_int32_t (*)())ffs_alloccg);
262 if (bno > 0) {
263 bp->b_blkno = fsbtodb(fs, bno);
264 (void) vnode_pager_uncache(ITOV(ip));
265 ffs_blkfree(ip, bprev, (long)osize);
266 if (nsize < request)
267 ffs_blkfree(ip, bno + numfrags(fs, nsize),
268 (long)(request - nsize));
269 ip->i_blocks += btodb(nsize - osize);
270 ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 allocbuf(bp, nsize);
272 bp->b_flags |= B_DONE;
273 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
274 *bpp = bp;
275 return (0);
276 }
277 #ifdef QUOTA
278 /*
279 * Restore user's disk quota because allocation failed.
280 */
281 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
282 #endif
283 brelse(bp);
284 nospace:
285 /*
286 * no space available
287 */
288 ffs_fserr(fs, cred->cr_uid, "file system full");
289 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 return (ENOSPC);
291 }
292
293 /*
294 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
295 *
296 * The vnode and an array of buffer pointers for a range of sequential
297 * logical blocks to be made contiguous is given. The allocator attempts
298 * to find a range of sequential blocks starting as close as possible to
299 * an fs_rotdelay offset from the end of the allocation for the logical
300 * block immediately preceeding the current range. If successful, the
301 * physical block numbers in the buffer pointers and in the inode are
302 * changed to reflect the new allocation. If unsuccessful, the allocation
303 * is left unchanged. The success in doing the reallocation is returned.
304 * Note that the error return is not reflected back to the user. Rather
305 * the previous block allocation will be used.
306 */
307 #ifdef DEBUG
308 #include <sys/sysctl.h>
309 int doasyncfree = 1;
310 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
311 #else
312 #define doasyncfree 1
313 #endif
314
315 int
316 ffs_reallocblks(ap)
317 struct vop_reallocblks_args /* {
318 struct vnode *a_vp;
319 struct cluster_save *a_buflist;
320 } */ *ap;
321 {
322 struct fs *fs;
323 struct inode *ip;
324 struct vnode *vp;
325 struct buf *sbp, *ebp;
326 daddr_t *bap, *sbap, *ebap;
327 struct cluster_save *buflist;
328 daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
329 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
330 int i, len, start_lvl, end_lvl, pref, ssize;
331
332 vp = ap->a_vp;
333 ip = VTOI(vp);
334 fs = ip->i_fs;
335 if (fs->fs_contigsumsize <= 0)
336 return (ENOSPC);
337 buflist = ap->a_buflist;
338 len = buflist->bs_nchildren;
339 start_lbn = buflist->bs_children[0]->b_lblkno;
340 end_lbn = start_lbn + len - 1;
341 #ifdef DIAGNOSTIC
342 for (i = 1; i < len; i++)
343 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
344 panic("ffs_reallocblks: non-cluster");
345 #endif
346 /*
347 * If the latest allocation is in a new cylinder group, assume that
348 * the filesystem has decided to move and do not force it back to
349 * the previous cylinder group.
350 */
351 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
352 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
353 return (ENOSPC);
354 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
355 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
356 return (ENOSPC);
357 /*
358 * Get the starting offset and block map for the first block.
359 */
360 if (start_lvl == 0) {
361 sbap = &ip->i_db[0];
362 soff = start_lbn;
363 } else {
364 idp = &start_ap[start_lvl - 1];
365 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
366 brelse(sbp);
367 return (ENOSPC);
368 }
369 sbap = (daddr_t *)sbp->b_data;
370 soff = idp->in_off;
371 }
372 /*
373 * Find the preferred location for the cluster.
374 */
375 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
376 /*
377 * If the block range spans two block maps, get the second map.
378 */
379 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
380 ssize = len;
381 } else {
382 #ifdef DIAGNOSTIC
383 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
384 panic("ffs_reallocblk: start == end");
385 #endif
386 ssize = len - (idp->in_off + 1);
387 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
388 goto fail;
389 ebap = (daddr_t *)ebp->b_data;
390 }
391 /*
392 * Search the block map looking for an allocation of the desired size.
393 */
394 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
395 len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
396 goto fail;
397 /*
398 * We have found a new contiguous block.
399 *
400 * First we have to replace the old block pointers with the new
401 * block pointers in the inode and indirect blocks associated
402 * with the file.
403 */
404 blkno = newblk;
405 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
406 if (i == ssize)
407 bap = ebap;
408 #ifdef DIAGNOSTIC
409 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
410 panic("ffs_reallocblks: alloc mismatch");
411 #endif
412 *bap++ = blkno;
413 }
414 /*
415 * Next we must write out the modified inode and indirect blocks.
416 * For strict correctness, the writes should be synchronous since
417 * the old block values may have been written to disk. In practise
418 * they are almost never written, but if we are concerned about
419 * strict correctness, the `doasyncfree' flag should be set to zero.
420 *
421 * The test on `doasyncfree' should be changed to test a flag
422 * that shows whether the associated buffers and inodes have
423 * been written. The flag should be set when the cluster is
424 * started and cleared whenever the buffer or inode is flushed.
425 * We can then check below to see if it is set, and do the
426 * synchronous write only when it has been cleared.
427 */
428 if (sbap != &ip->i_db[0]) {
429 if (doasyncfree)
430 bdwrite(sbp);
431 else
432 bwrite(sbp);
433 } else {
434 ip->i_flag |= IN_CHANGE | IN_UPDATE;
435 if (!doasyncfree)
436 VOP_UPDATE(vp, &time, &time, MNT_WAIT);
437 }
438 if (ssize < len)
439 if (doasyncfree)
440 bdwrite(ebp);
441 else
442 bwrite(ebp);
443 /*
444 * Last, free the old blocks and assign the new blocks to the buffers.
445 */
446 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
447 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
448 fs->fs_bsize);
449 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
450 }
451 return (0);
452
453 fail:
454 if (ssize < len)
455 brelse(ebp);
456 if (sbap != &ip->i_db[0])
457 brelse(sbp);
458 return (ENOSPC);
459 }
460
461 /*
462 * Allocate an inode in the file system.
463 *
464 * If allocating a directory, use ffs_dirpref to select the inode.
465 * If allocating in a directory, the following hierarchy is followed:
466 * 1) allocate the preferred inode.
467 * 2) allocate an inode in the same cylinder group.
468 * 3) quadradically rehash into other cylinder groups, until an
469 * available inode is located.
470 * If no inode preference is given the following heirarchy is used
471 * to allocate an inode:
472 * 1) allocate an inode in cylinder group 0.
473 * 2) quadradically rehash into other cylinder groups, until an
474 * available inode is located.
475 */
476 ffs_valloc(ap)
477 struct vop_valloc_args /* {
478 struct vnode *a_pvp;
479 int a_mode;
480 struct ucred *a_cred;
481 struct vnode **a_vpp;
482 } */ *ap;
483 {
484 register struct vnode *pvp = ap->a_pvp;
485 register struct inode *pip;
486 register struct fs *fs;
487 register struct inode *ip;
488 mode_t mode = ap->a_mode;
489 ino_t ino, ipref;
490 int cg, error;
491
492 *ap->a_vpp = NULL;
493 pip = VTOI(pvp);
494 fs = pip->i_fs;
495 if (fs->fs_cstotal.cs_nifree == 0)
496 goto noinodes;
497
498 if ((mode & IFMT) == IFDIR)
499 ipref = ffs_dirpref(fs);
500 else
501 ipref = pip->i_number;
502 if (ipref >= fs->fs_ncg * fs->fs_ipg)
503 ipref = 0;
504 cg = ino_to_cg(fs, ipref);
505 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
506 if (ino == 0)
507 goto noinodes;
508 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
509 if (error) {
510 VOP_VFREE(pvp, ino, mode);
511 return (error);
512 }
513 ip = VTOI(*ap->a_vpp);
514 if (ip->i_mode) {
515 printf("mode = 0%o, inum = %d, fs = %s\n",
516 ip->i_mode, ip->i_number, fs->fs_fsmnt);
517 panic("ffs_valloc: dup alloc");
518 }
519 if (ip->i_blocks) { /* XXX */
520 printf("free inode %s/%d had %d blocks\n",
521 fs->fs_fsmnt, ino, ip->i_blocks);
522 ip->i_blocks = 0;
523 }
524 ip->i_flags = 0;
525 /*
526 * Set up a new generation number for this inode.
527 */
528 if (++nextgennumber < (u_long)time.tv_sec)
529 nextgennumber = time.tv_sec;
530 ip->i_gen = nextgennumber;
531 return (0);
532 noinodes:
533 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
534 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
535 return (ENOSPC);
536 }
537
538 /*
539 * Find a cylinder to place a directory.
540 *
541 * The policy implemented by this algorithm is to select from
542 * among those cylinder groups with above the average number of
543 * free inodes, the one with the smallest number of directories.
544 */
545 static ino_t
546 ffs_dirpref(fs)
547 register struct fs *fs;
548 {
549 int cg, minndir, mincg, avgifree;
550
551 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
552 minndir = fs->fs_ipg;
553 mincg = 0;
554 for (cg = 0; cg < fs->fs_ncg; cg++)
555 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
556 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
557 mincg = cg;
558 minndir = fs->fs_cs(fs, cg).cs_ndir;
559 }
560 return ((ino_t)(fs->fs_ipg * mincg));
561 }
562
563 /*
564 * Select the desired position for the next block in a file. The file is
565 * logically divided into sections. The first section is composed of the
566 * direct blocks. Each additional section contains fs_maxbpg blocks.
567 *
568 * If no blocks have been allocated in the first section, the policy is to
569 * request a block in the same cylinder group as the inode that describes
570 * the file. If no blocks have been allocated in any other section, the
571 * policy is to place the section in a cylinder group with a greater than
572 * average number of free blocks. An appropriate cylinder group is found
573 * by using a rotor that sweeps the cylinder groups. When a new group of
574 * blocks is needed, the sweep begins in the cylinder group following the
575 * cylinder group from which the previous allocation was made. The sweep
576 * continues until a cylinder group with greater than the average number
577 * of free blocks is found. If the allocation is for the first block in an
578 * indirect block, the information on the previous allocation is unavailable;
579 * here a best guess is made based upon the logical block number being
580 * allocated.
581 *
582 * If a section is already partially allocated, the policy is to
583 * contiguously allocate fs_maxcontig blocks. The end of one of these
584 * contiguous blocks and the beginning of the next is physically separated
585 * so that the disk head will be in transit between them for at least
586 * fs_rotdelay milliseconds. This is to allow time for the processor to
587 * schedule another I/O transfer.
588 */
589 daddr_t
590 ffs_blkpref(ip, lbn, indx, bap)
591 struct inode *ip;
592 daddr_t lbn;
593 int indx;
594 daddr_t *bap;
595 {
596 register struct fs *fs;
597 register int cg;
598 int avgbfree, startcg;
599 daddr_t nextblk;
600
601 fs = ip->i_fs;
602 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
603 if (lbn < NDADDR) {
604 cg = ino_to_cg(fs, ip->i_number);
605 return (fs->fs_fpg * cg + fs->fs_frag);
606 }
607 /*
608 * Find a cylinder with greater than average number of
609 * unused data blocks.
610 */
611 if (indx == 0 || bap[indx - 1] == 0)
612 startcg =
613 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
614 else
615 startcg = dtog(fs, bap[indx - 1]) + 1;
616 startcg %= fs->fs_ncg;
617 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
618 for (cg = startcg; cg < fs->fs_ncg; cg++)
619 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
620 fs->fs_cgrotor = cg;
621 return (fs->fs_fpg * cg + fs->fs_frag);
622 }
623 for (cg = 0; cg <= startcg; cg++)
624 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
625 fs->fs_cgrotor = cg;
626 return (fs->fs_fpg * cg + fs->fs_frag);
627 }
628 return (NULL);
629 }
630 /*
631 * One or more previous blocks have been laid out. If less
632 * than fs_maxcontig previous blocks are contiguous, the
633 * next block is requested contiguously, otherwise it is
634 * requested rotationally delayed by fs_rotdelay milliseconds.
635 */
636 nextblk = bap[indx - 1] + fs->fs_frag;
637 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
638 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
639 return (nextblk);
640 if (fs->fs_rotdelay != 0)
641 /*
642 * Here we convert ms of delay to frags as:
643 * (frags) = (ms) * (rev/sec) * (sect/rev) /
644 * ((sect/frag) * (ms/sec))
645 * then round up to the next block.
646 */
647 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
648 (NSPF(fs) * 1000), fs->fs_frag);
649 return (nextblk);
650 }
651
652 /*
653 * Implement the cylinder overflow algorithm.
654 *
655 * The policy implemented by this algorithm is:
656 * 1) allocate the block in its requested cylinder group.
657 * 2) quadradically rehash on the cylinder group number.
658 * 3) brute force search for a free block.
659 */
660 /*VARARGS5*/
661 static u_long
662 ffs_hashalloc(ip, cg, pref, size, allocator)
663 struct inode *ip;
664 int cg;
665 long pref;
666 int size; /* size for data blocks, mode for inodes */
667 u_int32_t (*allocator)();
668 {
669 register struct fs *fs;
670 long result;
671 int i, icg = cg;
672
673 fs = ip->i_fs;
674 /*
675 * 1: preferred cylinder group
676 */
677 result = (*allocator)(ip, cg, pref, size);
678 if (result)
679 return (result);
680 /*
681 * 2: quadratic rehash
682 */
683 for (i = 1; i < fs->fs_ncg; i *= 2) {
684 cg += i;
685 if (cg >= fs->fs_ncg)
686 cg -= fs->fs_ncg;
687 result = (*allocator)(ip, cg, 0, size);
688 if (result)
689 return (result);
690 }
691 /*
692 * 3: brute force search
693 * Note that we start at i == 2, since 0 was checked initially,
694 * and 1 is always checked in the quadratic rehash.
695 */
696 cg = (icg + 2) % fs->fs_ncg;
697 for (i = 2; i < fs->fs_ncg; i++) {
698 result = (*allocator)(ip, cg, 0, size);
699 if (result)
700 return (result);
701 cg++;
702 if (cg == fs->fs_ncg)
703 cg = 0;
704 }
705 return (NULL);
706 }
707
708 /*
709 * Determine whether a fragment can be extended.
710 *
711 * Check to see if the necessary fragments are available, and
712 * if they are, allocate them.
713 */
714 static daddr_t
715 ffs_fragextend(ip, cg, bprev, osize, nsize)
716 struct inode *ip;
717 int cg;
718 long bprev;
719 int osize, nsize;
720 {
721 register struct fs *fs;
722 register struct cg *cgp;
723 struct buf *bp;
724 long bno;
725 int frags, bbase;
726 int i, error;
727
728 fs = ip->i_fs;
729 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
730 return (NULL);
731 frags = numfrags(fs, nsize);
732 bbase = fragnum(fs, bprev);
733 if (bbase > fragnum(fs, (bprev + frags - 1))) {
734 /* cannot extend across a block boundary */
735 return (NULL);
736 }
737 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
738 (int)fs->fs_cgsize, NOCRED, &bp);
739 if (error) {
740 brelse(bp);
741 return (NULL);
742 }
743 cgp = (struct cg *)bp->b_data;
744 if (!cg_chkmagic(cgp)) {
745 brelse(bp);
746 return (NULL);
747 }
748 cgp->cg_time = time.tv_sec;
749 bno = dtogd(fs, bprev);
750 for (i = numfrags(fs, osize); i < frags; i++)
751 if (isclr(cg_blksfree(cgp), bno + i)) {
752 brelse(bp);
753 return (NULL);
754 }
755 /*
756 * the current fragment can be extended
757 * deduct the count on fragment being extended into
758 * increase the count on the remaining fragment (if any)
759 * allocate the extended piece
760 */
761 for (i = frags; i < fs->fs_frag - bbase; i++)
762 if (isclr(cg_blksfree(cgp), bno + i))
763 break;
764 cgp->cg_frsum[i - numfrags(fs, osize)]--;
765 if (i != frags)
766 cgp->cg_frsum[i - frags]++;
767 for (i = numfrags(fs, osize); i < frags; i++) {
768 clrbit(cg_blksfree(cgp), bno + i);
769 cgp->cg_cs.cs_nffree--;
770 fs->fs_cstotal.cs_nffree--;
771 fs->fs_cs(fs, cg).cs_nffree--;
772 }
773 fs->fs_fmod = 1;
774 bdwrite(bp);
775 return (bprev);
776 }
777
778 /*
779 * Determine whether a block can be allocated.
780 *
781 * Check to see if a block of the appropriate size is available,
782 * and if it is, allocate it.
783 */
784 static daddr_t
785 ffs_alloccg(ip, cg, bpref, size)
786 struct inode *ip;
787 int cg;
788 daddr_t bpref;
789 int size;
790 {
791 register struct fs *fs;
792 register struct cg *cgp;
793 struct buf *bp;
794 register int i;
795 int error, bno, frags, allocsiz;
796
797 fs = ip->i_fs;
798 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
799 return (NULL);
800 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
801 (int)fs->fs_cgsize, NOCRED, &bp);
802 if (error) {
803 brelse(bp);
804 return (NULL);
805 }
806 cgp = (struct cg *)bp->b_data;
807 if (!cg_chkmagic(cgp) ||
808 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
809 brelse(bp);
810 return (NULL);
811 }
812 cgp->cg_time = time.tv_sec;
813 if (size == fs->fs_bsize) {
814 bno = ffs_alloccgblk(fs, cgp, bpref);
815 bdwrite(bp);
816 return (bno);
817 }
818 /*
819 * check to see if any fragments are already available
820 * allocsiz is the size which will be allocated, hacking
821 * it down to a smaller size if necessary
822 */
823 frags = numfrags(fs, size);
824 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
825 if (cgp->cg_frsum[allocsiz] != 0)
826 break;
827 if (allocsiz == fs->fs_frag) {
828 /*
829 * no fragments were available, so a block will be
830 * allocated, and hacked up
831 */
832 if (cgp->cg_cs.cs_nbfree == 0) {
833 brelse(bp);
834 return (NULL);
835 }
836 bno = ffs_alloccgblk(fs, cgp, bpref);
837 bpref = dtogd(fs, bno);
838 for (i = frags; i < fs->fs_frag; i++)
839 setbit(cg_blksfree(cgp), bpref + i);
840 i = fs->fs_frag - frags;
841 cgp->cg_cs.cs_nffree += i;
842 fs->fs_cstotal.cs_nffree += i;
843 fs->fs_cs(fs, cg).cs_nffree += i;
844 fs->fs_fmod = 1;
845 cgp->cg_frsum[i]++;
846 bdwrite(bp);
847 return (bno);
848 }
849 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
850 if (bno < 0) {
851 brelse(bp);
852 return (NULL);
853 }
854 for (i = 0; i < frags; i++)
855 clrbit(cg_blksfree(cgp), bno + i);
856 cgp->cg_cs.cs_nffree -= frags;
857 fs->fs_cstotal.cs_nffree -= frags;
858 fs->fs_cs(fs, cg).cs_nffree -= frags;
859 fs->fs_fmod = 1;
860 cgp->cg_frsum[allocsiz]--;
861 if (frags != allocsiz)
862 cgp->cg_frsum[allocsiz - frags]++;
863 bdwrite(bp);
864 return (cg * fs->fs_fpg + bno);
865 }
866
867 /*
868 * Allocate a block in a cylinder group.
869 *
870 * This algorithm implements the following policy:
871 * 1) allocate the requested block.
872 * 2) allocate a rotationally optimal block in the same cylinder.
873 * 3) allocate the next available block on the block rotor for the
874 * specified cylinder group.
875 * Note that this routine only allocates fs_bsize blocks; these
876 * blocks may be fragmented by the routine that allocates them.
877 */
878 static daddr_t
879 ffs_alloccgblk(fs, cgp, bpref)
880 register struct fs *fs;
881 register struct cg *cgp;
882 daddr_t bpref;
883 {
884 daddr_t bno, blkno;
885 int cylno, pos, delta;
886 short *cylbp;
887 register int i;
888
889 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
890 bpref = cgp->cg_rotor;
891 goto norot;
892 }
893 bpref = blknum(fs, bpref);
894 bpref = dtogd(fs, bpref);
895 /*
896 * if the requested block is available, use it
897 */
898 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
899 bno = bpref;
900 goto gotit;
901 }
902 /*
903 * check for a block available on the same cylinder
904 */
905 cylno = cbtocylno(fs, bpref);
906 if (cg_blktot(cgp)[cylno] == 0)
907 goto norot;
908 if (fs->fs_cpc == 0) {
909 /*
910 * Block layout information is not available.
911 * Leaving bpref unchanged means we take the
912 * next available free block following the one
913 * we just allocated. Hopefully this will at
914 * least hit a track cache on drives of unknown
915 * geometry (e.g. SCSI).
916 */
917 goto norot;
918 }
919 /*
920 * check the summary information to see if a block is
921 * available in the requested cylinder starting at the
922 * requested rotational position and proceeding around.
923 */
924 cylbp = cg_blks(fs, cgp, cylno);
925 pos = cbtorpos(fs, bpref);
926 for (i = pos; i < fs->fs_nrpos; i++)
927 if (cylbp[i] > 0)
928 break;
929 if (i == fs->fs_nrpos)
930 for (i = 0; i < pos; i++)
931 if (cylbp[i] > 0)
932 break;
933 if (cylbp[i] > 0) {
934 /*
935 * found a rotational position, now find the actual
936 * block. A panic if none is actually there.
937 */
938 pos = cylno % fs->fs_cpc;
939 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
940 if (fs_postbl(fs, pos)[i] == -1) {
941 printf("pos = %d, i = %d, fs = %s\n",
942 pos, i, fs->fs_fsmnt);
943 panic("ffs_alloccgblk: cyl groups corrupted");
944 }
945 for (i = fs_postbl(fs, pos)[i];; ) {
946 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
947 bno = blkstofrags(fs, (bno + i));
948 goto gotit;
949 }
950 delta = fs_rotbl(fs)[i];
951 if (delta <= 0 ||
952 delta + i > fragstoblks(fs, fs->fs_fpg))
953 break;
954 i += delta;
955 }
956 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
957 panic("ffs_alloccgblk: can't find blk in cyl");
958 }
959 norot:
960 /*
961 * no blocks in the requested cylinder, so take next
962 * available one in this cylinder group.
963 */
964 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
965 if (bno < 0)
966 return (NULL);
967 cgp->cg_rotor = bno;
968 gotit:
969 blkno = fragstoblks(fs, bno);
970 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
971 ffs_clusteracct(fs, cgp, blkno, -1);
972 cgp->cg_cs.cs_nbfree--;
973 fs->fs_cstotal.cs_nbfree--;
974 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
975 cylno = cbtocylno(fs, bno);
976 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
977 cg_blktot(cgp)[cylno]--;
978 fs->fs_fmod = 1;
979 return (cgp->cg_cgx * fs->fs_fpg + bno);
980 }
981
982 /*
983 * Determine whether a cluster can be allocated.
984 *
985 * We do not currently check for optimal rotational layout if there
986 * are multiple choices in the same cylinder group. Instead we just
987 * take the first one that we find following bpref.
988 */
989 static daddr_t
990 ffs_clusteralloc(ip, cg, bpref, len)
991 struct inode *ip;
992 int cg;
993 daddr_t bpref;
994 int len;
995 {
996 register struct fs *fs;
997 register struct cg *cgp;
998 struct buf *bp;
999 int i, run, bno, bit, map;
1000 u_char *mapp;
1001
1002 fs = ip->i_fs;
1003 if (fs->fs_cs(fs, cg).cs_nbfree < len)
1004 return (NULL);
1005 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1006 NOCRED, &bp))
1007 goto fail;
1008 cgp = (struct cg *)bp->b_data;
1009 if (!cg_chkmagic(cgp))
1010 goto fail;
1011 /*
1012 * Check to see if a cluster of the needed size (or bigger) is
1013 * available in this cylinder group.
1014 */
1015 for (i = len; i <= fs->fs_contigsumsize; i++)
1016 if (cg_clustersum(cgp)[i] > 0)
1017 break;
1018 if (i > fs->fs_contigsumsize)
1019 goto fail;
1020 /*
1021 * Search the cluster map to find a big enough cluster.
1022 * We take the first one that we find, even if it is larger
1023 * than we need as we prefer to get one close to the previous
1024 * block allocation. We do not search before the current
1025 * preference point as we do not want to allocate a block
1026 * that is allocated before the previous one (as we will
1027 * then have to wait for another pass of the elevator
1028 * algorithm before it will be read). We prefer to fail and
1029 * be recalled to try an allocation in the next cylinder group.
1030 */
1031 if (dtog(fs, bpref) != cg)
1032 bpref = 0;
1033 else
1034 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1035 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1036 map = *mapp++;
1037 bit = 1 << (bpref % NBBY);
1038 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1039 if ((map & bit) == 0) {
1040 run = 0;
1041 } else {
1042 run++;
1043 if (run == len)
1044 break;
1045 }
1046 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1047 bit <<= 1;
1048 } else {
1049 map = *mapp++;
1050 bit = 1;
1051 }
1052 }
1053 if (i == cgp->cg_nclusterblks)
1054 goto fail;
1055 /*
1056 * Allocate the cluster that we have found.
1057 */
1058 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1059 len = blkstofrags(fs, len);
1060 for (i = 0; i < len; i += fs->fs_frag)
1061 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1062 panic("ffs_clusteralloc: lost block");
1063 brelse(bp);
1064 return (bno);
1065
1066 fail:
1067 brelse(bp);
1068 return (0);
1069 }
1070
1071 /*
1072 * Determine whether an inode can be allocated.
1073 *
1074 * Check to see if an inode is available, and if it is,
1075 * allocate it using the following policy:
1076 * 1) allocate the requested inode.
1077 * 2) allocate the next available inode after the requested
1078 * inode in the specified cylinder group.
1079 */
1080 static ino_t
1081 ffs_nodealloccg(ip, cg, ipref, mode)
1082 struct inode *ip;
1083 int cg;
1084 daddr_t ipref;
1085 int mode;
1086 {
1087 register struct fs *fs;
1088 register struct cg *cgp;
1089 struct buf *bp;
1090 int error, start, len, loc, map, i;
1091
1092 fs = ip->i_fs;
1093 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1094 return (NULL);
1095 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1096 (int)fs->fs_cgsize, NOCRED, &bp);
1097 if (error) {
1098 brelse(bp);
1099 return (NULL);
1100 }
1101 cgp = (struct cg *)bp->b_data;
1102 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1103 brelse(bp);
1104 return (NULL);
1105 }
1106 cgp->cg_time = time.tv_sec;
1107 if (ipref) {
1108 ipref %= fs->fs_ipg;
1109 if (isclr(cg_inosused(cgp), ipref))
1110 goto gotit;
1111 }
1112 start = cgp->cg_irotor / NBBY;
1113 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1114 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1115 if (loc == 0) {
1116 len = start + 1;
1117 start = 0;
1118 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1119 if (loc == 0) {
1120 printf("cg = %d, irotor = %d, fs = %s\n",
1121 cg, cgp->cg_irotor, fs->fs_fsmnt);
1122 panic("ffs_nodealloccg: map corrupted");
1123 /* NOTREACHED */
1124 }
1125 }
1126 i = start + len - loc;
1127 map = cg_inosused(cgp)[i];
1128 ipref = i * NBBY;
1129 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1130 if ((map & i) == 0) {
1131 cgp->cg_irotor = ipref;
1132 goto gotit;
1133 }
1134 }
1135 printf("fs = %s\n", fs->fs_fsmnt);
1136 panic("ffs_nodealloccg: block not in map");
1137 /* NOTREACHED */
1138 gotit:
1139 setbit(cg_inosused(cgp), ipref);
1140 cgp->cg_cs.cs_nifree--;
1141 fs->fs_cstotal.cs_nifree--;
1142 fs->fs_cs(fs, cg).cs_nifree--;
1143 fs->fs_fmod = 1;
1144 if ((mode & IFMT) == IFDIR) {
1145 cgp->cg_cs.cs_ndir++;
1146 fs->fs_cstotal.cs_ndir++;
1147 fs->fs_cs(fs, cg).cs_ndir++;
1148 }
1149 bdwrite(bp);
1150 return (cg * fs->fs_ipg + ipref);
1151 }
1152
1153 /*
1154 * Free a block or fragment.
1155 *
1156 * The specified block or fragment is placed back in the
1157 * free map. If a fragment is deallocated, a possible
1158 * block reassembly is checked.
1159 */
1160 ffs_blkfree(ip, bno, size)
1161 register struct inode *ip;
1162 daddr_t bno;
1163 long size;
1164 {
1165 register struct fs *fs;
1166 register struct cg *cgp;
1167 struct buf *bp;
1168 daddr_t blkno;
1169 int i, error, cg, blk, frags, bbase;
1170
1171 fs = ip->i_fs;
1172 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1173 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1174 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1175 panic("blkfree: bad size");
1176 }
1177 cg = dtog(fs, bno);
1178 if ((u_int)bno >= fs->fs_size) {
1179 printf("bad block %d, ino %d\n", bno, ip->i_number);
1180 ffs_fserr(fs, ip->i_uid, "bad block");
1181 return;
1182 }
1183 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1184 (int)fs->fs_cgsize, NOCRED, &bp);
1185 if (error) {
1186 brelse(bp);
1187 return;
1188 }
1189 cgp = (struct cg *)bp->b_data;
1190 if (!cg_chkmagic(cgp)) {
1191 brelse(bp);
1192 return;
1193 }
1194 cgp->cg_time = time.tv_sec;
1195 bno = dtogd(fs, bno);
1196 if (size == fs->fs_bsize) {
1197 blkno = fragstoblks(fs, bno);
1198 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1199 printf("dev = 0x%x, block = %d, fs = %s\n",
1200 ip->i_dev, bno, fs->fs_fsmnt);
1201 panic("blkfree: freeing free block");
1202 }
1203 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1204 ffs_clusteracct(fs, cgp, blkno, 1);
1205 cgp->cg_cs.cs_nbfree++;
1206 fs->fs_cstotal.cs_nbfree++;
1207 fs->fs_cs(fs, cg).cs_nbfree++;
1208 i = cbtocylno(fs, bno);
1209 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1210 cg_blktot(cgp)[i]++;
1211 } else {
1212 bbase = bno - fragnum(fs, bno);
1213 /*
1214 * decrement the counts associated with the old frags
1215 */
1216 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1217 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1218 /*
1219 * deallocate the fragment
1220 */
1221 frags = numfrags(fs, size);
1222 for (i = 0; i < frags; i++) {
1223 if (isset(cg_blksfree(cgp), bno + i)) {
1224 printf("dev = 0x%x, block = %d, fs = %s\n",
1225 ip->i_dev, bno + i, fs->fs_fsmnt);
1226 panic("blkfree: freeing free frag");
1227 }
1228 setbit(cg_blksfree(cgp), bno + i);
1229 }
1230 cgp->cg_cs.cs_nffree += i;
1231 fs->fs_cstotal.cs_nffree += i;
1232 fs->fs_cs(fs, cg).cs_nffree += i;
1233 /*
1234 * add back in counts associated with the new frags
1235 */
1236 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1237 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1238 /*
1239 * if a complete block has been reassembled, account for it
1240 */
1241 blkno = fragstoblks(fs, bbase);
1242 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1243 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1244 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1245 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1246 ffs_clusteracct(fs, cgp, blkno, 1);
1247 cgp->cg_cs.cs_nbfree++;
1248 fs->fs_cstotal.cs_nbfree++;
1249 fs->fs_cs(fs, cg).cs_nbfree++;
1250 i = cbtocylno(fs, bbase);
1251 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1252 cg_blktot(cgp)[i]++;
1253 }
1254 }
1255 fs->fs_fmod = 1;
1256 bdwrite(bp);
1257 }
1258
1259 /*
1260 * Free an inode.
1261 *
1262 * The specified inode is placed back in the free map.
1263 */
1264 int
1265 ffs_vfree(ap)
1266 struct vop_vfree_args /* {
1267 struct vnode *a_pvp;
1268 ino_t a_ino;
1269 int a_mode;
1270 } */ *ap;
1271 {
1272 register struct fs *fs;
1273 register struct cg *cgp;
1274 register struct inode *pip;
1275 ino_t ino = ap->a_ino;
1276 struct buf *bp;
1277 int error, cg;
1278
1279 pip = VTOI(ap->a_pvp);
1280 fs = pip->i_fs;
1281 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1282 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1283 pip->i_dev, ino, fs->fs_fsmnt);
1284 cg = ino_to_cg(fs, ino);
1285 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1286 (int)fs->fs_cgsize, NOCRED, &bp);
1287 if (error) {
1288 brelse(bp);
1289 return (0);
1290 }
1291 cgp = (struct cg *)bp->b_data;
1292 if (!cg_chkmagic(cgp)) {
1293 brelse(bp);
1294 return (0);
1295 }
1296 cgp->cg_time = time.tv_sec;
1297 ino %= fs->fs_ipg;
1298 if (isclr(cg_inosused(cgp), ino)) {
1299 printf("dev = 0x%x, ino = %d, fs = %s\n",
1300 pip->i_dev, ino, fs->fs_fsmnt);
1301 if (fs->fs_ronly == 0)
1302 panic("ifree: freeing free inode");
1303 }
1304 clrbit(cg_inosused(cgp), ino);
1305 if (ino < cgp->cg_irotor)
1306 cgp->cg_irotor = ino;
1307 cgp->cg_cs.cs_nifree++;
1308 fs->fs_cstotal.cs_nifree++;
1309 fs->fs_cs(fs, cg).cs_nifree++;
1310 if ((ap->a_mode & IFMT) == IFDIR) {
1311 cgp->cg_cs.cs_ndir--;
1312 fs->fs_cstotal.cs_ndir--;
1313 fs->fs_cs(fs, cg).cs_ndir--;
1314 }
1315 fs->fs_fmod = 1;
1316 bdwrite(bp);
1317 return (0);
1318 }
1319
1320 /*
1321 * Find a block of the specified size in the specified cylinder group.
1322 *
1323 * It is a panic if a request is made to find a block if none are
1324 * available.
1325 */
1326 static daddr_t
1327 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1328 register struct fs *fs;
1329 register struct cg *cgp;
1330 daddr_t bpref;
1331 int allocsiz;
1332 {
1333 daddr_t bno;
1334 int start, len, loc, i;
1335 int blk, field, subfield, pos;
1336
1337 /*
1338 * find the fragment by searching through the free block
1339 * map for an appropriate bit pattern
1340 */
1341 if (bpref)
1342 start = dtogd(fs, bpref) / NBBY;
1343 else
1344 start = cgp->cg_frotor / NBBY;
1345 len = howmany(fs->fs_fpg, NBBY) - start;
1346 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1347 (u_char *)fragtbl[fs->fs_frag],
1348 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1349 if (loc == 0) {
1350 len = start + 1;
1351 start = 0;
1352 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1353 (u_char *)fragtbl[fs->fs_frag],
1354 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1355 if (loc == 0) {
1356 printf("start = %d, len = %d, fs = %s\n",
1357 start, len, fs->fs_fsmnt);
1358 panic("ffs_alloccg: map corrupted");
1359 /* NOTREACHED */
1360 }
1361 }
1362 bno = (start + len - loc) * NBBY;
1363 cgp->cg_frotor = bno;
1364 /*
1365 * found the byte in the map
1366 * sift through the bits to find the selected frag
1367 */
1368 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1369 blk = blkmap(fs, cg_blksfree(cgp), bno);
1370 blk <<= 1;
1371 field = around[allocsiz];
1372 subfield = inside[allocsiz];
1373 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1374 if ((blk & field) == subfield)
1375 return (bno + pos);
1376 field <<= 1;
1377 subfield <<= 1;
1378 }
1379 }
1380 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1381 panic("ffs_alloccg: block not in map");
1382 return (-1);
1383 }
1384
1385 /*
1386 * Update the cluster map because of an allocation or free.
1387 *
1388 * Cnt == 1 means free; cnt == -1 means allocating.
1389 */
1390 ffs_clusteracct(fs, cgp, blkno, cnt)
1391 struct fs *fs;
1392 struct cg *cgp;
1393 daddr_t blkno;
1394 int cnt;
1395 {
1396 int32_t *sump;
1397 u_char *freemapp, *mapp;
1398 int i, start, end, forw, back, map, bit;
1399
1400 if (fs->fs_contigsumsize <= 0)
1401 return;
1402 freemapp = cg_clustersfree(cgp);
1403 sump = cg_clustersum(cgp);
1404 /*
1405 * Allocate or clear the actual block.
1406 */
1407 if (cnt > 0)
1408 setbit(freemapp, blkno);
1409 else
1410 clrbit(freemapp, blkno);
1411 /*
1412 * Find the size of the cluster going forward.
1413 */
1414 start = blkno + 1;
1415 end = start + fs->fs_contigsumsize;
1416 if (end >= cgp->cg_nclusterblks)
1417 end = cgp->cg_nclusterblks;
1418 mapp = &freemapp[start / NBBY];
1419 map = *mapp++;
1420 bit = 1 << (start % NBBY);
1421 for (i = start; i < end; i++) {
1422 if ((map & bit) == 0)
1423 break;
1424 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1425 bit <<= 1;
1426 } else {
1427 map = *mapp++;
1428 bit = 1;
1429 }
1430 }
1431 forw = i - start;
1432 /*
1433 * Find the size of the cluster going backward.
1434 */
1435 start = blkno - 1;
1436 end = start - fs->fs_contigsumsize;
1437 if (end < 0)
1438 end = -1;
1439 mapp = &freemapp[start / NBBY];
1440 map = *mapp--;
1441 bit = 1 << (start % NBBY);
1442 for (i = start; i > end; i--) {
1443 if ((map & bit) == 0)
1444 break;
1445 if ((i & (NBBY - 1)) != 0) {
1446 bit >>= 1;
1447 } else {
1448 map = *mapp--;
1449 bit = 1 << (NBBY - 1);
1450 }
1451 }
1452 back = start - i;
1453 /*
1454 * Account for old cluster and the possibly new forward and
1455 * back clusters.
1456 */
1457 i = back + forw + 1;
1458 if (i > fs->fs_contigsumsize)
1459 i = fs->fs_contigsumsize;
1460 sump[i] += cnt;
1461 if (back > 0)
1462 sump[back] -= cnt;
1463 if (forw > 0)
1464 sump[forw] -= cnt;
1465 }
1466
1467 /*
1468 * Fserr prints the name of a file system with an error diagnostic.
1469 *
1470 * The form of the error message is:
1471 * fs: error message
1472 */
1473 static void
1474 ffs_fserr(fs, uid, cp)
1475 struct fs *fs;
1476 u_int uid;
1477 char *cp;
1478 {
1479
1480 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1481 }
1482