ffs_alloc.c revision 1.46 1 /* $NetBSD: ffs_alloc.c,v 1.46 2001/08/20 12:00:54 wiz Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL_OPT)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <ufs/ufs/quota.h>
53 #include <ufs/ufs/ufsmount.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufs_extern.h>
56 #include <ufs/ufs/ufs_bswap.h>
57
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60
61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
62 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
63 ufs_daddr_t));
64 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
65 static ino_t ffs_dirpref __P((struct fs *, ino_t));
66 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
67 static void ffs_fserr __P((struct fs *, u_int, char *));
68 static u_long ffs_hashalloc
69 __P((struct inode *, int, long, int,
70 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
71 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
72 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
73 ufs_daddr_t, int));
74 #if defined(DIAGNOSTIC) || defined(DEBUG)
75 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
76 #endif
77
78 /* if 1, changes in optimalization strategy are logged */
79 int ffs_log_changeopt = 0;
80
81 /* in ffs_tables.c */
82 extern const int inside[], around[];
83 extern const u_char * const fragtbl[];
84
85 /*
86 * Allocate a block in the file system.
87 *
88 * The size of the requested block is given, which must be some
89 * multiple of fs_fsize and <= fs_bsize.
90 * A preference may be optionally specified. If a preference is given
91 * the following hierarchy is used to allocate a block:
92 * 1) allocate the requested block.
93 * 2) allocate a rotationally optimal block in the same cylinder.
94 * 3) allocate a block in the same cylinder group.
95 * 4) quadradically rehash into other cylinder groups, until an
96 * available block is located.
97 * If no block preference is given the following heirarchy is used
98 * to allocate a block:
99 * 1) allocate a block in the cylinder group that contains the
100 * inode for the file.
101 * 2) quadradically rehash into other cylinder groups, until an
102 * available block is located.
103 */
104 int
105 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
106 struct inode *ip;
107 ufs_daddr_t lbn, bpref;
108 int size;
109 struct ucred *cred;
110 ufs_daddr_t *bnp;
111 {
112 struct fs *fs = ip->i_fs;
113 ufs_daddr_t bno;
114 int cg;
115 #ifdef QUOTA
116 int error;
117 #endif
118
119 #ifdef UVM_PAGE_TRKOWN
120 if (ITOV(ip)->v_type == VREG && lbn > 0) {
121 struct vm_page *pg;
122 struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
123 voff_t off = trunc_page(lblktosize(fs, (voff_t)lbn));
124 voff_t endoff = round_page(lblktosize(fs, (voff_t)lbn) + size);
125
126 simple_lock(&uobj->vmobjlock);
127 while (off < endoff) {
128 pg = uvm_pagelookup(uobj, off);
129 KASSERT(pg != NULL);
130 KASSERT(pg->owner == curproc->p_pid);
131 KASSERT((pg->flags & PG_CLEAN) == 0);
132 off += PAGE_SIZE;
133 }
134 simple_unlock(&uobj->vmobjlock);
135 }
136 #endif
137
138 *bnp = 0;
139 #ifdef DIAGNOSTIC
140 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
141 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
142 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
143 panic("ffs_alloc: bad size");
144 }
145 if (cred == NOCRED)
146 panic("ffs_alloc: missing credential\n");
147 #endif /* DIAGNOSTIC */
148 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
149 goto nospace;
150 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
151 goto nospace;
152 #ifdef QUOTA
153 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
154 return (error);
155 #endif
156 if (bpref >= fs->fs_size)
157 bpref = 0;
158 if (bpref == 0)
159 cg = ino_to_cg(fs, ip->i_number);
160 else
161 cg = dtog(fs, bpref);
162 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
163 ffs_alloccg);
164 if (bno > 0) {
165 ip->i_ffs_blocks += btodb(size);
166 ip->i_flag |= IN_CHANGE | IN_UPDATE;
167 *bnp = bno;
168 return (0);
169 }
170 #ifdef QUOTA
171 /*
172 * Restore user's disk quota because allocation failed.
173 */
174 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
175 #endif
176 nospace:
177 ffs_fserr(fs, cred->cr_uid, "file system full");
178 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
179 return (ENOSPC);
180 }
181
182 /*
183 * Reallocate a fragment to a bigger size
184 *
185 * The number and size of the old block is given, and a preference
186 * and new size is also specified. The allocator attempts to extend
187 * the original block. Failing that, the regular block allocator is
188 * invoked to get an appropriate block.
189 */
190 int
191 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
192 struct inode *ip;
193 ufs_daddr_t lbprev;
194 ufs_daddr_t bpref;
195 int osize, nsize;
196 struct ucred *cred;
197 struct buf **bpp;
198 ufs_daddr_t *blknop;
199 {
200 struct fs *fs = ip->i_fs;
201 struct buf *bp;
202 int cg, request, error;
203 ufs_daddr_t bprev, bno;
204
205 #ifdef UVM_PAGE_TRKOWN
206 if (ITOV(ip)->v_type == VREG) {
207 struct vm_page *pg;
208 struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
209 voff_t off = trunc_page(lblktosize(fs, lbprev));
210 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
211
212 simple_lock(&uobj->vmobjlock);
213 while (off < endoff) {
214 pg = uvm_pagelookup(uobj, off);
215 KASSERT(pg != NULL);
216 KASSERT(pg->owner == curproc->p_pid);
217 KASSERT((pg->flags & PG_CLEAN) == 0);
218 off += PAGE_SIZE;
219 }
220 simple_unlock(&uobj->vmobjlock);
221 }
222 #endif
223
224 #ifdef DIAGNOSTIC
225 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
226 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
227 printf(
228 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
229 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
230 panic("ffs_realloccg: bad size");
231 }
232 if (cred == NOCRED)
233 panic("ffs_realloccg: missing credential\n");
234 #endif /* DIAGNOSTIC */
235 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
236 goto nospace;
237 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
238 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
239 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
240 panic("ffs_realloccg: bad bprev");
241 }
242 /*
243 * Allocate the extra space in the buffer.
244 */
245 if (bpp != NULL &&
246 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
247 brelse(bp);
248 return (error);
249 }
250 #ifdef QUOTA
251 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
252 if (bpp != NULL) {
253 brelse(bp);
254 }
255 return (error);
256 }
257 #endif
258 /*
259 * Check for extension in the existing location.
260 */
261 cg = dtog(fs, bprev);
262 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
263 ip->i_ffs_blocks += btodb(nsize - osize);
264 ip->i_flag |= IN_CHANGE | IN_UPDATE;
265
266 if (bpp != NULL) {
267 if (bp->b_blkno != fsbtodb(fs, bno))
268 panic("bad blockno");
269 allocbuf(bp, nsize);
270 bp->b_flags |= B_DONE;
271 memset(bp->b_data + osize, 0, nsize - osize);
272 *bpp = bp;
273 }
274 if (blknop != NULL) {
275 *blknop = bno;
276 }
277 return (0);
278 }
279 /*
280 * Allocate a new disk location.
281 */
282 if (bpref >= fs->fs_size)
283 bpref = 0;
284 switch ((int)fs->fs_optim) {
285 case FS_OPTSPACE:
286 /*
287 * Allocate an exact sized fragment. Although this makes
288 * best use of space, we will waste time relocating it if
289 * the file continues to grow. If the fragmentation is
290 * less than half of the minimum free reserve, we choose
291 * to begin optimizing for time.
292 */
293 request = nsize;
294 if (fs->fs_minfree < 5 ||
295 fs->fs_cstotal.cs_nffree >
296 fs->fs_dsize * fs->fs_minfree / (2 * 100))
297 break;
298
299 if (ffs_log_changeopt) {
300 log(LOG_NOTICE,
301 "%s: optimization changed from SPACE to TIME\n",
302 fs->fs_fsmnt);
303 }
304
305 fs->fs_optim = FS_OPTTIME;
306 break;
307 case FS_OPTTIME:
308 /*
309 * At this point we have discovered a file that is trying to
310 * grow a small fragment to a larger fragment. To save time,
311 * we allocate a full sized block, then free the unused portion.
312 * If the file continues to grow, the `ffs_fragextend' call
313 * above will be able to grow it in place without further
314 * copying. If aberrant programs cause disk fragmentation to
315 * grow within 2% of the free reserve, we choose to begin
316 * optimizing for space.
317 */
318 request = fs->fs_bsize;
319 if (fs->fs_cstotal.cs_nffree <
320 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
321 break;
322
323 if (ffs_log_changeopt) {
324 log(LOG_NOTICE,
325 "%s: optimization changed from TIME to SPACE\n",
326 fs->fs_fsmnt);
327 }
328
329 fs->fs_optim = FS_OPTSPACE;
330 break;
331 default:
332 printf("dev = 0x%x, optim = %d, fs = %s\n",
333 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
334 panic("ffs_realloccg: bad optim");
335 /* NOTREACHED */
336 }
337 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
338 ffs_alloccg);
339 if (bno > 0) {
340 if (!DOINGSOFTDEP(ITOV(ip)))
341 ffs_blkfree(ip, bprev, (long)osize);
342 if (nsize < request)
343 ffs_blkfree(ip, bno + numfrags(fs, nsize),
344 (long)(request - nsize));
345 ip->i_ffs_blocks += btodb(nsize - osize);
346 ip->i_flag |= IN_CHANGE | IN_UPDATE;
347 if (bpp != NULL) {
348 bp->b_blkno = fsbtodb(fs, bno);
349 allocbuf(bp, nsize);
350 bp->b_flags |= B_DONE;
351 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
352 *bpp = bp;
353 }
354 if (blknop != NULL) {
355 *blknop = bno;
356 }
357 return (0);
358 }
359 #ifdef QUOTA
360 /*
361 * Restore user's disk quota because allocation failed.
362 */
363 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
364 #endif
365 if (bpp != NULL) {
366 brelse(bp);
367 }
368
369 nospace:
370 /*
371 * no space available
372 */
373 ffs_fserr(fs, cred->cr_uid, "file system full");
374 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
375 return (ENOSPC);
376 }
377
378 /*
379 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
380 *
381 * The vnode and an array of buffer pointers for a range of sequential
382 * logical blocks to be made contiguous is given. The allocator attempts
383 * to find a range of sequential blocks starting as close as possible to
384 * an fs_rotdelay offset from the end of the allocation for the logical
385 * block immediately preceding the current range. If successful, the
386 * physical block numbers in the buffer pointers and in the inode are
387 * changed to reflect the new allocation. If unsuccessful, the allocation
388 * is left unchanged. The success in doing the reallocation is returned.
389 * Note that the error return is not reflected back to the user. Rather
390 * the previous block allocation will be used.
391 */
392 #ifdef DEBUG
393 #include <sys/sysctl.h>
394 int prtrealloc = 0;
395 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
396 #endif
397
398 int doasyncfree = 1;
399
400 int
401 ffs_reallocblks(v)
402 void *v;
403 {
404 struct vop_reallocblks_args /* {
405 struct vnode *a_vp;
406 struct cluster_save *a_buflist;
407 } */ *ap = v;
408 struct fs *fs;
409 struct inode *ip;
410 struct vnode *vp;
411 struct buf *sbp, *ebp;
412 ufs_daddr_t *bap, *sbap, *ebap = NULL;
413 struct cluster_save *buflist;
414 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
415 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
416 int i, len, start_lvl, end_lvl, pref, ssize;
417
418 /* XXXUBC don't reallocblks for now */
419 return ENOSPC;
420
421 vp = ap->a_vp;
422 ip = VTOI(vp);
423 fs = ip->i_fs;
424 if (fs->fs_contigsumsize <= 0)
425 return (ENOSPC);
426 buflist = ap->a_buflist;
427 len = buflist->bs_nchildren;
428 start_lbn = buflist->bs_children[0]->b_lblkno;
429 end_lbn = start_lbn + len - 1;
430 #ifdef DIAGNOSTIC
431 for (i = 0; i < len; i++)
432 if (!ffs_checkblk(ip,
433 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
434 panic("ffs_reallocblks: unallocated block 1");
435 for (i = 1; i < len; i++)
436 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
437 panic("ffs_reallocblks: non-logical cluster");
438 blkno = buflist->bs_children[0]->b_blkno;
439 ssize = fsbtodb(fs, fs->fs_frag);
440 for (i = 1; i < len - 1; i++)
441 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
442 panic("ffs_reallocblks: non-physical cluster %d", i);
443 #endif
444 /*
445 * If the latest allocation is in a new cylinder group, assume that
446 * the filesystem has decided to move and do not force it back to
447 * the previous cylinder group.
448 */
449 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
450 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
451 return (ENOSPC);
452 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
453 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
454 return (ENOSPC);
455 /*
456 * Get the starting offset and block map for the first block.
457 */
458 if (start_lvl == 0) {
459 sbap = &ip->i_ffs_db[0];
460 soff = start_lbn;
461 } else {
462 idp = &start_ap[start_lvl - 1];
463 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
464 brelse(sbp);
465 return (ENOSPC);
466 }
467 sbap = (ufs_daddr_t *)sbp->b_data;
468 soff = idp->in_off;
469 }
470 /*
471 * Find the preferred location for the cluster.
472 */
473 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
474 /*
475 * If the block range spans two block maps, get the second map.
476 */
477 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
478 ssize = len;
479 } else {
480 #ifdef DIAGNOSTIC
481 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
482 panic("ffs_reallocblk: start == end");
483 #endif
484 ssize = len - (idp->in_off + 1);
485 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
486 goto fail;
487 ebap = (ufs_daddr_t *)ebp->b_data;
488 }
489 /*
490 * Search the block map looking for an allocation of the desired size.
491 */
492 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
493 len, ffs_clusteralloc)) == 0)
494 goto fail;
495 /*
496 * We have found a new contiguous block.
497 *
498 * First we have to replace the old block pointers with the new
499 * block pointers in the inode and indirect blocks associated
500 * with the file.
501 */
502 #ifdef DEBUG
503 if (prtrealloc)
504 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
505 start_lbn, end_lbn);
506 #endif
507 blkno = newblk;
508 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
509 ufs_daddr_t ba;
510
511 if (i == ssize) {
512 bap = ebap;
513 soff = -i;
514 }
515 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
516 #ifdef DIAGNOSTIC
517 if (!ffs_checkblk(ip,
518 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
519 panic("ffs_reallocblks: unallocated block 2");
520 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
521 panic("ffs_reallocblks: alloc mismatch");
522 #endif
523 #ifdef DEBUG
524 if (prtrealloc)
525 printf(" %d,", ba);
526 #endif
527 if (DOINGSOFTDEP(vp)) {
528 if (sbap == &ip->i_ffs_db[0] && i < ssize)
529 softdep_setup_allocdirect(ip, start_lbn + i,
530 blkno, ba, fs->fs_bsize, fs->fs_bsize,
531 buflist->bs_children[i]);
532 else
533 softdep_setup_allocindir_page(ip, start_lbn + i,
534 i < ssize ? sbp : ebp, soff + i, blkno,
535 ba, buflist->bs_children[i]);
536 }
537 *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
538 }
539 /*
540 * Next we must write out the modified inode and indirect blocks.
541 * For strict correctness, the writes should be synchronous since
542 * the old block values may have been written to disk. In practise
543 * they are almost never written, but if we are concerned about
544 * strict correctness, the `doasyncfree' flag should be set to zero.
545 *
546 * The test on `doasyncfree' should be changed to test a flag
547 * that shows whether the associated buffers and inodes have
548 * been written. The flag should be set when the cluster is
549 * started and cleared whenever the buffer or inode is flushed.
550 * We can then check below to see if it is set, and do the
551 * synchronous write only when it has been cleared.
552 */
553 if (sbap != &ip->i_ffs_db[0]) {
554 if (doasyncfree)
555 bdwrite(sbp);
556 else
557 bwrite(sbp);
558 } else {
559 ip->i_flag |= IN_CHANGE | IN_UPDATE;
560 if (!doasyncfree)
561 VOP_UPDATE(vp, NULL, NULL, 1);
562 }
563 if (ssize < len) {
564 if (doasyncfree)
565 bdwrite(ebp);
566 else
567 bwrite(ebp);
568 }
569 /*
570 * Last, free the old blocks and assign the new blocks to the buffers.
571 */
572 #ifdef DEBUG
573 if (prtrealloc)
574 printf("\n\tnew:");
575 #endif
576 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
577 if (!DOINGSOFTDEP(vp))
578 ffs_blkfree(ip,
579 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
580 fs->fs_bsize);
581 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
582 #ifdef DEBUG
583 if (!ffs_checkblk(ip,
584 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
585 panic("ffs_reallocblks: unallocated block 3");
586 if (prtrealloc)
587 printf(" %d,", blkno);
588 #endif
589 }
590 #ifdef DEBUG
591 if (prtrealloc) {
592 prtrealloc--;
593 printf("\n");
594 }
595 #endif
596 return (0);
597
598 fail:
599 if (ssize < len)
600 brelse(ebp);
601 if (sbap != &ip->i_ffs_db[0])
602 brelse(sbp);
603 return (ENOSPC);
604 }
605
606 /*
607 * Allocate an inode in the file system.
608 *
609 * If allocating a directory, use ffs_dirpref to select the inode.
610 * If allocating in a directory, the following hierarchy is followed:
611 * 1) allocate the preferred inode.
612 * 2) allocate an inode in the same cylinder group.
613 * 3) quadradically rehash into other cylinder groups, until an
614 * available inode is located.
615 * If no inode preference is given the following heirarchy is used
616 * to allocate an inode:
617 * 1) allocate an inode in cylinder group 0.
618 * 2) quadradically rehash into other cylinder groups, until an
619 * available inode is located.
620 */
621 int
622 ffs_valloc(v)
623 void *v;
624 {
625 struct vop_valloc_args /* {
626 struct vnode *a_pvp;
627 int a_mode;
628 struct ucred *a_cred;
629 struct vnode **a_vpp;
630 } */ *ap = v;
631 struct vnode *pvp = ap->a_pvp;
632 struct inode *pip;
633 struct fs *fs;
634 struct inode *ip;
635 mode_t mode = ap->a_mode;
636 ino_t ino, ipref;
637 int cg, error;
638
639 *ap->a_vpp = NULL;
640 pip = VTOI(pvp);
641 fs = pip->i_fs;
642 if (fs->fs_cstotal.cs_nifree == 0)
643 goto noinodes;
644
645 ipref = pip->i_number;
646 if ((mode & IFMT) == IFDIR)
647 ipref = ffs_dirpref(fs, ipref);
648 if (ipref >= fs->fs_ncg * fs->fs_ipg)
649 ipref = 0;
650 cg = ino_to_cg(fs, ipref);
651 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
652 if (ino == 0)
653 goto noinodes;
654 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
655 if (error) {
656 VOP_VFREE(pvp, ino, mode);
657 return (error);
658 }
659 ip = VTOI(*ap->a_vpp);
660 if (ip->i_ffs_mode) {
661 printf("mode = 0%o, inum = %d, fs = %s\n",
662 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
663 panic("ffs_valloc: dup alloc");
664 }
665 if (ip->i_ffs_blocks) { /* XXX */
666 printf("free inode %s/%d had %d blocks\n",
667 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
668 ip->i_ffs_blocks = 0;
669 }
670 ip->i_ffs_flags = 0;
671 /*
672 * Set up a new generation number for this inode.
673 */
674 ip->i_ffs_gen++;
675 return (0);
676 noinodes:
677 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
678 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
679 return (ENOSPC);
680 }
681
682 /*
683 * Find a cylinder in which to place a directory.
684 *
685 * The policy implemented by this algorithm is to select from among
686 * those cylinder groups with above the average number of free inodes
687 * and a "reasonable" number of free blocks, the one with the smallest
688 * number of directories. If there are no cylinder groups with a
689 * reasonable number of free blocks, we select a CG with *any* free
690 * blocks or free frags.
691 *
692 * "Reasonable" here is arbitrarily defined as "at least 25% of the
693 * average amount of free space."
694 *
695 * This complex policy is intended to avoid pathological (linear
696 * search) allocation performance when a filesystem contains many
697 * small cylinder groups with few directory inodes and no free blocks;
698 * this was observed in practice with the old allocation policy (which
699 * ignored the distribution of free blocks). Under the old policy,
700 * when a new filesystem is populated with a number of files somewhat
701 * larger than the CG size, and then a second tree containing a large
702 * number of files and directories is created, mkdir() performance
703 * would degrade catastrophically, taking many seconds and involving
704 * thousands of disk reads to complete.
705 *
706 * XXX TODO: we currently ignore our "ipref" argument; we may want to
707 * add a heuristic to determine whether to place a directory in the
708 * same CG as its parent to reduce the amount of seeking required in
709 * the course of tree-walks.
710 */
711 static ino_t
712 ffs_dirpref(fs, ipref)
713 struct fs *fs;
714 ino_t ipref;
715 {
716 int cg, minndir, mincg, avgifree, bfreethresh;
717 int minndirf, mincgf;
718 struct csum *cs;
719
720 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
721 bfreethresh = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
722 bfreethresh >>= 2;
723 minndir = fs->fs_ipg;
724 minndirf = fs->fs_ipg;
725 mincg = 0;
726 mincgf = 0;
727 for (cg = 0; cg < fs->fs_ncg; cg++) {
728 cs = &fs->fs_cs(fs, cg);
729 if (cs->cs_nifree >= avgifree) {
730 if ((cs->cs_ndir < minndir) &&
731 (cs->cs_nbfree > bfreethresh)) {
732 mincg = cg;
733 minndir = cs->cs_ndir;
734 }
735 if ((cs->cs_ndir < minndirf) &&
736 ((cs->cs_nffree + cs->cs_nbfree) > 0)) {
737 mincgf = cg;
738 minndirf = cs->cs_ndir;
739 }
740 }
741 }
742 if (minndir == fs->fs_ipg)
743 mincg = mincgf;
744 return ((ino_t)(fs->fs_ipg * mincg));
745 }
746
747 /*
748 * Select the desired position for the next block in a file. The file is
749 * logically divided into sections. The first section is composed of the
750 * direct blocks. Each additional section contains fs_maxbpg blocks.
751 *
752 * If no blocks have been allocated in the first section, the policy is to
753 * request a block in the same cylinder group as the inode that describes
754 * the file. If no blocks have been allocated in any other section, the
755 * policy is to place the section in a cylinder group with a greater than
756 * average number of free blocks. An appropriate cylinder group is found
757 * by using a rotor that sweeps the cylinder groups. When a new group of
758 * blocks is needed, the sweep begins in the cylinder group following the
759 * cylinder group from which the previous allocation was made. The sweep
760 * continues until a cylinder group with greater than the average number
761 * of free blocks is found. If the allocation is for the first block in an
762 * indirect block, the information on the previous allocation is unavailable;
763 * here a best guess is made based upon the logical block number being
764 * allocated.
765 *
766 * If a section is already partially allocated, the policy is to
767 * contiguously allocate fs_maxcontig blocks. The end of one of these
768 * contiguous blocks and the beginning of the next is physically separated
769 * so that the disk head will be in transit between them for at least
770 * fs_rotdelay milliseconds. This is to allow time for the processor to
771 * schedule another I/O transfer.
772 */
773 ufs_daddr_t
774 ffs_blkpref(ip, lbn, indx, bap)
775 struct inode *ip;
776 ufs_daddr_t lbn;
777 int indx;
778 ufs_daddr_t *bap;
779 {
780 struct fs *fs;
781 int cg;
782 int avgbfree, startcg;
783 ufs_daddr_t nextblk;
784
785 fs = ip->i_fs;
786 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
787 if (lbn < NDADDR + NINDIR(fs)) {
788 cg = ino_to_cg(fs, ip->i_number);
789 return (fs->fs_fpg * cg + fs->fs_frag);
790 }
791 /*
792 * Find a cylinder with greater than average number of
793 * unused data blocks.
794 */
795 if (indx == 0 || bap[indx - 1] == 0)
796 startcg =
797 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
798 else
799 startcg = dtog(fs,
800 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
801 startcg %= fs->fs_ncg;
802 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
803 for (cg = startcg; cg < fs->fs_ncg; cg++)
804 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
805 fs->fs_cgrotor = cg;
806 return (fs->fs_fpg * cg + fs->fs_frag);
807 }
808 for (cg = 0; cg <= startcg; cg++)
809 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
810 fs->fs_cgrotor = cg;
811 return (fs->fs_fpg * cg + fs->fs_frag);
812 }
813 return (0);
814 }
815 /*
816 * One or more previous blocks have been laid out. If less
817 * than fs_maxcontig previous blocks are contiguous, the
818 * next block is requested contiguously, otherwise it is
819 * requested rotationally delayed by fs_rotdelay milliseconds.
820 */
821 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
822 if (indx < fs->fs_maxcontig ||
823 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
824 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
825 return (nextblk);
826 if (fs->fs_rotdelay != 0)
827 /*
828 * Here we convert ms of delay to frags as:
829 * (frags) = (ms) * (rev/sec) * (sect/rev) /
830 * ((sect/frag) * (ms/sec))
831 * then round up to the next block.
832 */
833 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
834 (NSPF(fs) * 1000), fs->fs_frag);
835 return (nextblk);
836 }
837
838 /*
839 * Implement the cylinder overflow algorithm.
840 *
841 * The policy implemented by this algorithm is:
842 * 1) allocate the block in its requested cylinder group.
843 * 2) quadradically rehash on the cylinder group number.
844 * 3) brute force search for a free block.
845 */
846 /*VARARGS5*/
847 static u_long
848 ffs_hashalloc(ip, cg, pref, size, allocator)
849 struct inode *ip;
850 int cg;
851 long pref;
852 int size; /* size for data blocks, mode for inodes */
853 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
854 {
855 struct fs *fs;
856 long result;
857 int i, icg = cg;
858
859 fs = ip->i_fs;
860 /*
861 * 1: preferred cylinder group
862 */
863 result = (*allocator)(ip, cg, pref, size);
864 if (result)
865 return (result);
866 /*
867 * 2: quadratic rehash
868 */
869 for (i = 1; i < fs->fs_ncg; i *= 2) {
870 cg += i;
871 if (cg >= fs->fs_ncg)
872 cg -= fs->fs_ncg;
873 result = (*allocator)(ip, cg, 0, size);
874 if (result)
875 return (result);
876 }
877 /*
878 * 3: brute force search
879 * Note that we start at i == 2, since 0 was checked initially,
880 * and 1 is always checked in the quadratic rehash.
881 */
882 cg = (icg + 2) % fs->fs_ncg;
883 for (i = 2; i < fs->fs_ncg; i++) {
884 result = (*allocator)(ip, cg, 0, size);
885 if (result)
886 return (result);
887 cg++;
888 if (cg == fs->fs_ncg)
889 cg = 0;
890 }
891 return (0);
892 }
893
894 /*
895 * Determine whether a fragment can be extended.
896 *
897 * Check to see if the necessary fragments are available, and
898 * if they are, allocate them.
899 */
900 static ufs_daddr_t
901 ffs_fragextend(ip, cg, bprev, osize, nsize)
902 struct inode *ip;
903 int cg;
904 long bprev;
905 int osize, nsize;
906 {
907 struct fs *fs;
908 struct cg *cgp;
909 struct buf *bp;
910 long bno;
911 int frags, bbase;
912 int i, error;
913
914 fs = ip->i_fs;
915 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
916 return (0);
917 frags = numfrags(fs, nsize);
918 bbase = fragnum(fs, bprev);
919 if (bbase > fragnum(fs, (bprev + frags - 1))) {
920 /* cannot extend across a block boundary */
921 return (0);
922 }
923 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
924 (int)fs->fs_cgsize, NOCRED, &bp);
925 if (error) {
926 brelse(bp);
927 return (0);
928 }
929 cgp = (struct cg *)bp->b_data;
930 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
931 brelse(bp);
932 return (0);
933 }
934 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
935 bno = dtogd(fs, bprev);
936 for (i = numfrags(fs, osize); i < frags; i++)
937 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
938 brelse(bp);
939 return (0);
940 }
941 /*
942 * the current fragment can be extended
943 * deduct the count on fragment being extended into
944 * increase the count on the remaining fragment (if any)
945 * allocate the extended piece
946 */
947 for (i = frags; i < fs->fs_frag - bbase; i++)
948 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
949 break;
950 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
951 if (i != frags)
952 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
953 for (i = numfrags(fs, osize); i < frags; i++) {
954 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
955 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
956 fs->fs_cstotal.cs_nffree--;
957 fs->fs_cs(fs, cg).cs_nffree--;
958 }
959 fs->fs_fmod = 1;
960 if (DOINGSOFTDEP(ITOV(ip)))
961 softdep_setup_blkmapdep(bp, fs, bprev);
962 bdwrite(bp);
963 return (bprev);
964 }
965
966 /*
967 * Determine whether a block can be allocated.
968 *
969 * Check to see if a block of the appropriate size is available,
970 * and if it is, allocate it.
971 */
972 static ufs_daddr_t
973 ffs_alloccg(ip, cg, bpref, size)
974 struct inode *ip;
975 int cg;
976 ufs_daddr_t bpref;
977 int size;
978 {
979 struct cg *cgp;
980 struct buf *bp;
981 ufs_daddr_t bno, blkno;
982 int error, frags, allocsiz, i;
983 struct fs *fs = ip->i_fs;
984 #ifdef FFS_EI
985 const int needswap = UFS_FSNEEDSWAP(fs);
986 #endif
987
988 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
989 return (0);
990 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
991 (int)fs->fs_cgsize, NOCRED, &bp);
992 if (error) {
993 brelse(bp);
994 return (0);
995 }
996 cgp = (struct cg *)bp->b_data;
997 if (!cg_chkmagic(cgp, needswap) ||
998 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
999 brelse(bp);
1000 return (0);
1001 }
1002 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1003 if (size == fs->fs_bsize) {
1004 bno = ffs_alloccgblk(ip, bp, bpref);
1005 bdwrite(bp);
1006 return (bno);
1007 }
1008 /*
1009 * check to see if any fragments are already available
1010 * allocsiz is the size which will be allocated, hacking
1011 * it down to a smaller size if necessary
1012 */
1013 frags = numfrags(fs, size);
1014 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1015 if (cgp->cg_frsum[allocsiz] != 0)
1016 break;
1017 if (allocsiz == fs->fs_frag) {
1018 /*
1019 * no fragments were available, so a block will be
1020 * allocated, and hacked up
1021 */
1022 if (cgp->cg_cs.cs_nbfree == 0) {
1023 brelse(bp);
1024 return (0);
1025 }
1026 bno = ffs_alloccgblk(ip, bp, bpref);
1027 bpref = dtogd(fs, bno);
1028 for (i = frags; i < fs->fs_frag; i++)
1029 setbit(cg_blksfree(cgp, needswap), bpref + i);
1030 i = fs->fs_frag - frags;
1031 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1032 fs->fs_cstotal.cs_nffree += i;
1033 fs->fs_cs(fs, cg).cs_nffree += i;
1034 fs->fs_fmod = 1;
1035 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1036 bdwrite(bp);
1037 return (bno);
1038 }
1039 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1040 #if 0
1041 /*
1042 * XXX fvdl mapsearch will panic, and never return -1
1043 * also: returning NULL as ufs_daddr_t ?
1044 */
1045 if (bno < 0) {
1046 brelse(bp);
1047 return (0);
1048 }
1049 #endif
1050 for (i = 0; i < frags; i++)
1051 clrbit(cg_blksfree(cgp, needswap), bno + i);
1052 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1053 fs->fs_cstotal.cs_nffree -= frags;
1054 fs->fs_cs(fs, cg).cs_nffree -= frags;
1055 fs->fs_fmod = 1;
1056 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1057 if (frags != allocsiz)
1058 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1059 blkno = cg * fs->fs_fpg + bno;
1060 if (DOINGSOFTDEP(ITOV(ip)))
1061 softdep_setup_blkmapdep(bp, fs, blkno);
1062 bdwrite(bp);
1063 return blkno;
1064 }
1065
1066 /*
1067 * Allocate a block in a cylinder group.
1068 *
1069 * This algorithm implements the following policy:
1070 * 1) allocate the requested block.
1071 * 2) allocate a rotationally optimal block in the same cylinder.
1072 * 3) allocate the next available block on the block rotor for the
1073 * specified cylinder group.
1074 * Note that this routine only allocates fs_bsize blocks; these
1075 * blocks may be fragmented by the routine that allocates them.
1076 */
1077 static ufs_daddr_t
1078 ffs_alloccgblk(ip, bp, bpref)
1079 struct inode *ip;
1080 struct buf *bp;
1081 ufs_daddr_t bpref;
1082 {
1083 struct cg *cgp;
1084 ufs_daddr_t bno, blkno;
1085 int cylno, pos, delta;
1086 short *cylbp;
1087 int i;
1088 struct fs *fs = ip->i_fs;
1089 #ifdef FFS_EI
1090 const int needswap = UFS_FSNEEDSWAP(fs);
1091 #endif
1092
1093 cgp = (struct cg *)bp->b_data;
1094 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1095 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1096 goto norot;
1097 }
1098 bpref = blknum(fs, bpref);
1099 bpref = dtogd(fs, bpref);
1100 /*
1101 * if the requested block is available, use it
1102 */
1103 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1104 fragstoblks(fs, bpref))) {
1105 bno = bpref;
1106 goto gotit;
1107 }
1108 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1109 /*
1110 * Block layout information is not available.
1111 * Leaving bpref unchanged means we take the
1112 * next available free block following the one
1113 * we just allocated. Hopefully this will at
1114 * least hit a track cache on drives of unknown
1115 * geometry (e.g. SCSI).
1116 */
1117 goto norot;
1118 }
1119 /*
1120 * check for a block available on the same cylinder
1121 */
1122 cylno = cbtocylno(fs, bpref);
1123 if (cg_blktot(cgp, needswap)[cylno] == 0)
1124 goto norot;
1125 /*
1126 * check the summary information to see if a block is
1127 * available in the requested cylinder starting at the
1128 * requested rotational position and proceeding around.
1129 */
1130 cylbp = cg_blks(fs, cgp, cylno, needswap);
1131 pos = cbtorpos(fs, bpref);
1132 for (i = pos; i < fs->fs_nrpos; i++)
1133 if (ufs_rw16(cylbp[i], needswap) > 0)
1134 break;
1135 if (i == fs->fs_nrpos)
1136 for (i = 0; i < pos; i++)
1137 if (ufs_rw16(cylbp[i], needswap) > 0)
1138 break;
1139 if (ufs_rw16(cylbp[i], needswap) > 0) {
1140 /*
1141 * found a rotational position, now find the actual
1142 * block. A panic if none is actually there.
1143 */
1144 pos = cylno % fs->fs_cpc;
1145 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1146 if (fs_postbl(fs, pos)[i] == -1) {
1147 printf("pos = %d, i = %d, fs = %s\n",
1148 pos, i, fs->fs_fsmnt);
1149 panic("ffs_alloccgblk: cyl groups corrupted");
1150 }
1151 for (i = fs_postbl(fs, pos)[i];; ) {
1152 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1153 bno = blkstofrags(fs, (bno + i));
1154 goto gotit;
1155 }
1156 delta = fs_rotbl(fs)[i];
1157 if (delta <= 0 ||
1158 delta + i > fragstoblks(fs, fs->fs_fpg))
1159 break;
1160 i += delta;
1161 }
1162 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1163 panic("ffs_alloccgblk: can't find blk in cyl");
1164 }
1165 norot:
1166 /*
1167 * no blocks in the requested cylinder, so take next
1168 * available one in this cylinder group.
1169 */
1170 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1171 if (bno < 0)
1172 return (0);
1173 cgp->cg_rotor = ufs_rw32(bno, needswap);
1174 gotit:
1175 blkno = fragstoblks(fs, bno);
1176 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1177 ffs_clusteracct(fs, cgp, blkno, -1);
1178 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1179 fs->fs_cstotal.cs_nbfree--;
1180 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1181 cylno = cbtocylno(fs, bno);
1182 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1183 needswap);
1184 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1185 fs->fs_fmod = 1;
1186 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1187 if (DOINGSOFTDEP(ITOV(ip)))
1188 softdep_setup_blkmapdep(bp, fs, blkno);
1189 return (blkno);
1190 }
1191
1192 /*
1193 * Determine whether a cluster can be allocated.
1194 *
1195 * We do not currently check for optimal rotational layout if there
1196 * are multiple choices in the same cylinder group. Instead we just
1197 * take the first one that we find following bpref.
1198 */
1199 static ufs_daddr_t
1200 ffs_clusteralloc(ip, cg, bpref, len)
1201 struct inode *ip;
1202 int cg;
1203 ufs_daddr_t bpref;
1204 int len;
1205 {
1206 struct fs *fs;
1207 struct cg *cgp;
1208 struct buf *bp;
1209 int i, got, run, bno, bit, map;
1210 u_char *mapp;
1211 int32_t *lp;
1212
1213 fs = ip->i_fs;
1214 if (fs->fs_maxcluster[cg] < len)
1215 return (0);
1216 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1217 NOCRED, &bp))
1218 goto fail;
1219 cgp = (struct cg *)bp->b_data;
1220 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1221 goto fail;
1222 /*
1223 * Check to see if a cluster of the needed size (or bigger) is
1224 * available in this cylinder group.
1225 */
1226 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1227 for (i = len; i <= fs->fs_contigsumsize; i++)
1228 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1229 break;
1230 if (i > fs->fs_contigsumsize) {
1231 /*
1232 * This is the first time looking for a cluster in this
1233 * cylinder group. Update the cluster summary information
1234 * to reflect the true maximum sized cluster so that
1235 * future cluster allocation requests can avoid reading
1236 * the cylinder group map only to find no clusters.
1237 */
1238 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1239 for (i = len - 1; i > 0; i--)
1240 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1241 break;
1242 fs->fs_maxcluster[cg] = i;
1243 goto fail;
1244 }
1245 /*
1246 * Search the cluster map to find a big enough cluster.
1247 * We take the first one that we find, even if it is larger
1248 * than we need as we prefer to get one close to the previous
1249 * block allocation. We do not search before the current
1250 * preference point as we do not want to allocate a block
1251 * that is allocated before the previous one (as we will
1252 * then have to wait for another pass of the elevator
1253 * algorithm before it will be read). We prefer to fail and
1254 * be recalled to try an allocation in the next cylinder group.
1255 */
1256 if (dtog(fs, bpref) != cg)
1257 bpref = 0;
1258 else
1259 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1260 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1261 map = *mapp++;
1262 bit = 1 << (bpref % NBBY);
1263 for (run = 0, got = bpref;
1264 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1265 if ((map & bit) == 0) {
1266 run = 0;
1267 } else {
1268 run++;
1269 if (run == len)
1270 break;
1271 }
1272 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1273 bit <<= 1;
1274 } else {
1275 map = *mapp++;
1276 bit = 1;
1277 }
1278 }
1279 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1280 goto fail;
1281 /*
1282 * Allocate the cluster that we have found.
1283 */
1284 #ifdef DIAGNOSTIC
1285 for (i = 1; i <= len; i++)
1286 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1287 got - run + i))
1288 panic("ffs_clusteralloc: map mismatch");
1289 #endif
1290 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1291 if (dtog(fs, bno) != cg)
1292 panic("ffs_clusteralloc: allocated out of group");
1293 len = blkstofrags(fs, len);
1294 for (i = 0; i < len; i += fs->fs_frag)
1295 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1296 panic("ffs_clusteralloc: lost block");
1297 bdwrite(bp);
1298 return (bno);
1299
1300 fail:
1301 brelse(bp);
1302 return (0);
1303 }
1304
1305 /*
1306 * Determine whether an inode can be allocated.
1307 *
1308 * Check to see if an inode is available, and if it is,
1309 * allocate it using the following policy:
1310 * 1) allocate the requested inode.
1311 * 2) allocate the next available inode after the requested
1312 * inode in the specified cylinder group.
1313 */
1314 static ufs_daddr_t
1315 ffs_nodealloccg(ip, cg, ipref, mode)
1316 struct inode *ip;
1317 int cg;
1318 ufs_daddr_t ipref;
1319 int mode;
1320 {
1321 struct cg *cgp;
1322 struct buf *bp;
1323 int error, start, len, loc, map, i;
1324 struct fs *fs = ip->i_fs;
1325 #ifdef FFS_EI
1326 const int needswap = UFS_FSNEEDSWAP(fs);
1327 #endif
1328
1329 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1330 return (0);
1331 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1332 (int)fs->fs_cgsize, NOCRED, &bp);
1333 if (error) {
1334 brelse(bp);
1335 return (0);
1336 }
1337 cgp = (struct cg *)bp->b_data;
1338 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1339 brelse(bp);
1340 return (0);
1341 }
1342 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1343 if (ipref) {
1344 ipref %= fs->fs_ipg;
1345 if (isclr(cg_inosused(cgp, needswap), ipref))
1346 goto gotit;
1347 }
1348 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1349 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1350 NBBY);
1351 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1352 if (loc == 0) {
1353 len = start + 1;
1354 start = 0;
1355 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1356 if (loc == 0) {
1357 printf("cg = %d, irotor = %d, fs = %s\n",
1358 cg, ufs_rw32(cgp->cg_irotor, needswap),
1359 fs->fs_fsmnt);
1360 panic("ffs_nodealloccg: map corrupted");
1361 /* NOTREACHED */
1362 }
1363 }
1364 i = start + len - loc;
1365 map = cg_inosused(cgp, needswap)[i];
1366 ipref = i * NBBY;
1367 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1368 if ((map & i) == 0) {
1369 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1370 goto gotit;
1371 }
1372 }
1373 printf("fs = %s\n", fs->fs_fsmnt);
1374 panic("ffs_nodealloccg: block not in map");
1375 /* NOTREACHED */
1376 gotit:
1377 if (DOINGSOFTDEP(ITOV(ip)))
1378 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1379 setbit(cg_inosused(cgp, needswap), ipref);
1380 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1381 fs->fs_cstotal.cs_nifree--;
1382 fs->fs_cs(fs, cg).cs_nifree--;
1383 fs->fs_fmod = 1;
1384 if ((mode & IFMT) == IFDIR) {
1385 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1386 fs->fs_cstotal.cs_ndir++;
1387 fs->fs_cs(fs, cg).cs_ndir++;
1388 }
1389 bdwrite(bp);
1390 return (cg * fs->fs_ipg + ipref);
1391 }
1392
1393 /*
1394 * Free a block or fragment.
1395 *
1396 * The specified block or fragment is placed back in the
1397 * free map. If a fragment is deallocated, a possible
1398 * block reassembly is checked.
1399 */
1400 void
1401 ffs_blkfree(ip, bno, size)
1402 struct inode *ip;
1403 ufs_daddr_t bno;
1404 long size;
1405 {
1406 struct cg *cgp;
1407 struct buf *bp;
1408 ufs_daddr_t blkno;
1409 int i, error, cg, blk, frags, bbase;
1410 struct fs *fs = ip->i_fs;
1411 const int needswap = UFS_FSNEEDSWAP(fs);
1412
1413 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1414 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1415 printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1416 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1417 panic("blkfree: bad size");
1418 }
1419 cg = dtog(fs, bno);
1420 if ((u_int)bno >= fs->fs_size) {
1421 printf("bad block %d, ino %d\n", bno, ip->i_number);
1422 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1423 return;
1424 }
1425 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1426 (int)fs->fs_cgsize, NOCRED, &bp);
1427 if (error) {
1428 brelse(bp);
1429 return;
1430 }
1431 cgp = (struct cg *)bp->b_data;
1432 if (!cg_chkmagic(cgp, needswap)) {
1433 brelse(bp);
1434 return;
1435 }
1436 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1437 bno = dtogd(fs, bno);
1438 if (size == fs->fs_bsize) {
1439 blkno = fragstoblks(fs, bno);
1440 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1441 printf("dev = 0x%x, block = %d, fs = %s\n",
1442 ip->i_dev, bno, fs->fs_fsmnt);
1443 panic("blkfree: freeing free block");
1444 }
1445 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1446 ffs_clusteracct(fs, cgp, blkno, 1);
1447 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1448 fs->fs_cstotal.cs_nbfree++;
1449 fs->fs_cs(fs, cg).cs_nbfree++;
1450 i = cbtocylno(fs, bno);
1451 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1452 needswap);
1453 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1454 } else {
1455 bbase = bno - fragnum(fs, bno);
1456 /*
1457 * decrement the counts associated with the old frags
1458 */
1459 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1460 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1461 /*
1462 * deallocate the fragment
1463 */
1464 frags = numfrags(fs, size);
1465 for (i = 0; i < frags; i++) {
1466 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1467 printf("dev = 0x%x, block = %d, fs = %s\n",
1468 ip->i_dev, bno + i, fs->fs_fsmnt);
1469 panic("blkfree: freeing free frag");
1470 }
1471 setbit(cg_blksfree(cgp, needswap), bno + i);
1472 }
1473 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1474 fs->fs_cstotal.cs_nffree += i;
1475 fs->fs_cs(fs, cg).cs_nffree += i;
1476 /*
1477 * add back in counts associated with the new frags
1478 */
1479 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1480 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1481 /*
1482 * if a complete block has been reassembled, account for it
1483 */
1484 blkno = fragstoblks(fs, bbase);
1485 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1486 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1487 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1488 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1489 ffs_clusteracct(fs, cgp, blkno, 1);
1490 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1491 fs->fs_cstotal.cs_nbfree++;
1492 fs->fs_cs(fs, cg).cs_nbfree++;
1493 i = cbtocylno(fs, bbase);
1494 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1495 bbase)], 1,
1496 needswap);
1497 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1498 }
1499 }
1500 fs->fs_fmod = 1;
1501 bdwrite(bp);
1502 }
1503
1504 #if defined(DIAGNOSTIC) || defined(DEBUG)
1505 /*
1506 * Verify allocation of a block or fragment. Returns true if block or
1507 * fragment is allocated, false if it is free.
1508 */
1509 static int
1510 ffs_checkblk(ip, bno, size)
1511 struct inode *ip;
1512 ufs_daddr_t bno;
1513 long size;
1514 {
1515 struct fs *fs;
1516 struct cg *cgp;
1517 struct buf *bp;
1518 int i, error, frags, free;
1519
1520 fs = ip->i_fs;
1521 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1522 printf("bsize = %d, size = %ld, fs = %s\n",
1523 fs->fs_bsize, size, fs->fs_fsmnt);
1524 panic("checkblk: bad size");
1525 }
1526 if ((u_int)bno >= fs->fs_size)
1527 panic("checkblk: bad block %d", bno);
1528 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1529 (int)fs->fs_cgsize, NOCRED, &bp);
1530 if (error) {
1531 brelse(bp);
1532 return 0;
1533 }
1534 cgp = (struct cg *)bp->b_data;
1535 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1536 brelse(bp);
1537 return 0;
1538 }
1539 bno = dtogd(fs, bno);
1540 if (size == fs->fs_bsize) {
1541 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1542 fragstoblks(fs, bno));
1543 } else {
1544 frags = numfrags(fs, size);
1545 for (free = 0, i = 0; i < frags; i++)
1546 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1547 free++;
1548 if (free != 0 && free != frags)
1549 panic("checkblk: partially free fragment");
1550 }
1551 brelse(bp);
1552 return (!free);
1553 }
1554 #endif /* DIAGNOSTIC */
1555
1556 /*
1557 * Free an inode.
1558 */
1559 int
1560 ffs_vfree(v)
1561 void *v;
1562 {
1563 struct vop_vfree_args /* {
1564 struct vnode *a_pvp;
1565 ino_t a_ino;
1566 int a_mode;
1567 } */ *ap = v;
1568
1569 if (DOINGSOFTDEP(ap->a_pvp)) {
1570 softdep_freefile(ap);
1571 return (0);
1572 }
1573 return (ffs_freefile(ap));
1574 }
1575
1576 /*
1577 * Do the actual free operation.
1578 * The specified inode is placed back in the free map.
1579 */
1580 int
1581 ffs_freefile(v)
1582 void *v;
1583 {
1584 struct vop_vfree_args /* {
1585 struct vnode *a_pvp;
1586 ino_t a_ino;
1587 int a_mode;
1588 } */ *ap = v;
1589 struct cg *cgp;
1590 struct inode *pip = VTOI(ap->a_pvp);
1591 struct fs *fs = pip->i_fs;
1592 ino_t ino = ap->a_ino;
1593 struct buf *bp;
1594 int error, cg;
1595 #ifdef FFS_EI
1596 const int needswap = UFS_FSNEEDSWAP(fs);
1597 #endif
1598
1599 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1600 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1601 pip->i_dev, ino, fs->fs_fsmnt);
1602 cg = ino_to_cg(fs, ino);
1603 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1604 (int)fs->fs_cgsize, NOCRED, &bp);
1605 if (error) {
1606 brelse(bp);
1607 return (error);
1608 }
1609 cgp = (struct cg *)bp->b_data;
1610 if (!cg_chkmagic(cgp, needswap)) {
1611 brelse(bp);
1612 return (0);
1613 }
1614 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1615 ino %= fs->fs_ipg;
1616 if (isclr(cg_inosused(cgp, needswap), ino)) {
1617 printf("dev = 0x%x, ino = %d, fs = %s\n",
1618 pip->i_dev, ino, fs->fs_fsmnt);
1619 if (fs->fs_ronly == 0)
1620 panic("ifree: freeing free inode");
1621 }
1622 clrbit(cg_inosused(cgp, needswap), ino);
1623 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1624 cgp->cg_irotor = ufs_rw32(ino, needswap);
1625 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1626 fs->fs_cstotal.cs_nifree++;
1627 fs->fs_cs(fs, cg).cs_nifree++;
1628 if ((ap->a_mode & IFMT) == IFDIR) {
1629 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1630 fs->fs_cstotal.cs_ndir--;
1631 fs->fs_cs(fs, cg).cs_ndir--;
1632 }
1633 fs->fs_fmod = 1;
1634 bdwrite(bp);
1635 return (0);
1636 }
1637
1638 /*
1639 * Find a block of the specified size in the specified cylinder group.
1640 *
1641 * It is a panic if a request is made to find a block if none are
1642 * available.
1643 */
1644 static ufs_daddr_t
1645 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1646 struct fs *fs;
1647 struct cg *cgp;
1648 ufs_daddr_t bpref;
1649 int allocsiz;
1650 {
1651 ufs_daddr_t bno;
1652 int start, len, loc, i;
1653 int blk, field, subfield, pos;
1654 int ostart, olen;
1655 #ifdef FFS_EI
1656 const int needswap = UFS_FSNEEDSWAP(fs);
1657 #endif
1658
1659 /*
1660 * find the fragment by searching through the free block
1661 * map for an appropriate bit pattern
1662 */
1663 if (bpref)
1664 start = dtogd(fs, bpref) / NBBY;
1665 else
1666 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1667 len = howmany(fs->fs_fpg, NBBY) - start;
1668 ostart = start;
1669 olen = len;
1670 loc = scanc((u_int)len,
1671 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1672 (const u_char *)fragtbl[fs->fs_frag],
1673 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1674 if (loc == 0) {
1675 len = start + 1;
1676 start = 0;
1677 loc = scanc((u_int)len,
1678 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1679 (const u_char *)fragtbl[fs->fs_frag],
1680 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1681 if (loc == 0) {
1682 printf("start = %d, len = %d, fs = %s\n",
1683 ostart, olen, fs->fs_fsmnt);
1684 printf("offset=%d %ld\n",
1685 ufs_rw32(cgp->cg_freeoff, needswap),
1686 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1687 panic("ffs_alloccg: map corrupted");
1688 /* NOTREACHED */
1689 }
1690 }
1691 bno = (start + len - loc) * NBBY;
1692 cgp->cg_frotor = ufs_rw32(bno, needswap);
1693 /*
1694 * found the byte in the map
1695 * sift through the bits to find the selected frag
1696 */
1697 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1698 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1699 blk <<= 1;
1700 field = around[allocsiz];
1701 subfield = inside[allocsiz];
1702 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1703 if ((blk & field) == subfield)
1704 return (bno + pos);
1705 field <<= 1;
1706 subfield <<= 1;
1707 }
1708 }
1709 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1710 panic("ffs_alloccg: block not in map");
1711 return (-1);
1712 }
1713
1714 /*
1715 * Update the cluster map because of an allocation or free.
1716 *
1717 * Cnt == 1 means free; cnt == -1 means allocating.
1718 */
1719 void
1720 ffs_clusteracct(fs, cgp, blkno, cnt)
1721 struct fs *fs;
1722 struct cg *cgp;
1723 ufs_daddr_t blkno;
1724 int cnt;
1725 {
1726 int32_t *sump;
1727 int32_t *lp;
1728 u_char *freemapp, *mapp;
1729 int i, start, end, forw, back, map, bit;
1730 #ifdef FFS_EI
1731 const int needswap = UFS_FSNEEDSWAP(fs);
1732 #endif
1733
1734 if (fs->fs_contigsumsize <= 0)
1735 return;
1736 freemapp = cg_clustersfree(cgp, needswap);
1737 sump = cg_clustersum(cgp, needswap);
1738 /*
1739 * Allocate or clear the actual block.
1740 */
1741 if (cnt > 0)
1742 setbit(freemapp, blkno);
1743 else
1744 clrbit(freemapp, blkno);
1745 /*
1746 * Find the size of the cluster going forward.
1747 */
1748 start = blkno + 1;
1749 end = start + fs->fs_contigsumsize;
1750 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1751 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1752 mapp = &freemapp[start / NBBY];
1753 map = *mapp++;
1754 bit = 1 << (start % NBBY);
1755 for (i = start; i < end; i++) {
1756 if ((map & bit) == 0)
1757 break;
1758 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1759 bit <<= 1;
1760 } else {
1761 map = *mapp++;
1762 bit = 1;
1763 }
1764 }
1765 forw = i - start;
1766 /*
1767 * Find the size of the cluster going backward.
1768 */
1769 start = blkno - 1;
1770 end = start - fs->fs_contigsumsize;
1771 if (end < 0)
1772 end = -1;
1773 mapp = &freemapp[start / NBBY];
1774 map = *mapp--;
1775 bit = 1 << (start % NBBY);
1776 for (i = start; i > end; i--) {
1777 if ((map & bit) == 0)
1778 break;
1779 if ((i & (NBBY - 1)) != 0) {
1780 bit >>= 1;
1781 } else {
1782 map = *mapp--;
1783 bit = 1 << (NBBY - 1);
1784 }
1785 }
1786 back = start - i;
1787 /*
1788 * Account for old cluster and the possibly new forward and
1789 * back clusters.
1790 */
1791 i = back + forw + 1;
1792 if (i > fs->fs_contigsumsize)
1793 i = fs->fs_contigsumsize;
1794 ufs_add32(sump[i], cnt, needswap);
1795 if (back > 0)
1796 ufs_add32(sump[back], -cnt, needswap);
1797 if (forw > 0)
1798 ufs_add32(sump[forw], -cnt, needswap);
1799
1800 /*
1801 * Update cluster summary information.
1802 */
1803 lp = &sump[fs->fs_contigsumsize];
1804 for (i = fs->fs_contigsumsize; i > 0; i--)
1805 if (ufs_rw32(*lp--, needswap) > 0)
1806 break;
1807 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1808 }
1809
1810 /*
1811 * Fserr prints the name of a file system with an error diagnostic.
1812 *
1813 * The form of the error message is:
1814 * fs: error message
1815 */
1816 static void
1817 ffs_fserr(fs, uid, cp)
1818 struct fs *fs;
1819 u_int uid;
1820 char *cp;
1821 {
1822
1823 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1824 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1825 }
1826