Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.5
      1 /*	$NetBSD: ffs_alloc.c,v 1.5 1994/12/14 13:03:35 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/buf.h>
     41 #include <sys/proc.h>
     42 #include <sys/vnode.h>
     43 #include <sys/mount.h>
     44 #include <sys/kernel.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <vm/vm.h>
     48 
     49 #include <ufs/ufs/quota.h>
     50 #include <ufs/ufs/inode.h>
     51 
     52 #include <ufs/ffs/fs.h>
     53 #include <ufs/ffs/ffs_extern.h>
     54 
     55 extern u_long nextgennumber;
     56 
     57 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     58 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     59 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     60 static ino_t	ffs_dirpref __P((struct fs *));
     61 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     62 static void	ffs_fserr __P((struct fs *, u_int, char *));
     63 static u_long	ffs_hashalloc
     64 		    __P((struct inode *, int, long, int, u_int32_t (*)()));
     65 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     66 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     67 
     68 /*
     69  * Allocate a block in the file system.
     70  *
     71  * The size of the requested block is given, which must be some
     72  * multiple of fs_fsize and <= fs_bsize.
     73  * A preference may be optionally specified. If a preference is given
     74  * the following hierarchy is used to allocate a block:
     75  *   1) allocate the requested block.
     76  *   2) allocate a rotationally optimal block in the same cylinder.
     77  *   3) allocate a block in the same cylinder group.
     78  *   4) quadradically rehash into other cylinder groups, until an
     79  *      available block is located.
     80  * If no block preference is given the following heirarchy is used
     81  * to allocate a block:
     82  *   1) allocate a block in the cylinder group that contains the
     83  *      inode for the file.
     84  *   2) quadradically rehash into other cylinder groups, until an
     85  *      available block is located.
     86  */
     87 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     88 	register struct inode *ip;
     89 	daddr_t lbn, bpref;
     90 	int size;
     91 	struct ucred *cred;
     92 	daddr_t *bnp;
     93 {
     94 	register struct fs *fs;
     95 	daddr_t bno;
     96 	int cg, error;
     97 
     98 	*bnp = 0;
     99 	fs = ip->i_fs;
    100 #ifdef DIAGNOSTIC
    101 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    102 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    103 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    104 		panic("ffs_alloc: bad size");
    105 	}
    106 	if (cred == NOCRED)
    107 		panic("ffs_alloc: missing credential\n");
    108 #endif /* DIAGNOSTIC */
    109 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    110 		goto nospace;
    111 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    112 		goto nospace;
    113 #ifdef QUOTA
    114 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
    115 		return (error);
    116 #endif
    117 	if (bpref >= fs->fs_size)
    118 		bpref = 0;
    119 	if (bpref == 0)
    120 		cg = ino_to_cg(fs, ip->i_number);
    121 	else
    122 		cg = dtog(fs, bpref);
    123 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    124 	    (u_int32_t (*)())ffs_alloccg);
    125 	if (bno > 0) {
    126 		ip->i_blocks += btodb(size);
    127 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    128 		*bnp = bno;
    129 		return (0);
    130 	}
    131 #ifdef QUOTA
    132 	/*
    133 	 * Restore user's disk quota because allocation failed.
    134 	 */
    135 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    136 #endif
    137 nospace:
    138 	ffs_fserr(fs, cred->cr_uid, "file system full");
    139 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    140 	return (ENOSPC);
    141 }
    142 
    143 /*
    144  * Reallocate a fragment to a bigger size
    145  *
    146  * The number and size of the old block is given, and a preference
    147  * and new size is also specified. The allocator attempts to extend
    148  * the original block. Failing that, the regular block allocator is
    149  * invoked to get an appropriate block.
    150  */
    151 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    152 	register struct inode *ip;
    153 	daddr_t lbprev;
    154 	daddr_t bpref;
    155 	int osize, nsize;
    156 	struct ucred *cred;
    157 	struct buf **bpp;
    158 {
    159 	register struct fs *fs;
    160 	struct buf *bp;
    161 	int cg, request, error;
    162 	daddr_t bprev, bno;
    163 
    164 	*bpp = 0;
    165 	fs = ip->i_fs;
    166 #ifdef DIAGNOSTIC
    167 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    168 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    169 		printf(
    170 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    171 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    172 		panic("ffs_realloccg: bad size");
    173 	}
    174 	if (cred == NOCRED)
    175 		panic("ffs_realloccg: missing credential\n");
    176 #endif /* DIAGNOSTIC */
    177 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    178 		goto nospace;
    179 	if ((bprev = ip->i_db[lbprev]) == 0) {
    180 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    181 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    182 		panic("ffs_realloccg: bad bprev");
    183 	}
    184 	/*
    185 	 * Allocate the extra space in the buffer.
    186 	 */
    187 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
    188 		brelse(bp);
    189 		return (error);
    190 	}
    191 #ifdef QUOTA
    192 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
    193 		brelse(bp);
    194 		return (error);
    195 	}
    196 #endif
    197 	/*
    198 	 * Check for extension in the existing location.
    199 	 */
    200 	cg = dtog(fs, bprev);
    201 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
    202 		if (bp->b_blkno != fsbtodb(fs, bno))
    203 			panic("bad blockno");
    204 		ip->i_blocks += btodb(nsize - osize);
    205 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    206 		allocbuf(bp, nsize);
    207 		bp->b_flags |= B_DONE;
    208 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    209 		*bpp = bp;
    210 		return (0);
    211 	}
    212 	/*
    213 	 * Allocate a new disk location.
    214 	 */
    215 	if (bpref >= fs->fs_size)
    216 		bpref = 0;
    217 	switch ((int)fs->fs_optim) {
    218 	case FS_OPTSPACE:
    219 		/*
    220 		 * Allocate an exact sized fragment. Although this makes
    221 		 * best use of space, we will waste time relocating it if
    222 		 * the file continues to grow. If the fragmentation is
    223 		 * less than half of the minimum free reserve, we choose
    224 		 * to begin optimizing for time.
    225 		 */
    226 		request = nsize;
    227 		if (fs->fs_minfree < 5 ||
    228 		    fs->fs_cstotal.cs_nffree >
    229 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    230 			break;
    231 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    232 			fs->fs_fsmnt);
    233 		fs->fs_optim = FS_OPTTIME;
    234 		break;
    235 	case FS_OPTTIME:
    236 		/*
    237 		 * At this point we have discovered a file that is trying to
    238 		 * grow a small fragment to a larger fragment. To save time,
    239 		 * we allocate a full sized block, then free the unused portion.
    240 		 * If the file continues to grow, the `ffs_fragextend' call
    241 		 * above will be able to grow it in place without further
    242 		 * copying. If aberrant programs cause disk fragmentation to
    243 		 * grow within 2% of the free reserve, we choose to begin
    244 		 * optimizing for space.
    245 		 */
    246 		request = fs->fs_bsize;
    247 		if (fs->fs_cstotal.cs_nffree <
    248 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    249 			break;
    250 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    251 			fs->fs_fsmnt);
    252 		fs->fs_optim = FS_OPTSPACE;
    253 		break;
    254 	default:
    255 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    256 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    257 		panic("ffs_realloccg: bad optim");
    258 		/* NOTREACHED */
    259 	}
    260 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    261 	    (u_int32_t (*)())ffs_alloccg);
    262 	if (bno > 0) {
    263 		bp->b_blkno = fsbtodb(fs, bno);
    264 		(void) vnode_pager_uncache(ITOV(ip));
    265 		ffs_blkfree(ip, bprev, (long)osize);
    266 		if (nsize < request)
    267 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    268 			    (long)(request - nsize));
    269 		ip->i_blocks += btodb(nsize - osize);
    270 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271 		allocbuf(bp, nsize);
    272 		bp->b_flags |= B_DONE;
    273 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    274 		*bpp = bp;
    275 		return (0);
    276 	}
    277 #ifdef QUOTA
    278 	/*
    279 	 * Restore user's disk quota because allocation failed.
    280 	 */
    281 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    282 #endif
    283 	brelse(bp);
    284 nospace:
    285 	/*
    286 	 * no space available
    287 	 */
    288 	ffs_fserr(fs, cred->cr_uid, "file system full");
    289 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290 	return (ENOSPC);
    291 }
    292 
    293 /*
    294  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    295  *
    296  * The vnode and an array of buffer pointers for a range of sequential
    297  * logical blocks to be made contiguous is given. The allocator attempts
    298  * to find a range of sequential blocks starting as close as possible to
    299  * an fs_rotdelay offset from the end of the allocation for the logical
    300  * block immediately preceeding the current range. If successful, the
    301  * physical block numbers in the buffer pointers and in the inode are
    302  * changed to reflect the new allocation. If unsuccessful, the allocation
    303  * is left unchanged. The success in doing the reallocation is returned.
    304  * Note that the error return is not reflected back to the user. Rather
    305  * the previous block allocation will be used.
    306  */
    307 #ifdef DEBUG
    308 #include <sys/sysctl.h>
    309 int doasyncfree = 1;
    310 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    311 int prtrealloc = 0;
    312 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    313 #else
    314 #define doasyncfree 1
    315 #endif
    316 
    317 int
    318 ffs_reallocblks(ap)
    319 	struct vop_reallocblks_args /* {
    320 		struct vnode *a_vp;
    321 		struct cluster_save *a_buflist;
    322 	} */ *ap;
    323 {
    324 	struct fs *fs;
    325 	struct inode *ip;
    326 	struct vnode *vp;
    327 	struct buf *sbp, *ebp;
    328 	daddr_t *bap, *sbap, *ebap;
    329 	struct cluster_save *buflist;
    330 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
    331 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    332 	int i, len, start_lvl, end_lvl, pref, ssize;
    333 
    334 	vp = ap->a_vp;
    335 	ip = VTOI(vp);
    336 	fs = ip->i_fs;
    337 	if (fs->fs_contigsumsize <= 0)
    338 		return (ENOSPC);
    339 	buflist = ap->a_buflist;
    340 	len = buflist->bs_nchildren;
    341 	start_lbn = buflist->bs_children[0]->b_lblkno;
    342 	end_lbn = start_lbn + len - 1;
    343 #ifdef DIAGNOSTIC
    344 	for (i = 1; i < len; i++)
    345 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    346 			panic("ffs_reallocblks: non-cluster");
    347 #endif
    348 	/*
    349 	 * If the latest allocation is in a new cylinder group, assume that
    350 	 * the filesystem has decided to move and do not force it back to
    351 	 * the previous cylinder group.
    352 	 */
    353 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    354 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    355 		return (ENOSPC);
    356 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    357 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    358 		return (ENOSPC);
    359 	/*
    360 	 * Get the starting offset and block map for the first block.
    361 	 */
    362 	if (start_lvl == 0) {
    363 		sbap = &ip->i_db[0];
    364 		soff = start_lbn;
    365 	} else {
    366 		idp = &start_ap[start_lvl - 1];
    367 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    368 			brelse(sbp);
    369 			return (ENOSPC);
    370 		}
    371 		sbap = (daddr_t *)sbp->b_data;
    372 		soff = idp->in_off;
    373 	}
    374 	/*
    375 	 * Find the preferred location for the cluster.
    376 	 */
    377 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    378 	/*
    379 	 * If the block range spans two block maps, get the second map.
    380 	 */
    381 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    382 		ssize = len;
    383 	} else {
    384 #ifdef DIAGNOSTIC
    385 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    386 			panic("ffs_reallocblk: start == end");
    387 #endif
    388 		ssize = len - (idp->in_off + 1);
    389 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    390 			goto fail;
    391 		ebap = (daddr_t *)ebp->b_data;
    392 	}
    393 	/*
    394 	 * Search the block map looking for an allocation of the desired size.
    395 	 */
    396 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    397 	    len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
    398 		goto fail;
    399 	/*
    400 	 * We have found a new contiguous block.
    401 	 *
    402 	 * First we have to replace the old block pointers with the new
    403 	 * block pointers in the inode and indirect blocks associated
    404 	 * with the file.
    405 	 */
    406 #ifdef DEBUG
    407 	if (prtrealloc)
    408 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    409 		    start_lbn, end_lbn);
    410 #endif
    411 	blkno = newblk;
    412 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    413 		if (i == ssize)
    414 			bap = ebap;
    415 #ifdef DIAGNOSTIC
    416 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    417 			panic("ffs_reallocblks: alloc mismatch");
    418 #endif
    419 #ifdef DEBUG
    420 		if (prtrealloc)
    421 			printf(" %d,", *bap);
    422 #endif
    423 		*bap++ = blkno;
    424 	}
    425 	/*
    426 	 * Next we must write out the modified inode and indirect blocks.
    427 	 * For strict correctness, the writes should be synchronous since
    428 	 * the old block values may have been written to disk. In practise
    429 	 * they are almost never written, but if we are concerned about
    430 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    431 	 *
    432 	 * The test on `doasyncfree' should be changed to test a flag
    433 	 * that shows whether the associated buffers and inodes have
    434 	 * been written. The flag should be set when the cluster is
    435 	 * started and cleared whenever the buffer or inode is flushed.
    436 	 * We can then check below to see if it is set, and do the
    437 	 * synchronous write only when it has been cleared.
    438 	 */
    439 	if (sbap != &ip->i_db[0]) {
    440 		if (doasyncfree)
    441 			bdwrite(sbp);
    442 		else
    443 			bwrite(sbp);
    444 	} else {
    445 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    446 		if (!doasyncfree)
    447 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
    448 	}
    449 	if (ssize < len)
    450 		if (doasyncfree)
    451 			bdwrite(ebp);
    452 		else
    453 			bwrite(ebp);
    454 	/*
    455 	 * Last, free the old blocks and assign the new blocks to the buffers.
    456 	 */
    457 #ifdef DEBUG
    458 	if (prtrealloc)
    459 		printf("\n\tnew:");
    460 #endif
    461 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    462 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    463 		    fs->fs_bsize);
    464 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    465 #ifdef DEBUG
    466 		if (prtrealloc)
    467 			printf(" %d,", blkno);
    468 #endif
    469 	}
    470 #ifdef DEBUG
    471 	if (prtrealloc) {
    472 		prtrealloc--;
    473 		printf("\n");
    474 	}
    475 #endif
    476 	return (0);
    477 
    478 fail:
    479 	if (ssize < len)
    480 		brelse(ebp);
    481 	if (sbap != &ip->i_db[0])
    482 		brelse(sbp);
    483 	return (ENOSPC);
    484 }
    485 
    486 /*
    487  * Allocate an inode in the file system.
    488  *
    489  * If allocating a directory, use ffs_dirpref to select the inode.
    490  * If allocating in a directory, the following hierarchy is followed:
    491  *   1) allocate the preferred inode.
    492  *   2) allocate an inode in the same cylinder group.
    493  *   3) quadradically rehash into other cylinder groups, until an
    494  *      available inode is located.
    495  * If no inode preference is given the following heirarchy is used
    496  * to allocate an inode:
    497  *   1) allocate an inode in cylinder group 0.
    498  *   2) quadradically rehash into other cylinder groups, until an
    499  *      available inode is located.
    500  */
    501 ffs_valloc(ap)
    502 	struct vop_valloc_args /* {
    503 		struct vnode *a_pvp;
    504 		int a_mode;
    505 		struct ucred *a_cred;
    506 		struct vnode **a_vpp;
    507 	} */ *ap;
    508 {
    509 	register struct vnode *pvp = ap->a_pvp;
    510 	register struct inode *pip;
    511 	register struct fs *fs;
    512 	register struct inode *ip;
    513 	mode_t mode = ap->a_mode;
    514 	ino_t ino, ipref;
    515 	int cg, error;
    516 
    517 	*ap->a_vpp = NULL;
    518 	pip = VTOI(pvp);
    519 	fs = pip->i_fs;
    520 	if (fs->fs_cstotal.cs_nifree == 0)
    521 		goto noinodes;
    522 
    523 	if ((mode & IFMT) == IFDIR)
    524 		ipref = ffs_dirpref(fs);
    525 	else
    526 		ipref = pip->i_number;
    527 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    528 		ipref = 0;
    529 	cg = ino_to_cg(fs, ipref);
    530 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    531 	if (ino == 0)
    532 		goto noinodes;
    533 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    534 	if (error) {
    535 		VOP_VFREE(pvp, ino, mode);
    536 		return (error);
    537 	}
    538 	ip = VTOI(*ap->a_vpp);
    539 	if (ip->i_mode) {
    540 		printf("mode = 0%o, inum = %d, fs = %s\n",
    541 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    542 		panic("ffs_valloc: dup alloc");
    543 	}
    544 	if (ip->i_blocks) {				/* XXX */
    545 		printf("free inode %s/%d had %d blocks\n",
    546 		    fs->fs_fsmnt, ino, ip->i_blocks);
    547 		ip->i_blocks = 0;
    548 	}
    549 	ip->i_flags = 0;
    550 	/*
    551 	 * Set up a new generation number for this inode.
    552 	 */
    553 	if (++nextgennumber < (u_long)time.tv_sec)
    554 		nextgennumber = time.tv_sec;
    555 	ip->i_gen = nextgennumber;
    556 	return (0);
    557 noinodes:
    558 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    559 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    560 	return (ENOSPC);
    561 }
    562 
    563 /*
    564  * Find a cylinder to place a directory.
    565  *
    566  * The policy implemented by this algorithm is to select from
    567  * among those cylinder groups with above the average number of
    568  * free inodes, the one with the smallest number of directories.
    569  */
    570 static ino_t
    571 ffs_dirpref(fs)
    572 	register struct fs *fs;
    573 {
    574 	int cg, minndir, mincg, avgifree;
    575 
    576 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    577 	minndir = fs->fs_ipg;
    578 	mincg = 0;
    579 	for (cg = 0; cg < fs->fs_ncg; cg++)
    580 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    581 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    582 			mincg = cg;
    583 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    584 		}
    585 	return ((ino_t)(fs->fs_ipg * mincg));
    586 }
    587 
    588 /*
    589  * Select the desired position for the next block in a file.  The file is
    590  * logically divided into sections. The first section is composed of the
    591  * direct blocks. Each additional section contains fs_maxbpg blocks.
    592  *
    593  * If no blocks have been allocated in the first section, the policy is to
    594  * request a block in the same cylinder group as the inode that describes
    595  * the file. If no blocks have been allocated in any other section, the
    596  * policy is to place the section in a cylinder group with a greater than
    597  * average number of free blocks.  An appropriate cylinder group is found
    598  * by using a rotor that sweeps the cylinder groups. When a new group of
    599  * blocks is needed, the sweep begins in the cylinder group following the
    600  * cylinder group from which the previous allocation was made. The sweep
    601  * continues until a cylinder group with greater than the average number
    602  * of free blocks is found. If the allocation is for the first block in an
    603  * indirect block, the information on the previous allocation is unavailable;
    604  * here a best guess is made based upon the logical block number being
    605  * allocated.
    606  *
    607  * If a section is already partially allocated, the policy is to
    608  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    609  * contiguous blocks and the beginning of the next is physically separated
    610  * so that the disk head will be in transit between them for at least
    611  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    612  * schedule another I/O transfer.
    613  */
    614 daddr_t
    615 ffs_blkpref(ip, lbn, indx, bap)
    616 	struct inode *ip;
    617 	daddr_t lbn;
    618 	int indx;
    619 	daddr_t *bap;
    620 {
    621 	register struct fs *fs;
    622 	register int cg;
    623 	int avgbfree, startcg;
    624 	daddr_t nextblk;
    625 
    626 	fs = ip->i_fs;
    627 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    628 		if (lbn < NDADDR) {
    629 			cg = ino_to_cg(fs, ip->i_number);
    630 			return (fs->fs_fpg * cg + fs->fs_frag);
    631 		}
    632 		/*
    633 		 * Find a cylinder with greater than average number of
    634 		 * unused data blocks.
    635 		 */
    636 		if (indx == 0 || bap[indx - 1] == 0)
    637 			startcg =
    638 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    639 		else
    640 			startcg = dtog(fs, bap[indx - 1]) + 1;
    641 		startcg %= fs->fs_ncg;
    642 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    643 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    644 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    645 				fs->fs_cgrotor = cg;
    646 				return (fs->fs_fpg * cg + fs->fs_frag);
    647 			}
    648 		for (cg = 0; cg <= startcg; cg++)
    649 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    650 				fs->fs_cgrotor = cg;
    651 				return (fs->fs_fpg * cg + fs->fs_frag);
    652 			}
    653 		return (NULL);
    654 	}
    655 	/*
    656 	 * One or more previous blocks have been laid out. If less
    657 	 * than fs_maxcontig previous blocks are contiguous, the
    658 	 * next block is requested contiguously, otherwise it is
    659 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    660 	 */
    661 	nextblk = bap[indx - 1] + fs->fs_frag;
    662 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    663 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    664 		return (nextblk);
    665 	if (fs->fs_rotdelay != 0)
    666 		/*
    667 		 * Here we convert ms of delay to frags as:
    668 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    669 		 *	((sect/frag) * (ms/sec))
    670 		 * then round up to the next block.
    671 		 */
    672 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    673 		    (NSPF(fs) * 1000), fs->fs_frag);
    674 	return (nextblk);
    675 }
    676 
    677 /*
    678  * Implement the cylinder overflow algorithm.
    679  *
    680  * The policy implemented by this algorithm is:
    681  *   1) allocate the block in its requested cylinder group.
    682  *   2) quadradically rehash on the cylinder group number.
    683  *   3) brute force search for a free block.
    684  */
    685 /*VARARGS5*/
    686 static u_long
    687 ffs_hashalloc(ip, cg, pref, size, allocator)
    688 	struct inode *ip;
    689 	int cg;
    690 	long pref;
    691 	int size;	/* size for data blocks, mode for inodes */
    692 	u_int32_t (*allocator)();
    693 {
    694 	register struct fs *fs;
    695 	long result;
    696 	int i, icg = cg;
    697 
    698 	fs = ip->i_fs;
    699 	/*
    700 	 * 1: preferred cylinder group
    701 	 */
    702 	result = (*allocator)(ip, cg, pref, size);
    703 	if (result)
    704 		return (result);
    705 	/*
    706 	 * 2: quadratic rehash
    707 	 */
    708 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    709 		cg += i;
    710 		if (cg >= fs->fs_ncg)
    711 			cg -= fs->fs_ncg;
    712 		result = (*allocator)(ip, cg, 0, size);
    713 		if (result)
    714 			return (result);
    715 	}
    716 	/*
    717 	 * 3: brute force search
    718 	 * Note that we start at i == 2, since 0 was checked initially,
    719 	 * and 1 is always checked in the quadratic rehash.
    720 	 */
    721 	cg = (icg + 2) % fs->fs_ncg;
    722 	for (i = 2; i < fs->fs_ncg; i++) {
    723 		result = (*allocator)(ip, cg, 0, size);
    724 		if (result)
    725 			return (result);
    726 		cg++;
    727 		if (cg == fs->fs_ncg)
    728 			cg = 0;
    729 	}
    730 	return (NULL);
    731 }
    732 
    733 /*
    734  * Determine whether a fragment can be extended.
    735  *
    736  * Check to see if the necessary fragments are available, and
    737  * if they are, allocate them.
    738  */
    739 static daddr_t
    740 ffs_fragextend(ip, cg, bprev, osize, nsize)
    741 	struct inode *ip;
    742 	int cg;
    743 	long bprev;
    744 	int osize, nsize;
    745 {
    746 	register struct fs *fs;
    747 	register struct cg *cgp;
    748 	struct buf *bp;
    749 	long bno;
    750 	int frags, bbase;
    751 	int i, error;
    752 
    753 	fs = ip->i_fs;
    754 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    755 		return (NULL);
    756 	frags = numfrags(fs, nsize);
    757 	bbase = fragnum(fs, bprev);
    758 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    759 		/* cannot extend across a block boundary */
    760 		return (NULL);
    761 	}
    762 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    763 		(int)fs->fs_cgsize, NOCRED, &bp);
    764 	if (error) {
    765 		brelse(bp);
    766 		return (NULL);
    767 	}
    768 	cgp = (struct cg *)bp->b_data;
    769 	if (!cg_chkmagic(cgp)) {
    770 		brelse(bp);
    771 		return (NULL);
    772 	}
    773 	cgp->cg_time = time.tv_sec;
    774 	bno = dtogd(fs, bprev);
    775 	for (i = numfrags(fs, osize); i < frags; i++)
    776 		if (isclr(cg_blksfree(cgp), bno + i)) {
    777 			brelse(bp);
    778 			return (NULL);
    779 		}
    780 	/*
    781 	 * the current fragment can be extended
    782 	 * deduct the count on fragment being extended into
    783 	 * increase the count on the remaining fragment (if any)
    784 	 * allocate the extended piece
    785 	 */
    786 	for (i = frags; i < fs->fs_frag - bbase; i++)
    787 		if (isclr(cg_blksfree(cgp), bno + i))
    788 			break;
    789 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    790 	if (i != frags)
    791 		cgp->cg_frsum[i - frags]++;
    792 	for (i = numfrags(fs, osize); i < frags; i++) {
    793 		clrbit(cg_blksfree(cgp), bno + i);
    794 		cgp->cg_cs.cs_nffree--;
    795 		fs->fs_cstotal.cs_nffree--;
    796 		fs->fs_cs(fs, cg).cs_nffree--;
    797 	}
    798 	fs->fs_fmod = 1;
    799 	bdwrite(bp);
    800 	return (bprev);
    801 }
    802 
    803 /*
    804  * Determine whether a block can be allocated.
    805  *
    806  * Check to see if a block of the appropriate size is available,
    807  * and if it is, allocate it.
    808  */
    809 static daddr_t
    810 ffs_alloccg(ip, cg, bpref, size)
    811 	struct inode *ip;
    812 	int cg;
    813 	daddr_t bpref;
    814 	int size;
    815 {
    816 	register struct fs *fs;
    817 	register struct cg *cgp;
    818 	struct buf *bp;
    819 	register int i;
    820 	int error, bno, frags, allocsiz;
    821 
    822 	fs = ip->i_fs;
    823 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    824 		return (NULL);
    825 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    826 		(int)fs->fs_cgsize, NOCRED, &bp);
    827 	if (error) {
    828 		brelse(bp);
    829 		return (NULL);
    830 	}
    831 	cgp = (struct cg *)bp->b_data;
    832 	if (!cg_chkmagic(cgp) ||
    833 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    834 		brelse(bp);
    835 		return (NULL);
    836 	}
    837 	cgp->cg_time = time.tv_sec;
    838 	if (size == fs->fs_bsize) {
    839 		bno = ffs_alloccgblk(fs, cgp, bpref);
    840 		bdwrite(bp);
    841 		return (bno);
    842 	}
    843 	/*
    844 	 * check to see if any fragments are already available
    845 	 * allocsiz is the size which will be allocated, hacking
    846 	 * it down to a smaller size if necessary
    847 	 */
    848 	frags = numfrags(fs, size);
    849 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    850 		if (cgp->cg_frsum[allocsiz] != 0)
    851 			break;
    852 	if (allocsiz == fs->fs_frag) {
    853 		/*
    854 		 * no fragments were available, so a block will be
    855 		 * allocated, and hacked up
    856 		 */
    857 		if (cgp->cg_cs.cs_nbfree == 0) {
    858 			brelse(bp);
    859 			return (NULL);
    860 		}
    861 		bno = ffs_alloccgblk(fs, cgp, bpref);
    862 		bpref = dtogd(fs, bno);
    863 		for (i = frags; i < fs->fs_frag; i++)
    864 			setbit(cg_blksfree(cgp), bpref + i);
    865 		i = fs->fs_frag - frags;
    866 		cgp->cg_cs.cs_nffree += i;
    867 		fs->fs_cstotal.cs_nffree += i;
    868 		fs->fs_cs(fs, cg).cs_nffree += i;
    869 		fs->fs_fmod = 1;
    870 		cgp->cg_frsum[i]++;
    871 		bdwrite(bp);
    872 		return (bno);
    873 	}
    874 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    875 	if (bno < 0) {
    876 		brelse(bp);
    877 		return (NULL);
    878 	}
    879 	for (i = 0; i < frags; i++)
    880 		clrbit(cg_blksfree(cgp), bno + i);
    881 	cgp->cg_cs.cs_nffree -= frags;
    882 	fs->fs_cstotal.cs_nffree -= frags;
    883 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    884 	fs->fs_fmod = 1;
    885 	cgp->cg_frsum[allocsiz]--;
    886 	if (frags != allocsiz)
    887 		cgp->cg_frsum[allocsiz - frags]++;
    888 	bdwrite(bp);
    889 	return (cg * fs->fs_fpg + bno);
    890 }
    891 
    892 /*
    893  * Allocate a block in a cylinder group.
    894  *
    895  * This algorithm implements the following policy:
    896  *   1) allocate the requested block.
    897  *   2) allocate a rotationally optimal block in the same cylinder.
    898  *   3) allocate the next available block on the block rotor for the
    899  *      specified cylinder group.
    900  * Note that this routine only allocates fs_bsize blocks; these
    901  * blocks may be fragmented by the routine that allocates them.
    902  */
    903 static daddr_t
    904 ffs_alloccgblk(fs, cgp, bpref)
    905 	register struct fs *fs;
    906 	register struct cg *cgp;
    907 	daddr_t bpref;
    908 {
    909 	daddr_t bno, blkno;
    910 	int cylno, pos, delta;
    911 	short *cylbp;
    912 	register int i;
    913 
    914 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    915 		bpref = cgp->cg_rotor;
    916 		goto norot;
    917 	}
    918 	bpref = blknum(fs, bpref);
    919 	bpref = dtogd(fs, bpref);
    920 	/*
    921 	 * if the requested block is available, use it
    922 	 */
    923 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    924 		bno = bpref;
    925 		goto gotit;
    926 	}
    927 	/*
    928 	 * check for a block available on the same cylinder
    929 	 */
    930 	cylno = cbtocylno(fs, bpref);
    931 	if (cg_blktot(cgp)[cylno] == 0)
    932 		goto norot;
    933 	if (fs->fs_cpc == 0) {
    934 		/*
    935 		 * Block layout information is not available.
    936 		 * Leaving bpref unchanged means we take the
    937 		 * next available free block following the one
    938 		 * we just allocated. Hopefully this will at
    939 		 * least hit a track cache on drives of unknown
    940 		 * geometry (e.g. SCSI).
    941 		 */
    942 		goto norot;
    943 	}
    944 	/*
    945 	 * check the summary information to see if a block is
    946 	 * available in the requested cylinder starting at the
    947 	 * requested rotational position and proceeding around.
    948 	 */
    949 	cylbp = cg_blks(fs, cgp, cylno);
    950 	pos = cbtorpos(fs, bpref);
    951 	for (i = pos; i < fs->fs_nrpos; i++)
    952 		if (cylbp[i] > 0)
    953 			break;
    954 	if (i == fs->fs_nrpos)
    955 		for (i = 0; i < pos; i++)
    956 			if (cylbp[i] > 0)
    957 				break;
    958 	if (cylbp[i] > 0) {
    959 		/*
    960 		 * found a rotational position, now find the actual
    961 		 * block. A panic if none is actually there.
    962 		 */
    963 		pos = cylno % fs->fs_cpc;
    964 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    965 		if (fs_postbl(fs, pos)[i] == -1) {
    966 			printf("pos = %d, i = %d, fs = %s\n",
    967 			    pos, i, fs->fs_fsmnt);
    968 			panic("ffs_alloccgblk: cyl groups corrupted");
    969 		}
    970 		for (i = fs_postbl(fs, pos)[i];; ) {
    971 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    972 				bno = blkstofrags(fs, (bno + i));
    973 				goto gotit;
    974 			}
    975 			delta = fs_rotbl(fs)[i];
    976 			if (delta <= 0 ||
    977 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    978 				break;
    979 			i += delta;
    980 		}
    981 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    982 		panic("ffs_alloccgblk: can't find blk in cyl");
    983 	}
    984 norot:
    985 	/*
    986 	 * no blocks in the requested cylinder, so take next
    987 	 * available one in this cylinder group.
    988 	 */
    989 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    990 	if (bno < 0)
    991 		return (NULL);
    992 	cgp->cg_rotor = bno;
    993 gotit:
    994 	blkno = fragstoblks(fs, bno);
    995 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
    996 	ffs_clusteracct(fs, cgp, blkno, -1);
    997 	cgp->cg_cs.cs_nbfree--;
    998 	fs->fs_cstotal.cs_nbfree--;
    999 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1000 	cylno = cbtocylno(fs, bno);
   1001 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1002 	cg_blktot(cgp)[cylno]--;
   1003 	fs->fs_fmod = 1;
   1004 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1005 }
   1006 
   1007 /*
   1008  * Determine whether a cluster can be allocated.
   1009  *
   1010  * We do not currently check for optimal rotational layout if there
   1011  * are multiple choices in the same cylinder group. Instead we just
   1012  * take the first one that we find following bpref.
   1013  */
   1014 static daddr_t
   1015 ffs_clusteralloc(ip, cg, bpref, len)
   1016 	struct inode *ip;
   1017 	int cg;
   1018 	daddr_t bpref;
   1019 	int len;
   1020 {
   1021 	register struct fs *fs;
   1022 	register struct cg *cgp;
   1023 	struct buf *bp;
   1024 	int i, run, bno, bit, map;
   1025 	u_char *mapp;
   1026 	int32_t *lp;
   1027 
   1028 	fs = ip->i_fs;
   1029 	if (fs->fs_maxcluster[cg] < len)
   1030 		return (NULL);
   1031 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1032 	    NOCRED, &bp))
   1033 		goto fail;
   1034 	cgp = (struct cg *)bp->b_data;
   1035 	if (!cg_chkmagic(cgp))
   1036 		goto fail;
   1037 	/*
   1038 	 * Check to see if a cluster of the needed size (or bigger) is
   1039 	 * available in this cylinder group.
   1040 	 */
   1041 	lp = &cg_clustersum(cgp)[len];
   1042 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1043 		if (*lp++ > 0)
   1044 			break;
   1045 	if (i > fs->fs_contigsumsize) {
   1046 		/*
   1047 		 * This is the first time looking for a cluster in this
   1048 		 * cylinder group. Update the cluster summary information
   1049 		 * to reflect the true maximum sized cluster so that
   1050 		 * future cluster allocation requests can avoid reading
   1051 		 * the cylinder group map only to find no clusters.
   1052 		 */
   1053 		lp = &cg_clustersum(cgp)[len - 1];
   1054 		for (i = len - 1; i > 0; i--)
   1055 			if (*lp-- > 0)
   1056 				break;
   1057 		fs->fs_maxcluster[cg] = i;
   1058 		goto fail;
   1059 	}
   1060 	/*
   1061 	 * Search the cluster map to find a big enough cluster.
   1062 	 * We take the first one that we find, even if it is larger
   1063 	 * than we need as we prefer to get one close to the previous
   1064 	 * block allocation. We do not search before the current
   1065 	 * preference point as we do not want to allocate a block
   1066 	 * that is allocated before the previous one (as we will
   1067 	 * then have to wait for another pass of the elevator
   1068 	 * algorithm before it will be read). We prefer to fail and
   1069 	 * be recalled to try an allocation in the next cylinder group.
   1070 	 */
   1071 	if (dtog(fs, bpref) != cg)
   1072 		bpref = 0;
   1073 	else
   1074 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1075 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1076 	map = *mapp++;
   1077 	bit = 1 << (bpref % NBBY);
   1078 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1079 		if ((map & bit) == 0) {
   1080 			run = 0;
   1081 		} else {
   1082 			run++;
   1083 			if (run == len)
   1084 				break;
   1085 		}
   1086 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1087 			bit <<= 1;
   1088 		} else {
   1089 			map = *mapp++;
   1090 			bit = 1;
   1091 		}
   1092 	}
   1093 	if (i == cgp->cg_nclusterblks)
   1094 		goto fail;
   1095 	/*
   1096 	 * Allocate the cluster that we have found.
   1097 	 */
   1098 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1099 	len = blkstofrags(fs, len);
   1100 	for (i = 0; i < len; i += fs->fs_frag)
   1101 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1102 			panic("ffs_clusteralloc: lost block");
   1103 	brelse(bp);
   1104 	return (bno);
   1105 
   1106 fail:
   1107 	brelse(bp);
   1108 	return (0);
   1109 }
   1110 
   1111 /*
   1112  * Determine whether an inode can be allocated.
   1113  *
   1114  * Check to see if an inode is available, and if it is,
   1115  * allocate it using the following policy:
   1116  *   1) allocate the requested inode.
   1117  *   2) allocate the next available inode after the requested
   1118  *      inode in the specified cylinder group.
   1119  */
   1120 static ino_t
   1121 ffs_nodealloccg(ip, cg, ipref, mode)
   1122 	struct inode *ip;
   1123 	int cg;
   1124 	daddr_t ipref;
   1125 	int mode;
   1126 {
   1127 	register struct fs *fs;
   1128 	register struct cg *cgp;
   1129 	struct buf *bp;
   1130 	int error, start, len, loc, map, i;
   1131 
   1132 	fs = ip->i_fs;
   1133 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1134 		return (NULL);
   1135 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1136 		(int)fs->fs_cgsize, NOCRED, &bp);
   1137 	if (error) {
   1138 		brelse(bp);
   1139 		return (NULL);
   1140 	}
   1141 	cgp = (struct cg *)bp->b_data;
   1142 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1143 		brelse(bp);
   1144 		return (NULL);
   1145 	}
   1146 	cgp->cg_time = time.tv_sec;
   1147 	if (ipref) {
   1148 		ipref %= fs->fs_ipg;
   1149 		if (isclr(cg_inosused(cgp), ipref))
   1150 			goto gotit;
   1151 	}
   1152 	start = cgp->cg_irotor / NBBY;
   1153 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1154 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1155 	if (loc == 0) {
   1156 		len = start + 1;
   1157 		start = 0;
   1158 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1159 		if (loc == 0) {
   1160 			printf("cg = %d, irotor = %d, fs = %s\n",
   1161 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1162 			panic("ffs_nodealloccg: map corrupted");
   1163 			/* NOTREACHED */
   1164 		}
   1165 	}
   1166 	i = start + len - loc;
   1167 	map = cg_inosused(cgp)[i];
   1168 	ipref = i * NBBY;
   1169 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1170 		if ((map & i) == 0) {
   1171 			cgp->cg_irotor = ipref;
   1172 			goto gotit;
   1173 		}
   1174 	}
   1175 	printf("fs = %s\n", fs->fs_fsmnt);
   1176 	panic("ffs_nodealloccg: block not in map");
   1177 	/* NOTREACHED */
   1178 gotit:
   1179 	setbit(cg_inosused(cgp), ipref);
   1180 	cgp->cg_cs.cs_nifree--;
   1181 	fs->fs_cstotal.cs_nifree--;
   1182 	fs->fs_cs(fs, cg).cs_nifree--;
   1183 	fs->fs_fmod = 1;
   1184 	if ((mode & IFMT) == IFDIR) {
   1185 		cgp->cg_cs.cs_ndir++;
   1186 		fs->fs_cstotal.cs_ndir++;
   1187 		fs->fs_cs(fs, cg).cs_ndir++;
   1188 	}
   1189 	bdwrite(bp);
   1190 	return (cg * fs->fs_ipg + ipref);
   1191 }
   1192 
   1193 /*
   1194  * Free a block or fragment.
   1195  *
   1196  * The specified block or fragment is placed back in the
   1197  * free map. If a fragment is deallocated, a possible
   1198  * block reassembly is checked.
   1199  */
   1200 ffs_blkfree(ip, bno, size)
   1201 	register struct inode *ip;
   1202 	daddr_t bno;
   1203 	long size;
   1204 {
   1205 	register struct fs *fs;
   1206 	register struct cg *cgp;
   1207 	struct buf *bp;
   1208 	daddr_t blkno;
   1209 	int i, error, cg, blk, frags, bbase;
   1210 
   1211 	fs = ip->i_fs;
   1212 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1213 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
   1214 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1215 		panic("blkfree: bad size");
   1216 	}
   1217 	cg = dtog(fs, bno);
   1218 	if ((u_int)bno >= fs->fs_size) {
   1219 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1220 		ffs_fserr(fs, ip->i_uid, "bad block");
   1221 		return;
   1222 	}
   1223 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1224 		(int)fs->fs_cgsize, NOCRED, &bp);
   1225 	if (error) {
   1226 		brelse(bp);
   1227 		return;
   1228 	}
   1229 	cgp = (struct cg *)bp->b_data;
   1230 	if (!cg_chkmagic(cgp)) {
   1231 		brelse(bp);
   1232 		return;
   1233 	}
   1234 	cgp->cg_time = time.tv_sec;
   1235 	bno = dtogd(fs, bno);
   1236 	if (size == fs->fs_bsize) {
   1237 		blkno = fragstoblks(fs, bno);
   1238 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1239 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1240 			    ip->i_dev, bno, fs->fs_fsmnt);
   1241 			panic("blkfree: freeing free block");
   1242 		}
   1243 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1244 		ffs_clusteracct(fs, cgp, blkno, 1);
   1245 		cgp->cg_cs.cs_nbfree++;
   1246 		fs->fs_cstotal.cs_nbfree++;
   1247 		fs->fs_cs(fs, cg).cs_nbfree++;
   1248 		i = cbtocylno(fs, bno);
   1249 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1250 		cg_blktot(cgp)[i]++;
   1251 	} else {
   1252 		bbase = bno - fragnum(fs, bno);
   1253 		/*
   1254 		 * decrement the counts associated with the old frags
   1255 		 */
   1256 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1257 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1258 		/*
   1259 		 * deallocate the fragment
   1260 		 */
   1261 		frags = numfrags(fs, size);
   1262 		for (i = 0; i < frags; i++) {
   1263 			if (isset(cg_blksfree(cgp), bno + i)) {
   1264 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1265 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1266 				panic("blkfree: freeing free frag");
   1267 			}
   1268 			setbit(cg_blksfree(cgp), bno + i);
   1269 		}
   1270 		cgp->cg_cs.cs_nffree += i;
   1271 		fs->fs_cstotal.cs_nffree += i;
   1272 		fs->fs_cs(fs, cg).cs_nffree += i;
   1273 		/*
   1274 		 * add back in counts associated with the new frags
   1275 		 */
   1276 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1277 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1278 		/*
   1279 		 * if a complete block has been reassembled, account for it
   1280 		 */
   1281 		blkno = fragstoblks(fs, bbase);
   1282 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1283 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1284 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1285 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1286 			ffs_clusteracct(fs, cgp, blkno, 1);
   1287 			cgp->cg_cs.cs_nbfree++;
   1288 			fs->fs_cstotal.cs_nbfree++;
   1289 			fs->fs_cs(fs, cg).cs_nbfree++;
   1290 			i = cbtocylno(fs, bbase);
   1291 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1292 			cg_blktot(cgp)[i]++;
   1293 		}
   1294 	}
   1295 	fs->fs_fmod = 1;
   1296 	bdwrite(bp);
   1297 }
   1298 
   1299 /*
   1300  * Free an inode.
   1301  *
   1302  * The specified inode is placed back in the free map.
   1303  */
   1304 int
   1305 ffs_vfree(ap)
   1306 	struct vop_vfree_args /* {
   1307 		struct vnode *a_pvp;
   1308 		ino_t a_ino;
   1309 		int a_mode;
   1310 	} */ *ap;
   1311 {
   1312 	register struct fs *fs;
   1313 	register struct cg *cgp;
   1314 	register struct inode *pip;
   1315 	ino_t ino = ap->a_ino;
   1316 	struct buf *bp;
   1317 	int error, cg;
   1318 
   1319 	pip = VTOI(ap->a_pvp);
   1320 	fs = pip->i_fs;
   1321 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1322 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1323 		    pip->i_dev, ino, fs->fs_fsmnt);
   1324 	cg = ino_to_cg(fs, ino);
   1325 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1326 		(int)fs->fs_cgsize, NOCRED, &bp);
   1327 	if (error) {
   1328 		brelse(bp);
   1329 		return (0);
   1330 	}
   1331 	cgp = (struct cg *)bp->b_data;
   1332 	if (!cg_chkmagic(cgp)) {
   1333 		brelse(bp);
   1334 		return (0);
   1335 	}
   1336 	cgp->cg_time = time.tv_sec;
   1337 	ino %= fs->fs_ipg;
   1338 	if (isclr(cg_inosused(cgp), ino)) {
   1339 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1340 		    pip->i_dev, ino, fs->fs_fsmnt);
   1341 		if (fs->fs_ronly == 0)
   1342 			panic("ifree: freeing free inode");
   1343 	}
   1344 	clrbit(cg_inosused(cgp), ino);
   1345 	if (ino < cgp->cg_irotor)
   1346 		cgp->cg_irotor = ino;
   1347 	cgp->cg_cs.cs_nifree++;
   1348 	fs->fs_cstotal.cs_nifree++;
   1349 	fs->fs_cs(fs, cg).cs_nifree++;
   1350 	if ((ap->a_mode & IFMT) == IFDIR) {
   1351 		cgp->cg_cs.cs_ndir--;
   1352 		fs->fs_cstotal.cs_ndir--;
   1353 		fs->fs_cs(fs, cg).cs_ndir--;
   1354 	}
   1355 	fs->fs_fmod = 1;
   1356 	bdwrite(bp);
   1357 	return (0);
   1358 }
   1359 
   1360 /*
   1361  * Find a block of the specified size in the specified cylinder group.
   1362  *
   1363  * It is a panic if a request is made to find a block if none are
   1364  * available.
   1365  */
   1366 static daddr_t
   1367 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1368 	register struct fs *fs;
   1369 	register struct cg *cgp;
   1370 	daddr_t bpref;
   1371 	int allocsiz;
   1372 {
   1373 	daddr_t bno;
   1374 	int start, len, loc, i;
   1375 	int blk, field, subfield, pos;
   1376 
   1377 	/*
   1378 	 * find the fragment by searching through the free block
   1379 	 * map for an appropriate bit pattern
   1380 	 */
   1381 	if (bpref)
   1382 		start = dtogd(fs, bpref) / NBBY;
   1383 	else
   1384 		start = cgp->cg_frotor / NBBY;
   1385 	len = howmany(fs->fs_fpg, NBBY) - start;
   1386 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1387 		(u_char *)fragtbl[fs->fs_frag],
   1388 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1389 	if (loc == 0) {
   1390 		len = start + 1;
   1391 		start = 0;
   1392 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1393 			(u_char *)fragtbl[fs->fs_frag],
   1394 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1395 		if (loc == 0) {
   1396 			printf("start = %d, len = %d, fs = %s\n",
   1397 			    start, len, fs->fs_fsmnt);
   1398 			panic("ffs_alloccg: map corrupted");
   1399 			/* NOTREACHED */
   1400 		}
   1401 	}
   1402 	bno = (start + len - loc) * NBBY;
   1403 	cgp->cg_frotor = bno;
   1404 	/*
   1405 	 * found the byte in the map
   1406 	 * sift through the bits to find the selected frag
   1407 	 */
   1408 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1409 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1410 		blk <<= 1;
   1411 		field = around[allocsiz];
   1412 		subfield = inside[allocsiz];
   1413 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1414 			if ((blk & field) == subfield)
   1415 				return (bno + pos);
   1416 			field <<= 1;
   1417 			subfield <<= 1;
   1418 		}
   1419 	}
   1420 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1421 	panic("ffs_alloccg: block not in map");
   1422 	return (-1);
   1423 }
   1424 
   1425 /*
   1426  * Update the cluster map because of an allocation or free.
   1427  *
   1428  * Cnt == 1 means free; cnt == -1 means allocating.
   1429  */
   1430 ffs_clusteracct(fs, cgp, blkno, cnt)
   1431 	struct fs *fs;
   1432 	struct cg *cgp;
   1433 	daddr_t blkno;
   1434 	int cnt;
   1435 {
   1436 	int32_t *sump;
   1437 	int32_t *lp;
   1438 	u_char *freemapp, *mapp;
   1439 	int i, start, end, forw, back, map, bit;
   1440 
   1441 	if (fs->fs_contigsumsize <= 0)
   1442 		return;
   1443 	freemapp = cg_clustersfree(cgp);
   1444 	sump = cg_clustersum(cgp);
   1445 	/*
   1446 	 * Allocate or clear the actual block.
   1447 	 */
   1448 	if (cnt > 0)
   1449 		setbit(freemapp, blkno);
   1450 	else
   1451 		clrbit(freemapp, blkno);
   1452 	/*
   1453 	 * Find the size of the cluster going forward.
   1454 	 */
   1455 	start = blkno + 1;
   1456 	end = start + fs->fs_contigsumsize;
   1457 	if (end >= cgp->cg_nclusterblks)
   1458 		end = cgp->cg_nclusterblks;
   1459 	mapp = &freemapp[start / NBBY];
   1460 	map = *mapp++;
   1461 	bit = 1 << (start % NBBY);
   1462 	for (i = start; i < end; i++) {
   1463 		if ((map & bit) == 0)
   1464 			break;
   1465 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1466 			bit <<= 1;
   1467 		} else {
   1468 			map = *mapp++;
   1469 			bit = 1;
   1470 		}
   1471 	}
   1472 	forw = i - start;
   1473 	/*
   1474 	 * Find the size of the cluster going backward.
   1475 	 */
   1476 	start = blkno - 1;
   1477 	end = start - fs->fs_contigsumsize;
   1478 	if (end < 0)
   1479 		end = -1;
   1480 	mapp = &freemapp[start / NBBY];
   1481 	map = *mapp--;
   1482 	bit = 1 << (start % NBBY);
   1483 	for (i = start; i > end; i--) {
   1484 		if ((map & bit) == 0)
   1485 			break;
   1486 		if ((i & (NBBY - 1)) != 0) {
   1487 			bit >>= 1;
   1488 		} else {
   1489 			map = *mapp--;
   1490 			bit = 1 << (NBBY - 1);
   1491 		}
   1492 	}
   1493 	back = start - i;
   1494 	/*
   1495 	 * Account for old cluster and the possibly new forward and
   1496 	 * back clusters.
   1497 	 */
   1498 	i = back + forw + 1;
   1499 	if (i > fs->fs_contigsumsize)
   1500 		i = fs->fs_contigsumsize;
   1501 	sump[i] += cnt;
   1502 	if (back > 0)
   1503 		sump[back] -= cnt;
   1504 	if (forw > 0)
   1505 		sump[forw] -= cnt;
   1506 	/*
   1507 	 * Update cluster summary information.
   1508 	 */
   1509 	lp = &sump[fs->fs_contigsumsize];
   1510 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1511 		if (*lp-- > 0)
   1512 			break;
   1513 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1514 }
   1515 
   1516 /*
   1517  * Fserr prints the name of a file system with an error diagnostic.
   1518  *
   1519  * The form of the error message is:
   1520  *	fs: error message
   1521  */
   1522 static void
   1523 ffs_fserr(fs, uid, cp)
   1524 	struct fs *fs;
   1525 	u_int uid;
   1526 	char *cp;
   1527 {
   1528 
   1529 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1530 }
   1531