ffs_alloc.c revision 1.51 1 /* $NetBSD: ffs_alloc.c,v 1.51 2001/09/15 20:36:41 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL_OPT)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <ufs/ufs/quota.h>
53 #include <ufs/ufs/ufsmount.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufs_extern.h>
56 #include <ufs/ufs/ufs_bswap.h>
57
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60
61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
62 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
63 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
64 static ino_t ffs_dirpref __P((struct inode *));
65 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
66 static void ffs_fserr __P((struct fs *, u_int, char *));
67 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
68 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
69 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
70 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
71 ufs_daddr_t, int));
72 #if defined(DIAGNOSTIC) || defined(DEBUG)
73 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
74 #endif
75
76 /* if 1, changes in optimalization strategy are logged */
77 int ffs_log_changeopt = 0;
78
79 /* in ffs_tables.c */
80 extern const int inside[], around[];
81 extern const u_char * const fragtbl[];
82
83 /*
84 * Allocate a block in the file system.
85 *
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following hierarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
98 * inode for the file.
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
101 */
102 int
103 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
104 struct inode *ip;
105 ufs_daddr_t lbn, bpref;
106 int size;
107 struct ucred *cred;
108 ufs_daddr_t *bnp;
109 {
110 struct fs *fs = ip->i_fs;
111 ufs_daddr_t bno;
112 int cg;
113 #ifdef QUOTA
114 int error;
115 #endif
116
117 #ifdef UVM_PAGE_TRKOWN
118 if (ITOV(ip)->v_type == VREG &&
119 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
120 struct vm_page *pg;
121 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
122 voff_t off = trunc_page(lblktosize(fs, lbn));
123 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
124
125 simple_lock(&uobj->vmobjlock);
126 while (off < endoff) {
127 pg = uvm_pagelookup(uobj, off);
128 KASSERT(pg != NULL);
129 KASSERT(pg->owner == curproc->p_pid);
130 KASSERT((pg->flags & PG_CLEAN) == 0);
131 off += PAGE_SIZE;
132 }
133 simple_unlock(&uobj->vmobjlock);
134 }
135 #endif
136
137 *bnp = 0;
138 #ifdef DIAGNOSTIC
139 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
140 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
141 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
142 panic("ffs_alloc: bad size");
143 }
144 if (cred == NOCRED)
145 panic("ffs_alloc: missing credential\n");
146 #endif /* DIAGNOSTIC */
147 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
148 goto nospace;
149 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
150 goto nospace;
151 #ifdef QUOTA
152 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
153 return (error);
154 #endif
155 if (bpref >= fs->fs_size)
156 bpref = 0;
157 if (bpref == 0)
158 cg = ino_to_cg(fs, ip->i_number);
159 else
160 cg = dtog(fs, bpref);
161 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
162 ffs_alloccg);
163 if (bno > 0) {
164 ip->i_ffs_blocks += btodb(size);
165 ip->i_flag |= IN_CHANGE | IN_UPDATE;
166 *bnp = bno;
167 return (0);
168 }
169 #ifdef QUOTA
170 /*
171 * Restore user's disk quota because allocation failed.
172 */
173 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
174 #endif
175 nospace:
176 ffs_fserr(fs, cred->cr_uid, "file system full");
177 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
178 return (ENOSPC);
179 }
180
181 /*
182 * Reallocate a fragment to a bigger size
183 *
184 * The number and size of the old block is given, and a preference
185 * and new size is also specified. The allocator attempts to extend
186 * the original block. Failing that, the regular block allocator is
187 * invoked to get an appropriate block.
188 */
189 int
190 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
191 struct inode *ip;
192 ufs_daddr_t lbprev;
193 ufs_daddr_t bpref;
194 int osize, nsize;
195 struct ucred *cred;
196 struct buf **bpp;
197 ufs_daddr_t *blknop;
198 {
199 struct fs *fs = ip->i_fs;
200 struct buf *bp;
201 int cg, request, error;
202 ufs_daddr_t bprev, bno;
203
204 #ifdef UVM_PAGE_TRKOWN
205 if (ITOV(ip)->v_type == VREG) {
206 struct vm_page *pg;
207 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
208 voff_t off = trunc_page(lblktosize(fs, lbprev));
209 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
210
211 simple_lock(&uobj->vmobjlock);
212 while (off < endoff) {
213 pg = uvm_pagelookup(uobj, off);
214 KASSERT(pg != NULL);
215 KASSERT(pg->owner == curproc->p_pid);
216 KASSERT((pg->flags & PG_CLEAN) == 0);
217 off += PAGE_SIZE;
218 }
219 simple_unlock(&uobj->vmobjlock);
220 }
221 #endif
222
223 #ifdef DIAGNOSTIC
224 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
225 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
226 printf(
227 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
228 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
229 panic("ffs_realloccg: bad size");
230 }
231 if (cred == NOCRED)
232 panic("ffs_realloccg: missing credential\n");
233 #endif /* DIAGNOSTIC */
234 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
235 goto nospace;
236 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
237 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
238 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
239 panic("ffs_realloccg: bad bprev");
240 }
241 /*
242 * Allocate the extra space in the buffer.
243 */
244 if (bpp != NULL &&
245 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
246 brelse(bp);
247 return (error);
248 }
249 #ifdef QUOTA
250 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
251 if (bpp != NULL) {
252 brelse(bp);
253 }
254 return (error);
255 }
256 #endif
257 /*
258 * Check for extension in the existing location.
259 */
260 cg = dtog(fs, bprev);
261 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
262 ip->i_ffs_blocks += btodb(nsize - osize);
263 ip->i_flag |= IN_CHANGE | IN_UPDATE;
264
265 if (bpp != NULL) {
266 if (bp->b_blkno != fsbtodb(fs, bno))
267 panic("bad blockno");
268 allocbuf(bp, nsize);
269 bp->b_flags |= B_DONE;
270 memset(bp->b_data + osize, 0, nsize - osize);
271 *bpp = bp;
272 }
273 if (blknop != NULL) {
274 *blknop = bno;
275 }
276 return (0);
277 }
278 /*
279 * Allocate a new disk location.
280 */
281 if (bpref >= fs->fs_size)
282 bpref = 0;
283 switch ((int)fs->fs_optim) {
284 case FS_OPTSPACE:
285 /*
286 * Allocate an exact sized fragment. Although this makes
287 * best use of space, we will waste time relocating it if
288 * the file continues to grow. If the fragmentation is
289 * less than half of the minimum free reserve, we choose
290 * to begin optimizing for time.
291 */
292 request = nsize;
293 if (fs->fs_minfree < 5 ||
294 fs->fs_cstotal.cs_nffree >
295 fs->fs_dsize * fs->fs_minfree / (2 * 100))
296 break;
297
298 if (ffs_log_changeopt) {
299 log(LOG_NOTICE,
300 "%s: optimization changed from SPACE to TIME\n",
301 fs->fs_fsmnt);
302 }
303
304 fs->fs_optim = FS_OPTTIME;
305 break;
306 case FS_OPTTIME:
307 /*
308 * At this point we have discovered a file that is trying to
309 * grow a small fragment to a larger fragment. To save time,
310 * we allocate a full sized block, then free the unused portion.
311 * If the file continues to grow, the `ffs_fragextend' call
312 * above will be able to grow it in place without further
313 * copying. If aberrant programs cause disk fragmentation to
314 * grow within 2% of the free reserve, we choose to begin
315 * optimizing for space.
316 */
317 request = fs->fs_bsize;
318 if (fs->fs_cstotal.cs_nffree <
319 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
320 break;
321
322 if (ffs_log_changeopt) {
323 log(LOG_NOTICE,
324 "%s: optimization changed from TIME to SPACE\n",
325 fs->fs_fsmnt);
326 }
327
328 fs->fs_optim = FS_OPTSPACE;
329 break;
330 default:
331 printf("dev = 0x%x, optim = %d, fs = %s\n",
332 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
333 panic("ffs_realloccg: bad optim");
334 /* NOTREACHED */
335 }
336 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
337 ffs_alloccg);
338 if (bno > 0) {
339 if (!DOINGSOFTDEP(ITOV(ip)))
340 ffs_blkfree(ip, bprev, (long)osize);
341 if (nsize < request)
342 ffs_blkfree(ip, bno + numfrags(fs, nsize),
343 (long)(request - nsize));
344 ip->i_ffs_blocks += btodb(nsize - osize);
345 ip->i_flag |= IN_CHANGE | IN_UPDATE;
346 if (bpp != NULL) {
347 bp->b_blkno = fsbtodb(fs, bno);
348 allocbuf(bp, nsize);
349 bp->b_flags |= B_DONE;
350 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
351 *bpp = bp;
352 }
353 if (blknop != NULL) {
354 *blknop = bno;
355 }
356 return (0);
357 }
358 #ifdef QUOTA
359 /*
360 * Restore user's disk quota because allocation failed.
361 */
362 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
363 #endif
364 if (bpp != NULL) {
365 brelse(bp);
366 }
367
368 nospace:
369 /*
370 * no space available
371 */
372 ffs_fserr(fs, cred->cr_uid, "file system full");
373 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
374 return (ENOSPC);
375 }
376
377 /*
378 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
379 *
380 * The vnode and an array of buffer pointers for a range of sequential
381 * logical blocks to be made contiguous is given. The allocator attempts
382 * to find a range of sequential blocks starting as close as possible to
383 * an fs_rotdelay offset from the end of the allocation for the logical
384 * block immediately preceding the current range. If successful, the
385 * physical block numbers in the buffer pointers and in the inode are
386 * changed to reflect the new allocation. If unsuccessful, the allocation
387 * is left unchanged. The success in doing the reallocation is returned.
388 * Note that the error return is not reflected back to the user. Rather
389 * the previous block allocation will be used.
390 */
391 #ifdef DEBUG
392 #include <sys/sysctl.h>
393 int prtrealloc = 0;
394 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
395 #endif
396
397 int doasyncfree = 1;
398
399 int
400 ffs_reallocblks(v)
401 void *v;
402 {
403 struct vop_reallocblks_args /* {
404 struct vnode *a_vp;
405 struct cluster_save *a_buflist;
406 } */ *ap = v;
407 struct fs *fs;
408 struct inode *ip;
409 struct vnode *vp;
410 struct buf *sbp, *ebp;
411 ufs_daddr_t *bap, *sbap, *ebap = NULL;
412 struct cluster_save *buflist;
413 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
414 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
415 int i, len, start_lvl, end_lvl, pref, ssize;
416
417 /* XXXUBC don't reallocblks for now */
418 return ENOSPC;
419
420 vp = ap->a_vp;
421 ip = VTOI(vp);
422 fs = ip->i_fs;
423 if (fs->fs_contigsumsize <= 0)
424 return (ENOSPC);
425 buflist = ap->a_buflist;
426 len = buflist->bs_nchildren;
427 start_lbn = buflist->bs_children[0]->b_lblkno;
428 end_lbn = start_lbn + len - 1;
429 #ifdef DIAGNOSTIC
430 for (i = 0; i < len; i++)
431 if (!ffs_checkblk(ip,
432 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
433 panic("ffs_reallocblks: unallocated block 1");
434 for (i = 1; i < len; i++)
435 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
436 panic("ffs_reallocblks: non-logical cluster");
437 blkno = buflist->bs_children[0]->b_blkno;
438 ssize = fsbtodb(fs, fs->fs_frag);
439 for (i = 1; i < len - 1; i++)
440 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
441 panic("ffs_reallocblks: non-physical cluster %d", i);
442 #endif
443 /*
444 * If the latest allocation is in a new cylinder group, assume that
445 * the filesystem has decided to move and do not force it back to
446 * the previous cylinder group.
447 */
448 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
449 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
450 return (ENOSPC);
451 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
452 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
453 return (ENOSPC);
454 /*
455 * Get the starting offset and block map for the first block.
456 */
457 if (start_lvl == 0) {
458 sbap = &ip->i_ffs_db[0];
459 soff = start_lbn;
460 } else {
461 idp = &start_ap[start_lvl - 1];
462 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
463 brelse(sbp);
464 return (ENOSPC);
465 }
466 sbap = (ufs_daddr_t *)sbp->b_data;
467 soff = idp->in_off;
468 }
469 /*
470 * Find the preferred location for the cluster.
471 */
472 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
473 /*
474 * If the block range spans two block maps, get the second map.
475 */
476 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
477 ssize = len;
478 } else {
479 #ifdef DIAGNOSTIC
480 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
481 panic("ffs_reallocblk: start == end");
482 #endif
483 ssize = len - (idp->in_off + 1);
484 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
485 goto fail;
486 ebap = (ufs_daddr_t *)ebp->b_data;
487 }
488 /*
489 * Search the block map looking for an allocation of the desired size.
490 */
491 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
492 len, ffs_clusteralloc)) == 0)
493 goto fail;
494 /*
495 * We have found a new contiguous block.
496 *
497 * First we have to replace the old block pointers with the new
498 * block pointers in the inode and indirect blocks associated
499 * with the file.
500 */
501 #ifdef DEBUG
502 if (prtrealloc)
503 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
504 start_lbn, end_lbn);
505 #endif
506 blkno = newblk;
507 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
508 ufs_daddr_t ba;
509
510 if (i == ssize) {
511 bap = ebap;
512 soff = -i;
513 }
514 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
515 #ifdef DIAGNOSTIC
516 if (!ffs_checkblk(ip,
517 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
518 panic("ffs_reallocblks: unallocated block 2");
519 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
520 panic("ffs_reallocblks: alloc mismatch");
521 #endif
522 #ifdef DEBUG
523 if (prtrealloc)
524 printf(" %d,", ba);
525 #endif
526 if (DOINGSOFTDEP(vp)) {
527 if (sbap == &ip->i_ffs_db[0] && i < ssize)
528 softdep_setup_allocdirect(ip, start_lbn + i,
529 blkno, ba, fs->fs_bsize, fs->fs_bsize,
530 buflist->bs_children[i]);
531 else
532 softdep_setup_allocindir_page(ip, start_lbn + i,
533 i < ssize ? sbp : ebp, soff + i, blkno,
534 ba, buflist->bs_children[i]);
535 }
536 *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
537 }
538 /*
539 * Next we must write out the modified inode and indirect blocks.
540 * For strict correctness, the writes should be synchronous since
541 * the old block values may have been written to disk. In practise
542 * they are almost never written, but if we are concerned about
543 * strict correctness, the `doasyncfree' flag should be set to zero.
544 *
545 * The test on `doasyncfree' should be changed to test a flag
546 * that shows whether the associated buffers and inodes have
547 * been written. The flag should be set when the cluster is
548 * started and cleared whenever the buffer or inode is flushed.
549 * We can then check below to see if it is set, and do the
550 * synchronous write only when it has been cleared.
551 */
552 if (sbap != &ip->i_ffs_db[0]) {
553 if (doasyncfree)
554 bdwrite(sbp);
555 else
556 bwrite(sbp);
557 } else {
558 ip->i_flag |= IN_CHANGE | IN_UPDATE;
559 if (!doasyncfree)
560 VOP_UPDATE(vp, NULL, NULL, 1);
561 }
562 if (ssize < len) {
563 if (doasyncfree)
564 bdwrite(ebp);
565 else
566 bwrite(ebp);
567 }
568 /*
569 * Last, free the old blocks and assign the new blocks to the buffers.
570 */
571 #ifdef DEBUG
572 if (prtrealloc)
573 printf("\n\tnew:");
574 #endif
575 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
576 if (!DOINGSOFTDEP(vp))
577 ffs_blkfree(ip,
578 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
579 fs->fs_bsize);
580 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
581 #ifdef DEBUG
582 if (!ffs_checkblk(ip,
583 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
584 panic("ffs_reallocblks: unallocated block 3");
585 if (prtrealloc)
586 printf(" %d,", blkno);
587 #endif
588 }
589 #ifdef DEBUG
590 if (prtrealloc) {
591 prtrealloc--;
592 printf("\n");
593 }
594 #endif
595 return (0);
596
597 fail:
598 if (ssize < len)
599 brelse(ebp);
600 if (sbap != &ip->i_ffs_db[0])
601 brelse(sbp);
602 return (ENOSPC);
603 }
604
605 /*
606 * Allocate an inode in the file system.
607 *
608 * If allocating a directory, use ffs_dirpref to select the inode.
609 * If allocating in a directory, the following hierarchy is followed:
610 * 1) allocate the preferred inode.
611 * 2) allocate an inode in the same cylinder group.
612 * 3) quadradically rehash into other cylinder groups, until an
613 * available inode is located.
614 * If no inode preference is given the following hierarchy is used
615 * to allocate an inode:
616 * 1) allocate an inode in cylinder group 0.
617 * 2) quadradically rehash into other cylinder groups, until an
618 * available inode is located.
619 */
620 int
621 ffs_valloc(v)
622 void *v;
623 {
624 struct vop_valloc_args /* {
625 struct vnode *a_pvp;
626 int a_mode;
627 struct ucred *a_cred;
628 struct vnode **a_vpp;
629 } */ *ap = v;
630 struct vnode *pvp = ap->a_pvp;
631 struct inode *pip;
632 struct fs *fs;
633 struct inode *ip;
634 mode_t mode = ap->a_mode;
635 ino_t ino, ipref;
636 int cg, error;
637
638 *ap->a_vpp = NULL;
639 pip = VTOI(pvp);
640 fs = pip->i_fs;
641 if (fs->fs_cstotal.cs_nifree == 0)
642 goto noinodes;
643
644 if ((mode & IFMT) == IFDIR)
645 ipref = ffs_dirpref(pip);
646 else
647 ipref = pip->i_number;
648 if (ipref >= fs->fs_ncg * fs->fs_ipg)
649 ipref = 0;
650 cg = ino_to_cg(fs, ipref);
651 /*
652 * Track number of dirs created one after another
653 * in a same cg without intervening by files.
654 */
655 if ((mode & IFMT) == IFDIR) {
656 if (fs->fs_contigdirs[cg] < 65535)
657 fs->fs_contigdirs[cg]++;
658 } else {
659 if (fs->fs_contigdirs[cg] > 0)
660 fs->fs_contigdirs[cg]--;
661 }
662 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
663 if (ino == 0)
664 goto noinodes;
665 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
666 if (error) {
667 VOP_VFREE(pvp, ino, mode);
668 return (error);
669 }
670 ip = VTOI(*ap->a_vpp);
671 if (ip->i_ffs_mode) {
672 printf("mode = 0%o, inum = %d, fs = %s\n",
673 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
674 panic("ffs_valloc: dup alloc");
675 }
676 if (ip->i_ffs_blocks) { /* XXX */
677 printf("free inode %s/%d had %d blocks\n",
678 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
679 ip->i_ffs_blocks = 0;
680 }
681 ip->i_ffs_flags = 0;
682 /*
683 * Set up a new generation number for this inode.
684 */
685 ip->i_ffs_gen++;
686 return (0);
687 noinodes:
688 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
689 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
690 return (ENOSPC);
691 }
692
693 /*
694 * Find a cylinder group in which to place a directory.
695 *
696 * The policy implemented by this algorithm is to allocate a
697 * directory inode in the same cylinder group as its parent
698 * directory, but also to reserve space for its files inodes
699 * and data. Restrict the number of directories which may be
700 * allocated one after another in the same cylinder group
701 * without intervening allocation of files.
702 *
703 * If we allocate a first level directory then force allocation
704 * in another cylinder group.
705 */
706 static ino_t
707 ffs_dirpref(pip)
708 struct inode *pip;
709 {
710 register struct fs *fs;
711 int cg, prefcg, dirsize, cgsize;
712 int avgifree, avgbfree, avgndir, curdirsize;
713 int minifree, minbfree, maxndir;
714 int mincg, minndir;
715 int maxcontigdirs;
716
717 fs = pip->i_fs;
718
719 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
720 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
721 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
722
723 /*
724 * Force allocation in another cg if creating a first level dir.
725 */
726 if (ITOV(pip)->v_flag & VROOT) {
727 prefcg = random() % fs->fs_ncg;
728 mincg = prefcg;
729 minndir = fs->fs_ipg;
730 for (cg = prefcg; cg < fs->fs_ncg; cg++)
731 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
732 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
733 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
734 mincg = cg;
735 minndir = fs->fs_cs(fs, cg).cs_ndir;
736 }
737 for (cg = 0; cg < prefcg; cg++)
738 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
739 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
740 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
741 mincg = cg;
742 minndir = fs->fs_cs(fs, cg).cs_ndir;
743 }
744 return ((ino_t)(fs->fs_ipg * mincg));
745 }
746
747 /*
748 * Count various limits which used for
749 * optimal allocation of a directory inode.
750 */
751 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
752 minifree = avgifree - fs->fs_ipg / 4;
753 if (minifree < 0)
754 minifree = 0;
755 minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
756 if (minbfree < 0)
757 minbfree = 0;
758 cgsize = fs->fs_fsize * fs->fs_fpg;
759 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
760 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
761 if (dirsize < curdirsize)
762 dirsize = curdirsize;
763 maxcontigdirs = min(cgsize / dirsize, 255);
764 if (fs->fs_avgfpdir > 0)
765 maxcontigdirs = min(maxcontigdirs,
766 fs->fs_ipg / fs->fs_avgfpdir);
767 if (maxcontigdirs == 0)
768 maxcontigdirs = 1;
769
770 /*
771 * Limit number of dirs in one cg and reserve space for
772 * regular files, but only if we have no deficit in
773 * inodes or space.
774 */
775 prefcg = ino_to_cg(fs, pip->i_number);
776 for (cg = prefcg; cg < fs->fs_ncg; cg++)
777 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
778 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
779 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
780 if (fs->fs_contigdirs[cg] < maxcontigdirs)
781 return ((ino_t)(fs->fs_ipg * cg));
782 }
783 for (cg = 0; cg < prefcg; cg++)
784 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
785 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
786 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
787 if (fs->fs_contigdirs[cg] < maxcontigdirs)
788 return ((ino_t)(fs->fs_ipg * cg));
789 }
790 /*
791 * This is a backstop when we are deficient in space.
792 */
793 for (cg = prefcg; cg < fs->fs_ncg; cg++)
794 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
795 return ((ino_t)(fs->fs_ipg * cg));
796 for (cg = 0; cg < prefcg; cg++)
797 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
798 break;
799 return ((ino_t)(fs->fs_ipg * cg));
800 }
801
802 /*
803 * Select the desired position for the next block in a file. The file is
804 * logically divided into sections. The first section is composed of the
805 * direct blocks. Each additional section contains fs_maxbpg blocks.
806 *
807 * If no blocks have been allocated in the first section, the policy is to
808 * request a block in the same cylinder group as the inode that describes
809 * the file. If no blocks have been allocated in any other section, the
810 * policy is to place the section in a cylinder group with a greater than
811 * average number of free blocks. An appropriate cylinder group is found
812 * by using a rotor that sweeps the cylinder groups. When a new group of
813 * blocks is needed, the sweep begins in the cylinder group following the
814 * cylinder group from which the previous allocation was made. The sweep
815 * continues until a cylinder group with greater than the average number
816 * of free blocks is found. If the allocation is for the first block in an
817 * indirect block, the information on the previous allocation is unavailable;
818 * here a best guess is made based upon the logical block number being
819 * allocated.
820 *
821 * If a section is already partially allocated, the policy is to
822 * contiguously allocate fs_maxcontig blocks. The end of one of these
823 * contiguous blocks and the beginning of the next is physically separated
824 * so that the disk head will be in transit between them for at least
825 * fs_rotdelay milliseconds. This is to allow time for the processor to
826 * schedule another I/O transfer.
827 */
828 ufs_daddr_t
829 ffs_blkpref(ip, lbn, indx, bap)
830 struct inode *ip;
831 ufs_daddr_t lbn;
832 int indx;
833 ufs_daddr_t *bap;
834 {
835 struct fs *fs;
836 int cg;
837 int avgbfree, startcg;
838 ufs_daddr_t nextblk;
839
840 fs = ip->i_fs;
841 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
842 if (lbn < NDADDR + NINDIR(fs)) {
843 cg = ino_to_cg(fs, ip->i_number);
844 return (fs->fs_fpg * cg + fs->fs_frag);
845 }
846 /*
847 * Find a cylinder with greater than average number of
848 * unused data blocks.
849 */
850 if (indx == 0 || bap[indx - 1] == 0)
851 startcg =
852 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
853 else
854 startcg = dtog(fs,
855 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
856 startcg %= fs->fs_ncg;
857 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
858 for (cg = startcg; cg < fs->fs_ncg; cg++)
859 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 fs->fs_cgrotor = cg;
861 return (fs->fs_fpg * cg + fs->fs_frag);
862 }
863 for (cg = 0; cg <= startcg; cg++)
864 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
865 fs->fs_cgrotor = cg;
866 return (fs->fs_fpg * cg + fs->fs_frag);
867 }
868 return (0);
869 }
870 /*
871 * One or more previous blocks have been laid out. If less
872 * than fs_maxcontig previous blocks are contiguous, the
873 * next block is requested contiguously, otherwise it is
874 * requested rotationally delayed by fs_rotdelay milliseconds.
875 */
876 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
877 if (indx < fs->fs_maxcontig ||
878 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
879 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
880 return (nextblk);
881 if (fs->fs_rotdelay != 0)
882 /*
883 * Here we convert ms of delay to frags as:
884 * (frags) = (ms) * (rev/sec) * (sect/rev) /
885 * ((sect/frag) * (ms/sec))
886 * then round up to the next block.
887 */
888 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
889 (NSPF(fs) * 1000), fs->fs_frag);
890 return (nextblk);
891 }
892
893 /*
894 * Implement the cylinder overflow algorithm.
895 *
896 * The policy implemented by this algorithm is:
897 * 1) allocate the block in its requested cylinder group.
898 * 2) quadradically rehash on the cylinder group number.
899 * 3) brute force search for a free block.
900 */
901 /*VARARGS5*/
902 static u_long
903 ffs_hashalloc(ip, cg, pref, size, allocator)
904 struct inode *ip;
905 int cg;
906 long pref;
907 int size; /* size for data blocks, mode for inodes */
908 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
909 {
910 struct fs *fs;
911 long result;
912 int i, icg = cg;
913
914 fs = ip->i_fs;
915 /*
916 * 1: preferred cylinder group
917 */
918 result = (*allocator)(ip, cg, pref, size);
919 if (result)
920 return (result);
921 /*
922 * 2: quadratic rehash
923 */
924 for (i = 1; i < fs->fs_ncg; i *= 2) {
925 cg += i;
926 if (cg >= fs->fs_ncg)
927 cg -= fs->fs_ncg;
928 result = (*allocator)(ip, cg, 0, size);
929 if (result)
930 return (result);
931 }
932 /*
933 * 3: brute force search
934 * Note that we start at i == 2, since 0 was checked initially,
935 * and 1 is always checked in the quadratic rehash.
936 */
937 cg = (icg + 2) % fs->fs_ncg;
938 for (i = 2; i < fs->fs_ncg; i++) {
939 result = (*allocator)(ip, cg, 0, size);
940 if (result)
941 return (result);
942 cg++;
943 if (cg == fs->fs_ncg)
944 cg = 0;
945 }
946 return (0);
947 }
948
949 /*
950 * Determine whether a fragment can be extended.
951 *
952 * Check to see if the necessary fragments are available, and
953 * if they are, allocate them.
954 */
955 static ufs_daddr_t
956 ffs_fragextend(ip, cg, bprev, osize, nsize)
957 struct inode *ip;
958 int cg;
959 long bprev;
960 int osize, nsize;
961 {
962 struct fs *fs;
963 struct cg *cgp;
964 struct buf *bp;
965 long bno;
966 int frags, bbase;
967 int i, error;
968
969 fs = ip->i_fs;
970 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
971 return (0);
972 frags = numfrags(fs, nsize);
973 bbase = fragnum(fs, bprev);
974 if (bbase > fragnum(fs, (bprev + frags - 1))) {
975 /* cannot extend across a block boundary */
976 return (0);
977 }
978 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
979 (int)fs->fs_cgsize, NOCRED, &bp);
980 if (error) {
981 brelse(bp);
982 return (0);
983 }
984 cgp = (struct cg *)bp->b_data;
985 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
986 brelse(bp);
987 return (0);
988 }
989 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
990 bno = dtogd(fs, bprev);
991 for (i = numfrags(fs, osize); i < frags; i++)
992 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
993 brelse(bp);
994 return (0);
995 }
996 /*
997 * the current fragment can be extended
998 * deduct the count on fragment being extended into
999 * increase the count on the remaining fragment (if any)
1000 * allocate the extended piece
1001 */
1002 for (i = frags; i < fs->fs_frag - bbase; i++)
1003 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1004 break;
1005 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1006 if (i != frags)
1007 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1008 for (i = numfrags(fs, osize); i < frags; i++) {
1009 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1010 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1011 fs->fs_cstotal.cs_nffree--;
1012 fs->fs_cs(fs, cg).cs_nffree--;
1013 }
1014 fs->fs_fmod = 1;
1015 if (DOINGSOFTDEP(ITOV(ip)))
1016 softdep_setup_blkmapdep(bp, fs, bprev);
1017 bdwrite(bp);
1018 return (bprev);
1019 }
1020
1021 /*
1022 * Determine whether a block can be allocated.
1023 *
1024 * Check to see if a block of the appropriate size is available,
1025 * and if it is, allocate it.
1026 */
1027 static ufs_daddr_t
1028 ffs_alloccg(ip, cg, bpref, size)
1029 struct inode *ip;
1030 int cg;
1031 ufs_daddr_t bpref;
1032 int size;
1033 {
1034 struct cg *cgp;
1035 struct buf *bp;
1036 ufs_daddr_t bno, blkno;
1037 int error, frags, allocsiz, i;
1038 struct fs *fs = ip->i_fs;
1039 #ifdef FFS_EI
1040 const int needswap = UFS_FSNEEDSWAP(fs);
1041 #endif
1042
1043 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1044 return (0);
1045 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1046 (int)fs->fs_cgsize, NOCRED, &bp);
1047 if (error) {
1048 brelse(bp);
1049 return (0);
1050 }
1051 cgp = (struct cg *)bp->b_data;
1052 if (!cg_chkmagic(cgp, needswap) ||
1053 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1054 brelse(bp);
1055 return (0);
1056 }
1057 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1058 if (size == fs->fs_bsize) {
1059 bno = ffs_alloccgblk(ip, bp, bpref);
1060 bdwrite(bp);
1061 return (bno);
1062 }
1063 /*
1064 * check to see if any fragments are already available
1065 * allocsiz is the size which will be allocated, hacking
1066 * it down to a smaller size if necessary
1067 */
1068 frags = numfrags(fs, size);
1069 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1070 if (cgp->cg_frsum[allocsiz] != 0)
1071 break;
1072 if (allocsiz == fs->fs_frag) {
1073 /*
1074 * no fragments were available, so a block will be
1075 * allocated, and hacked up
1076 */
1077 if (cgp->cg_cs.cs_nbfree == 0) {
1078 brelse(bp);
1079 return (0);
1080 }
1081 bno = ffs_alloccgblk(ip, bp, bpref);
1082 bpref = dtogd(fs, bno);
1083 for (i = frags; i < fs->fs_frag; i++)
1084 setbit(cg_blksfree(cgp, needswap), bpref + i);
1085 i = fs->fs_frag - frags;
1086 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1087 fs->fs_cstotal.cs_nffree += i;
1088 fs->fs_cs(fs, cg).cs_nffree += i;
1089 fs->fs_fmod = 1;
1090 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1091 bdwrite(bp);
1092 return (bno);
1093 }
1094 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1095 #if 0
1096 /*
1097 * XXX fvdl mapsearch will panic, and never return -1
1098 * also: returning NULL as ufs_daddr_t ?
1099 */
1100 if (bno < 0) {
1101 brelse(bp);
1102 return (0);
1103 }
1104 #endif
1105 for (i = 0; i < frags; i++)
1106 clrbit(cg_blksfree(cgp, needswap), bno + i);
1107 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1108 fs->fs_cstotal.cs_nffree -= frags;
1109 fs->fs_cs(fs, cg).cs_nffree -= frags;
1110 fs->fs_fmod = 1;
1111 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1112 if (frags != allocsiz)
1113 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1114 blkno = cg * fs->fs_fpg + bno;
1115 if (DOINGSOFTDEP(ITOV(ip)))
1116 softdep_setup_blkmapdep(bp, fs, blkno);
1117 bdwrite(bp);
1118 return blkno;
1119 }
1120
1121 /*
1122 * Allocate a block in a cylinder group.
1123 *
1124 * This algorithm implements the following policy:
1125 * 1) allocate the requested block.
1126 * 2) allocate a rotationally optimal block in the same cylinder.
1127 * 3) allocate the next available block on the block rotor for the
1128 * specified cylinder group.
1129 * Note that this routine only allocates fs_bsize blocks; these
1130 * blocks may be fragmented by the routine that allocates them.
1131 */
1132 static ufs_daddr_t
1133 ffs_alloccgblk(ip, bp, bpref)
1134 struct inode *ip;
1135 struct buf *bp;
1136 ufs_daddr_t bpref;
1137 {
1138 struct cg *cgp;
1139 ufs_daddr_t bno, blkno;
1140 int cylno, pos, delta;
1141 short *cylbp;
1142 int i;
1143 struct fs *fs = ip->i_fs;
1144 #ifdef FFS_EI
1145 const int needswap = UFS_FSNEEDSWAP(fs);
1146 #endif
1147
1148 cgp = (struct cg *)bp->b_data;
1149 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1150 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1151 goto norot;
1152 }
1153 bpref = blknum(fs, bpref);
1154 bpref = dtogd(fs, bpref);
1155 /*
1156 * if the requested block is available, use it
1157 */
1158 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1159 fragstoblks(fs, bpref))) {
1160 bno = bpref;
1161 goto gotit;
1162 }
1163 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1164 /*
1165 * Block layout information is not available.
1166 * Leaving bpref unchanged means we take the
1167 * next available free block following the one
1168 * we just allocated. Hopefully this will at
1169 * least hit a track cache on drives of unknown
1170 * geometry (e.g. SCSI).
1171 */
1172 goto norot;
1173 }
1174 /*
1175 * check for a block available on the same cylinder
1176 */
1177 cylno = cbtocylno(fs, bpref);
1178 if (cg_blktot(cgp, needswap)[cylno] == 0)
1179 goto norot;
1180 /*
1181 * check the summary information to see if a block is
1182 * available in the requested cylinder starting at the
1183 * requested rotational position and proceeding around.
1184 */
1185 cylbp = cg_blks(fs, cgp, cylno, needswap);
1186 pos = cbtorpos(fs, bpref);
1187 for (i = pos; i < fs->fs_nrpos; i++)
1188 if (ufs_rw16(cylbp[i], needswap) > 0)
1189 break;
1190 if (i == fs->fs_nrpos)
1191 for (i = 0; i < pos; i++)
1192 if (ufs_rw16(cylbp[i], needswap) > 0)
1193 break;
1194 if (ufs_rw16(cylbp[i], needswap) > 0) {
1195 /*
1196 * found a rotational position, now find the actual
1197 * block. A panic if none is actually there.
1198 */
1199 pos = cylno % fs->fs_cpc;
1200 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1201 if (fs_postbl(fs, pos)[i] == -1) {
1202 printf("pos = %d, i = %d, fs = %s\n",
1203 pos, i, fs->fs_fsmnt);
1204 panic("ffs_alloccgblk: cyl groups corrupted");
1205 }
1206 for (i = fs_postbl(fs, pos)[i];; ) {
1207 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1208 bno = blkstofrags(fs, (bno + i));
1209 goto gotit;
1210 }
1211 delta = fs_rotbl(fs)[i];
1212 if (delta <= 0 ||
1213 delta + i > fragstoblks(fs, fs->fs_fpg))
1214 break;
1215 i += delta;
1216 }
1217 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1218 panic("ffs_alloccgblk: can't find blk in cyl");
1219 }
1220 norot:
1221 /*
1222 * no blocks in the requested cylinder, so take next
1223 * available one in this cylinder group.
1224 */
1225 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1226 if (bno < 0)
1227 return (0);
1228 cgp->cg_rotor = ufs_rw32(bno, needswap);
1229 gotit:
1230 blkno = fragstoblks(fs, bno);
1231 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1232 ffs_clusteracct(fs, cgp, blkno, -1);
1233 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1234 fs->fs_cstotal.cs_nbfree--;
1235 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1236 cylno = cbtocylno(fs, bno);
1237 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1238 needswap);
1239 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1240 fs->fs_fmod = 1;
1241 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1242 if (DOINGSOFTDEP(ITOV(ip)))
1243 softdep_setup_blkmapdep(bp, fs, blkno);
1244 return (blkno);
1245 }
1246
1247 /*
1248 * Determine whether a cluster can be allocated.
1249 *
1250 * We do not currently check for optimal rotational layout if there
1251 * are multiple choices in the same cylinder group. Instead we just
1252 * take the first one that we find following bpref.
1253 */
1254 static ufs_daddr_t
1255 ffs_clusteralloc(ip, cg, bpref, len)
1256 struct inode *ip;
1257 int cg;
1258 ufs_daddr_t bpref;
1259 int len;
1260 {
1261 struct fs *fs;
1262 struct cg *cgp;
1263 struct buf *bp;
1264 int i, got, run, bno, bit, map;
1265 u_char *mapp;
1266 int32_t *lp;
1267
1268 fs = ip->i_fs;
1269 if (fs->fs_maxcluster[cg] < len)
1270 return (0);
1271 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1272 NOCRED, &bp))
1273 goto fail;
1274 cgp = (struct cg *)bp->b_data;
1275 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1276 goto fail;
1277 /*
1278 * Check to see if a cluster of the needed size (or bigger) is
1279 * available in this cylinder group.
1280 */
1281 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1282 for (i = len; i <= fs->fs_contigsumsize; i++)
1283 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1284 break;
1285 if (i > fs->fs_contigsumsize) {
1286 /*
1287 * This is the first time looking for a cluster in this
1288 * cylinder group. Update the cluster summary information
1289 * to reflect the true maximum sized cluster so that
1290 * future cluster allocation requests can avoid reading
1291 * the cylinder group map only to find no clusters.
1292 */
1293 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1294 for (i = len - 1; i > 0; i--)
1295 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1296 break;
1297 fs->fs_maxcluster[cg] = i;
1298 goto fail;
1299 }
1300 /*
1301 * Search the cluster map to find a big enough cluster.
1302 * We take the first one that we find, even if it is larger
1303 * than we need as we prefer to get one close to the previous
1304 * block allocation. We do not search before the current
1305 * preference point as we do not want to allocate a block
1306 * that is allocated before the previous one (as we will
1307 * then have to wait for another pass of the elevator
1308 * algorithm before it will be read). We prefer to fail and
1309 * be recalled to try an allocation in the next cylinder group.
1310 */
1311 if (dtog(fs, bpref) != cg)
1312 bpref = 0;
1313 else
1314 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1315 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1316 map = *mapp++;
1317 bit = 1 << (bpref % NBBY);
1318 for (run = 0, got = bpref;
1319 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1320 if ((map & bit) == 0) {
1321 run = 0;
1322 } else {
1323 run++;
1324 if (run == len)
1325 break;
1326 }
1327 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1328 bit <<= 1;
1329 } else {
1330 map = *mapp++;
1331 bit = 1;
1332 }
1333 }
1334 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1335 goto fail;
1336 /*
1337 * Allocate the cluster that we have found.
1338 */
1339 #ifdef DIAGNOSTIC
1340 for (i = 1; i <= len; i++)
1341 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1342 got - run + i))
1343 panic("ffs_clusteralloc: map mismatch");
1344 #endif
1345 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1346 if (dtog(fs, bno) != cg)
1347 panic("ffs_clusteralloc: allocated out of group");
1348 len = blkstofrags(fs, len);
1349 for (i = 0; i < len; i += fs->fs_frag)
1350 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1351 panic("ffs_clusteralloc: lost block");
1352 bdwrite(bp);
1353 return (bno);
1354
1355 fail:
1356 brelse(bp);
1357 return (0);
1358 }
1359
1360 /*
1361 * Determine whether an inode can be allocated.
1362 *
1363 * Check to see if an inode is available, and if it is,
1364 * allocate it using the following policy:
1365 * 1) allocate the requested inode.
1366 * 2) allocate the next available inode after the requested
1367 * inode in the specified cylinder group.
1368 */
1369 static ufs_daddr_t
1370 ffs_nodealloccg(ip, cg, ipref, mode)
1371 struct inode *ip;
1372 int cg;
1373 ufs_daddr_t ipref;
1374 int mode;
1375 {
1376 struct cg *cgp;
1377 struct buf *bp;
1378 int error, start, len, loc, map, i;
1379 struct fs *fs = ip->i_fs;
1380 #ifdef FFS_EI
1381 const int needswap = UFS_FSNEEDSWAP(fs);
1382 #endif
1383
1384 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1385 return (0);
1386 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1387 (int)fs->fs_cgsize, NOCRED, &bp);
1388 if (error) {
1389 brelse(bp);
1390 return (0);
1391 }
1392 cgp = (struct cg *)bp->b_data;
1393 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1394 brelse(bp);
1395 return (0);
1396 }
1397 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1398 if (ipref) {
1399 ipref %= fs->fs_ipg;
1400 if (isclr(cg_inosused(cgp, needswap), ipref))
1401 goto gotit;
1402 }
1403 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1404 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1405 NBBY);
1406 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1407 if (loc == 0) {
1408 len = start + 1;
1409 start = 0;
1410 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1411 if (loc == 0) {
1412 printf("cg = %d, irotor = %d, fs = %s\n",
1413 cg, ufs_rw32(cgp->cg_irotor, needswap),
1414 fs->fs_fsmnt);
1415 panic("ffs_nodealloccg: map corrupted");
1416 /* NOTREACHED */
1417 }
1418 }
1419 i = start + len - loc;
1420 map = cg_inosused(cgp, needswap)[i];
1421 ipref = i * NBBY;
1422 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1423 if ((map & i) == 0) {
1424 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1425 goto gotit;
1426 }
1427 }
1428 printf("fs = %s\n", fs->fs_fsmnt);
1429 panic("ffs_nodealloccg: block not in map");
1430 /* NOTREACHED */
1431 gotit:
1432 if (DOINGSOFTDEP(ITOV(ip)))
1433 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1434 setbit(cg_inosused(cgp, needswap), ipref);
1435 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1436 fs->fs_cstotal.cs_nifree--;
1437 fs->fs_cs(fs, cg).cs_nifree--;
1438 fs->fs_fmod = 1;
1439 if ((mode & IFMT) == IFDIR) {
1440 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1441 fs->fs_cstotal.cs_ndir++;
1442 fs->fs_cs(fs, cg).cs_ndir++;
1443 }
1444 bdwrite(bp);
1445 return (cg * fs->fs_ipg + ipref);
1446 }
1447
1448 /*
1449 * Free a block or fragment.
1450 *
1451 * The specified block or fragment is placed back in the
1452 * free map. If a fragment is deallocated, a possible
1453 * block reassembly is checked.
1454 */
1455 void
1456 ffs_blkfree(ip, bno, size)
1457 struct inode *ip;
1458 ufs_daddr_t bno;
1459 long size;
1460 {
1461 struct cg *cgp;
1462 struct buf *bp;
1463 ufs_daddr_t blkno;
1464 int i, error, cg, blk, frags, bbase;
1465 struct fs *fs = ip->i_fs;
1466 const int needswap = UFS_FSNEEDSWAP(fs);
1467
1468 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1469 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1470 printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1471 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1472 panic("blkfree: bad size");
1473 }
1474 cg = dtog(fs, bno);
1475 if ((u_int)bno >= fs->fs_size) {
1476 printf("bad block %d, ino %d\n", bno, ip->i_number);
1477 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1478 return;
1479 }
1480 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1481 (int)fs->fs_cgsize, NOCRED, &bp);
1482 if (error) {
1483 brelse(bp);
1484 return;
1485 }
1486 cgp = (struct cg *)bp->b_data;
1487 if (!cg_chkmagic(cgp, needswap)) {
1488 brelse(bp);
1489 return;
1490 }
1491 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1492 bno = dtogd(fs, bno);
1493 if (size == fs->fs_bsize) {
1494 blkno = fragstoblks(fs, bno);
1495 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1496 printf("dev = 0x%x, block = %d, fs = %s\n",
1497 ip->i_dev, bno, fs->fs_fsmnt);
1498 panic("blkfree: freeing free block");
1499 }
1500 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1501 ffs_clusteracct(fs, cgp, blkno, 1);
1502 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1503 fs->fs_cstotal.cs_nbfree++;
1504 fs->fs_cs(fs, cg).cs_nbfree++;
1505 i = cbtocylno(fs, bno);
1506 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1507 needswap);
1508 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1509 } else {
1510 bbase = bno - fragnum(fs, bno);
1511 /*
1512 * decrement the counts associated with the old frags
1513 */
1514 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1515 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1516 /*
1517 * deallocate the fragment
1518 */
1519 frags = numfrags(fs, size);
1520 for (i = 0; i < frags; i++) {
1521 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1522 printf("dev = 0x%x, block = %d, fs = %s\n",
1523 ip->i_dev, bno + i, fs->fs_fsmnt);
1524 panic("blkfree: freeing free frag");
1525 }
1526 setbit(cg_blksfree(cgp, needswap), bno + i);
1527 }
1528 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1529 fs->fs_cstotal.cs_nffree += i;
1530 fs->fs_cs(fs, cg).cs_nffree += i;
1531 /*
1532 * add back in counts associated with the new frags
1533 */
1534 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1535 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1536 /*
1537 * if a complete block has been reassembled, account for it
1538 */
1539 blkno = fragstoblks(fs, bbase);
1540 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1541 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1542 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1543 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1544 ffs_clusteracct(fs, cgp, blkno, 1);
1545 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1546 fs->fs_cstotal.cs_nbfree++;
1547 fs->fs_cs(fs, cg).cs_nbfree++;
1548 i = cbtocylno(fs, bbase);
1549 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1550 bbase)], 1,
1551 needswap);
1552 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1553 }
1554 }
1555 fs->fs_fmod = 1;
1556 bdwrite(bp);
1557 }
1558
1559 #if defined(DIAGNOSTIC) || defined(DEBUG)
1560 /*
1561 * Verify allocation of a block or fragment. Returns true if block or
1562 * fragment is allocated, false if it is free.
1563 */
1564 static int
1565 ffs_checkblk(ip, bno, size)
1566 struct inode *ip;
1567 ufs_daddr_t bno;
1568 long size;
1569 {
1570 struct fs *fs;
1571 struct cg *cgp;
1572 struct buf *bp;
1573 int i, error, frags, free;
1574
1575 fs = ip->i_fs;
1576 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1577 printf("bsize = %d, size = %ld, fs = %s\n",
1578 fs->fs_bsize, size, fs->fs_fsmnt);
1579 panic("checkblk: bad size");
1580 }
1581 if ((u_int)bno >= fs->fs_size)
1582 panic("checkblk: bad block %d", bno);
1583 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1584 (int)fs->fs_cgsize, NOCRED, &bp);
1585 if (error) {
1586 brelse(bp);
1587 return 0;
1588 }
1589 cgp = (struct cg *)bp->b_data;
1590 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1591 brelse(bp);
1592 return 0;
1593 }
1594 bno = dtogd(fs, bno);
1595 if (size == fs->fs_bsize) {
1596 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1597 fragstoblks(fs, bno));
1598 } else {
1599 frags = numfrags(fs, size);
1600 for (free = 0, i = 0; i < frags; i++)
1601 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1602 free++;
1603 if (free != 0 && free != frags)
1604 panic("checkblk: partially free fragment");
1605 }
1606 brelse(bp);
1607 return (!free);
1608 }
1609 #endif /* DIAGNOSTIC */
1610
1611 /*
1612 * Free an inode.
1613 */
1614 int
1615 ffs_vfree(v)
1616 void *v;
1617 {
1618 struct vop_vfree_args /* {
1619 struct vnode *a_pvp;
1620 ino_t a_ino;
1621 int a_mode;
1622 } */ *ap = v;
1623
1624 if (DOINGSOFTDEP(ap->a_pvp)) {
1625 softdep_freefile(ap);
1626 return (0);
1627 }
1628 return (ffs_freefile(ap));
1629 }
1630
1631 /*
1632 * Do the actual free operation.
1633 * The specified inode is placed back in the free map.
1634 */
1635 int
1636 ffs_freefile(v)
1637 void *v;
1638 {
1639 struct vop_vfree_args /* {
1640 struct vnode *a_pvp;
1641 ino_t a_ino;
1642 int a_mode;
1643 } */ *ap = v;
1644 struct cg *cgp;
1645 struct inode *pip = VTOI(ap->a_pvp);
1646 struct fs *fs = pip->i_fs;
1647 ino_t ino = ap->a_ino;
1648 struct buf *bp;
1649 int error, cg;
1650 #ifdef FFS_EI
1651 const int needswap = UFS_FSNEEDSWAP(fs);
1652 #endif
1653
1654 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1655 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1656 pip->i_dev, ino, fs->fs_fsmnt);
1657 cg = ino_to_cg(fs, ino);
1658 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1659 (int)fs->fs_cgsize, NOCRED, &bp);
1660 if (error) {
1661 brelse(bp);
1662 return (error);
1663 }
1664 cgp = (struct cg *)bp->b_data;
1665 if (!cg_chkmagic(cgp, needswap)) {
1666 brelse(bp);
1667 return (0);
1668 }
1669 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1670 ino %= fs->fs_ipg;
1671 if (isclr(cg_inosused(cgp, needswap), ino)) {
1672 printf("dev = 0x%x, ino = %d, fs = %s\n",
1673 pip->i_dev, ino, fs->fs_fsmnt);
1674 if (fs->fs_ronly == 0)
1675 panic("ifree: freeing free inode");
1676 }
1677 clrbit(cg_inosused(cgp, needswap), ino);
1678 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1679 cgp->cg_irotor = ufs_rw32(ino, needswap);
1680 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1681 fs->fs_cstotal.cs_nifree++;
1682 fs->fs_cs(fs, cg).cs_nifree++;
1683 if ((ap->a_mode & IFMT) == IFDIR) {
1684 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1685 fs->fs_cstotal.cs_ndir--;
1686 fs->fs_cs(fs, cg).cs_ndir--;
1687 }
1688 fs->fs_fmod = 1;
1689 bdwrite(bp);
1690 return (0);
1691 }
1692
1693 /*
1694 * Find a block of the specified size in the specified cylinder group.
1695 *
1696 * It is a panic if a request is made to find a block if none are
1697 * available.
1698 */
1699 static ufs_daddr_t
1700 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1701 struct fs *fs;
1702 struct cg *cgp;
1703 ufs_daddr_t bpref;
1704 int allocsiz;
1705 {
1706 ufs_daddr_t bno;
1707 int start, len, loc, i;
1708 int blk, field, subfield, pos;
1709 int ostart, olen;
1710 #ifdef FFS_EI
1711 const int needswap = UFS_FSNEEDSWAP(fs);
1712 #endif
1713
1714 /*
1715 * find the fragment by searching through the free block
1716 * map for an appropriate bit pattern
1717 */
1718 if (bpref)
1719 start = dtogd(fs, bpref) / NBBY;
1720 else
1721 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1722 len = howmany(fs->fs_fpg, NBBY) - start;
1723 ostart = start;
1724 olen = len;
1725 loc = scanc((u_int)len,
1726 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1727 (const u_char *)fragtbl[fs->fs_frag],
1728 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1729 if (loc == 0) {
1730 len = start + 1;
1731 start = 0;
1732 loc = scanc((u_int)len,
1733 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1734 (const u_char *)fragtbl[fs->fs_frag],
1735 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1736 if (loc == 0) {
1737 printf("start = %d, len = %d, fs = %s\n",
1738 ostart, olen, fs->fs_fsmnt);
1739 printf("offset=%d %ld\n",
1740 ufs_rw32(cgp->cg_freeoff, needswap),
1741 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1742 panic("ffs_alloccg: map corrupted");
1743 /* NOTREACHED */
1744 }
1745 }
1746 bno = (start + len - loc) * NBBY;
1747 cgp->cg_frotor = ufs_rw32(bno, needswap);
1748 /*
1749 * found the byte in the map
1750 * sift through the bits to find the selected frag
1751 */
1752 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1753 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1754 blk <<= 1;
1755 field = around[allocsiz];
1756 subfield = inside[allocsiz];
1757 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1758 if ((blk & field) == subfield)
1759 return (bno + pos);
1760 field <<= 1;
1761 subfield <<= 1;
1762 }
1763 }
1764 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1765 panic("ffs_alloccg: block not in map");
1766 return (-1);
1767 }
1768
1769 /*
1770 * Update the cluster map because of an allocation or free.
1771 *
1772 * Cnt == 1 means free; cnt == -1 means allocating.
1773 */
1774 void
1775 ffs_clusteracct(fs, cgp, blkno, cnt)
1776 struct fs *fs;
1777 struct cg *cgp;
1778 ufs_daddr_t blkno;
1779 int cnt;
1780 {
1781 int32_t *sump;
1782 int32_t *lp;
1783 u_char *freemapp, *mapp;
1784 int i, start, end, forw, back, map, bit;
1785 #ifdef FFS_EI
1786 const int needswap = UFS_FSNEEDSWAP(fs);
1787 #endif
1788
1789 if (fs->fs_contigsumsize <= 0)
1790 return;
1791 freemapp = cg_clustersfree(cgp, needswap);
1792 sump = cg_clustersum(cgp, needswap);
1793 /*
1794 * Allocate or clear the actual block.
1795 */
1796 if (cnt > 0)
1797 setbit(freemapp, blkno);
1798 else
1799 clrbit(freemapp, blkno);
1800 /*
1801 * Find the size of the cluster going forward.
1802 */
1803 start = blkno + 1;
1804 end = start + fs->fs_contigsumsize;
1805 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1806 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1807 mapp = &freemapp[start / NBBY];
1808 map = *mapp++;
1809 bit = 1 << (start % NBBY);
1810 for (i = start; i < end; i++) {
1811 if ((map & bit) == 0)
1812 break;
1813 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1814 bit <<= 1;
1815 } else {
1816 map = *mapp++;
1817 bit = 1;
1818 }
1819 }
1820 forw = i - start;
1821 /*
1822 * Find the size of the cluster going backward.
1823 */
1824 start = blkno - 1;
1825 end = start - fs->fs_contigsumsize;
1826 if (end < 0)
1827 end = -1;
1828 mapp = &freemapp[start / NBBY];
1829 map = *mapp--;
1830 bit = 1 << (start % NBBY);
1831 for (i = start; i > end; i--) {
1832 if ((map & bit) == 0)
1833 break;
1834 if ((i & (NBBY - 1)) != 0) {
1835 bit >>= 1;
1836 } else {
1837 map = *mapp--;
1838 bit = 1 << (NBBY - 1);
1839 }
1840 }
1841 back = start - i;
1842 /*
1843 * Account for old cluster and the possibly new forward and
1844 * back clusters.
1845 */
1846 i = back + forw + 1;
1847 if (i > fs->fs_contigsumsize)
1848 i = fs->fs_contigsumsize;
1849 ufs_add32(sump[i], cnt, needswap);
1850 if (back > 0)
1851 ufs_add32(sump[back], -cnt, needswap);
1852 if (forw > 0)
1853 ufs_add32(sump[forw], -cnt, needswap);
1854
1855 /*
1856 * Update cluster summary information.
1857 */
1858 lp = &sump[fs->fs_contigsumsize];
1859 for (i = fs->fs_contigsumsize; i > 0; i--)
1860 if (ufs_rw32(*lp--, needswap) > 0)
1861 break;
1862 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1863 }
1864
1865 /*
1866 * Fserr prints the name of a file system with an error diagnostic.
1867 *
1868 * The form of the error message is:
1869 * fs: error message
1870 */
1871 static void
1872 ffs_fserr(fs, uid, cp)
1873 struct fs *fs;
1874 u_int uid;
1875 char *cp;
1876 {
1877
1878 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1879 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1880 }
1881