ffs_alloc.c revision 1.52 1 /* $NetBSD: ffs_alloc.c,v 1.52 2001/09/19 01:38:16 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL_OPT)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <ufs/ufs/quota.h>
53 #include <ufs/ufs/ufsmount.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufs_extern.h>
56 #include <ufs/ufs/ufs_bswap.h>
57
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60
61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
62 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
63 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
64 static ino_t ffs_dirpref __P((struct inode *));
65 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
66 static void ffs_fserr __P((struct fs *, u_int, char *));
67 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
68 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
69 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
70 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
71 ufs_daddr_t, int));
72 #if defined(DIAGNOSTIC) || defined(DEBUG)
73 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
74 #endif
75
76 /* if 1, changes in optimalization strategy are logged */
77 int ffs_log_changeopt = 0;
78
79 /* in ffs_tables.c */
80 extern const int inside[], around[];
81 extern const u_char * const fragtbl[];
82
83 /*
84 * Allocate a block in the file system.
85 *
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following hierarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
98 * inode for the file.
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
101 */
102 int
103 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
104 struct inode *ip;
105 ufs_daddr_t lbn, bpref;
106 int size;
107 struct ucred *cred;
108 ufs_daddr_t *bnp;
109 {
110 struct fs *fs = ip->i_fs;
111 ufs_daddr_t bno;
112 int cg;
113 #ifdef QUOTA
114 int error;
115 #endif
116
117 #ifdef UVM_PAGE_TRKOWN
118 if (ITOV(ip)->v_type == VREG &&
119 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
120 struct vm_page *pg;
121 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
122 voff_t off = trunc_page(lblktosize(fs, lbn));
123 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
124
125 simple_lock(&uobj->vmobjlock);
126 while (off < endoff) {
127 pg = uvm_pagelookup(uobj, off);
128 KASSERT(pg != NULL);
129 KASSERT(pg->owner == curproc->p_pid);
130 KASSERT((pg->flags & PG_CLEAN) == 0);
131 off += PAGE_SIZE;
132 }
133 simple_unlock(&uobj->vmobjlock);
134 }
135 #endif
136
137 *bnp = 0;
138 #ifdef DIAGNOSTIC
139 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
140 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
141 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
142 panic("ffs_alloc: bad size");
143 }
144 if (cred == NOCRED)
145 panic("ffs_alloc: missing credential\n");
146 #endif /* DIAGNOSTIC */
147 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
148 goto nospace;
149 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
150 goto nospace;
151 #ifdef QUOTA
152 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
153 return (error);
154 #endif
155 if (bpref >= fs->fs_size)
156 bpref = 0;
157 if (bpref == 0)
158 cg = ino_to_cg(fs, ip->i_number);
159 else
160 cg = dtog(fs, bpref);
161 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
162 ffs_alloccg);
163 if (bno > 0) {
164 ip->i_ffs_blocks += btodb(size);
165 ip->i_flag |= IN_CHANGE | IN_UPDATE;
166 *bnp = bno;
167 return (0);
168 }
169 #ifdef QUOTA
170 /*
171 * Restore user's disk quota because allocation failed.
172 */
173 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
174 #endif
175 nospace:
176 ffs_fserr(fs, cred->cr_uid, "file system full");
177 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
178 return (ENOSPC);
179 }
180
181 /*
182 * Reallocate a fragment to a bigger size
183 *
184 * The number and size of the old block is given, and a preference
185 * and new size is also specified. The allocator attempts to extend
186 * the original block. Failing that, the regular block allocator is
187 * invoked to get an appropriate block.
188 */
189 int
190 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
191 struct inode *ip;
192 ufs_daddr_t lbprev;
193 ufs_daddr_t bpref;
194 int osize, nsize;
195 struct ucred *cred;
196 struct buf **bpp;
197 ufs_daddr_t *blknop;
198 {
199 struct fs *fs = ip->i_fs;
200 struct buf *bp;
201 int cg, request, error;
202 ufs_daddr_t bprev, bno;
203
204 #ifdef UVM_PAGE_TRKOWN
205 if (ITOV(ip)->v_type == VREG) {
206 struct vm_page *pg;
207 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
208 voff_t off = trunc_page(lblktosize(fs, lbprev));
209 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
210
211 simple_lock(&uobj->vmobjlock);
212 while (off < endoff) {
213 pg = uvm_pagelookup(uobj, off);
214 KASSERT(pg != NULL);
215 KASSERT(pg->owner == curproc->p_pid);
216 KASSERT((pg->flags & PG_CLEAN) == 0);
217 off += PAGE_SIZE;
218 }
219 simple_unlock(&uobj->vmobjlock);
220 }
221 #endif
222
223 #ifdef DIAGNOSTIC
224 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
225 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
226 printf(
227 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
228 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
229 panic("ffs_realloccg: bad size");
230 }
231 if (cred == NOCRED)
232 panic("ffs_realloccg: missing credential\n");
233 #endif /* DIAGNOSTIC */
234 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
235 goto nospace;
236 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
237 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
238 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
239 panic("ffs_realloccg: bad bprev");
240 }
241 /*
242 * Allocate the extra space in the buffer.
243 */
244 if (bpp != NULL &&
245 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
246 brelse(bp);
247 return (error);
248 }
249 #ifdef QUOTA
250 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
251 if (bpp != NULL) {
252 brelse(bp);
253 }
254 return (error);
255 }
256 #endif
257 /*
258 * Check for extension in the existing location.
259 */
260 cg = dtog(fs, bprev);
261 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
262 ip->i_ffs_blocks += btodb(nsize - osize);
263 ip->i_flag |= IN_CHANGE | IN_UPDATE;
264
265 if (bpp != NULL) {
266 if (bp->b_blkno != fsbtodb(fs, bno))
267 panic("bad blockno");
268 allocbuf(bp, nsize);
269 bp->b_flags |= B_DONE;
270 memset(bp->b_data + osize, 0, nsize - osize);
271 *bpp = bp;
272 }
273 if (blknop != NULL) {
274 *blknop = bno;
275 }
276 return (0);
277 }
278 /*
279 * Allocate a new disk location.
280 */
281 if (bpref >= fs->fs_size)
282 bpref = 0;
283 switch ((int)fs->fs_optim) {
284 case FS_OPTSPACE:
285 /*
286 * Allocate an exact sized fragment. Although this makes
287 * best use of space, we will waste time relocating it if
288 * the file continues to grow. If the fragmentation is
289 * less than half of the minimum free reserve, we choose
290 * to begin optimizing for time.
291 */
292 request = nsize;
293 if (fs->fs_minfree < 5 ||
294 fs->fs_cstotal.cs_nffree >
295 fs->fs_dsize * fs->fs_minfree / (2 * 100))
296 break;
297
298 if (ffs_log_changeopt) {
299 log(LOG_NOTICE,
300 "%s: optimization changed from SPACE to TIME\n",
301 fs->fs_fsmnt);
302 }
303
304 fs->fs_optim = FS_OPTTIME;
305 break;
306 case FS_OPTTIME:
307 /*
308 * At this point we have discovered a file that is trying to
309 * grow a small fragment to a larger fragment. To save time,
310 * we allocate a full sized block, then free the unused portion.
311 * If the file continues to grow, the `ffs_fragextend' call
312 * above will be able to grow it in place without further
313 * copying. If aberrant programs cause disk fragmentation to
314 * grow within 2% of the free reserve, we choose to begin
315 * optimizing for space.
316 */
317 request = fs->fs_bsize;
318 if (fs->fs_cstotal.cs_nffree <
319 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
320 break;
321
322 if (ffs_log_changeopt) {
323 log(LOG_NOTICE,
324 "%s: optimization changed from TIME to SPACE\n",
325 fs->fs_fsmnt);
326 }
327
328 fs->fs_optim = FS_OPTSPACE;
329 break;
330 default:
331 printf("dev = 0x%x, optim = %d, fs = %s\n",
332 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
333 panic("ffs_realloccg: bad optim");
334 /* NOTREACHED */
335 }
336 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
337 ffs_alloccg);
338 if (bno > 0) {
339 if (!DOINGSOFTDEP(ITOV(ip)))
340 ffs_blkfree(ip, bprev, (long)osize);
341 if (nsize < request)
342 ffs_blkfree(ip, bno + numfrags(fs, nsize),
343 (long)(request - nsize));
344 ip->i_ffs_blocks += btodb(nsize - osize);
345 ip->i_flag |= IN_CHANGE | IN_UPDATE;
346 if (bpp != NULL) {
347 bp->b_blkno = fsbtodb(fs, bno);
348 allocbuf(bp, nsize);
349 bp->b_flags |= B_DONE;
350 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
351 *bpp = bp;
352 }
353 if (blknop != NULL) {
354 *blknop = bno;
355 }
356 return (0);
357 }
358 #ifdef QUOTA
359 /*
360 * Restore user's disk quota because allocation failed.
361 */
362 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
363 #endif
364 if (bpp != NULL) {
365 brelse(bp);
366 }
367
368 nospace:
369 /*
370 * no space available
371 */
372 ffs_fserr(fs, cred->cr_uid, "file system full");
373 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
374 return (ENOSPC);
375 }
376
377 /*
378 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
379 *
380 * The vnode and an array of buffer pointers for a range of sequential
381 * logical blocks to be made contiguous is given. The allocator attempts
382 * to find a range of sequential blocks starting as close as possible to
383 * an fs_rotdelay offset from the end of the allocation for the logical
384 * block immediately preceding the current range. If successful, the
385 * physical block numbers in the buffer pointers and in the inode are
386 * changed to reflect the new allocation. If unsuccessful, the allocation
387 * is left unchanged. The success in doing the reallocation is returned.
388 * Note that the error return is not reflected back to the user. Rather
389 * the previous block allocation will be used.
390 */
391 #ifdef DEBUG
392 #include <sys/sysctl.h>
393 int prtrealloc = 0;
394 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
395 #endif
396
397 int doasyncfree = 1;
398
399 int
400 ffs_reallocblks(v)
401 void *v;
402 {
403 struct vop_reallocblks_args /* {
404 struct vnode *a_vp;
405 struct cluster_save *a_buflist;
406 } */ *ap = v;
407 struct fs *fs;
408 struct inode *ip;
409 struct vnode *vp;
410 struct buf *sbp, *ebp;
411 ufs_daddr_t *bap, *sbap, *ebap = NULL;
412 struct cluster_save *buflist;
413 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
414 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
415 int i, len, start_lvl, end_lvl, pref, ssize;
416
417 /* XXXUBC don't reallocblks for now */
418 return ENOSPC;
419
420 vp = ap->a_vp;
421 ip = VTOI(vp);
422 fs = ip->i_fs;
423 if (fs->fs_contigsumsize <= 0)
424 return (ENOSPC);
425 buflist = ap->a_buflist;
426 len = buflist->bs_nchildren;
427 start_lbn = buflist->bs_children[0]->b_lblkno;
428 end_lbn = start_lbn + len - 1;
429 #ifdef DIAGNOSTIC
430 for (i = 0; i < len; i++)
431 if (!ffs_checkblk(ip,
432 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
433 panic("ffs_reallocblks: unallocated block 1");
434 for (i = 1; i < len; i++)
435 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
436 panic("ffs_reallocblks: non-logical cluster");
437 blkno = buflist->bs_children[0]->b_blkno;
438 ssize = fsbtodb(fs, fs->fs_frag);
439 for (i = 1; i < len - 1; i++)
440 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
441 panic("ffs_reallocblks: non-physical cluster %d", i);
442 #endif
443 /*
444 * If the latest allocation is in a new cylinder group, assume that
445 * the filesystem has decided to move and do not force it back to
446 * the previous cylinder group.
447 */
448 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
449 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
450 return (ENOSPC);
451 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
452 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
453 return (ENOSPC);
454 /*
455 * Get the starting offset and block map for the first block.
456 */
457 if (start_lvl == 0) {
458 sbap = &ip->i_ffs_db[0];
459 soff = start_lbn;
460 } else {
461 idp = &start_ap[start_lvl - 1];
462 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
463 brelse(sbp);
464 return (ENOSPC);
465 }
466 sbap = (ufs_daddr_t *)sbp->b_data;
467 soff = idp->in_off;
468 }
469 /*
470 * Find the preferred location for the cluster.
471 */
472 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
473 /*
474 * If the block range spans two block maps, get the second map.
475 */
476 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
477 ssize = len;
478 } else {
479 #ifdef DIAGNOSTIC
480 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
481 panic("ffs_reallocblk: start == end");
482 #endif
483 ssize = len - (idp->in_off + 1);
484 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
485 goto fail;
486 ebap = (ufs_daddr_t *)ebp->b_data;
487 }
488 /*
489 * Search the block map looking for an allocation of the desired size.
490 */
491 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
492 len, ffs_clusteralloc)) == 0)
493 goto fail;
494 /*
495 * We have found a new contiguous block.
496 *
497 * First we have to replace the old block pointers with the new
498 * block pointers in the inode and indirect blocks associated
499 * with the file.
500 */
501 #ifdef DEBUG
502 if (prtrealloc)
503 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
504 start_lbn, end_lbn);
505 #endif
506 blkno = newblk;
507 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
508 ufs_daddr_t ba;
509
510 if (i == ssize) {
511 bap = ebap;
512 soff = -i;
513 }
514 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
515 #ifdef DIAGNOSTIC
516 if (!ffs_checkblk(ip,
517 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
518 panic("ffs_reallocblks: unallocated block 2");
519 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
520 panic("ffs_reallocblks: alloc mismatch");
521 #endif
522 #ifdef DEBUG
523 if (prtrealloc)
524 printf(" %d,", ba);
525 #endif
526 if (DOINGSOFTDEP(vp)) {
527 if (sbap == &ip->i_ffs_db[0] && i < ssize)
528 softdep_setup_allocdirect(ip, start_lbn + i,
529 blkno, ba, fs->fs_bsize, fs->fs_bsize,
530 buflist->bs_children[i]);
531 else
532 softdep_setup_allocindir_page(ip, start_lbn + i,
533 i < ssize ? sbp : ebp, soff + i, blkno,
534 ba, buflist->bs_children[i]);
535 }
536 *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
537 }
538 /*
539 * Next we must write out the modified inode and indirect blocks.
540 * For strict correctness, the writes should be synchronous since
541 * the old block values may have been written to disk. In practise
542 * they are almost never written, but if we are concerned about
543 * strict correctness, the `doasyncfree' flag should be set to zero.
544 *
545 * The test on `doasyncfree' should be changed to test a flag
546 * that shows whether the associated buffers and inodes have
547 * been written. The flag should be set when the cluster is
548 * started and cleared whenever the buffer or inode is flushed.
549 * We can then check below to see if it is set, and do the
550 * synchronous write only when it has been cleared.
551 */
552 if (sbap != &ip->i_ffs_db[0]) {
553 if (doasyncfree)
554 bdwrite(sbp);
555 else
556 bwrite(sbp);
557 } else {
558 ip->i_flag |= IN_CHANGE | IN_UPDATE;
559 if (!doasyncfree)
560 VOP_UPDATE(vp, NULL, NULL, 1);
561 }
562 if (ssize < len) {
563 if (doasyncfree)
564 bdwrite(ebp);
565 else
566 bwrite(ebp);
567 }
568 /*
569 * Last, free the old blocks and assign the new blocks to the buffers.
570 */
571 #ifdef DEBUG
572 if (prtrealloc)
573 printf("\n\tnew:");
574 #endif
575 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
576 if (!DOINGSOFTDEP(vp))
577 ffs_blkfree(ip,
578 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
579 fs->fs_bsize);
580 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
581 #ifdef DEBUG
582 if (!ffs_checkblk(ip,
583 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
584 panic("ffs_reallocblks: unallocated block 3");
585 if (prtrealloc)
586 printf(" %d,", blkno);
587 #endif
588 }
589 #ifdef DEBUG
590 if (prtrealloc) {
591 prtrealloc--;
592 printf("\n");
593 }
594 #endif
595 return (0);
596
597 fail:
598 if (ssize < len)
599 brelse(ebp);
600 if (sbap != &ip->i_ffs_db[0])
601 brelse(sbp);
602 return (ENOSPC);
603 }
604
605 /*
606 * Allocate an inode in the file system.
607 *
608 * If allocating a directory, use ffs_dirpref to select the inode.
609 * If allocating in a directory, the following hierarchy is followed:
610 * 1) allocate the preferred inode.
611 * 2) allocate an inode in the same cylinder group.
612 * 3) quadradically rehash into other cylinder groups, until an
613 * available inode is located.
614 * If no inode preference is given the following hierarchy is used
615 * to allocate an inode:
616 * 1) allocate an inode in cylinder group 0.
617 * 2) quadradically rehash into other cylinder groups, until an
618 * available inode is located.
619 */
620 int
621 ffs_valloc(v)
622 void *v;
623 {
624 struct vop_valloc_args /* {
625 struct vnode *a_pvp;
626 int a_mode;
627 struct ucred *a_cred;
628 struct vnode **a_vpp;
629 } */ *ap = v;
630 struct vnode *pvp = ap->a_pvp;
631 struct inode *pip;
632 struct fs *fs;
633 struct inode *ip;
634 mode_t mode = ap->a_mode;
635 ino_t ino, ipref;
636 int cg, error;
637
638 *ap->a_vpp = NULL;
639 pip = VTOI(pvp);
640 fs = pip->i_fs;
641 if (fs->fs_cstotal.cs_nifree == 0)
642 goto noinodes;
643
644 if ((mode & IFMT) == IFDIR)
645 ipref = ffs_dirpref(pip);
646 else
647 ipref = pip->i_number;
648 if (ipref >= fs->fs_ncg * fs->fs_ipg)
649 ipref = 0;
650 cg = ino_to_cg(fs, ipref);
651 /*
652 * Track number of dirs created one after another
653 * in a same cg without intervening by files.
654 */
655 if ((mode & IFMT) == IFDIR) {
656 if (fs->fs_contigdirs[cg] < 65535)
657 fs->fs_contigdirs[cg]++;
658 } else {
659 if (fs->fs_contigdirs[cg] > 0)
660 fs->fs_contigdirs[cg]--;
661 }
662 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
663 if (ino == 0)
664 goto noinodes;
665 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
666 if (error) {
667 VOP_VFREE(pvp, ino, mode);
668 return (error);
669 }
670 ip = VTOI(*ap->a_vpp);
671 if (ip->i_ffs_mode) {
672 printf("mode = 0%o, inum = %d, fs = %s\n",
673 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
674 panic("ffs_valloc: dup alloc");
675 }
676 if (ip->i_ffs_blocks) { /* XXX */
677 printf("free inode %s/%d had %d blocks\n",
678 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
679 ip->i_ffs_blocks = 0;
680 }
681 ip->i_ffs_flags = 0;
682 /*
683 * Set up a new generation number for this inode.
684 */
685 ip->i_ffs_gen++;
686 return (0);
687 noinodes:
688 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
689 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
690 return (ENOSPC);
691 }
692
693 /*
694 * Find a cylinder group in which to place a directory.
695 *
696 * The policy implemented by this algorithm is to allocate a
697 * directory inode in the same cylinder group as its parent
698 * directory, but also to reserve space for its files inodes
699 * and data. Restrict the number of directories which may be
700 * allocated one after another in the same cylinder group
701 * without intervening allocation of files.
702 *
703 * If we allocate a first level directory then force allocation
704 * in another cylinder group.
705 */
706 static ino_t
707 ffs_dirpref(pip)
708 struct inode *pip;
709 {
710 register struct fs *fs;
711 int cg, prefcg, dirsize, cgsize;
712 int avgifree, avgbfree, avgndir, curdirsize;
713 int minifree, minbfree, maxndir;
714 int mincg, minndir;
715 int maxcontigdirs;
716
717 fs = pip->i_fs;
718
719 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
720 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
721 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
722
723 /*
724 * Force allocation in another cg if creating a first level dir.
725 */
726 if (ITOV(pip)->v_flag & VROOT) {
727 prefcg = random() % fs->fs_ncg;
728 mincg = prefcg;
729 minndir = fs->fs_ipg;
730 for (cg = prefcg; cg < fs->fs_ncg; cg++)
731 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
732 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
733 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
734 mincg = cg;
735 minndir = fs->fs_cs(fs, cg).cs_ndir;
736 }
737 for (cg = 0; cg < prefcg; cg++)
738 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
739 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
740 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
741 mincg = cg;
742 minndir = fs->fs_cs(fs, cg).cs_ndir;
743 }
744 return ((ino_t)(fs->fs_ipg * mincg));
745 }
746
747 /*
748 * Count various limits which used for
749 * optimal allocation of a directory inode.
750 */
751 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
752 minifree = avgifree - fs->fs_ipg / 4;
753 if (minifree < 0)
754 minifree = 0;
755 minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
756 if (minbfree < 0)
757 minbfree = 0;
758 cgsize = fs->fs_fsize * fs->fs_fpg;
759 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
760 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
761 if (dirsize < curdirsize)
762 dirsize = curdirsize;
763 maxcontigdirs = min(cgsize / dirsize, 255);
764 if (fs->fs_avgfpdir > 0)
765 maxcontigdirs = min(maxcontigdirs,
766 fs->fs_ipg / fs->fs_avgfpdir);
767 if (maxcontigdirs == 0)
768 maxcontigdirs = 1;
769
770 /*
771 * Limit number of dirs in one cg and reserve space for
772 * regular files, but only if we have no deficit in
773 * inodes or space.
774 */
775 prefcg = ino_to_cg(fs, pip->i_number);
776 for (cg = prefcg; cg < fs->fs_ncg; cg++)
777 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
778 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
779 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
780 if (fs->fs_contigdirs[cg] < maxcontigdirs)
781 return ((ino_t)(fs->fs_ipg * cg));
782 }
783 for (cg = 0; cg < prefcg; cg++)
784 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
785 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
786 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
787 if (fs->fs_contigdirs[cg] < maxcontigdirs)
788 return ((ino_t)(fs->fs_ipg * cg));
789 }
790 /*
791 * This is a backstop when we are deficient in space.
792 */
793 for (cg = prefcg; cg < fs->fs_ncg; cg++)
794 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
795 return ((ino_t)(fs->fs_ipg * cg));
796 for (cg = 0; cg < prefcg; cg++)
797 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
798 break;
799 return ((ino_t)(fs->fs_ipg * cg));
800 }
801
802 /*
803 * Select the desired position for the next block in a file. The file is
804 * logically divided into sections. The first section is composed of the
805 * direct blocks. Each additional section contains fs_maxbpg blocks.
806 *
807 * If no blocks have been allocated in the first section, the policy is to
808 * request a block in the same cylinder group as the inode that describes
809 * the file. If no blocks have been allocated in any other section, the
810 * policy is to place the section in a cylinder group with a greater than
811 * average number of free blocks. An appropriate cylinder group is found
812 * by using a rotor that sweeps the cylinder groups. When a new group of
813 * blocks is needed, the sweep begins in the cylinder group following the
814 * cylinder group from which the previous allocation was made. The sweep
815 * continues until a cylinder group with greater than the average number
816 * of free blocks is found. If the allocation is for the first block in an
817 * indirect block, the information on the previous allocation is unavailable;
818 * here a best guess is made based upon the logical block number being
819 * allocated.
820 *
821 * If a section is already partially allocated, the policy is to
822 * contiguously allocate fs_maxcontig blocks. The end of one of these
823 * contiguous blocks and the beginning of the next is physically separated
824 * so that the disk head will be in transit between them for at least
825 * fs_rotdelay milliseconds. This is to allow time for the processor to
826 * schedule another I/O transfer.
827 */
828 ufs_daddr_t
829 ffs_blkpref(ip, lbn, indx, bap)
830 struct inode *ip;
831 ufs_daddr_t lbn;
832 int indx;
833 ufs_daddr_t *bap;
834 {
835 struct fs *fs;
836 int cg;
837 int avgbfree, startcg;
838 ufs_daddr_t nextblk;
839
840 fs = ip->i_fs;
841 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
842 if (lbn < NDADDR + NINDIR(fs)) {
843 cg = ino_to_cg(fs, ip->i_number);
844 return (fs->fs_fpg * cg + fs->fs_frag);
845 }
846 /*
847 * Find a cylinder with greater than average number of
848 * unused data blocks.
849 */
850 if (indx == 0 || bap[indx - 1] == 0)
851 startcg =
852 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
853 else
854 startcg = dtog(fs,
855 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
856 startcg %= fs->fs_ncg;
857 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
858 for (cg = startcg; cg < fs->fs_ncg; cg++)
859 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 return (fs->fs_fpg * cg + fs->fs_frag);
861 }
862 for (cg = 0; cg < startcg; cg++)
863 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
864 return (fs->fs_fpg * cg + fs->fs_frag);
865 }
866 return (0);
867 }
868 /*
869 * One or more previous blocks have been laid out. If less
870 * than fs_maxcontig previous blocks are contiguous, the
871 * next block is requested contiguously, otherwise it is
872 * requested rotationally delayed by fs_rotdelay milliseconds.
873 */
874 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
875 if (indx < fs->fs_maxcontig ||
876 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
877 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
878 return (nextblk);
879 if (fs->fs_rotdelay != 0)
880 /*
881 * Here we convert ms of delay to frags as:
882 * (frags) = (ms) * (rev/sec) * (sect/rev) /
883 * ((sect/frag) * (ms/sec))
884 * then round up to the next block.
885 */
886 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
887 (NSPF(fs) * 1000), fs->fs_frag);
888 return (nextblk);
889 }
890
891 /*
892 * Implement the cylinder overflow algorithm.
893 *
894 * The policy implemented by this algorithm is:
895 * 1) allocate the block in its requested cylinder group.
896 * 2) quadradically rehash on the cylinder group number.
897 * 3) brute force search for a free block.
898 */
899 /*VARARGS5*/
900 static u_long
901 ffs_hashalloc(ip, cg, pref, size, allocator)
902 struct inode *ip;
903 int cg;
904 long pref;
905 int size; /* size for data blocks, mode for inodes */
906 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
907 {
908 struct fs *fs;
909 long result;
910 int i, icg = cg;
911
912 fs = ip->i_fs;
913 /*
914 * 1: preferred cylinder group
915 */
916 result = (*allocator)(ip, cg, pref, size);
917 if (result)
918 return (result);
919 /*
920 * 2: quadratic rehash
921 */
922 for (i = 1; i < fs->fs_ncg; i *= 2) {
923 cg += i;
924 if (cg >= fs->fs_ncg)
925 cg -= fs->fs_ncg;
926 result = (*allocator)(ip, cg, 0, size);
927 if (result)
928 return (result);
929 }
930 /*
931 * 3: brute force search
932 * Note that we start at i == 2, since 0 was checked initially,
933 * and 1 is always checked in the quadratic rehash.
934 */
935 cg = (icg + 2) % fs->fs_ncg;
936 for (i = 2; i < fs->fs_ncg; i++) {
937 result = (*allocator)(ip, cg, 0, size);
938 if (result)
939 return (result);
940 cg++;
941 if (cg == fs->fs_ncg)
942 cg = 0;
943 }
944 return (0);
945 }
946
947 /*
948 * Determine whether a fragment can be extended.
949 *
950 * Check to see if the necessary fragments are available, and
951 * if they are, allocate them.
952 */
953 static ufs_daddr_t
954 ffs_fragextend(ip, cg, bprev, osize, nsize)
955 struct inode *ip;
956 int cg;
957 long bprev;
958 int osize, nsize;
959 {
960 struct fs *fs;
961 struct cg *cgp;
962 struct buf *bp;
963 long bno;
964 int frags, bbase;
965 int i, error;
966
967 fs = ip->i_fs;
968 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
969 return (0);
970 frags = numfrags(fs, nsize);
971 bbase = fragnum(fs, bprev);
972 if (bbase > fragnum(fs, (bprev + frags - 1))) {
973 /* cannot extend across a block boundary */
974 return (0);
975 }
976 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
977 (int)fs->fs_cgsize, NOCRED, &bp);
978 if (error) {
979 brelse(bp);
980 return (0);
981 }
982 cgp = (struct cg *)bp->b_data;
983 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
984 brelse(bp);
985 return (0);
986 }
987 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
988 bno = dtogd(fs, bprev);
989 for (i = numfrags(fs, osize); i < frags; i++)
990 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
991 brelse(bp);
992 return (0);
993 }
994 /*
995 * the current fragment can be extended
996 * deduct the count on fragment being extended into
997 * increase the count on the remaining fragment (if any)
998 * allocate the extended piece
999 */
1000 for (i = frags; i < fs->fs_frag - bbase; i++)
1001 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1002 break;
1003 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1004 if (i != frags)
1005 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1006 for (i = numfrags(fs, osize); i < frags; i++) {
1007 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1008 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1009 fs->fs_cstotal.cs_nffree--;
1010 fs->fs_cs(fs, cg).cs_nffree--;
1011 }
1012 fs->fs_fmod = 1;
1013 if (DOINGSOFTDEP(ITOV(ip)))
1014 softdep_setup_blkmapdep(bp, fs, bprev);
1015 bdwrite(bp);
1016 return (bprev);
1017 }
1018
1019 /*
1020 * Determine whether a block can be allocated.
1021 *
1022 * Check to see if a block of the appropriate size is available,
1023 * and if it is, allocate it.
1024 */
1025 static ufs_daddr_t
1026 ffs_alloccg(ip, cg, bpref, size)
1027 struct inode *ip;
1028 int cg;
1029 ufs_daddr_t bpref;
1030 int size;
1031 {
1032 struct cg *cgp;
1033 struct buf *bp;
1034 ufs_daddr_t bno, blkno;
1035 int error, frags, allocsiz, i;
1036 struct fs *fs = ip->i_fs;
1037 #ifdef FFS_EI
1038 const int needswap = UFS_FSNEEDSWAP(fs);
1039 #endif
1040
1041 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1042 return (0);
1043 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1044 (int)fs->fs_cgsize, NOCRED, &bp);
1045 if (error) {
1046 brelse(bp);
1047 return (0);
1048 }
1049 cgp = (struct cg *)bp->b_data;
1050 if (!cg_chkmagic(cgp, needswap) ||
1051 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1052 brelse(bp);
1053 return (0);
1054 }
1055 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1056 if (size == fs->fs_bsize) {
1057 bno = ffs_alloccgblk(ip, bp, bpref);
1058 bdwrite(bp);
1059 return (bno);
1060 }
1061 /*
1062 * check to see if any fragments are already available
1063 * allocsiz is the size which will be allocated, hacking
1064 * it down to a smaller size if necessary
1065 */
1066 frags = numfrags(fs, size);
1067 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1068 if (cgp->cg_frsum[allocsiz] != 0)
1069 break;
1070 if (allocsiz == fs->fs_frag) {
1071 /*
1072 * no fragments were available, so a block will be
1073 * allocated, and hacked up
1074 */
1075 if (cgp->cg_cs.cs_nbfree == 0) {
1076 brelse(bp);
1077 return (0);
1078 }
1079 bno = ffs_alloccgblk(ip, bp, bpref);
1080 bpref = dtogd(fs, bno);
1081 for (i = frags; i < fs->fs_frag; i++)
1082 setbit(cg_blksfree(cgp, needswap), bpref + i);
1083 i = fs->fs_frag - frags;
1084 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1085 fs->fs_cstotal.cs_nffree += i;
1086 fs->fs_cs(fs, cg).cs_nffree += i;
1087 fs->fs_fmod = 1;
1088 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1089 bdwrite(bp);
1090 return (bno);
1091 }
1092 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1093 #if 0
1094 /*
1095 * XXX fvdl mapsearch will panic, and never return -1
1096 * also: returning NULL as ufs_daddr_t ?
1097 */
1098 if (bno < 0) {
1099 brelse(bp);
1100 return (0);
1101 }
1102 #endif
1103 for (i = 0; i < frags; i++)
1104 clrbit(cg_blksfree(cgp, needswap), bno + i);
1105 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1106 fs->fs_cstotal.cs_nffree -= frags;
1107 fs->fs_cs(fs, cg).cs_nffree -= frags;
1108 fs->fs_fmod = 1;
1109 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1110 if (frags != allocsiz)
1111 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1112 blkno = cg * fs->fs_fpg + bno;
1113 if (DOINGSOFTDEP(ITOV(ip)))
1114 softdep_setup_blkmapdep(bp, fs, blkno);
1115 bdwrite(bp);
1116 return blkno;
1117 }
1118
1119 /*
1120 * Allocate a block in a cylinder group.
1121 *
1122 * This algorithm implements the following policy:
1123 * 1) allocate the requested block.
1124 * 2) allocate a rotationally optimal block in the same cylinder.
1125 * 3) allocate the next available block on the block rotor for the
1126 * specified cylinder group.
1127 * Note that this routine only allocates fs_bsize blocks; these
1128 * blocks may be fragmented by the routine that allocates them.
1129 */
1130 static ufs_daddr_t
1131 ffs_alloccgblk(ip, bp, bpref)
1132 struct inode *ip;
1133 struct buf *bp;
1134 ufs_daddr_t bpref;
1135 {
1136 struct cg *cgp;
1137 ufs_daddr_t bno, blkno;
1138 int cylno, pos, delta;
1139 short *cylbp;
1140 int i;
1141 struct fs *fs = ip->i_fs;
1142 #ifdef FFS_EI
1143 const int needswap = UFS_FSNEEDSWAP(fs);
1144 #endif
1145
1146 cgp = (struct cg *)bp->b_data;
1147 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1148 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1149 goto norot;
1150 }
1151 bpref = blknum(fs, bpref);
1152 bpref = dtogd(fs, bpref);
1153 /*
1154 * if the requested block is available, use it
1155 */
1156 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1157 fragstoblks(fs, bpref))) {
1158 bno = bpref;
1159 goto gotit;
1160 }
1161 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1162 /*
1163 * Block layout information is not available.
1164 * Leaving bpref unchanged means we take the
1165 * next available free block following the one
1166 * we just allocated. Hopefully this will at
1167 * least hit a track cache on drives of unknown
1168 * geometry (e.g. SCSI).
1169 */
1170 goto norot;
1171 }
1172 /*
1173 * check for a block available on the same cylinder
1174 */
1175 cylno = cbtocylno(fs, bpref);
1176 if (cg_blktot(cgp, needswap)[cylno] == 0)
1177 goto norot;
1178 /*
1179 * check the summary information to see if a block is
1180 * available in the requested cylinder starting at the
1181 * requested rotational position and proceeding around.
1182 */
1183 cylbp = cg_blks(fs, cgp, cylno, needswap);
1184 pos = cbtorpos(fs, bpref);
1185 for (i = pos; i < fs->fs_nrpos; i++)
1186 if (ufs_rw16(cylbp[i], needswap) > 0)
1187 break;
1188 if (i == fs->fs_nrpos)
1189 for (i = 0; i < pos; i++)
1190 if (ufs_rw16(cylbp[i], needswap) > 0)
1191 break;
1192 if (ufs_rw16(cylbp[i], needswap) > 0) {
1193 /*
1194 * found a rotational position, now find the actual
1195 * block. A panic if none is actually there.
1196 */
1197 pos = cylno % fs->fs_cpc;
1198 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1199 if (fs_postbl(fs, pos)[i] == -1) {
1200 printf("pos = %d, i = %d, fs = %s\n",
1201 pos, i, fs->fs_fsmnt);
1202 panic("ffs_alloccgblk: cyl groups corrupted");
1203 }
1204 for (i = fs_postbl(fs, pos)[i];; ) {
1205 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1206 bno = blkstofrags(fs, (bno + i));
1207 goto gotit;
1208 }
1209 delta = fs_rotbl(fs)[i];
1210 if (delta <= 0 ||
1211 delta + i > fragstoblks(fs, fs->fs_fpg))
1212 break;
1213 i += delta;
1214 }
1215 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1216 panic("ffs_alloccgblk: can't find blk in cyl");
1217 }
1218 norot:
1219 /*
1220 * no blocks in the requested cylinder, so take next
1221 * available one in this cylinder group.
1222 */
1223 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1224 if (bno < 0)
1225 return (0);
1226 cgp->cg_rotor = ufs_rw32(bno, needswap);
1227 gotit:
1228 blkno = fragstoblks(fs, bno);
1229 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1230 ffs_clusteracct(fs, cgp, blkno, -1);
1231 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1232 fs->fs_cstotal.cs_nbfree--;
1233 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1234 cylno = cbtocylno(fs, bno);
1235 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1236 needswap);
1237 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1238 fs->fs_fmod = 1;
1239 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1240 if (DOINGSOFTDEP(ITOV(ip)))
1241 softdep_setup_blkmapdep(bp, fs, blkno);
1242 return (blkno);
1243 }
1244
1245 /*
1246 * Determine whether a cluster can be allocated.
1247 *
1248 * We do not currently check for optimal rotational layout if there
1249 * are multiple choices in the same cylinder group. Instead we just
1250 * take the first one that we find following bpref.
1251 */
1252 static ufs_daddr_t
1253 ffs_clusteralloc(ip, cg, bpref, len)
1254 struct inode *ip;
1255 int cg;
1256 ufs_daddr_t bpref;
1257 int len;
1258 {
1259 struct fs *fs;
1260 struct cg *cgp;
1261 struct buf *bp;
1262 int i, got, run, bno, bit, map;
1263 u_char *mapp;
1264 int32_t *lp;
1265
1266 fs = ip->i_fs;
1267 if (fs->fs_maxcluster[cg] < len)
1268 return (0);
1269 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1270 NOCRED, &bp))
1271 goto fail;
1272 cgp = (struct cg *)bp->b_data;
1273 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1274 goto fail;
1275 /*
1276 * Check to see if a cluster of the needed size (or bigger) is
1277 * available in this cylinder group.
1278 */
1279 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1280 for (i = len; i <= fs->fs_contigsumsize; i++)
1281 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1282 break;
1283 if (i > fs->fs_contigsumsize) {
1284 /*
1285 * This is the first time looking for a cluster in this
1286 * cylinder group. Update the cluster summary information
1287 * to reflect the true maximum sized cluster so that
1288 * future cluster allocation requests can avoid reading
1289 * the cylinder group map only to find no clusters.
1290 */
1291 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1292 for (i = len - 1; i > 0; i--)
1293 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1294 break;
1295 fs->fs_maxcluster[cg] = i;
1296 goto fail;
1297 }
1298 /*
1299 * Search the cluster map to find a big enough cluster.
1300 * We take the first one that we find, even if it is larger
1301 * than we need as we prefer to get one close to the previous
1302 * block allocation. We do not search before the current
1303 * preference point as we do not want to allocate a block
1304 * that is allocated before the previous one (as we will
1305 * then have to wait for another pass of the elevator
1306 * algorithm before it will be read). We prefer to fail and
1307 * be recalled to try an allocation in the next cylinder group.
1308 */
1309 if (dtog(fs, bpref) != cg)
1310 bpref = 0;
1311 else
1312 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1313 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1314 map = *mapp++;
1315 bit = 1 << (bpref % NBBY);
1316 for (run = 0, got = bpref;
1317 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1318 if ((map & bit) == 0) {
1319 run = 0;
1320 } else {
1321 run++;
1322 if (run == len)
1323 break;
1324 }
1325 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1326 bit <<= 1;
1327 } else {
1328 map = *mapp++;
1329 bit = 1;
1330 }
1331 }
1332 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1333 goto fail;
1334 /*
1335 * Allocate the cluster that we have found.
1336 */
1337 #ifdef DIAGNOSTIC
1338 for (i = 1; i <= len; i++)
1339 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1340 got - run + i))
1341 panic("ffs_clusteralloc: map mismatch");
1342 #endif
1343 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1344 if (dtog(fs, bno) != cg)
1345 panic("ffs_clusteralloc: allocated out of group");
1346 len = blkstofrags(fs, len);
1347 for (i = 0; i < len; i += fs->fs_frag)
1348 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1349 panic("ffs_clusteralloc: lost block");
1350 bdwrite(bp);
1351 return (bno);
1352
1353 fail:
1354 brelse(bp);
1355 return (0);
1356 }
1357
1358 /*
1359 * Determine whether an inode can be allocated.
1360 *
1361 * Check to see if an inode is available, and if it is,
1362 * allocate it using the following policy:
1363 * 1) allocate the requested inode.
1364 * 2) allocate the next available inode after the requested
1365 * inode in the specified cylinder group.
1366 */
1367 static ufs_daddr_t
1368 ffs_nodealloccg(ip, cg, ipref, mode)
1369 struct inode *ip;
1370 int cg;
1371 ufs_daddr_t ipref;
1372 int mode;
1373 {
1374 struct cg *cgp;
1375 struct buf *bp;
1376 int error, start, len, loc, map, i;
1377 struct fs *fs = ip->i_fs;
1378 #ifdef FFS_EI
1379 const int needswap = UFS_FSNEEDSWAP(fs);
1380 #endif
1381
1382 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1383 return (0);
1384 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1385 (int)fs->fs_cgsize, NOCRED, &bp);
1386 if (error) {
1387 brelse(bp);
1388 return (0);
1389 }
1390 cgp = (struct cg *)bp->b_data;
1391 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1392 brelse(bp);
1393 return (0);
1394 }
1395 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1396 if (ipref) {
1397 ipref %= fs->fs_ipg;
1398 if (isclr(cg_inosused(cgp, needswap), ipref))
1399 goto gotit;
1400 }
1401 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1402 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1403 NBBY);
1404 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1405 if (loc == 0) {
1406 len = start + 1;
1407 start = 0;
1408 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1409 if (loc == 0) {
1410 printf("cg = %d, irotor = %d, fs = %s\n",
1411 cg, ufs_rw32(cgp->cg_irotor, needswap),
1412 fs->fs_fsmnt);
1413 panic("ffs_nodealloccg: map corrupted");
1414 /* NOTREACHED */
1415 }
1416 }
1417 i = start + len - loc;
1418 map = cg_inosused(cgp, needswap)[i];
1419 ipref = i * NBBY;
1420 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1421 if ((map & i) == 0) {
1422 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1423 goto gotit;
1424 }
1425 }
1426 printf("fs = %s\n", fs->fs_fsmnt);
1427 panic("ffs_nodealloccg: block not in map");
1428 /* NOTREACHED */
1429 gotit:
1430 if (DOINGSOFTDEP(ITOV(ip)))
1431 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1432 setbit(cg_inosused(cgp, needswap), ipref);
1433 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1434 fs->fs_cstotal.cs_nifree--;
1435 fs->fs_cs(fs, cg).cs_nifree--;
1436 fs->fs_fmod = 1;
1437 if ((mode & IFMT) == IFDIR) {
1438 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1439 fs->fs_cstotal.cs_ndir++;
1440 fs->fs_cs(fs, cg).cs_ndir++;
1441 }
1442 bdwrite(bp);
1443 return (cg * fs->fs_ipg + ipref);
1444 }
1445
1446 /*
1447 * Free a block or fragment.
1448 *
1449 * The specified block or fragment is placed back in the
1450 * free map. If a fragment is deallocated, a possible
1451 * block reassembly is checked.
1452 */
1453 void
1454 ffs_blkfree(ip, bno, size)
1455 struct inode *ip;
1456 ufs_daddr_t bno;
1457 long size;
1458 {
1459 struct cg *cgp;
1460 struct buf *bp;
1461 ufs_daddr_t blkno;
1462 int i, error, cg, blk, frags, bbase;
1463 struct fs *fs = ip->i_fs;
1464 const int needswap = UFS_FSNEEDSWAP(fs);
1465
1466 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1467 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1468 printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1469 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1470 panic("blkfree: bad size");
1471 }
1472 cg = dtog(fs, bno);
1473 if ((u_int)bno >= fs->fs_size) {
1474 printf("bad block %d, ino %d\n", bno, ip->i_number);
1475 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1476 return;
1477 }
1478 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1479 (int)fs->fs_cgsize, NOCRED, &bp);
1480 if (error) {
1481 brelse(bp);
1482 return;
1483 }
1484 cgp = (struct cg *)bp->b_data;
1485 if (!cg_chkmagic(cgp, needswap)) {
1486 brelse(bp);
1487 return;
1488 }
1489 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1490 bno = dtogd(fs, bno);
1491 if (size == fs->fs_bsize) {
1492 blkno = fragstoblks(fs, bno);
1493 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1494 printf("dev = 0x%x, block = %d, fs = %s\n",
1495 ip->i_dev, bno, fs->fs_fsmnt);
1496 panic("blkfree: freeing free block");
1497 }
1498 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1499 ffs_clusteracct(fs, cgp, blkno, 1);
1500 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1501 fs->fs_cstotal.cs_nbfree++;
1502 fs->fs_cs(fs, cg).cs_nbfree++;
1503 i = cbtocylno(fs, bno);
1504 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1505 needswap);
1506 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1507 } else {
1508 bbase = bno - fragnum(fs, bno);
1509 /*
1510 * decrement the counts associated with the old frags
1511 */
1512 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1513 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1514 /*
1515 * deallocate the fragment
1516 */
1517 frags = numfrags(fs, size);
1518 for (i = 0; i < frags; i++) {
1519 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1520 printf("dev = 0x%x, block = %d, fs = %s\n",
1521 ip->i_dev, bno + i, fs->fs_fsmnt);
1522 panic("blkfree: freeing free frag");
1523 }
1524 setbit(cg_blksfree(cgp, needswap), bno + i);
1525 }
1526 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1527 fs->fs_cstotal.cs_nffree += i;
1528 fs->fs_cs(fs, cg).cs_nffree += i;
1529 /*
1530 * add back in counts associated with the new frags
1531 */
1532 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1533 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1534 /*
1535 * if a complete block has been reassembled, account for it
1536 */
1537 blkno = fragstoblks(fs, bbase);
1538 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1539 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1540 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1541 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1542 ffs_clusteracct(fs, cgp, blkno, 1);
1543 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1544 fs->fs_cstotal.cs_nbfree++;
1545 fs->fs_cs(fs, cg).cs_nbfree++;
1546 i = cbtocylno(fs, bbase);
1547 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1548 bbase)], 1,
1549 needswap);
1550 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1551 }
1552 }
1553 fs->fs_fmod = 1;
1554 bdwrite(bp);
1555 }
1556
1557 #if defined(DIAGNOSTIC) || defined(DEBUG)
1558 /*
1559 * Verify allocation of a block or fragment. Returns true if block or
1560 * fragment is allocated, false if it is free.
1561 */
1562 static int
1563 ffs_checkblk(ip, bno, size)
1564 struct inode *ip;
1565 ufs_daddr_t bno;
1566 long size;
1567 {
1568 struct fs *fs;
1569 struct cg *cgp;
1570 struct buf *bp;
1571 int i, error, frags, free;
1572
1573 fs = ip->i_fs;
1574 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1575 printf("bsize = %d, size = %ld, fs = %s\n",
1576 fs->fs_bsize, size, fs->fs_fsmnt);
1577 panic("checkblk: bad size");
1578 }
1579 if ((u_int)bno >= fs->fs_size)
1580 panic("checkblk: bad block %d", bno);
1581 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1582 (int)fs->fs_cgsize, NOCRED, &bp);
1583 if (error) {
1584 brelse(bp);
1585 return 0;
1586 }
1587 cgp = (struct cg *)bp->b_data;
1588 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1589 brelse(bp);
1590 return 0;
1591 }
1592 bno = dtogd(fs, bno);
1593 if (size == fs->fs_bsize) {
1594 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1595 fragstoblks(fs, bno));
1596 } else {
1597 frags = numfrags(fs, size);
1598 for (free = 0, i = 0; i < frags; i++)
1599 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1600 free++;
1601 if (free != 0 && free != frags)
1602 panic("checkblk: partially free fragment");
1603 }
1604 brelse(bp);
1605 return (!free);
1606 }
1607 #endif /* DIAGNOSTIC */
1608
1609 /*
1610 * Free an inode.
1611 */
1612 int
1613 ffs_vfree(v)
1614 void *v;
1615 {
1616 struct vop_vfree_args /* {
1617 struct vnode *a_pvp;
1618 ino_t a_ino;
1619 int a_mode;
1620 } */ *ap = v;
1621
1622 if (DOINGSOFTDEP(ap->a_pvp)) {
1623 softdep_freefile(ap);
1624 return (0);
1625 }
1626 return (ffs_freefile(ap));
1627 }
1628
1629 /*
1630 * Do the actual free operation.
1631 * The specified inode is placed back in the free map.
1632 */
1633 int
1634 ffs_freefile(v)
1635 void *v;
1636 {
1637 struct vop_vfree_args /* {
1638 struct vnode *a_pvp;
1639 ino_t a_ino;
1640 int a_mode;
1641 } */ *ap = v;
1642 struct cg *cgp;
1643 struct inode *pip = VTOI(ap->a_pvp);
1644 struct fs *fs = pip->i_fs;
1645 ino_t ino = ap->a_ino;
1646 struct buf *bp;
1647 int error, cg;
1648 #ifdef FFS_EI
1649 const int needswap = UFS_FSNEEDSWAP(fs);
1650 #endif
1651
1652 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1653 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1654 pip->i_dev, ino, fs->fs_fsmnt);
1655 cg = ino_to_cg(fs, ino);
1656 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1657 (int)fs->fs_cgsize, NOCRED, &bp);
1658 if (error) {
1659 brelse(bp);
1660 return (error);
1661 }
1662 cgp = (struct cg *)bp->b_data;
1663 if (!cg_chkmagic(cgp, needswap)) {
1664 brelse(bp);
1665 return (0);
1666 }
1667 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1668 ino %= fs->fs_ipg;
1669 if (isclr(cg_inosused(cgp, needswap), ino)) {
1670 printf("dev = 0x%x, ino = %d, fs = %s\n",
1671 pip->i_dev, ino, fs->fs_fsmnt);
1672 if (fs->fs_ronly == 0)
1673 panic("ifree: freeing free inode");
1674 }
1675 clrbit(cg_inosused(cgp, needswap), ino);
1676 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1677 cgp->cg_irotor = ufs_rw32(ino, needswap);
1678 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1679 fs->fs_cstotal.cs_nifree++;
1680 fs->fs_cs(fs, cg).cs_nifree++;
1681 if ((ap->a_mode & IFMT) == IFDIR) {
1682 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1683 fs->fs_cstotal.cs_ndir--;
1684 fs->fs_cs(fs, cg).cs_ndir--;
1685 }
1686 fs->fs_fmod = 1;
1687 bdwrite(bp);
1688 return (0);
1689 }
1690
1691 /*
1692 * Find a block of the specified size in the specified cylinder group.
1693 *
1694 * It is a panic if a request is made to find a block if none are
1695 * available.
1696 */
1697 static ufs_daddr_t
1698 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1699 struct fs *fs;
1700 struct cg *cgp;
1701 ufs_daddr_t bpref;
1702 int allocsiz;
1703 {
1704 ufs_daddr_t bno;
1705 int start, len, loc, i;
1706 int blk, field, subfield, pos;
1707 int ostart, olen;
1708 #ifdef FFS_EI
1709 const int needswap = UFS_FSNEEDSWAP(fs);
1710 #endif
1711
1712 /*
1713 * find the fragment by searching through the free block
1714 * map for an appropriate bit pattern
1715 */
1716 if (bpref)
1717 start = dtogd(fs, bpref) / NBBY;
1718 else
1719 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1720 len = howmany(fs->fs_fpg, NBBY) - start;
1721 ostart = start;
1722 olen = len;
1723 loc = scanc((u_int)len,
1724 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1725 (const u_char *)fragtbl[fs->fs_frag],
1726 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1727 if (loc == 0) {
1728 len = start + 1;
1729 start = 0;
1730 loc = scanc((u_int)len,
1731 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1732 (const u_char *)fragtbl[fs->fs_frag],
1733 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1734 if (loc == 0) {
1735 printf("start = %d, len = %d, fs = %s\n",
1736 ostart, olen, fs->fs_fsmnt);
1737 printf("offset=%d %ld\n",
1738 ufs_rw32(cgp->cg_freeoff, needswap),
1739 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1740 panic("ffs_alloccg: map corrupted");
1741 /* NOTREACHED */
1742 }
1743 }
1744 bno = (start + len - loc) * NBBY;
1745 cgp->cg_frotor = ufs_rw32(bno, needswap);
1746 /*
1747 * found the byte in the map
1748 * sift through the bits to find the selected frag
1749 */
1750 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1751 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1752 blk <<= 1;
1753 field = around[allocsiz];
1754 subfield = inside[allocsiz];
1755 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1756 if ((blk & field) == subfield)
1757 return (bno + pos);
1758 field <<= 1;
1759 subfield <<= 1;
1760 }
1761 }
1762 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1763 panic("ffs_alloccg: block not in map");
1764 return (-1);
1765 }
1766
1767 /*
1768 * Update the cluster map because of an allocation or free.
1769 *
1770 * Cnt == 1 means free; cnt == -1 means allocating.
1771 */
1772 void
1773 ffs_clusteracct(fs, cgp, blkno, cnt)
1774 struct fs *fs;
1775 struct cg *cgp;
1776 ufs_daddr_t blkno;
1777 int cnt;
1778 {
1779 int32_t *sump;
1780 int32_t *lp;
1781 u_char *freemapp, *mapp;
1782 int i, start, end, forw, back, map, bit;
1783 #ifdef FFS_EI
1784 const int needswap = UFS_FSNEEDSWAP(fs);
1785 #endif
1786
1787 if (fs->fs_contigsumsize <= 0)
1788 return;
1789 freemapp = cg_clustersfree(cgp, needswap);
1790 sump = cg_clustersum(cgp, needswap);
1791 /*
1792 * Allocate or clear the actual block.
1793 */
1794 if (cnt > 0)
1795 setbit(freemapp, blkno);
1796 else
1797 clrbit(freemapp, blkno);
1798 /*
1799 * Find the size of the cluster going forward.
1800 */
1801 start = blkno + 1;
1802 end = start + fs->fs_contigsumsize;
1803 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1804 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1805 mapp = &freemapp[start / NBBY];
1806 map = *mapp++;
1807 bit = 1 << (start % NBBY);
1808 for (i = start; i < end; i++) {
1809 if ((map & bit) == 0)
1810 break;
1811 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1812 bit <<= 1;
1813 } else {
1814 map = *mapp++;
1815 bit = 1;
1816 }
1817 }
1818 forw = i - start;
1819 /*
1820 * Find the size of the cluster going backward.
1821 */
1822 start = blkno - 1;
1823 end = start - fs->fs_contigsumsize;
1824 if (end < 0)
1825 end = -1;
1826 mapp = &freemapp[start / NBBY];
1827 map = *mapp--;
1828 bit = 1 << (start % NBBY);
1829 for (i = start; i > end; i--) {
1830 if ((map & bit) == 0)
1831 break;
1832 if ((i & (NBBY - 1)) != 0) {
1833 bit >>= 1;
1834 } else {
1835 map = *mapp--;
1836 bit = 1 << (NBBY - 1);
1837 }
1838 }
1839 back = start - i;
1840 /*
1841 * Account for old cluster and the possibly new forward and
1842 * back clusters.
1843 */
1844 i = back + forw + 1;
1845 if (i > fs->fs_contigsumsize)
1846 i = fs->fs_contigsumsize;
1847 ufs_add32(sump[i], cnt, needswap);
1848 if (back > 0)
1849 ufs_add32(sump[back], -cnt, needswap);
1850 if (forw > 0)
1851 ufs_add32(sump[forw], -cnt, needswap);
1852
1853 /*
1854 * Update cluster summary information.
1855 */
1856 lp = &sump[fs->fs_contigsumsize];
1857 for (i = fs->fs_contigsumsize; i > 0; i--)
1858 if (ufs_rw32(*lp--, needswap) > 0)
1859 break;
1860 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1861 }
1862
1863 /*
1864 * Fserr prints the name of a file system with an error diagnostic.
1865 *
1866 * The form of the error message is:
1867 * fs: error message
1868 */
1869 static void
1870 ffs_fserr(fs, uid, cp)
1871 struct fs *fs;
1872 u_int uid;
1873 char *cp;
1874 {
1875
1876 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1877 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1878 }
1879