ffs_alloc.c revision 1.56 1 /* $NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $");
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_ffs.h"
43 #include "opt_quota.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/buf.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/mount.h>
52 #include <sys/kernel.h>
53 #include <sys/syslog.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/ufsmount.h>
57 #include <ufs/ufs/inode.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63
64 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66 #ifdef XXXUBC
67 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 #endif
69 static ino_t ffs_dirpref __P((struct inode *));
70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 static void ffs_fserr __P((struct fs *, u_int, char *));
72 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
73 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
74 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
76 ufs_daddr_t, int));
77 #if defined(DIAGNOSTIC) || defined(DEBUG)
78 #ifdef XXXUBC
79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 #endif
81 #endif
82
83 /* if 1, changes in optimalization strategy are logged */
84 int ffs_log_changeopt = 0;
85
86 /* in ffs_tables.c */
87 extern const int inside[], around[];
88 extern const u_char * const fragtbl[];
89
90 /*
91 * Allocate a block in the file system.
92 *
93 * The size of the requested block is given, which must be some
94 * multiple of fs_fsize and <= fs_bsize.
95 * A preference may be optionally specified. If a preference is given
96 * the following hierarchy is used to allocate a block:
97 * 1) allocate the requested block.
98 * 2) allocate a rotationally optimal block in the same cylinder.
99 * 3) allocate a block in the same cylinder group.
100 * 4) quadradically rehash into other cylinder groups, until an
101 * available block is located.
102 * If no block preference is given the following hierarchy is used
103 * to allocate a block:
104 * 1) allocate a block in the cylinder group that contains the
105 * inode for the file.
106 * 2) quadradically rehash into other cylinder groups, until an
107 * available block is located.
108 */
109 int
110 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
111 struct inode *ip;
112 ufs_daddr_t lbn, bpref;
113 int size;
114 struct ucred *cred;
115 ufs_daddr_t *bnp;
116 {
117 struct fs *fs = ip->i_fs;
118 ufs_daddr_t bno;
119 int cg;
120 #ifdef QUOTA
121 int error;
122 #endif
123
124 #ifdef UVM_PAGE_TRKOWN
125 if (ITOV(ip)->v_type == VREG &&
126 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
127 struct vm_page *pg;
128 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
129 voff_t off = trunc_page(lblktosize(fs, lbn));
130 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
131
132 simple_lock(&uobj->vmobjlock);
133 while (off < endoff) {
134 pg = uvm_pagelookup(uobj, off);
135 KASSERT(pg != NULL);
136 KASSERT(pg->owner == curproc->p_pid);
137 KASSERT((pg->flags & PG_CLEAN) == 0);
138 off += PAGE_SIZE;
139 }
140 simple_unlock(&uobj->vmobjlock);
141 }
142 #endif
143
144 *bnp = 0;
145 #ifdef DIAGNOSTIC
146 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
147 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
148 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
149 panic("ffs_alloc: bad size");
150 }
151 if (cred == NOCRED)
152 panic("ffs_alloc: missing credential");
153 #endif /* DIAGNOSTIC */
154 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
155 goto nospace;
156 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
157 goto nospace;
158 #ifdef QUOTA
159 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
160 return (error);
161 #endif
162 if (bpref >= fs->fs_size)
163 bpref = 0;
164 if (bpref == 0)
165 cg = ino_to_cg(fs, ip->i_number);
166 else
167 cg = dtog(fs, bpref);
168 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
169 ffs_alloccg);
170 if (bno > 0) {
171 ip->i_ffs_blocks += btodb(size);
172 ip->i_flag |= IN_CHANGE | IN_UPDATE;
173 *bnp = bno;
174 return (0);
175 }
176 #ifdef QUOTA
177 /*
178 * Restore user's disk quota because allocation failed.
179 */
180 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
181 #endif
182 nospace:
183 ffs_fserr(fs, cred->cr_uid, "file system full");
184 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
185 return (ENOSPC);
186 }
187
188 /*
189 * Reallocate a fragment to a bigger size
190 *
191 * The number and size of the old block is given, and a preference
192 * and new size is also specified. The allocator attempts to extend
193 * the original block. Failing that, the regular block allocator is
194 * invoked to get an appropriate block.
195 */
196 int
197 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
198 struct inode *ip;
199 ufs_daddr_t lbprev;
200 ufs_daddr_t bpref;
201 int osize, nsize;
202 struct ucred *cred;
203 struct buf **bpp;
204 ufs_daddr_t *blknop;
205 {
206 struct fs *fs = ip->i_fs;
207 struct buf *bp;
208 int cg, request, error;
209 ufs_daddr_t bprev, bno;
210
211 #ifdef UVM_PAGE_TRKOWN
212 if (ITOV(ip)->v_type == VREG) {
213 struct vm_page *pg;
214 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
215 voff_t off = trunc_page(lblktosize(fs, lbprev));
216 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
217
218 simple_lock(&uobj->vmobjlock);
219 while (off < endoff) {
220 pg = uvm_pagelookup(uobj, off);
221 KASSERT(pg != NULL);
222 KASSERT(pg->owner == curproc->p_pid);
223 KASSERT((pg->flags & PG_CLEAN) == 0);
224 off += PAGE_SIZE;
225 }
226 simple_unlock(&uobj->vmobjlock);
227 }
228 #endif
229
230 #ifdef DIAGNOSTIC
231 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
232 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
233 printf(
234 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
235 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
236 panic("ffs_realloccg: bad size");
237 }
238 if (cred == NOCRED)
239 panic("ffs_realloccg: missing credential");
240 #endif /* DIAGNOSTIC */
241 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
242 goto nospace;
243 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
244 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
245 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
246 panic("ffs_realloccg: bad bprev");
247 }
248 /*
249 * Allocate the extra space in the buffer.
250 */
251 if (bpp != NULL &&
252 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
253 brelse(bp);
254 return (error);
255 }
256 #ifdef QUOTA
257 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
258 if (bpp != NULL) {
259 brelse(bp);
260 }
261 return (error);
262 }
263 #endif
264 /*
265 * Check for extension in the existing location.
266 */
267 cg = dtog(fs, bprev);
268 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
269 ip->i_ffs_blocks += btodb(nsize - osize);
270 ip->i_flag |= IN_CHANGE | IN_UPDATE;
271
272 if (bpp != NULL) {
273 if (bp->b_blkno != fsbtodb(fs, bno))
274 panic("bad blockno");
275 allocbuf(bp, nsize);
276 bp->b_flags |= B_DONE;
277 memset(bp->b_data + osize, 0, nsize - osize);
278 *bpp = bp;
279 }
280 if (blknop != NULL) {
281 *blknop = bno;
282 }
283 return (0);
284 }
285 /*
286 * Allocate a new disk location.
287 */
288 if (bpref >= fs->fs_size)
289 bpref = 0;
290 switch ((int)fs->fs_optim) {
291 case FS_OPTSPACE:
292 /*
293 * Allocate an exact sized fragment. Although this makes
294 * best use of space, we will waste time relocating it if
295 * the file continues to grow. If the fragmentation is
296 * less than half of the minimum free reserve, we choose
297 * to begin optimizing for time.
298 */
299 request = nsize;
300 if (fs->fs_minfree < 5 ||
301 fs->fs_cstotal.cs_nffree >
302 fs->fs_dsize * fs->fs_minfree / (2 * 100))
303 break;
304
305 if (ffs_log_changeopt) {
306 log(LOG_NOTICE,
307 "%s: optimization changed from SPACE to TIME\n",
308 fs->fs_fsmnt);
309 }
310
311 fs->fs_optim = FS_OPTTIME;
312 break;
313 case FS_OPTTIME:
314 /*
315 * At this point we have discovered a file that is trying to
316 * grow a small fragment to a larger fragment. To save time,
317 * we allocate a full sized block, then free the unused portion.
318 * If the file continues to grow, the `ffs_fragextend' call
319 * above will be able to grow it in place without further
320 * copying. If aberrant programs cause disk fragmentation to
321 * grow within 2% of the free reserve, we choose to begin
322 * optimizing for space.
323 */
324 request = fs->fs_bsize;
325 if (fs->fs_cstotal.cs_nffree <
326 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
327 break;
328
329 if (ffs_log_changeopt) {
330 log(LOG_NOTICE,
331 "%s: optimization changed from TIME to SPACE\n",
332 fs->fs_fsmnt);
333 }
334
335 fs->fs_optim = FS_OPTSPACE;
336 break;
337 default:
338 printf("dev = 0x%x, optim = %d, fs = %s\n",
339 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
340 panic("ffs_realloccg: bad optim");
341 /* NOTREACHED */
342 }
343 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
344 ffs_alloccg);
345 if (bno > 0) {
346 if (!DOINGSOFTDEP(ITOV(ip)))
347 ffs_blkfree(ip, bprev, (long)osize);
348 if (nsize < request)
349 ffs_blkfree(ip, bno + numfrags(fs, nsize),
350 (long)(request - nsize));
351 ip->i_ffs_blocks += btodb(nsize - osize);
352 ip->i_flag |= IN_CHANGE | IN_UPDATE;
353 if (bpp != NULL) {
354 bp->b_blkno = fsbtodb(fs, bno);
355 allocbuf(bp, nsize);
356 bp->b_flags |= B_DONE;
357 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
358 *bpp = bp;
359 }
360 if (blknop != NULL) {
361 *blknop = bno;
362 }
363 return (0);
364 }
365 #ifdef QUOTA
366 /*
367 * Restore user's disk quota because allocation failed.
368 */
369 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
370 #endif
371 if (bpp != NULL) {
372 brelse(bp);
373 }
374
375 nospace:
376 /*
377 * no space available
378 */
379 ffs_fserr(fs, cred->cr_uid, "file system full");
380 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
381 return (ENOSPC);
382 }
383
384 /*
385 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
386 *
387 * The vnode and an array of buffer pointers for a range of sequential
388 * logical blocks to be made contiguous is given. The allocator attempts
389 * to find a range of sequential blocks starting as close as possible to
390 * an fs_rotdelay offset from the end of the allocation for the logical
391 * block immediately preceding the current range. If successful, the
392 * physical block numbers in the buffer pointers and in the inode are
393 * changed to reflect the new allocation. If unsuccessful, the allocation
394 * is left unchanged. The success in doing the reallocation is returned.
395 * Note that the error return is not reflected back to the user. Rather
396 * the previous block allocation will be used.
397 */
398 #ifdef XXXUBC
399 #ifdef DEBUG
400 #include <sys/sysctl.h>
401 int prtrealloc = 0;
402 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
403 #endif
404 #endif
405
406 int doasyncfree = 1;
407
408 int
409 ffs_reallocblks(v)
410 void *v;
411 {
412 #ifdef XXXUBC
413 struct vop_reallocblks_args /* {
414 struct vnode *a_vp;
415 struct cluster_save *a_buflist;
416 } */ *ap = v;
417 struct fs *fs;
418 struct inode *ip;
419 struct vnode *vp;
420 struct buf *sbp, *ebp;
421 ufs_daddr_t *bap, *sbap, *ebap = NULL;
422 struct cluster_save *buflist;
423 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
424 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
425 int i, len, start_lvl, end_lvl, pref, ssize;
426 #endif /* XXXUBC */
427
428 /* XXXUBC don't reallocblks for now */
429 return ENOSPC;
430
431 #ifdef XXXUBC
432 vp = ap->a_vp;
433 ip = VTOI(vp);
434 fs = ip->i_fs;
435 if (fs->fs_contigsumsize <= 0)
436 return (ENOSPC);
437 buflist = ap->a_buflist;
438 len = buflist->bs_nchildren;
439 start_lbn = buflist->bs_children[0]->b_lblkno;
440 end_lbn = start_lbn + len - 1;
441 #ifdef DIAGNOSTIC
442 for (i = 0; i < len; i++)
443 if (!ffs_checkblk(ip,
444 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
445 panic("ffs_reallocblks: unallocated block 1");
446 for (i = 1; i < len; i++)
447 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
448 panic("ffs_reallocblks: non-logical cluster");
449 blkno = buflist->bs_children[0]->b_blkno;
450 ssize = fsbtodb(fs, fs->fs_frag);
451 for (i = 1; i < len - 1; i++)
452 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
453 panic("ffs_reallocblks: non-physical cluster %d", i);
454 #endif
455 /*
456 * If the latest allocation is in a new cylinder group, assume that
457 * the filesystem has decided to move and do not force it back to
458 * the previous cylinder group.
459 */
460 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
461 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
462 return (ENOSPC);
463 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
464 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
465 return (ENOSPC);
466 /*
467 * Get the starting offset and block map for the first block.
468 */
469 if (start_lvl == 0) {
470 sbap = &ip->i_ffs_db[0];
471 soff = start_lbn;
472 } else {
473 idp = &start_ap[start_lvl - 1];
474 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
475 brelse(sbp);
476 return (ENOSPC);
477 }
478 sbap = (ufs_daddr_t *)sbp->b_data;
479 soff = idp->in_off;
480 }
481 /*
482 * Find the preferred location for the cluster.
483 */
484 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
485 /*
486 * If the block range spans two block maps, get the second map.
487 */
488 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
489 ssize = len;
490 } else {
491 #ifdef DIAGNOSTIC
492 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
493 panic("ffs_reallocblk: start == end");
494 #endif
495 ssize = len - (idp->in_off + 1);
496 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
497 goto fail;
498 ebap = (ufs_daddr_t *)ebp->b_data;
499 }
500 /*
501 * Search the block map looking for an allocation of the desired size.
502 */
503 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
504 len, ffs_clusteralloc)) == 0)
505 goto fail;
506 /*
507 * We have found a new contiguous block.
508 *
509 * First we have to replace the old block pointers with the new
510 * block pointers in the inode and indirect blocks associated
511 * with the file.
512 */
513 #ifdef DEBUG
514 if (prtrealloc)
515 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
516 start_lbn, end_lbn);
517 #endif
518 blkno = newblk;
519 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
520 ufs_daddr_t ba;
521
522 if (i == ssize) {
523 bap = ebap;
524 soff = -i;
525 }
526 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
527 #ifdef DIAGNOSTIC
528 if (!ffs_checkblk(ip,
529 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
530 panic("ffs_reallocblks: unallocated block 2");
531 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
532 panic("ffs_reallocblks: alloc mismatch");
533 #endif
534 #ifdef DEBUG
535 if (prtrealloc)
536 printf(" %d,", ba);
537 #endif
538 if (DOINGSOFTDEP(vp)) {
539 if (sbap == &ip->i_ffs_db[0] && i < ssize)
540 softdep_setup_allocdirect(ip, start_lbn + i,
541 blkno, ba, fs->fs_bsize, fs->fs_bsize,
542 buflist->bs_children[i]);
543 else
544 softdep_setup_allocindir_page(ip, start_lbn + i,
545 i < ssize ? sbp : ebp, soff + i, blkno,
546 ba, buflist->bs_children[i]);
547 }
548 *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
549 }
550 /*
551 * Next we must write out the modified inode and indirect blocks.
552 * For strict correctness, the writes should be synchronous since
553 * the old block values may have been written to disk. In practise
554 * they are almost never written, but if we are concerned about
555 * strict correctness, the `doasyncfree' flag should be set to zero.
556 *
557 * The test on `doasyncfree' should be changed to test a flag
558 * that shows whether the associated buffers and inodes have
559 * been written. The flag should be set when the cluster is
560 * started and cleared whenever the buffer or inode is flushed.
561 * We can then check below to see if it is set, and do the
562 * synchronous write only when it has been cleared.
563 */
564 if (sbap != &ip->i_ffs_db[0]) {
565 if (doasyncfree)
566 bdwrite(sbp);
567 else
568 bwrite(sbp);
569 } else {
570 ip->i_flag |= IN_CHANGE | IN_UPDATE;
571 if (!doasyncfree)
572 VOP_UPDATE(vp, NULL, NULL, 1);
573 }
574 if (ssize < len) {
575 if (doasyncfree)
576 bdwrite(ebp);
577 else
578 bwrite(ebp);
579 }
580 /*
581 * Last, free the old blocks and assign the new blocks to the buffers.
582 */
583 #ifdef DEBUG
584 if (prtrealloc)
585 printf("\n\tnew:");
586 #endif
587 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
588 if (!DOINGSOFTDEP(vp))
589 ffs_blkfree(ip,
590 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
591 fs->fs_bsize);
592 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
593 #ifdef DEBUG
594 if (!ffs_checkblk(ip,
595 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
596 panic("ffs_reallocblks: unallocated block 3");
597 if (prtrealloc)
598 printf(" %d,", blkno);
599 #endif
600 }
601 #ifdef DEBUG
602 if (prtrealloc) {
603 prtrealloc--;
604 printf("\n");
605 }
606 #endif
607 return (0);
608
609 fail:
610 if (ssize < len)
611 brelse(ebp);
612 if (sbap != &ip->i_ffs_db[0])
613 brelse(sbp);
614 return (ENOSPC);
615 #endif /* XXXUBC */
616 }
617
618 /*
619 * Allocate an inode in the file system.
620 *
621 * If allocating a directory, use ffs_dirpref to select the inode.
622 * If allocating in a directory, the following hierarchy is followed:
623 * 1) allocate the preferred inode.
624 * 2) allocate an inode in the same cylinder group.
625 * 3) quadradically rehash into other cylinder groups, until an
626 * available inode is located.
627 * If no inode preference is given the following hierarchy is used
628 * to allocate an inode:
629 * 1) allocate an inode in cylinder group 0.
630 * 2) quadradically rehash into other cylinder groups, until an
631 * available inode is located.
632 */
633 int
634 ffs_valloc(v)
635 void *v;
636 {
637 struct vop_valloc_args /* {
638 struct vnode *a_pvp;
639 int a_mode;
640 struct ucred *a_cred;
641 struct vnode **a_vpp;
642 } */ *ap = v;
643 struct vnode *pvp = ap->a_pvp;
644 struct inode *pip;
645 struct fs *fs;
646 struct inode *ip;
647 mode_t mode = ap->a_mode;
648 ino_t ino, ipref;
649 int cg, error;
650
651 *ap->a_vpp = NULL;
652 pip = VTOI(pvp);
653 fs = pip->i_fs;
654 if (fs->fs_cstotal.cs_nifree == 0)
655 goto noinodes;
656
657 if ((mode & IFMT) == IFDIR)
658 ipref = ffs_dirpref(pip);
659 else
660 ipref = pip->i_number;
661 if (ipref >= fs->fs_ncg * fs->fs_ipg)
662 ipref = 0;
663 cg = ino_to_cg(fs, ipref);
664 /*
665 * Track number of dirs created one after another
666 * in a same cg without intervening by files.
667 */
668 if ((mode & IFMT) == IFDIR) {
669 if (fs->fs_contigdirs[cg] < 65535)
670 fs->fs_contigdirs[cg]++;
671 } else {
672 if (fs->fs_contigdirs[cg] > 0)
673 fs->fs_contigdirs[cg]--;
674 }
675 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
676 if (ino == 0)
677 goto noinodes;
678 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
679 if (error) {
680 VOP_VFREE(pvp, ino, mode);
681 return (error);
682 }
683 ip = VTOI(*ap->a_vpp);
684 if (ip->i_ffs_mode) {
685 printf("mode = 0%o, inum = %d, fs = %s\n",
686 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
687 panic("ffs_valloc: dup alloc");
688 }
689 if (ip->i_ffs_blocks) { /* XXX */
690 printf("free inode %s/%d had %d blocks\n",
691 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
692 ip->i_ffs_blocks = 0;
693 }
694 ip->i_ffs_flags = 0;
695 /*
696 * Set up a new generation number for this inode.
697 */
698 ip->i_ffs_gen++;
699 return (0);
700 noinodes:
701 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
702 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
703 return (ENOSPC);
704 }
705
706 /*
707 * Find a cylinder group in which to place a directory.
708 *
709 * The policy implemented by this algorithm is to allocate a
710 * directory inode in the same cylinder group as its parent
711 * directory, but also to reserve space for its files inodes
712 * and data. Restrict the number of directories which may be
713 * allocated one after another in the same cylinder group
714 * without intervening allocation of files.
715 *
716 * If we allocate a first level directory then force allocation
717 * in another cylinder group.
718 */
719 static ino_t
720 ffs_dirpref(pip)
721 struct inode *pip;
722 {
723 register struct fs *fs;
724 int cg, prefcg, dirsize, cgsize;
725 int avgifree, avgbfree, avgndir, curdirsize;
726 int minifree, minbfree, maxndir;
727 int mincg, minndir;
728 int maxcontigdirs;
729
730 fs = pip->i_fs;
731
732 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
733 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
734 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
735
736 /*
737 * Force allocation in another cg if creating a first level dir.
738 */
739 if (ITOV(pip)->v_flag & VROOT) {
740 prefcg = random() % fs->fs_ncg;
741 mincg = prefcg;
742 minndir = fs->fs_ipg;
743 for (cg = prefcg; cg < fs->fs_ncg; cg++)
744 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
745 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
746 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
747 mincg = cg;
748 minndir = fs->fs_cs(fs, cg).cs_ndir;
749 }
750 for (cg = 0; cg < prefcg; cg++)
751 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
752 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
753 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
754 mincg = cg;
755 minndir = fs->fs_cs(fs, cg).cs_ndir;
756 }
757 return ((ino_t)(fs->fs_ipg * mincg));
758 }
759
760 /*
761 * Count various limits which used for
762 * optimal allocation of a directory inode.
763 */
764 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
765 minifree = avgifree - fs->fs_ipg / 4;
766 if (minifree < 0)
767 minifree = 0;
768 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
769 if (minbfree < 0)
770 minbfree = 0;
771 cgsize = fs->fs_fsize * fs->fs_fpg;
772 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
773 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
774 if (dirsize < curdirsize)
775 dirsize = curdirsize;
776 maxcontigdirs = min(cgsize / dirsize, 255);
777 if (fs->fs_avgfpdir > 0)
778 maxcontigdirs = min(maxcontigdirs,
779 fs->fs_ipg / fs->fs_avgfpdir);
780 if (maxcontigdirs == 0)
781 maxcontigdirs = 1;
782
783 /*
784 * Limit number of dirs in one cg and reserve space for
785 * regular files, but only if we have no deficit in
786 * inodes or space.
787 */
788 prefcg = ino_to_cg(fs, pip->i_number);
789 for (cg = prefcg; cg < fs->fs_ncg; cg++)
790 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
791 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
792 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
793 if (fs->fs_contigdirs[cg] < maxcontigdirs)
794 return ((ino_t)(fs->fs_ipg * cg));
795 }
796 for (cg = 0; cg < prefcg; cg++)
797 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
798 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
799 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
800 if (fs->fs_contigdirs[cg] < maxcontigdirs)
801 return ((ino_t)(fs->fs_ipg * cg));
802 }
803 /*
804 * This is a backstop when we are deficient in space.
805 */
806 for (cg = prefcg; cg < fs->fs_ncg; cg++)
807 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
808 return ((ino_t)(fs->fs_ipg * cg));
809 for (cg = 0; cg < prefcg; cg++)
810 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
811 break;
812 return ((ino_t)(fs->fs_ipg * cg));
813 }
814
815 /*
816 * Select the desired position for the next block in a file. The file is
817 * logically divided into sections. The first section is composed of the
818 * direct blocks. Each additional section contains fs_maxbpg blocks.
819 *
820 * If no blocks have been allocated in the first section, the policy is to
821 * request a block in the same cylinder group as the inode that describes
822 * the file. If no blocks have been allocated in any other section, the
823 * policy is to place the section in a cylinder group with a greater than
824 * average number of free blocks. An appropriate cylinder group is found
825 * by using a rotor that sweeps the cylinder groups. When a new group of
826 * blocks is needed, the sweep begins in the cylinder group following the
827 * cylinder group from which the previous allocation was made. The sweep
828 * continues until a cylinder group with greater than the average number
829 * of free blocks is found. If the allocation is for the first block in an
830 * indirect block, the information on the previous allocation is unavailable;
831 * here a best guess is made based upon the logical block number being
832 * allocated.
833 *
834 * If a section is already partially allocated, the policy is to
835 * contiguously allocate fs_maxcontig blocks. The end of one of these
836 * contiguous blocks and the beginning of the next is physically separated
837 * so that the disk head will be in transit between them for at least
838 * fs_rotdelay milliseconds. This is to allow time for the processor to
839 * schedule another I/O transfer.
840 */
841 ufs_daddr_t
842 ffs_blkpref(ip, lbn, indx, bap)
843 struct inode *ip;
844 ufs_daddr_t lbn;
845 int indx;
846 ufs_daddr_t *bap;
847 {
848 struct fs *fs;
849 int cg;
850 int avgbfree, startcg;
851 ufs_daddr_t nextblk;
852
853 fs = ip->i_fs;
854 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
855 if (lbn < NDADDR + NINDIR(fs)) {
856 cg = ino_to_cg(fs, ip->i_number);
857 return (fs->fs_fpg * cg + fs->fs_frag);
858 }
859 /*
860 * Find a cylinder with greater than average number of
861 * unused data blocks.
862 */
863 if (indx == 0 || bap[indx - 1] == 0)
864 startcg =
865 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
866 else
867 startcg = dtog(fs,
868 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
869 startcg %= fs->fs_ncg;
870 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
871 for (cg = startcg; cg < fs->fs_ncg; cg++)
872 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
873 return (fs->fs_fpg * cg + fs->fs_frag);
874 }
875 for (cg = 0; cg < startcg; cg++)
876 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
877 return (fs->fs_fpg * cg + fs->fs_frag);
878 }
879 return (0);
880 }
881 /*
882 * One or more previous blocks have been laid out. If less
883 * than fs_maxcontig previous blocks are contiguous, the
884 * next block is requested contiguously, otherwise it is
885 * requested rotationally delayed by fs_rotdelay milliseconds.
886 */
887 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
888 if (indx < fs->fs_maxcontig ||
889 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
890 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
891 return (nextblk);
892 if (fs->fs_rotdelay != 0)
893 /*
894 * Here we convert ms of delay to frags as:
895 * (frags) = (ms) * (rev/sec) * (sect/rev) /
896 * ((sect/frag) * (ms/sec))
897 * then round up to the next block.
898 */
899 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
900 (NSPF(fs) * 1000), fs->fs_frag);
901 return (nextblk);
902 }
903
904 /*
905 * Implement the cylinder overflow algorithm.
906 *
907 * The policy implemented by this algorithm is:
908 * 1) allocate the block in its requested cylinder group.
909 * 2) quadradically rehash on the cylinder group number.
910 * 3) brute force search for a free block.
911 */
912 /*VARARGS5*/
913 static u_long
914 ffs_hashalloc(ip, cg, pref, size, allocator)
915 struct inode *ip;
916 int cg;
917 long pref;
918 int size; /* size for data blocks, mode for inodes */
919 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
920 {
921 struct fs *fs;
922 long result;
923 int i, icg = cg;
924
925 fs = ip->i_fs;
926 /*
927 * 1: preferred cylinder group
928 */
929 result = (*allocator)(ip, cg, pref, size);
930 if (result)
931 return (result);
932 /*
933 * 2: quadratic rehash
934 */
935 for (i = 1; i < fs->fs_ncg; i *= 2) {
936 cg += i;
937 if (cg >= fs->fs_ncg)
938 cg -= fs->fs_ncg;
939 result = (*allocator)(ip, cg, 0, size);
940 if (result)
941 return (result);
942 }
943 /*
944 * 3: brute force search
945 * Note that we start at i == 2, since 0 was checked initially,
946 * and 1 is always checked in the quadratic rehash.
947 */
948 cg = (icg + 2) % fs->fs_ncg;
949 for (i = 2; i < fs->fs_ncg; i++) {
950 result = (*allocator)(ip, cg, 0, size);
951 if (result)
952 return (result);
953 cg++;
954 if (cg == fs->fs_ncg)
955 cg = 0;
956 }
957 return (0);
958 }
959
960 /*
961 * Determine whether a fragment can be extended.
962 *
963 * Check to see if the necessary fragments are available, and
964 * if they are, allocate them.
965 */
966 static ufs_daddr_t
967 ffs_fragextend(ip, cg, bprev, osize, nsize)
968 struct inode *ip;
969 int cg;
970 long bprev;
971 int osize, nsize;
972 {
973 struct fs *fs;
974 struct cg *cgp;
975 struct buf *bp;
976 long bno;
977 int frags, bbase;
978 int i, error;
979
980 fs = ip->i_fs;
981 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
982 return (0);
983 frags = numfrags(fs, nsize);
984 bbase = fragnum(fs, bprev);
985 if (bbase > fragnum(fs, (bprev + frags - 1))) {
986 /* cannot extend across a block boundary */
987 return (0);
988 }
989 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
990 (int)fs->fs_cgsize, NOCRED, &bp);
991 if (error) {
992 brelse(bp);
993 return (0);
994 }
995 cgp = (struct cg *)bp->b_data;
996 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
997 brelse(bp);
998 return (0);
999 }
1000 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1001 bno = dtogd(fs, bprev);
1002 for (i = numfrags(fs, osize); i < frags; i++)
1003 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
1004 brelse(bp);
1005 return (0);
1006 }
1007 /*
1008 * the current fragment can be extended
1009 * deduct the count on fragment being extended into
1010 * increase the count on the remaining fragment (if any)
1011 * allocate the extended piece
1012 */
1013 for (i = frags; i < fs->fs_frag - bbase; i++)
1014 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1015 break;
1016 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1017 if (i != frags)
1018 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1019 for (i = numfrags(fs, osize); i < frags; i++) {
1020 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1021 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1022 fs->fs_cstotal.cs_nffree--;
1023 fs->fs_cs(fs, cg).cs_nffree--;
1024 }
1025 fs->fs_fmod = 1;
1026 if (DOINGSOFTDEP(ITOV(ip)))
1027 softdep_setup_blkmapdep(bp, fs, bprev);
1028 bdwrite(bp);
1029 return (bprev);
1030 }
1031
1032 /*
1033 * Determine whether a block can be allocated.
1034 *
1035 * Check to see if a block of the appropriate size is available,
1036 * and if it is, allocate it.
1037 */
1038 static ufs_daddr_t
1039 ffs_alloccg(ip, cg, bpref, size)
1040 struct inode *ip;
1041 int cg;
1042 ufs_daddr_t bpref;
1043 int size;
1044 {
1045 struct cg *cgp;
1046 struct buf *bp;
1047 ufs_daddr_t bno, blkno;
1048 int error, frags, allocsiz, i;
1049 struct fs *fs = ip->i_fs;
1050 #ifdef FFS_EI
1051 const int needswap = UFS_FSNEEDSWAP(fs);
1052 #endif
1053
1054 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1055 return (0);
1056 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1057 (int)fs->fs_cgsize, NOCRED, &bp);
1058 if (error) {
1059 brelse(bp);
1060 return (0);
1061 }
1062 cgp = (struct cg *)bp->b_data;
1063 if (!cg_chkmagic(cgp, needswap) ||
1064 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1065 brelse(bp);
1066 return (0);
1067 }
1068 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1069 if (size == fs->fs_bsize) {
1070 bno = ffs_alloccgblk(ip, bp, bpref);
1071 bdwrite(bp);
1072 return (bno);
1073 }
1074 /*
1075 * check to see if any fragments are already available
1076 * allocsiz is the size which will be allocated, hacking
1077 * it down to a smaller size if necessary
1078 */
1079 frags = numfrags(fs, size);
1080 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1081 if (cgp->cg_frsum[allocsiz] != 0)
1082 break;
1083 if (allocsiz == fs->fs_frag) {
1084 /*
1085 * no fragments were available, so a block will be
1086 * allocated, and hacked up
1087 */
1088 if (cgp->cg_cs.cs_nbfree == 0) {
1089 brelse(bp);
1090 return (0);
1091 }
1092 bno = ffs_alloccgblk(ip, bp, bpref);
1093 bpref = dtogd(fs, bno);
1094 for (i = frags; i < fs->fs_frag; i++)
1095 setbit(cg_blksfree(cgp, needswap), bpref + i);
1096 i = fs->fs_frag - frags;
1097 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1098 fs->fs_cstotal.cs_nffree += i;
1099 fs->fs_cs(fs, cg).cs_nffree += i;
1100 fs->fs_fmod = 1;
1101 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1102 bdwrite(bp);
1103 return (bno);
1104 }
1105 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1106 #if 0
1107 /*
1108 * XXX fvdl mapsearch will panic, and never return -1
1109 * also: returning NULL as ufs_daddr_t ?
1110 */
1111 if (bno < 0) {
1112 brelse(bp);
1113 return (0);
1114 }
1115 #endif
1116 for (i = 0; i < frags; i++)
1117 clrbit(cg_blksfree(cgp, needswap), bno + i);
1118 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1119 fs->fs_cstotal.cs_nffree -= frags;
1120 fs->fs_cs(fs, cg).cs_nffree -= frags;
1121 fs->fs_fmod = 1;
1122 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1123 if (frags != allocsiz)
1124 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1125 blkno = cg * fs->fs_fpg + bno;
1126 if (DOINGSOFTDEP(ITOV(ip)))
1127 softdep_setup_blkmapdep(bp, fs, blkno);
1128 bdwrite(bp);
1129 return blkno;
1130 }
1131
1132 /*
1133 * Allocate a block in a cylinder group.
1134 *
1135 * This algorithm implements the following policy:
1136 * 1) allocate the requested block.
1137 * 2) allocate a rotationally optimal block in the same cylinder.
1138 * 3) allocate the next available block on the block rotor for the
1139 * specified cylinder group.
1140 * Note that this routine only allocates fs_bsize blocks; these
1141 * blocks may be fragmented by the routine that allocates them.
1142 */
1143 static ufs_daddr_t
1144 ffs_alloccgblk(ip, bp, bpref)
1145 struct inode *ip;
1146 struct buf *bp;
1147 ufs_daddr_t bpref;
1148 {
1149 struct cg *cgp;
1150 ufs_daddr_t bno, blkno;
1151 int cylno, pos, delta;
1152 short *cylbp;
1153 int i;
1154 struct fs *fs = ip->i_fs;
1155 #ifdef FFS_EI
1156 const int needswap = UFS_FSNEEDSWAP(fs);
1157 #endif
1158
1159 cgp = (struct cg *)bp->b_data;
1160 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1161 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1162 goto norot;
1163 }
1164 bpref = blknum(fs, bpref);
1165 bpref = dtogd(fs, bpref);
1166 /*
1167 * if the requested block is available, use it
1168 */
1169 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1170 fragstoblks(fs, bpref))) {
1171 bno = bpref;
1172 goto gotit;
1173 }
1174 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1175 /*
1176 * Block layout information is not available.
1177 * Leaving bpref unchanged means we take the
1178 * next available free block following the one
1179 * we just allocated. Hopefully this will at
1180 * least hit a track cache on drives of unknown
1181 * geometry (e.g. SCSI).
1182 */
1183 goto norot;
1184 }
1185 /*
1186 * check for a block available on the same cylinder
1187 */
1188 cylno = cbtocylno(fs, bpref);
1189 if (cg_blktot(cgp, needswap)[cylno] == 0)
1190 goto norot;
1191 /*
1192 * check the summary information to see if a block is
1193 * available in the requested cylinder starting at the
1194 * requested rotational position and proceeding around.
1195 */
1196 cylbp = cg_blks(fs, cgp, cylno, needswap);
1197 pos = cbtorpos(fs, bpref);
1198 for (i = pos; i < fs->fs_nrpos; i++)
1199 if (ufs_rw16(cylbp[i], needswap) > 0)
1200 break;
1201 if (i == fs->fs_nrpos)
1202 for (i = 0; i < pos; i++)
1203 if (ufs_rw16(cylbp[i], needswap) > 0)
1204 break;
1205 if (ufs_rw16(cylbp[i], needswap) > 0) {
1206 /*
1207 * found a rotational position, now find the actual
1208 * block. A panic if none is actually there.
1209 */
1210 pos = cylno % fs->fs_cpc;
1211 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1212 if (fs_postbl(fs, pos)[i] == -1) {
1213 printf("pos = %d, i = %d, fs = %s\n",
1214 pos, i, fs->fs_fsmnt);
1215 panic("ffs_alloccgblk: cyl groups corrupted");
1216 }
1217 for (i = fs_postbl(fs, pos)[i];; ) {
1218 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1219 bno = blkstofrags(fs, (bno + i));
1220 goto gotit;
1221 }
1222 delta = fs_rotbl(fs)[i];
1223 if (delta <= 0 ||
1224 delta + i > fragstoblks(fs, fs->fs_fpg))
1225 break;
1226 i += delta;
1227 }
1228 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1229 panic("ffs_alloccgblk: can't find blk in cyl");
1230 }
1231 norot:
1232 /*
1233 * no blocks in the requested cylinder, so take next
1234 * available one in this cylinder group.
1235 */
1236 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1237 if (bno < 0)
1238 return (0);
1239 cgp->cg_rotor = ufs_rw32(bno, needswap);
1240 gotit:
1241 blkno = fragstoblks(fs, bno);
1242 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1243 ffs_clusteracct(fs, cgp, blkno, -1);
1244 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1245 fs->fs_cstotal.cs_nbfree--;
1246 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1247 cylno = cbtocylno(fs, bno);
1248 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1249 needswap);
1250 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1251 fs->fs_fmod = 1;
1252 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1253 if (DOINGSOFTDEP(ITOV(ip)))
1254 softdep_setup_blkmapdep(bp, fs, blkno);
1255 return (blkno);
1256 }
1257
1258 #ifdef XXXUBC
1259 /*
1260 * Determine whether a cluster can be allocated.
1261 *
1262 * We do not currently check for optimal rotational layout if there
1263 * are multiple choices in the same cylinder group. Instead we just
1264 * take the first one that we find following bpref.
1265 */
1266 static ufs_daddr_t
1267 ffs_clusteralloc(ip, cg, bpref, len)
1268 struct inode *ip;
1269 int cg;
1270 ufs_daddr_t bpref;
1271 int len;
1272 {
1273 struct fs *fs;
1274 struct cg *cgp;
1275 struct buf *bp;
1276 int i, got, run, bno, bit, map;
1277 u_char *mapp;
1278 int32_t *lp;
1279
1280 fs = ip->i_fs;
1281 if (fs->fs_maxcluster[cg] < len)
1282 return (0);
1283 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1284 NOCRED, &bp))
1285 goto fail;
1286 cgp = (struct cg *)bp->b_data;
1287 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1288 goto fail;
1289 /*
1290 * Check to see if a cluster of the needed size (or bigger) is
1291 * available in this cylinder group.
1292 */
1293 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1294 for (i = len; i <= fs->fs_contigsumsize; i++)
1295 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1296 break;
1297 if (i > fs->fs_contigsumsize) {
1298 /*
1299 * This is the first time looking for a cluster in this
1300 * cylinder group. Update the cluster summary information
1301 * to reflect the true maximum sized cluster so that
1302 * future cluster allocation requests can avoid reading
1303 * the cylinder group map only to find no clusters.
1304 */
1305 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1306 for (i = len - 1; i > 0; i--)
1307 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1308 break;
1309 fs->fs_maxcluster[cg] = i;
1310 goto fail;
1311 }
1312 /*
1313 * Search the cluster map to find a big enough cluster.
1314 * We take the first one that we find, even if it is larger
1315 * than we need as we prefer to get one close to the previous
1316 * block allocation. We do not search before the current
1317 * preference point as we do not want to allocate a block
1318 * that is allocated before the previous one (as we will
1319 * then have to wait for another pass of the elevator
1320 * algorithm before it will be read). We prefer to fail and
1321 * be recalled to try an allocation in the next cylinder group.
1322 */
1323 if (dtog(fs, bpref) != cg)
1324 bpref = 0;
1325 else
1326 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1327 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1328 map = *mapp++;
1329 bit = 1 << (bpref % NBBY);
1330 for (run = 0, got = bpref;
1331 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1332 if ((map & bit) == 0) {
1333 run = 0;
1334 } else {
1335 run++;
1336 if (run == len)
1337 break;
1338 }
1339 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1340 bit <<= 1;
1341 } else {
1342 map = *mapp++;
1343 bit = 1;
1344 }
1345 }
1346 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1347 goto fail;
1348 /*
1349 * Allocate the cluster that we have found.
1350 */
1351 #ifdef DIAGNOSTIC
1352 for (i = 1; i <= len; i++)
1353 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1354 got - run + i))
1355 panic("ffs_clusteralloc: map mismatch");
1356 #endif
1357 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1358 if (dtog(fs, bno) != cg)
1359 panic("ffs_clusteralloc: allocated out of group");
1360 len = blkstofrags(fs, len);
1361 for (i = 0; i < len; i += fs->fs_frag)
1362 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1363 panic("ffs_clusteralloc: lost block");
1364 bdwrite(bp);
1365 return (bno);
1366
1367 fail:
1368 brelse(bp);
1369 return (0);
1370 }
1371 #endif /* XXXUBC */
1372
1373 /*
1374 * Determine whether an inode can be allocated.
1375 *
1376 * Check to see if an inode is available, and if it is,
1377 * allocate it using the following policy:
1378 * 1) allocate the requested inode.
1379 * 2) allocate the next available inode after the requested
1380 * inode in the specified cylinder group.
1381 */
1382 static ufs_daddr_t
1383 ffs_nodealloccg(ip, cg, ipref, mode)
1384 struct inode *ip;
1385 int cg;
1386 ufs_daddr_t ipref;
1387 int mode;
1388 {
1389 struct cg *cgp;
1390 struct buf *bp;
1391 int error, start, len, loc, map, i;
1392 struct fs *fs = ip->i_fs;
1393 #ifdef FFS_EI
1394 const int needswap = UFS_FSNEEDSWAP(fs);
1395 #endif
1396
1397 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1398 return (0);
1399 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1400 (int)fs->fs_cgsize, NOCRED, &bp);
1401 if (error) {
1402 brelse(bp);
1403 return (0);
1404 }
1405 cgp = (struct cg *)bp->b_data;
1406 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1407 brelse(bp);
1408 return (0);
1409 }
1410 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1411 if (ipref) {
1412 ipref %= fs->fs_ipg;
1413 if (isclr(cg_inosused(cgp, needswap), ipref))
1414 goto gotit;
1415 }
1416 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1417 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1418 NBBY);
1419 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1420 if (loc == 0) {
1421 len = start + 1;
1422 start = 0;
1423 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1424 if (loc == 0) {
1425 printf("cg = %d, irotor = %d, fs = %s\n",
1426 cg, ufs_rw32(cgp->cg_irotor, needswap),
1427 fs->fs_fsmnt);
1428 panic("ffs_nodealloccg: map corrupted");
1429 /* NOTREACHED */
1430 }
1431 }
1432 i = start + len - loc;
1433 map = cg_inosused(cgp, needswap)[i];
1434 ipref = i * NBBY;
1435 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1436 if ((map & i) == 0) {
1437 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1438 goto gotit;
1439 }
1440 }
1441 printf("fs = %s\n", fs->fs_fsmnt);
1442 panic("ffs_nodealloccg: block not in map");
1443 /* NOTREACHED */
1444 gotit:
1445 if (DOINGSOFTDEP(ITOV(ip)))
1446 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1447 setbit(cg_inosused(cgp, needswap), ipref);
1448 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1449 fs->fs_cstotal.cs_nifree--;
1450 fs->fs_cs(fs, cg).cs_nifree--;
1451 fs->fs_fmod = 1;
1452 if ((mode & IFMT) == IFDIR) {
1453 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1454 fs->fs_cstotal.cs_ndir++;
1455 fs->fs_cs(fs, cg).cs_ndir++;
1456 }
1457 bdwrite(bp);
1458 return (cg * fs->fs_ipg + ipref);
1459 }
1460
1461 /*
1462 * Free a block or fragment.
1463 *
1464 * The specified block or fragment is placed back in the
1465 * free map. If a fragment is deallocated, a possible
1466 * block reassembly is checked.
1467 */
1468 void
1469 ffs_blkfree(ip, bno, size)
1470 struct inode *ip;
1471 ufs_daddr_t bno;
1472 long size;
1473 {
1474 struct cg *cgp;
1475 struct buf *bp;
1476 ufs_daddr_t blkno;
1477 int i, error, cg, blk, frags, bbase;
1478 struct fs *fs = ip->i_fs;
1479 const int needswap = UFS_FSNEEDSWAP(fs);
1480
1481 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1482 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1483 printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1484 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1485 panic("blkfree: bad size");
1486 }
1487 cg = dtog(fs, bno);
1488 if ((u_int)bno >= fs->fs_size) {
1489 printf("bad block %d, ino %d\n", bno, ip->i_number);
1490 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1491 return;
1492 }
1493 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1494 (int)fs->fs_cgsize, NOCRED, &bp);
1495 if (error) {
1496 brelse(bp);
1497 return;
1498 }
1499 cgp = (struct cg *)bp->b_data;
1500 if (!cg_chkmagic(cgp, needswap)) {
1501 brelse(bp);
1502 return;
1503 }
1504 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1505 bno = dtogd(fs, bno);
1506 if (size == fs->fs_bsize) {
1507 blkno = fragstoblks(fs, bno);
1508 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1509 printf("dev = 0x%x, block = %d, fs = %s\n",
1510 ip->i_dev, bno, fs->fs_fsmnt);
1511 panic("blkfree: freeing free block");
1512 }
1513 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1514 ffs_clusteracct(fs, cgp, blkno, 1);
1515 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1516 fs->fs_cstotal.cs_nbfree++;
1517 fs->fs_cs(fs, cg).cs_nbfree++;
1518 i = cbtocylno(fs, bno);
1519 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1520 needswap);
1521 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1522 } else {
1523 bbase = bno - fragnum(fs, bno);
1524 /*
1525 * decrement the counts associated with the old frags
1526 */
1527 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1528 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1529 /*
1530 * deallocate the fragment
1531 */
1532 frags = numfrags(fs, size);
1533 for (i = 0; i < frags; i++) {
1534 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1535 printf("dev = 0x%x, block = %d, fs = %s\n",
1536 ip->i_dev, bno + i, fs->fs_fsmnt);
1537 panic("blkfree: freeing free frag");
1538 }
1539 setbit(cg_blksfree(cgp, needswap), bno + i);
1540 }
1541 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1542 fs->fs_cstotal.cs_nffree += i;
1543 fs->fs_cs(fs, cg).cs_nffree += i;
1544 /*
1545 * add back in counts associated with the new frags
1546 */
1547 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1548 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1549 /*
1550 * if a complete block has been reassembled, account for it
1551 */
1552 blkno = fragstoblks(fs, bbase);
1553 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1554 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1555 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1556 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1557 ffs_clusteracct(fs, cgp, blkno, 1);
1558 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1559 fs->fs_cstotal.cs_nbfree++;
1560 fs->fs_cs(fs, cg).cs_nbfree++;
1561 i = cbtocylno(fs, bbase);
1562 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1563 bbase)], 1,
1564 needswap);
1565 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1566 }
1567 }
1568 fs->fs_fmod = 1;
1569 bdwrite(bp);
1570 }
1571
1572 #if defined(DIAGNOSTIC) || defined(DEBUG)
1573 #ifdef XXXUBC
1574 /*
1575 * Verify allocation of a block or fragment. Returns true if block or
1576 * fragment is allocated, false if it is free.
1577 */
1578 static int
1579 ffs_checkblk(ip, bno, size)
1580 struct inode *ip;
1581 ufs_daddr_t bno;
1582 long size;
1583 {
1584 struct fs *fs;
1585 struct cg *cgp;
1586 struct buf *bp;
1587 int i, error, frags, free;
1588
1589 fs = ip->i_fs;
1590 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1591 printf("bsize = %d, size = %ld, fs = %s\n",
1592 fs->fs_bsize, size, fs->fs_fsmnt);
1593 panic("checkblk: bad size");
1594 }
1595 if ((u_int)bno >= fs->fs_size)
1596 panic("checkblk: bad block %d", bno);
1597 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1598 (int)fs->fs_cgsize, NOCRED, &bp);
1599 if (error) {
1600 brelse(bp);
1601 return 0;
1602 }
1603 cgp = (struct cg *)bp->b_data;
1604 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1605 brelse(bp);
1606 return 0;
1607 }
1608 bno = dtogd(fs, bno);
1609 if (size == fs->fs_bsize) {
1610 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1611 fragstoblks(fs, bno));
1612 } else {
1613 frags = numfrags(fs, size);
1614 for (free = 0, i = 0; i < frags; i++)
1615 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1616 free++;
1617 if (free != 0 && free != frags)
1618 panic("checkblk: partially free fragment");
1619 }
1620 brelse(bp);
1621 return (!free);
1622 }
1623 #endif /* XXXUBC */
1624 #endif /* DIAGNOSTIC */
1625
1626 /*
1627 * Free an inode.
1628 */
1629 int
1630 ffs_vfree(v)
1631 void *v;
1632 {
1633 struct vop_vfree_args /* {
1634 struct vnode *a_pvp;
1635 ino_t a_ino;
1636 int a_mode;
1637 } */ *ap = v;
1638
1639 if (DOINGSOFTDEP(ap->a_pvp)) {
1640 softdep_freefile(ap);
1641 return (0);
1642 }
1643 return (ffs_freefile(ap));
1644 }
1645
1646 /*
1647 * Do the actual free operation.
1648 * The specified inode is placed back in the free map.
1649 */
1650 int
1651 ffs_freefile(v)
1652 void *v;
1653 {
1654 struct vop_vfree_args /* {
1655 struct vnode *a_pvp;
1656 ino_t a_ino;
1657 int a_mode;
1658 } */ *ap = v;
1659 struct cg *cgp;
1660 struct inode *pip = VTOI(ap->a_pvp);
1661 struct fs *fs = pip->i_fs;
1662 ino_t ino = ap->a_ino;
1663 struct buf *bp;
1664 int error, cg;
1665 #ifdef FFS_EI
1666 const int needswap = UFS_FSNEEDSWAP(fs);
1667 #endif
1668
1669 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1670 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1671 pip->i_dev, ino, fs->fs_fsmnt);
1672 cg = ino_to_cg(fs, ino);
1673 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1674 (int)fs->fs_cgsize, NOCRED, &bp);
1675 if (error) {
1676 brelse(bp);
1677 return (error);
1678 }
1679 cgp = (struct cg *)bp->b_data;
1680 if (!cg_chkmagic(cgp, needswap)) {
1681 brelse(bp);
1682 return (0);
1683 }
1684 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1685 ino %= fs->fs_ipg;
1686 if (isclr(cg_inosused(cgp, needswap), ino)) {
1687 printf("dev = 0x%x, ino = %d, fs = %s\n",
1688 pip->i_dev, ino, fs->fs_fsmnt);
1689 if (fs->fs_ronly == 0)
1690 panic("ifree: freeing free inode");
1691 }
1692 clrbit(cg_inosused(cgp, needswap), ino);
1693 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1694 cgp->cg_irotor = ufs_rw32(ino, needswap);
1695 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1696 fs->fs_cstotal.cs_nifree++;
1697 fs->fs_cs(fs, cg).cs_nifree++;
1698 if ((ap->a_mode & IFMT) == IFDIR) {
1699 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1700 fs->fs_cstotal.cs_ndir--;
1701 fs->fs_cs(fs, cg).cs_ndir--;
1702 }
1703 fs->fs_fmod = 1;
1704 bdwrite(bp);
1705 return (0);
1706 }
1707
1708 /*
1709 * Find a block of the specified size in the specified cylinder group.
1710 *
1711 * It is a panic if a request is made to find a block if none are
1712 * available.
1713 */
1714 static ufs_daddr_t
1715 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1716 struct fs *fs;
1717 struct cg *cgp;
1718 ufs_daddr_t bpref;
1719 int allocsiz;
1720 {
1721 ufs_daddr_t bno;
1722 int start, len, loc, i;
1723 int blk, field, subfield, pos;
1724 int ostart, olen;
1725 #ifdef FFS_EI
1726 const int needswap = UFS_FSNEEDSWAP(fs);
1727 #endif
1728
1729 /*
1730 * find the fragment by searching through the free block
1731 * map for an appropriate bit pattern
1732 */
1733 if (bpref)
1734 start = dtogd(fs, bpref) / NBBY;
1735 else
1736 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1737 len = howmany(fs->fs_fpg, NBBY) - start;
1738 ostart = start;
1739 olen = len;
1740 loc = scanc((u_int)len,
1741 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1742 (const u_char *)fragtbl[fs->fs_frag],
1743 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1744 if (loc == 0) {
1745 len = start + 1;
1746 start = 0;
1747 loc = scanc((u_int)len,
1748 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1749 (const u_char *)fragtbl[fs->fs_frag],
1750 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1751 if (loc == 0) {
1752 printf("start = %d, len = %d, fs = %s\n",
1753 ostart, olen, fs->fs_fsmnt);
1754 printf("offset=%d %ld\n",
1755 ufs_rw32(cgp->cg_freeoff, needswap),
1756 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1757 panic("ffs_alloccg: map corrupted");
1758 /* NOTREACHED */
1759 }
1760 }
1761 bno = (start + len - loc) * NBBY;
1762 cgp->cg_frotor = ufs_rw32(bno, needswap);
1763 /*
1764 * found the byte in the map
1765 * sift through the bits to find the selected frag
1766 */
1767 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1768 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1769 blk <<= 1;
1770 field = around[allocsiz];
1771 subfield = inside[allocsiz];
1772 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1773 if ((blk & field) == subfield)
1774 return (bno + pos);
1775 field <<= 1;
1776 subfield <<= 1;
1777 }
1778 }
1779 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1780 panic("ffs_alloccg: block not in map");
1781 return (-1);
1782 }
1783
1784 /*
1785 * Update the cluster map because of an allocation or free.
1786 *
1787 * Cnt == 1 means free; cnt == -1 means allocating.
1788 */
1789 void
1790 ffs_clusteracct(fs, cgp, blkno, cnt)
1791 struct fs *fs;
1792 struct cg *cgp;
1793 ufs_daddr_t blkno;
1794 int cnt;
1795 {
1796 int32_t *sump;
1797 int32_t *lp;
1798 u_char *freemapp, *mapp;
1799 int i, start, end, forw, back, map, bit;
1800 #ifdef FFS_EI
1801 const int needswap = UFS_FSNEEDSWAP(fs);
1802 #endif
1803
1804 if (fs->fs_contigsumsize <= 0)
1805 return;
1806 freemapp = cg_clustersfree(cgp, needswap);
1807 sump = cg_clustersum(cgp, needswap);
1808 /*
1809 * Allocate or clear the actual block.
1810 */
1811 if (cnt > 0)
1812 setbit(freemapp, blkno);
1813 else
1814 clrbit(freemapp, blkno);
1815 /*
1816 * Find the size of the cluster going forward.
1817 */
1818 start = blkno + 1;
1819 end = start + fs->fs_contigsumsize;
1820 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1821 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1822 mapp = &freemapp[start / NBBY];
1823 map = *mapp++;
1824 bit = 1 << (start % NBBY);
1825 for (i = start; i < end; i++) {
1826 if ((map & bit) == 0)
1827 break;
1828 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1829 bit <<= 1;
1830 } else {
1831 map = *mapp++;
1832 bit = 1;
1833 }
1834 }
1835 forw = i - start;
1836 /*
1837 * Find the size of the cluster going backward.
1838 */
1839 start = blkno - 1;
1840 end = start - fs->fs_contigsumsize;
1841 if (end < 0)
1842 end = -1;
1843 mapp = &freemapp[start / NBBY];
1844 map = *mapp--;
1845 bit = 1 << (start % NBBY);
1846 for (i = start; i > end; i--) {
1847 if ((map & bit) == 0)
1848 break;
1849 if ((i & (NBBY - 1)) != 0) {
1850 bit >>= 1;
1851 } else {
1852 map = *mapp--;
1853 bit = 1 << (NBBY - 1);
1854 }
1855 }
1856 back = start - i;
1857 /*
1858 * Account for old cluster and the possibly new forward and
1859 * back clusters.
1860 */
1861 i = back + forw + 1;
1862 if (i > fs->fs_contigsumsize)
1863 i = fs->fs_contigsumsize;
1864 ufs_add32(sump[i], cnt, needswap);
1865 if (back > 0)
1866 ufs_add32(sump[back], -cnt, needswap);
1867 if (forw > 0)
1868 ufs_add32(sump[forw], -cnt, needswap);
1869
1870 /*
1871 * Update cluster summary information.
1872 */
1873 lp = &sump[fs->fs_contigsumsize];
1874 for (i = fs->fs_contigsumsize; i > 0; i--)
1875 if (ufs_rw32(*lp--, needswap) > 0)
1876 break;
1877 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1878 }
1879
1880 /*
1881 * Fserr prints the name of a file system with an error diagnostic.
1882 *
1883 * The form of the error message is:
1884 * fs: error message
1885 */
1886 static void
1887 ffs_fserr(fs, uid, cp)
1888 struct fs *fs;
1889 u_int uid;
1890 char *cp;
1891 {
1892
1893 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1894 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1895 }
1896