ffs_alloc.c revision 1.60 1 /* $NetBSD: ffs_alloc.c,v 1.60 2003/04/02 10:39:36 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.60 2003/04/02 10:39:36 fvdl Exp $");
49
50 #if defined(_KERNEL_OPT)
51 #include "opt_ffs.h"
52 #include "opt_quota.h"
53 #endif
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/buf.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/kernel.h>
62 #include <sys/syslog.h>
63
64 #include <ufs/ufs/quota.h>
65 #include <ufs/ufs/ufsmount.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/ufs_extern.h>
68 #include <ufs/ufs/ufs_bswap.h>
69
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72
73 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
74 static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
75 #ifdef XXXUBC
76 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
77 #endif
78 static ino_t ffs_dirpref __P((struct inode *));
79 static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
80 static void ffs_fserr __P((struct fs *, u_int, char *));
81 static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
82 daddr_t (*)(struct inode *, int, daddr_t, int)));
83 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
84 static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
85 daddr_t, int));
86 #if defined(DIAGNOSTIC) || defined(DEBUG)
87 #ifdef XXXUBC
88 static int ffs_checkblk __P((struct inode *, daddr_t, long size));
89 #endif
90 #endif
91
92 /* if 1, changes in optimalization strategy are logged */
93 int ffs_log_changeopt = 0;
94
95 /* in ffs_tables.c */
96 extern const int inside[], around[];
97 extern const u_char * const fragtbl[];
98
99 /*
100 * Allocate a block in the file system.
101 *
102 * The size of the requested block is given, which must be some
103 * multiple of fs_fsize and <= fs_bsize.
104 * A preference may be optionally specified. If a preference is given
105 * the following hierarchy is used to allocate a block:
106 * 1) allocate the requested block.
107 * 2) allocate a rotationally optimal block in the same cylinder.
108 * 3) allocate a block in the same cylinder group.
109 * 4) quadradically rehash into other cylinder groups, until an
110 * available block is located.
111 * If no block preference is given the following hierarchy is used
112 * to allocate a block:
113 * 1) allocate a block in the cylinder group that contains the
114 * inode for the file.
115 * 2) quadradically rehash into other cylinder groups, until an
116 * available block is located.
117 */
118 int
119 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
120 struct inode *ip;
121 daddr_t lbn, bpref;
122 int size;
123 struct ucred *cred;
124 daddr_t *bnp;
125 {
126 struct fs *fs = ip->i_fs;
127 daddr_t bno;
128 int cg;
129 #ifdef QUOTA
130 int error;
131 #endif
132
133 #ifdef UVM_PAGE_TRKOWN
134 if (ITOV(ip)->v_type == VREG &&
135 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
136 struct vm_page *pg;
137 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
138 voff_t off = trunc_page(lblktosize(fs, lbn));
139 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
140
141 simple_lock(&uobj->vmobjlock);
142 while (off < endoff) {
143 pg = uvm_pagelookup(uobj, off);
144 KASSERT(pg != NULL);
145 KASSERT(pg->owner == curproc->p_pid);
146 KASSERT((pg->flags & PG_CLEAN) == 0);
147 off += PAGE_SIZE;
148 }
149 simple_unlock(&uobj->vmobjlock);
150 }
151 #endif
152
153 *bnp = 0;
154 #ifdef DIAGNOSTIC
155 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
156 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
157 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
158 panic("ffs_alloc: bad size");
159 }
160 if (cred == NOCRED)
161 panic("ffs_alloc: missing credential");
162 #endif /* DIAGNOSTIC */
163 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
164 goto nospace;
165 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
166 goto nospace;
167 #ifdef QUOTA
168 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
169 return (error);
170 #endif
171 if (bpref >= fs->fs_size)
172 bpref = 0;
173 if (bpref == 0)
174 cg = ino_to_cg(fs, ip->i_number);
175 else
176 cg = dtog(fs, bpref);
177 bno = ffs_hashalloc(ip, cg, (long)bpref, size,
178 ffs_alloccg);
179 if (bno > 0) {
180 DIP(ip, blocks) += btodb(size);
181 ip->i_flag |= IN_CHANGE | IN_UPDATE;
182 *bnp = bno;
183 return (0);
184 }
185 #ifdef QUOTA
186 /*
187 * Restore user's disk quota because allocation failed.
188 */
189 (void) chkdq(ip, -btodb(size), cred, FORCE);
190 #endif
191 nospace:
192 ffs_fserr(fs, cred->cr_uid, "file system full");
193 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
194 return (ENOSPC);
195 }
196
197 /*
198 * Reallocate a fragment to a bigger size
199 *
200 * The number and size of the old block is given, and a preference
201 * and new size is also specified. The allocator attempts to extend
202 * the original block. Failing that, the regular block allocator is
203 * invoked to get an appropriate block.
204 */
205 int
206 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
207 struct inode *ip;
208 daddr_t lbprev;
209 daddr_t bpref;
210 int osize, nsize;
211 struct ucred *cred;
212 struct buf **bpp;
213 daddr_t *blknop;
214 {
215 struct fs *fs = ip->i_fs;
216 struct buf *bp;
217 int cg, request, error;
218 daddr_t bprev, bno;
219
220 #ifdef UVM_PAGE_TRKOWN
221 if (ITOV(ip)->v_type == VREG) {
222 struct vm_page *pg;
223 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
224 voff_t off = trunc_page(lblktosize(fs, lbprev));
225 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
226
227 simple_lock(&uobj->vmobjlock);
228 while (off < endoff) {
229 pg = uvm_pagelookup(uobj, off);
230 KASSERT(pg != NULL);
231 KASSERT(pg->owner == curproc->p_pid);
232 KASSERT((pg->flags & PG_CLEAN) == 0);
233 off += PAGE_SIZE;
234 }
235 simple_unlock(&uobj->vmobjlock);
236 }
237 #endif
238
239 #ifdef DIAGNOSTIC
240 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
241 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
242 printf(
243 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
244 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
245 panic("ffs_realloccg: bad size");
246 }
247 if (cred == NOCRED)
248 panic("ffs_realloccg: missing credential");
249 #endif /* DIAGNOSTIC */
250 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
251 goto nospace;
252 if (fs->fs_magic == FS_UFS2_MAGIC)
253 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
254 else
255 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
256
257 if (bprev == 0) {
258 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
259 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
260 panic("ffs_realloccg: bad bprev");
261 }
262 /*
263 * Allocate the extra space in the buffer.
264 */
265 if (bpp != NULL &&
266 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
267 brelse(bp);
268 return (error);
269 }
270 #ifdef QUOTA
271 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
272 if (bpp != NULL) {
273 brelse(bp);
274 }
275 return (error);
276 }
277 #endif
278 /*
279 * Check for extension in the existing location.
280 */
281 cg = dtog(fs, bprev);
282 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
283 DIP(ip, blocks) += btodb(nsize - osize);
284 ip->i_flag |= IN_CHANGE | IN_UPDATE;
285
286 if (bpp != NULL) {
287 if (bp->b_blkno != fsbtodb(fs, bno))
288 panic("bad blockno");
289 allocbuf(bp, nsize);
290 bp->b_flags |= B_DONE;
291 memset(bp->b_data + osize, 0, nsize - osize);
292 *bpp = bp;
293 }
294 if (blknop != NULL) {
295 *blknop = bno;
296 }
297 return (0);
298 }
299 /*
300 * Allocate a new disk location.
301 */
302 if (bpref >= fs->fs_size)
303 bpref = 0;
304 switch ((int)fs->fs_optim) {
305 case FS_OPTSPACE:
306 /*
307 * Allocate an exact sized fragment. Although this makes
308 * best use of space, we will waste time relocating it if
309 * the file continues to grow. If the fragmentation is
310 * less than half of the minimum free reserve, we choose
311 * to begin optimizing for time.
312 */
313 request = nsize;
314 if (fs->fs_minfree < 5 ||
315 fs->fs_cstotal.cs_nffree >
316 fs->fs_dsize * fs->fs_minfree / (2 * 100))
317 break;
318
319 if (ffs_log_changeopt) {
320 log(LOG_NOTICE,
321 "%s: optimization changed from SPACE to TIME\n",
322 fs->fs_fsmnt);
323 }
324
325 fs->fs_optim = FS_OPTTIME;
326 break;
327 case FS_OPTTIME:
328 /*
329 * At this point we have discovered a file that is trying to
330 * grow a small fragment to a larger fragment. To save time,
331 * we allocate a full sized block, then free the unused portion.
332 * If the file continues to grow, the `ffs_fragextend' call
333 * above will be able to grow it in place without further
334 * copying. If aberrant programs cause disk fragmentation to
335 * grow within 2% of the free reserve, we choose to begin
336 * optimizing for space.
337 */
338 request = fs->fs_bsize;
339 if (fs->fs_cstotal.cs_nffree <
340 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
341 break;
342
343 if (ffs_log_changeopt) {
344 log(LOG_NOTICE,
345 "%s: optimization changed from TIME to SPACE\n",
346 fs->fs_fsmnt);
347 }
348
349 fs->fs_optim = FS_OPTSPACE;
350 break;
351 default:
352 printf("dev = 0x%x, optim = %d, fs = %s\n",
353 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
354 panic("ffs_realloccg: bad optim");
355 /* NOTREACHED */
356 }
357 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
358 if (bno > 0) {
359 if (!DOINGSOFTDEP(ITOV(ip)))
360 ffs_blkfree(ip, bprev, (long)osize);
361 if (nsize < request)
362 ffs_blkfree(ip, bno + numfrags(fs, nsize),
363 (long)(request - nsize));
364 DIP(ip, blocks) += btodb(nsize - osize);
365 ip->i_flag |= IN_CHANGE | IN_UPDATE;
366 if (bpp != NULL) {
367 bp->b_blkno = fsbtodb(fs, bno);
368 allocbuf(bp, nsize);
369 bp->b_flags |= B_DONE;
370 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
371 *bpp = bp;
372 }
373 if (blknop != NULL) {
374 *blknop = bno;
375 }
376 return (0);
377 }
378 #ifdef QUOTA
379 /*
380 * Restore user's disk quota because allocation failed.
381 */
382 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
383 #endif
384 if (bpp != NULL) {
385 brelse(bp);
386 }
387
388 nospace:
389 /*
390 * no space available
391 */
392 ffs_fserr(fs, cred->cr_uid, "file system full");
393 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
394 return (ENOSPC);
395 }
396
397 /*
398 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
399 *
400 * The vnode and an array of buffer pointers for a range of sequential
401 * logical blocks to be made contiguous is given. The allocator attempts
402 * to find a range of sequential blocks starting as close as possible
403 * from the end of the allocation for the logical block immediately
404 * preceding the current range. If successful, the physical block numbers
405 * in the buffer pointers and in the inode are changed to reflect the new
406 * allocation. If unsuccessful, the allocation is left unchanged. The
407 * success in doing the reallocation is returned. Note that the error
408 * return is not reflected back to the user. Rather the previous block
409 * allocation will be used.
410
411 */
412 #ifdef XXXUBC
413 #ifdef DEBUG
414 #include <sys/sysctl.h>
415 int prtrealloc = 0;
416 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
417 #endif
418 #endif
419
420 /*
421 * NOTE: when re-enabling this, it must be updated for UFS2.
422 */
423
424 int doasyncfree = 1;
425
426 int
427 ffs_reallocblks(v)
428 void *v;
429 {
430 #ifdef XXXUBC
431 struct vop_reallocblks_args /* {
432 struct vnode *a_vp;
433 struct cluster_save *a_buflist;
434 } */ *ap = v;
435 struct fs *fs;
436 struct inode *ip;
437 struct vnode *vp;
438 struct buf *sbp, *ebp;
439 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
440 struct cluster_save *buflist;
441 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
442 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
443 int i, len, start_lvl, end_lvl, pref, ssize;
444 #endif /* XXXUBC */
445
446 /* XXXUBC don't reallocblks for now */
447 return ENOSPC;
448
449 #ifdef XXXUBC
450 vp = ap->a_vp;
451 ip = VTOI(vp);
452 fs = ip->i_fs;
453 if (fs->fs_contigsumsize <= 0)
454 return (ENOSPC);
455 buflist = ap->a_buflist;
456 len = buflist->bs_nchildren;
457 start_lbn = buflist->bs_children[0]->b_lblkno;
458 end_lbn = start_lbn + len - 1;
459 #ifdef DIAGNOSTIC
460 for (i = 0; i < len; i++)
461 if (!ffs_checkblk(ip,
462 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
463 panic("ffs_reallocblks: unallocated block 1");
464 for (i = 1; i < len; i++)
465 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
466 panic("ffs_reallocblks: non-logical cluster");
467 blkno = buflist->bs_children[0]->b_blkno;
468 ssize = fsbtodb(fs, fs->fs_frag);
469 for (i = 1; i < len - 1; i++)
470 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
471 panic("ffs_reallocblks: non-physical cluster %d", i);
472 #endif
473 /*
474 * If the latest allocation is in a new cylinder group, assume that
475 * the filesystem has decided to move and do not force it back to
476 * the previous cylinder group.
477 */
478 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
479 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
480 return (ENOSPC);
481 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
482 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
483 return (ENOSPC);
484 /*
485 * Get the starting offset and block map for the first block.
486 */
487 if (start_lvl == 0) {
488 sbap = &ip->i_ffs1_db[0];
489 soff = start_lbn;
490 } else {
491 idp = &start_ap[start_lvl - 1];
492 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
493 brelse(sbp);
494 return (ENOSPC);
495 }
496 sbap = (int32_t *)sbp->b_data;
497 soff = idp->in_off;
498 }
499 /*
500 * Find the preferred location for the cluster.
501 */
502 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
503 /*
504 * If the block range spans two block maps, get the second map.
505 */
506 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
507 ssize = len;
508 } else {
509 #ifdef DIAGNOSTIC
510 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
511 panic("ffs_reallocblk: start == end");
512 #endif
513 ssize = len - (idp->in_off + 1);
514 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
515 goto fail;
516 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
517 }
518 /*
519 * Search the block map looking for an allocation of the desired size.
520 */
521 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
522 len, ffs_clusteralloc)) == 0)
523 goto fail;
524 /*
525 * We have found a new contiguous block.
526 *
527 * First we have to replace the old block pointers with the new
528 * block pointers in the inode and indirect blocks associated
529 * with the file.
530 */
531 #ifdef DEBUG
532 if (prtrealloc)
533 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
534 start_lbn, end_lbn);
535 #endif
536 blkno = newblk;
537 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
538 daddr_t ba;
539
540 if (i == ssize) {
541 bap = ebap;
542 soff = -i;
543 }
544 /* XXX ondisk32 */
545 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
546 #ifdef DIAGNOSTIC
547 if (!ffs_checkblk(ip,
548 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
549 panic("ffs_reallocblks: unallocated block 2");
550 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
551 panic("ffs_reallocblks: alloc mismatch");
552 #endif
553 #ifdef DEBUG
554 if (prtrealloc)
555 printf(" %d,", ba);
556 #endif
557 if (DOINGSOFTDEP(vp)) {
558 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
559 softdep_setup_allocdirect(ip, start_lbn + i,
560 blkno, ba, fs->fs_bsize, fs->fs_bsize,
561 buflist->bs_children[i]);
562 else
563 softdep_setup_allocindir_page(ip, start_lbn + i,
564 i < ssize ? sbp : ebp, soff + i, blkno,
565 ba, buflist->bs_children[i]);
566 }
567 /* XXX ondisk32 */
568 *bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
569 }
570 /*
571 * Next we must write out the modified inode and indirect blocks.
572 * For strict correctness, the writes should be synchronous since
573 * the old block values may have been written to disk. In practise
574 * they are almost never written, but if we are concerned about
575 * strict correctness, the `doasyncfree' flag should be set to zero.
576 *
577 * The test on `doasyncfree' should be changed to test a flag
578 * that shows whether the associated buffers and inodes have
579 * been written. The flag should be set when the cluster is
580 * started and cleared whenever the buffer or inode is flushed.
581 * We can then check below to see if it is set, and do the
582 * synchronous write only when it has been cleared.
583 */
584 if (sbap != &ip->i_ffs1_db[0]) {
585 if (doasyncfree)
586 bdwrite(sbp);
587 else
588 bwrite(sbp);
589 } else {
590 ip->i_flag |= IN_CHANGE | IN_UPDATE;
591 if (!doasyncfree)
592 VOP_UPDATE(vp, NULL, NULL, 1);
593 }
594 if (ssize < len) {
595 if (doasyncfree)
596 bdwrite(ebp);
597 else
598 bwrite(ebp);
599 }
600 /*
601 * Last, free the old blocks and assign the new blocks to the buffers.
602 */
603 #ifdef DEBUG
604 if (prtrealloc)
605 printf("\n\tnew:");
606 #endif
607 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
608 if (!DOINGSOFTDEP(vp))
609 ffs_blkfree(ip,
610 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
611 fs->fs_bsize);
612 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
613 #ifdef DEBUG
614 if (!ffs_checkblk(ip,
615 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
616 panic("ffs_reallocblks: unallocated block 3");
617 if (prtrealloc)
618 printf(" %d,", blkno);
619 #endif
620 }
621 #ifdef DEBUG
622 if (prtrealloc) {
623 prtrealloc--;
624 printf("\n");
625 }
626 #endif
627 return (0);
628
629 fail:
630 if (ssize < len)
631 brelse(ebp);
632 if (sbap != &ip->i_ffs1_db[0])
633 brelse(sbp);
634 return (ENOSPC);
635 #endif /* XXXUBC */
636 }
637
638 /*
639 * Allocate an inode in the file system.
640 *
641 * If allocating a directory, use ffs_dirpref to select the inode.
642 * If allocating in a directory, the following hierarchy is followed:
643 * 1) allocate the preferred inode.
644 * 2) allocate an inode in the same cylinder group.
645 * 3) quadradically rehash into other cylinder groups, until an
646 * available inode is located.
647 * If no inode preference is given the following hierarchy is used
648 * to allocate an inode:
649 * 1) allocate an inode in cylinder group 0.
650 * 2) quadradically rehash into other cylinder groups, until an
651 * available inode is located.
652 */
653 int
654 ffs_valloc(v)
655 void *v;
656 {
657 struct vop_valloc_args /* {
658 struct vnode *a_pvp;
659 int a_mode;
660 struct ucred *a_cred;
661 struct vnode **a_vpp;
662 } */ *ap = v;
663 struct vnode *pvp = ap->a_pvp;
664 struct inode *pip;
665 struct fs *fs;
666 struct inode *ip;
667 struct timespec ts;
668 mode_t mode = ap->a_mode;
669 ino_t ino, ipref;
670 int cg, error;
671
672 *ap->a_vpp = NULL;
673 pip = VTOI(pvp);
674 fs = pip->i_fs;
675 if (fs->fs_cstotal.cs_nifree == 0)
676 goto noinodes;
677
678 if ((mode & IFMT) == IFDIR)
679 ipref = ffs_dirpref(pip);
680 else
681 ipref = pip->i_number;
682 if (ipref >= fs->fs_ncg * fs->fs_ipg)
683 ipref = 0;
684 cg = ino_to_cg(fs, ipref);
685 /*
686 * Track number of dirs created one after another
687 * in a same cg without intervening by files.
688 */
689 if ((mode & IFMT) == IFDIR) {
690 if (fs->fs_contigdirs[cg] < 65535)
691 fs->fs_contigdirs[cg]++;
692 } else {
693 if (fs->fs_contigdirs[cg] > 0)
694 fs->fs_contigdirs[cg]--;
695 }
696 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
697 if (ino == 0)
698 goto noinodes;
699 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
700 if (error) {
701 VOP_VFREE(pvp, ino, mode);
702 return (error);
703 }
704 ip = VTOI(*ap->a_vpp);
705 if (ip->i_mode) {
706 #if 0
707 printf("mode = 0%o, inum = %d, fs = %s\n",
708 ip->i_mode, ip->i_number, fs->fs_fsmnt);
709 #else
710 printf("dmode %x mode %x dgen %x gen %x\n",
711 DIP(ip, mode), ip->i_mode,
712 DIP(ip, gen), ip->i_gen);
713 printf("size %llx blocks %llx\n",
714 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
715 printf("ino %u ipref %u\n", ino, ipref);
716 #if 0
717 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
718 (int)fs->fs_bsize, NOCRED, &bp);
719 #endif
720
721 #endif
722 panic("ffs_valloc: dup alloc");
723 }
724 if (DIP(ip, blocks)) { /* XXX */
725 printf("free inode %s/%d had %" PRId64 " blocks\n",
726 fs->fs_fsmnt, ino, DIP(ip, blocks));
727 DIP(ip, blocks) = 0;
728 }
729 ip->i_flag &= ~IN_SPACECOUNTED;
730 DIP(ip, flags) = 0;
731 /*
732 * Set up a new generation number for this inode.
733 */
734 ip->i_gen++;
735 DIP(ip, gen) = ip->i_gen;
736 if (fs->fs_magic == FS_UFS2_MAGIC) {
737 TIMEVAL_TO_TIMESPEC(&time, &ts);
738 ip->i_ffs2_birthtime = ts.tv_sec;
739 ip->i_ffs2_birthnsec = ts.tv_nsec;
740 }
741 return (0);
742 noinodes:
743 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
744 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
745 return (ENOSPC);
746 }
747
748 /*
749 * Find a cylinder group in which to place a directory.
750 *
751 * The policy implemented by this algorithm is to allocate a
752 * directory inode in the same cylinder group as its parent
753 * directory, but also to reserve space for its files inodes
754 * and data. Restrict the number of directories which may be
755 * allocated one after another in the same cylinder group
756 * without intervening allocation of files.
757 *
758 * If we allocate a first level directory then force allocation
759 * in another cylinder group.
760 */
761 static ino_t
762 ffs_dirpref(pip)
763 struct inode *pip;
764 {
765 register struct fs *fs;
766 int cg, prefcg, dirsize, cgsize;
767 int avgifree, avgbfree, avgndir, curdirsize;
768 int minifree, minbfree, maxndir;
769 int mincg, minndir;
770 int maxcontigdirs;
771
772 fs = pip->i_fs;
773
774 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
775 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
776 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
777
778 /*
779 * Force allocation in another cg if creating a first level dir.
780 */
781 if (ITOV(pip)->v_flag & VROOT) {
782 prefcg = random() % fs->fs_ncg;
783 mincg = prefcg;
784 minndir = fs->fs_ipg;
785 for (cg = prefcg; cg < fs->fs_ncg; cg++)
786 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
787 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
788 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
789 mincg = cg;
790 minndir = fs->fs_cs(fs, cg).cs_ndir;
791 }
792 for (cg = 0; cg < prefcg; cg++)
793 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
794 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
795 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
796 mincg = cg;
797 minndir = fs->fs_cs(fs, cg).cs_ndir;
798 }
799 return ((ino_t)(fs->fs_ipg * mincg));
800 }
801
802 /*
803 * Count various limits which used for
804 * optimal allocation of a directory inode.
805 */
806 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
807 minifree = avgifree - fs->fs_ipg / 4;
808 if (minifree < 0)
809 minifree = 0;
810 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
811 if (minbfree < 0)
812 minbfree = 0;
813 cgsize = fs->fs_fsize * fs->fs_fpg;
814 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
815 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
816 if (dirsize < curdirsize)
817 dirsize = curdirsize;
818 maxcontigdirs = min(cgsize / dirsize, 255);
819 if (fs->fs_avgfpdir > 0)
820 maxcontigdirs = min(maxcontigdirs,
821 fs->fs_ipg / fs->fs_avgfpdir);
822 if (maxcontigdirs == 0)
823 maxcontigdirs = 1;
824
825 /*
826 * Limit number of dirs in one cg and reserve space for
827 * regular files, but only if we have no deficit in
828 * inodes or space.
829 */
830 prefcg = ino_to_cg(fs, pip->i_number);
831 for (cg = prefcg; cg < fs->fs_ncg; cg++)
832 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
833 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
834 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
835 if (fs->fs_contigdirs[cg] < maxcontigdirs)
836 return ((ino_t)(fs->fs_ipg * cg));
837 }
838 for (cg = 0; cg < prefcg; cg++)
839 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
840 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
841 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
842 if (fs->fs_contigdirs[cg] < maxcontigdirs)
843 return ((ino_t)(fs->fs_ipg * cg));
844 }
845 /*
846 * This is a backstop when we are deficient in space.
847 */
848 for (cg = prefcg; cg < fs->fs_ncg; cg++)
849 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
850 return ((ino_t)(fs->fs_ipg * cg));
851 for (cg = 0; cg < prefcg; cg++)
852 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
853 break;
854 return ((ino_t)(fs->fs_ipg * cg));
855 }
856
857 /*
858 * Select the desired position for the next block in a file. The file is
859 * logically divided into sections. The first section is composed of the
860 * direct blocks. Each additional section contains fs_maxbpg blocks.
861 *
862 * If no blocks have been allocated in the first section, the policy is to
863 * request a block in the same cylinder group as the inode that describes
864 * the file. If no blocks have been allocated in any other section, the
865 * policy is to place the section in a cylinder group with a greater than
866 * average number of free blocks. An appropriate cylinder group is found
867 * by using a rotor that sweeps the cylinder groups. When a new group of
868 * blocks is needed, the sweep begins in the cylinder group following the
869 * cylinder group from which the previous allocation was made. The sweep
870 * continues until a cylinder group with greater than the average number
871 * of free blocks is found. If the allocation is for the first block in an
872 * indirect block, the information on the previous allocation is unavailable;
873 * here a best guess is made based upon the logical block number being
874 * allocated.
875 *
876 * If a section is already partially allocated, the policy is to
877 * contiguously allocate fs_maxcontig blocks. The end of one of these
878 * contiguous blocks and the beginning of the next is laid out
879 * contigously if possible.
880 */
881 daddr_t
882 ffs_blkpref_ufs1(ip, lbn, indx, bap)
883 struct inode *ip;
884 daddr_t lbn;
885 int indx;
886 int32_t *bap; /* XXX ondisk32 */
887 {
888 struct fs *fs;
889 int cg;
890 int avgbfree, startcg;
891
892 fs = ip->i_fs;
893 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
894 if (lbn < NDADDR + NINDIR(fs)) {
895 cg = ino_to_cg(fs, ip->i_number);
896 return (fs->fs_fpg * cg + fs->fs_frag);
897 }
898 /*
899 * Find a cylinder with greater than average number of
900 * unused data blocks.
901 */
902 if (indx == 0 || bap[indx - 1] == 0)
903 startcg =
904 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
905 else
906 startcg = dtog(fs,
907 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
908 startcg %= fs->fs_ncg;
909 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
910 for (cg = startcg; cg < fs->fs_ncg; cg++)
911 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
912 return (fs->fs_fpg * cg + fs->fs_frag);
913 }
914 for (cg = 0; cg < startcg; cg++)
915 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
916 return (fs->fs_fpg * cg + fs->fs_frag);
917 }
918 return (0);
919 }
920 /*
921 * We just always try to lay things out contiguously.
922 */
923 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
924 }
925
926 daddr_t
927 ffs_blkpref_ufs2(ip, lbn, indx, bap)
928 struct inode *ip;
929 daddr_t lbn;
930 int indx;
931 int64_t *bap;
932 {
933 struct fs *fs;
934 int cg;
935 int avgbfree, startcg;
936
937 fs = ip->i_fs;
938 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
939 if (lbn < NDADDR + NINDIR(fs)) {
940 cg = ino_to_cg(fs, ip->i_number);
941 return (fs->fs_fpg * cg + fs->fs_frag);
942 }
943 /*
944 * Find a cylinder with greater than average number of
945 * unused data blocks.
946 */
947 if (indx == 0 || bap[indx - 1] == 0)
948 startcg =
949 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
950 else
951 startcg = dtog(fs,
952 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
953 startcg %= fs->fs_ncg;
954 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
955 for (cg = startcg; cg < fs->fs_ncg; cg++)
956 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
957 return (fs->fs_fpg * cg + fs->fs_frag);
958 }
959 for (cg = 0; cg < startcg; cg++)
960 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
961 return (fs->fs_fpg * cg + fs->fs_frag);
962 }
963 return (0);
964 }
965 /*
966 * We just always try to lay things out contiguously.
967 */
968 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
969 }
970
971
972 /*
973 * Implement the cylinder overflow algorithm.
974 *
975 * The policy implemented by this algorithm is:
976 * 1) allocate the block in its requested cylinder group.
977 * 2) quadradically rehash on the cylinder group number.
978 * 3) brute force search for a free block.
979 */
980 /*VARARGS5*/
981 static daddr_t
982 ffs_hashalloc(ip, cg, pref, size, allocator)
983 struct inode *ip;
984 int cg;
985 daddr_t pref;
986 int size; /* size for data blocks, mode for inodes */
987 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
988 {
989 struct fs *fs;
990 daddr_t result;
991 int i, icg = cg;
992
993 fs = ip->i_fs;
994 /*
995 * 1: preferred cylinder group
996 */
997 result = (*allocator)(ip, cg, pref, size);
998 if (result)
999 return (result);
1000 /*
1001 * 2: quadratic rehash
1002 */
1003 for (i = 1; i < fs->fs_ncg; i *= 2) {
1004 cg += i;
1005 if (cg >= fs->fs_ncg)
1006 cg -= fs->fs_ncg;
1007 result = (*allocator)(ip, cg, 0, size);
1008 if (result)
1009 return (result);
1010 }
1011 /*
1012 * 3: brute force search
1013 * Note that we start at i == 2, since 0 was checked initially,
1014 * and 1 is always checked in the quadratic rehash.
1015 */
1016 cg = (icg + 2) % fs->fs_ncg;
1017 for (i = 2; i < fs->fs_ncg; i++) {
1018 result = (*allocator)(ip, cg, 0, size);
1019 if (result)
1020 return (result);
1021 cg++;
1022 if (cg == fs->fs_ncg)
1023 cg = 0;
1024 }
1025 return (0);
1026 }
1027
1028 /*
1029 * Determine whether a fragment can be extended.
1030 *
1031 * Check to see if the necessary fragments are available, and
1032 * if they are, allocate them.
1033 */
1034 static daddr_t
1035 ffs_fragextend(ip, cg, bprev, osize, nsize)
1036 struct inode *ip;
1037 int cg;
1038 daddr_t bprev;
1039 int osize, nsize;
1040 {
1041 struct fs *fs;
1042 struct cg *cgp;
1043 struct buf *bp;
1044 daddr_t bno;
1045 int frags, bbase;
1046 int i, error;
1047
1048 fs = ip->i_fs;
1049 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1050 return (0);
1051 frags = numfrags(fs, nsize);
1052 bbase = fragnum(fs, bprev);
1053 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1054 /* cannot extend across a block boundary */
1055 return (0);
1056 }
1057 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1058 (int)fs->fs_cgsize, NOCRED, &bp);
1059 if (error) {
1060 brelse(bp);
1061 return (0);
1062 }
1063 cgp = (struct cg *)bp->b_data;
1064 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1065 brelse(bp);
1066 return (0);
1067 }
1068 cgp->cg_old_time = cgp->cg_time =
1069 ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1070 bno = dtogd(fs, bprev);
1071 for (i = numfrags(fs, osize); i < frags; i++)
1072 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
1073 brelse(bp);
1074 return (0);
1075 }
1076 /*
1077 * the current fragment can be extended
1078 * deduct the count on fragment being extended into
1079 * increase the count on the remaining fragment (if any)
1080 * allocate the extended piece
1081 */
1082 for (i = frags; i < fs->fs_frag - bbase; i++)
1083 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1084 break;
1085 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1086 if (i != frags)
1087 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1088 for (i = numfrags(fs, osize); i < frags; i++) {
1089 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1090 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1091 fs->fs_cstotal.cs_nffree--;
1092 fs->fs_cs(fs, cg).cs_nffree--;
1093 }
1094 fs->fs_fmod = 1;
1095 if (DOINGSOFTDEP(ITOV(ip)))
1096 softdep_setup_blkmapdep(bp, fs, bprev);
1097 bdwrite(bp);
1098 return (bprev);
1099 }
1100
1101 /*
1102 * Determine whether a block can be allocated.
1103 *
1104 * Check to see if a block of the appropriate size is available,
1105 * and if it is, allocate it.
1106 */
1107 static daddr_t
1108 ffs_alloccg(ip, cg, bpref, size)
1109 struct inode *ip;
1110 int cg;
1111 daddr_t bpref;
1112 int size;
1113 {
1114 struct cg *cgp;
1115 struct buf *bp;
1116 int32_t bno;
1117 daddr_t blkno;
1118 int error, frags, allocsiz, i;
1119 struct fs *fs = ip->i_fs;
1120 #ifdef FFS_EI
1121 const int needswap = UFS_FSNEEDSWAP(fs);
1122 #endif
1123
1124 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1125 return (0);
1126 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1127 (int)fs->fs_cgsize, NOCRED, &bp);
1128 if (error) {
1129 brelse(bp);
1130 return (0);
1131 }
1132 cgp = (struct cg *)bp->b_data;
1133 if (!cg_chkmagic(cgp, needswap) ||
1134 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1135 brelse(bp);
1136 return (0);
1137 }
1138 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1139 if (size == fs->fs_bsize) {
1140 blkno = ffs_alloccgblk(ip, bp, bpref);
1141 bdwrite(bp);
1142 return (blkno);
1143 }
1144 /*
1145 * check to see if any fragments are already available
1146 * allocsiz is the size which will be allocated, hacking
1147 * it down to a smaller size if necessary
1148 */
1149 frags = numfrags(fs, size);
1150 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1151 if (cgp->cg_frsum[allocsiz] != 0)
1152 break;
1153 if (allocsiz == fs->fs_frag) {
1154 /*
1155 * no fragments were available, so a block will be
1156 * allocated, and hacked up
1157 */
1158 if (cgp->cg_cs.cs_nbfree == 0) {
1159 brelse(bp);
1160 return (0);
1161 }
1162 blkno = ffs_alloccgblk(ip, bp, bpref);
1163 bno = dtogd(fs, blkno);
1164 for (i = frags; i < fs->fs_frag; i++)
1165 setbit(cg_blksfree(cgp, needswap), bno + i);
1166 i = fs->fs_frag - frags;
1167 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1168 fs->fs_cstotal.cs_nffree += i;
1169 fs->fs_cs(fs, cg).cs_nffree += i;
1170 fs->fs_fmod = 1;
1171 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1172 bdwrite(bp);
1173 return (blkno);
1174 }
1175 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1176 #if 0
1177 /*
1178 * XXX fvdl mapsearch will panic, and never return -1
1179 * also: returning NULL as daddr_t ?
1180 */
1181 if (bno < 0) {
1182 brelse(bp);
1183 return (0);
1184 }
1185 #endif
1186 for (i = 0; i < frags; i++)
1187 clrbit(cg_blksfree(cgp, needswap), bno + i);
1188 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1189 fs->fs_cstotal.cs_nffree -= frags;
1190 fs->fs_cs(fs, cg).cs_nffree -= frags;
1191 fs->fs_fmod = 1;
1192 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1193 if (frags != allocsiz)
1194 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1195 blkno = cg * fs->fs_fpg + bno;
1196 if (DOINGSOFTDEP(ITOV(ip)))
1197 softdep_setup_blkmapdep(bp, fs, blkno);
1198 bdwrite(bp);
1199 return blkno;
1200 }
1201
1202 /*
1203 * Allocate a block in a cylinder group.
1204 *
1205 * This algorithm implements the following policy:
1206 * 1) allocate the requested block.
1207 * 2) allocate a rotationally optimal block in the same cylinder.
1208 * 3) allocate the next available block on the block rotor for the
1209 * specified cylinder group.
1210 * Note that this routine only allocates fs_bsize blocks; these
1211 * blocks may be fragmented by the routine that allocates them.
1212 */
1213 static daddr_t
1214 ffs_alloccgblk(ip, bp, bpref)
1215 struct inode *ip;
1216 struct buf *bp;
1217 daddr_t bpref;
1218 {
1219 struct cg *cgp;
1220 daddr_t blkno;
1221 int32_t bno;
1222 struct fs *fs = ip->i_fs;
1223 u_int8_t *blksfree;
1224 #ifdef FFS_EI
1225 const int needswap = UFS_FSNEEDSWAP(fs);
1226 #endif
1227
1228 cgp = (struct cg *)bp->b_data;
1229 blksfree = cg_blksfree(cgp, needswap);
1230 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1231 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1232 } else {
1233 bpref = blknum(fs, bpref);
1234 bno = dtogd(fs, bpref);
1235 /*
1236 * if the requested block is available, use it
1237 */
1238 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1239 goto gotit;
1240 }
1241 /*
1242 * Take the next available block in this cylinder group.
1243 */
1244 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1245 if (bno < 0)
1246 return (0);
1247 cgp->cg_rotor = ufs_rw32(bno, needswap);
1248 gotit:
1249 blkno = fragstoblks(fs, bno);
1250 ffs_clrblock(fs, blksfree, blkno);
1251 ffs_clusteracct(fs, cgp, blkno, -1);
1252 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1253 fs->fs_cstotal.cs_nbfree--;
1254 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1255 fs->fs_fmod = 1;
1256 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1257 if (DOINGSOFTDEP(ITOV(ip)))
1258 softdep_setup_blkmapdep(bp, fs, blkno);
1259 return (blkno);
1260 }
1261
1262 #ifdef XXXUBC
1263 /*
1264 * Determine whether a cluster can be allocated.
1265 *
1266 * We do not currently check for optimal rotational layout if there
1267 * are multiple choices in the same cylinder group. Instead we just
1268 * take the first one that we find following bpref.
1269 */
1270
1271 /*
1272 * This function must be fixed for UFS2 if re-enabled.
1273 */
1274 static daddr_t
1275 ffs_clusteralloc(ip, cg, bpref, len)
1276 struct inode *ip;
1277 int cg;
1278 daddr_t bpref;
1279 int len;
1280 {
1281 struct fs *fs;
1282 struct cg *cgp;
1283 struct buf *bp;
1284 int i, got, run, bno, bit, map;
1285 u_char *mapp;
1286 int32_t *lp;
1287
1288 fs = ip->i_fs;
1289 if (fs->fs_maxcluster[cg] < len)
1290 return (0);
1291 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1292 NOCRED, &bp))
1293 goto fail;
1294 cgp = (struct cg *)bp->b_data;
1295 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1296 goto fail;
1297 /*
1298 * Check to see if a cluster of the needed size (or bigger) is
1299 * available in this cylinder group.
1300 */
1301 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1302 for (i = len; i <= fs->fs_contigsumsize; i++)
1303 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1304 break;
1305 if (i > fs->fs_contigsumsize) {
1306 /*
1307 * This is the first time looking for a cluster in this
1308 * cylinder group. Update the cluster summary information
1309 * to reflect the true maximum sized cluster so that
1310 * future cluster allocation requests can avoid reading
1311 * the cylinder group map only to find no clusters.
1312 */
1313 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1314 for (i = len - 1; i > 0; i--)
1315 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1316 break;
1317 fs->fs_maxcluster[cg] = i;
1318 goto fail;
1319 }
1320 /*
1321 * Search the cluster map to find a big enough cluster.
1322 * We take the first one that we find, even if it is larger
1323 * than we need as we prefer to get one close to the previous
1324 * block allocation. We do not search before the current
1325 * preference point as we do not want to allocate a block
1326 * that is allocated before the previous one (as we will
1327 * then have to wait for another pass of the elevator
1328 * algorithm before it will be read). We prefer to fail and
1329 * be recalled to try an allocation in the next cylinder group.
1330 */
1331 if (dtog(fs, bpref) != cg)
1332 bpref = 0;
1333 else
1334 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1335 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1336 map = *mapp++;
1337 bit = 1 << (bpref % NBBY);
1338 for (run = 0, got = bpref;
1339 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1340 if ((map & bit) == 0) {
1341 run = 0;
1342 } else {
1343 run++;
1344 if (run == len)
1345 break;
1346 }
1347 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1348 bit <<= 1;
1349 } else {
1350 map = *mapp++;
1351 bit = 1;
1352 }
1353 }
1354 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1355 goto fail;
1356 /*
1357 * Allocate the cluster that we have found.
1358 */
1359 #ifdef DIAGNOSTIC
1360 for (i = 1; i <= len; i++)
1361 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1362 got - run + i))
1363 panic("ffs_clusteralloc: map mismatch");
1364 #endif
1365 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1366 if (dtog(fs, bno) != cg)
1367 panic("ffs_clusteralloc: allocated out of group");
1368 len = blkstofrags(fs, len);
1369 for (i = 0; i < len; i += fs->fs_frag)
1370 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1371 panic("ffs_clusteralloc: lost block");
1372 bdwrite(bp);
1373 return (bno);
1374
1375 fail:
1376 brelse(bp);
1377 return (0);
1378 }
1379 #endif /* XXXUBC */
1380
1381 /*
1382 * Determine whether an inode can be allocated.
1383 *
1384 * Check to see if an inode is available, and if it is,
1385 * allocate it using the following policy:
1386 * 1) allocate the requested inode.
1387 * 2) allocate the next available inode after the requested
1388 * inode in the specified cylinder group.
1389 */
1390 static daddr_t
1391 ffs_nodealloccg(ip, cg, ipref, mode)
1392 struct inode *ip;
1393 int cg;
1394 daddr_t ipref;
1395 int mode;
1396 {
1397 struct cg *cgp;
1398 struct buf *bp, *ibp;
1399 u_int8_t *inosused;
1400 int error, start, len, loc, map, i;
1401 struct fs *fs = ip->i_fs;
1402 int32_t initediblk;
1403 struct ufs2_dinode *dp2;
1404 #ifdef FFS_EI
1405 const int needswap = UFS_FSNEEDSWAP(fs);
1406 #endif
1407
1408 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1409 return (0);
1410 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1411 (int)fs->fs_cgsize, NOCRED, &bp);
1412 if (error) {
1413 brelse(bp);
1414 return (0);
1415 }
1416 cgp = (struct cg *)bp->b_data;
1417 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1418 brelse(bp);
1419 return (0);
1420 }
1421 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1422 inosused = cg_inosused(cgp, needswap);
1423 if (ipref) {
1424 ipref %= fs->fs_ipg;
1425 if (isclr(inosused, ipref))
1426 goto gotit;
1427 }
1428 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1429 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1430 NBBY);
1431 loc = skpc(0xff, len, &inosused[start]);
1432 if (loc == 0) {
1433 len = start + 1;
1434 start = 0;
1435 loc = skpc(0xff, len, &inosused[0]);
1436 if (loc == 0) {
1437 printf("cg = %d, irotor = %d, fs = %s\n",
1438 cg, ufs_rw32(cgp->cg_irotor, needswap),
1439 fs->fs_fsmnt);
1440 panic("ffs_nodealloccg: map corrupted");
1441 /* NOTREACHED */
1442 }
1443 }
1444 i = start + len - loc;
1445 map = inosused[i];
1446 ipref = i * NBBY;
1447 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1448 if ((map & i) == 0) {
1449 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1450 goto gotit;
1451 }
1452 }
1453 printf("fs = %s\n", fs->fs_fsmnt);
1454 panic("ffs_nodealloccg: block not in map");
1455 /* NOTREACHED */
1456 gotit:
1457 if (DOINGSOFTDEP(ITOV(ip)))
1458 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1459 setbit(inosused, ipref);
1460 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1461 fs->fs_cstotal.cs_nifree--;
1462 fs->fs_cs(fs, cg).cs_nifree--;
1463 fs->fs_fmod = 1;
1464 if ((mode & IFMT) == IFDIR) {
1465 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1466 fs->fs_cstotal.cs_ndir++;
1467 fs->fs_cs(fs, cg).cs_ndir++;
1468 }
1469 /*
1470 * Check to see if we need to initialize more inodes.
1471 */
1472 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1473 if (fs->fs_magic == FS_UFS2_MAGIC &&
1474 ipref + INOPB(fs) > initediblk &&
1475 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1476 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1477 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1478 (int)fs->fs_bsize, 0, 0);
1479 memset(ibp->b_data, 0, fs->fs_bsize);
1480 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1481 for (i = 0; i < INOPB(fs); i++) {
1482 /*
1483 * Don't bother to swap, it's supposed to be
1484 * random, after all.
1485 */
1486 dp2->di_gen = random() / 2 + 1;
1487 dp2++;
1488 }
1489 bawrite(ibp);
1490 initediblk += INOPB(fs);
1491 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1492 }
1493
1494 bdwrite(bp);
1495 return (cg * fs->fs_ipg + ipref);
1496 }
1497
1498 /*
1499 * Free a block or fragment.
1500 *
1501 * The specified block or fragment is placed back in the
1502 * free map. If a fragment is deallocated, a possible
1503 * block reassembly is checked.
1504 */
1505 void
1506 ffs_blkfree(ip, bno, size)
1507 struct inode *ip;
1508 daddr_t bno;
1509 long size;
1510 {
1511 struct cg *cgp;
1512 struct buf *bp;
1513 int32_t fragno, cgbno;
1514 int i, error, cg, blk, frags, bbase;
1515 struct fs *fs = ip->i_fs;
1516 const int needswap = UFS_FSNEEDSWAP(fs);
1517
1518 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1519 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1520 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1521 "size = %ld, fs = %s\n",
1522 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1523 panic("blkfree: bad size");
1524 }
1525 cg = dtog(fs, bno);
1526 if (bno >= fs->fs_size) {
1527 printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
1528 ffs_fserr(fs, ip->i_uid, "bad block");
1529 return;
1530 }
1531 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1532 (int)fs->fs_cgsize, NOCRED, &bp);
1533 if (error) {
1534 brelse(bp);
1535 return;
1536 }
1537 cgp = (struct cg *)bp->b_data;
1538 if (!cg_chkmagic(cgp, needswap)) {
1539 brelse(bp);
1540 return;
1541 }
1542 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1543 cgbno = dtogd(fs, bno);
1544 if (size == fs->fs_bsize) {
1545 fragno = fragstoblks(fs, cgbno);
1546 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
1547 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1548 ip->i_dev, bno, fs->fs_fsmnt);
1549 panic("blkfree: freeing free block");
1550 }
1551 ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
1552 ffs_clusteracct(fs, cgp, fragno, 1);
1553 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1554 fs->fs_cstotal.cs_nbfree++;
1555 fs->fs_cs(fs, cg).cs_nbfree++;
1556 } else {
1557 bbase = cgbno - fragnum(fs, cgbno);
1558 /*
1559 * decrement the counts associated with the old frags
1560 */
1561 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1562 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1563 /*
1564 * deallocate the fragment
1565 */
1566 frags = numfrags(fs, size);
1567 for (i = 0; i < frags; i++) {
1568 if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
1569 printf("dev = 0x%x, block = %" PRId64
1570 ", fs = %s\n",
1571 ip->i_dev, bno + i, fs->fs_fsmnt);
1572 panic("blkfree: freeing free frag");
1573 }
1574 setbit(cg_blksfree(cgp, needswap), cgbno + i);
1575 }
1576 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1577 fs->fs_cstotal.cs_nffree += i;
1578 fs->fs_cs(fs, cg).cs_nffree += i;
1579 /*
1580 * add back in counts associated with the new frags
1581 */
1582 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1583 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1584 /*
1585 * if a complete block has been reassembled, account for it
1586 */
1587 fragno = fragstoblks(fs, bbase);
1588 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
1589 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1590 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1591 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1592 ffs_clusteracct(fs, cgp, fragno, 1);
1593 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1594 fs->fs_cstotal.cs_nbfree++;
1595 fs->fs_cs(fs, cg).cs_nbfree++;
1596 }
1597 }
1598 fs->fs_fmod = 1;
1599 bdwrite(bp);
1600 }
1601
1602 #if defined(DIAGNOSTIC) || defined(DEBUG)
1603 #ifdef XXXUBC
1604 /*
1605 * Verify allocation of a block or fragment. Returns true if block or
1606 * fragment is allocated, false if it is free.
1607 */
1608 static int
1609 ffs_checkblk(ip, bno, size)
1610 struct inode *ip;
1611 daddr_t bno;
1612 long size;
1613 {
1614 struct fs *fs;
1615 struct cg *cgp;
1616 struct buf *bp;
1617 int i, error, frags, free;
1618
1619 fs = ip->i_fs;
1620 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1621 printf("bsize = %d, size = %ld, fs = %s\n",
1622 fs->fs_bsize, size, fs->fs_fsmnt);
1623 panic("checkblk: bad size");
1624 }
1625 if (bno >= fs->fs_size)
1626 panic("checkblk: bad block %d", bno);
1627 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1628 (int)fs->fs_cgsize, NOCRED, &bp);
1629 if (error) {
1630 brelse(bp);
1631 return 0;
1632 }
1633 cgp = (struct cg *)bp->b_data;
1634 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1635 brelse(bp);
1636 return 0;
1637 }
1638 bno = dtogd(fs, bno);
1639 if (size == fs->fs_bsize) {
1640 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1641 fragstoblks(fs, bno));
1642 } else {
1643 frags = numfrags(fs, size);
1644 for (free = 0, i = 0; i < frags; i++)
1645 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1646 free++;
1647 if (free != 0 && free != frags)
1648 panic("checkblk: partially free fragment");
1649 }
1650 brelse(bp);
1651 return (!free);
1652 }
1653 #endif /* XXXUBC */
1654 #endif /* DIAGNOSTIC */
1655
1656 /*
1657 * Free an inode.
1658 */
1659 int
1660 ffs_vfree(v)
1661 void *v;
1662 {
1663 struct vop_vfree_args /* {
1664 struct vnode *a_pvp;
1665 ino_t a_ino;
1666 int a_mode;
1667 } */ *ap = v;
1668
1669 if (DOINGSOFTDEP(ap->a_pvp)) {
1670 softdep_freefile(ap);
1671 return (0);
1672 }
1673 return (ffs_freefile(ap));
1674 }
1675
1676 /*
1677 * Do the actual free operation.
1678 * The specified inode is placed back in the free map.
1679 */
1680 int
1681 ffs_freefile(v)
1682 void *v;
1683 {
1684 struct vop_vfree_args /* {
1685 struct vnode *a_pvp;
1686 ino_t a_ino;
1687 int a_mode;
1688 } */ *ap = v;
1689 struct cg *cgp;
1690 struct inode *pip = VTOI(ap->a_pvp);
1691 struct fs *fs = pip->i_fs;
1692 ino_t ino = ap->a_ino;
1693 struct buf *bp;
1694 int error, cg;
1695 #ifdef FFS_EI
1696 const int needswap = UFS_FSNEEDSWAP(fs);
1697 #endif
1698
1699 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1700 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1701 pip->i_dev, ino, fs->fs_fsmnt);
1702 cg = ino_to_cg(fs, ino);
1703 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1704 (int)fs->fs_cgsize, NOCRED, &bp);
1705 if (error) {
1706 brelse(bp);
1707 return (error);
1708 }
1709 cgp = (struct cg *)bp->b_data;
1710 if (!cg_chkmagic(cgp, needswap)) {
1711 brelse(bp);
1712 return (0);
1713 }
1714 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1715 ino %= fs->fs_ipg;
1716 if (isclr(cg_inosused(cgp, needswap), ino)) {
1717 printf("dev = 0x%x, ino = %d, fs = %s\n",
1718 pip->i_dev, ino, fs->fs_fsmnt);
1719 if (fs->fs_ronly == 0)
1720 panic("ifree: freeing free inode");
1721 }
1722 clrbit(cg_inosused(cgp, needswap), ino);
1723 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1724 cgp->cg_irotor = ufs_rw32(ino, needswap);
1725 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1726 fs->fs_cstotal.cs_nifree++;
1727 fs->fs_cs(fs, cg).cs_nifree++;
1728 if ((ap->a_mode & IFMT) == IFDIR) {
1729 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1730 fs->fs_cstotal.cs_ndir--;
1731 fs->fs_cs(fs, cg).cs_ndir--;
1732 }
1733 fs->fs_fmod = 1;
1734 bdwrite(bp);
1735 return (0);
1736 }
1737
1738 /*
1739 * Find a block of the specified size in the specified cylinder group.
1740 *
1741 * It is a panic if a request is made to find a block if none are
1742 * available.
1743 */
1744 static int32_t
1745 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1746 struct fs *fs;
1747 struct cg *cgp;
1748 daddr_t bpref;
1749 int allocsiz;
1750 {
1751 int32_t bno;
1752 int start, len, loc, i;
1753 int blk, field, subfield, pos;
1754 int ostart, olen;
1755 #ifdef FFS_EI
1756 const int needswap = UFS_FSNEEDSWAP(fs);
1757 #endif
1758
1759 /*
1760 * find the fragment by searching through the free block
1761 * map for an appropriate bit pattern
1762 */
1763 if (bpref)
1764 start = dtogd(fs, bpref) / NBBY;
1765 else
1766 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1767 len = howmany(fs->fs_fpg, NBBY) - start;
1768 ostart = start;
1769 olen = len;
1770 loc = scanc((u_int)len,
1771 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1772 (const u_char *)fragtbl[fs->fs_frag],
1773 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1774 if (loc == 0) {
1775 len = start + 1;
1776 start = 0;
1777 loc = scanc((u_int)len,
1778 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1779 (const u_char *)fragtbl[fs->fs_frag],
1780 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1781 if (loc == 0) {
1782 printf("start = %d, len = %d, fs = %s\n",
1783 ostart, olen, fs->fs_fsmnt);
1784 printf("offset=%d %ld\n",
1785 ufs_rw32(cgp->cg_freeoff, needswap),
1786 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1787 panic("ffs_alloccg: map corrupted");
1788 /* NOTREACHED */
1789 }
1790 }
1791 bno = (start + len - loc) * NBBY;
1792 cgp->cg_frotor = ufs_rw32(bno, needswap);
1793 /*
1794 * found the byte in the map
1795 * sift through the bits to find the selected frag
1796 */
1797 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1798 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1799 blk <<= 1;
1800 field = around[allocsiz];
1801 subfield = inside[allocsiz];
1802 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1803 if ((blk & field) == subfield)
1804 return (bno + pos);
1805 field <<= 1;
1806 subfield <<= 1;
1807 }
1808 }
1809 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1810 panic("ffs_alloccg: block not in map");
1811 /* return (-1); */
1812 }
1813
1814 /*
1815 * Update the cluster map because of an allocation or free.
1816 *
1817 * Cnt == 1 means free; cnt == -1 means allocating.
1818 */
1819 void
1820 ffs_clusteracct(fs, cgp, blkno, cnt)
1821 struct fs *fs;
1822 struct cg *cgp;
1823 int32_t blkno;
1824 int cnt;
1825 {
1826 int32_t *sump;
1827 int32_t *lp;
1828 u_char *freemapp, *mapp;
1829 int i, start, end, forw, back, map, bit;
1830 #ifdef FFS_EI
1831 const int needswap = UFS_FSNEEDSWAP(fs);
1832 #endif
1833
1834 if (fs->fs_contigsumsize <= 0)
1835 return;
1836 freemapp = cg_clustersfree(cgp, needswap);
1837 sump = cg_clustersum(cgp, needswap);
1838 /*
1839 * Allocate or clear the actual block.
1840 */
1841 if (cnt > 0)
1842 setbit(freemapp, blkno);
1843 else
1844 clrbit(freemapp, blkno);
1845 /*
1846 * Find the size of the cluster going forward.
1847 */
1848 start = blkno + 1;
1849 end = start + fs->fs_contigsumsize;
1850 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1851 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1852 mapp = &freemapp[start / NBBY];
1853 map = *mapp++;
1854 bit = 1 << (start % NBBY);
1855 for (i = start; i < end; i++) {
1856 if ((map & bit) == 0)
1857 break;
1858 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1859 bit <<= 1;
1860 } else {
1861 map = *mapp++;
1862 bit = 1;
1863 }
1864 }
1865 forw = i - start;
1866 /*
1867 * Find the size of the cluster going backward.
1868 */
1869 start = blkno - 1;
1870 end = start - fs->fs_contigsumsize;
1871 if (end < 0)
1872 end = -1;
1873 mapp = &freemapp[start / NBBY];
1874 map = *mapp--;
1875 bit = 1 << (start % NBBY);
1876 for (i = start; i > end; i--) {
1877 if ((map & bit) == 0)
1878 break;
1879 if ((i & (NBBY - 1)) != 0) {
1880 bit >>= 1;
1881 } else {
1882 map = *mapp--;
1883 bit = 1 << (NBBY - 1);
1884 }
1885 }
1886 back = start - i;
1887 /*
1888 * Account for old cluster and the possibly new forward and
1889 * back clusters.
1890 */
1891 i = back + forw + 1;
1892 if (i > fs->fs_contigsumsize)
1893 i = fs->fs_contigsumsize;
1894 ufs_add32(sump[i], cnt, needswap);
1895 if (back > 0)
1896 ufs_add32(sump[back], -cnt, needswap);
1897 if (forw > 0)
1898 ufs_add32(sump[forw], -cnt, needswap);
1899
1900 /*
1901 * Update cluster summary information.
1902 */
1903 lp = &sump[fs->fs_contigsumsize];
1904 for (i = fs->fs_contigsumsize; i > 0; i--)
1905 if (ufs_rw32(*lp--, needswap) > 0)
1906 break;
1907 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1908 }
1909
1910 /*
1911 * Fserr prints the name of a file system with an error diagnostic.
1912 *
1913 * The form of the error message is:
1914 * fs: error message
1915 */
1916 static void
1917 ffs_fserr(fs, uid, cp)
1918 struct fs *fs;
1919 u_int uid;
1920 char *cp;
1921 {
1922
1923 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1924 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1925 }
1926