ffs_alloc.c revision 1.61 1 /* $NetBSD: ffs_alloc.c,v 1.61 2003/04/10 20:03:40 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.61 2003/04/10 20:03:40 fvdl Exp $");
49
50 #if defined(_KERNEL_OPT)
51 #include "opt_ffs.h"
52 #include "opt_quota.h"
53 #endif
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/buf.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/kernel.h>
62 #include <sys/syslog.h>
63
64 #include <ufs/ufs/quota.h>
65 #include <ufs/ufs/ufsmount.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/ufs_extern.h>
68 #include <ufs/ufs/ufs_bswap.h>
69
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72
73 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
74 static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
75 #ifdef XXXUBC
76 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
77 #endif
78 static ino_t ffs_dirpref __P((struct inode *));
79 static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
80 static void ffs_fserr __P((struct fs *, u_int, char *));
81 static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
82 daddr_t (*)(struct inode *, int, daddr_t, int)));
83 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
84 static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
85 daddr_t, int));
86 #if defined(DIAGNOSTIC) || defined(DEBUG)
87 #ifdef XXXUBC
88 static int ffs_checkblk __P((struct inode *, daddr_t, long size));
89 #endif
90 #endif
91
92 /* if 1, changes in optimalization strategy are logged */
93 int ffs_log_changeopt = 0;
94
95 /* in ffs_tables.c */
96 extern const int inside[], around[];
97 extern const u_char * const fragtbl[];
98
99 /*
100 * Allocate a block in the file system.
101 *
102 * The size of the requested block is given, which must be some
103 * multiple of fs_fsize and <= fs_bsize.
104 * A preference may be optionally specified. If a preference is given
105 * the following hierarchy is used to allocate a block:
106 * 1) allocate the requested block.
107 * 2) allocate a rotationally optimal block in the same cylinder.
108 * 3) allocate a block in the same cylinder group.
109 * 4) quadradically rehash into other cylinder groups, until an
110 * available block is located.
111 * If no block preference is given the following hierarchy is used
112 * to allocate a block:
113 * 1) allocate a block in the cylinder group that contains the
114 * inode for the file.
115 * 2) quadradically rehash into other cylinder groups, until an
116 * available block is located.
117 */
118 int
119 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
120 struct inode *ip;
121 daddr_t lbn, bpref;
122 int size;
123 struct ucred *cred;
124 daddr_t *bnp;
125 {
126 struct fs *fs = ip->i_fs;
127 daddr_t bno;
128 int cg;
129 #ifdef QUOTA
130 int error;
131 #endif
132
133 #ifdef UVM_PAGE_TRKOWN
134 if (ITOV(ip)->v_type == VREG &&
135 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
136 struct vm_page *pg;
137 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
138 voff_t off = trunc_page(lblktosize(fs, lbn));
139 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
140
141 simple_lock(&uobj->vmobjlock);
142 while (off < endoff) {
143 pg = uvm_pagelookup(uobj, off);
144 KASSERT(pg != NULL);
145 KASSERT(pg->owner == curproc->p_pid);
146 KASSERT((pg->flags & PG_CLEAN) == 0);
147 off += PAGE_SIZE;
148 }
149 simple_unlock(&uobj->vmobjlock);
150 }
151 #endif
152
153 *bnp = 0;
154 #ifdef DIAGNOSTIC
155 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
156 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
157 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
158 panic("ffs_alloc: bad size");
159 }
160 if (cred == NOCRED)
161 panic("ffs_alloc: missing credential");
162 #endif /* DIAGNOSTIC */
163 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
164 goto nospace;
165 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
166 goto nospace;
167 #ifdef QUOTA
168 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
169 return (error);
170 #endif
171 if (bpref >= fs->fs_size)
172 bpref = 0;
173 if (bpref == 0)
174 cg = ino_to_cg(fs, ip->i_number);
175 else
176 cg = dtog(fs, bpref);
177 bno = ffs_hashalloc(ip, cg, (long)bpref, size,
178 ffs_alloccg);
179 if (bno > 0) {
180 DIP(ip, blocks) += btodb(size);
181 ip->i_flag |= IN_CHANGE | IN_UPDATE;
182 *bnp = bno;
183 return (0);
184 }
185 #ifdef QUOTA
186 /*
187 * Restore user's disk quota because allocation failed.
188 */
189 (void) chkdq(ip, -btodb(size), cred, FORCE);
190 #endif
191 nospace:
192 ffs_fserr(fs, cred->cr_uid, "file system full");
193 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
194 return (ENOSPC);
195 }
196
197 /*
198 * Reallocate a fragment to a bigger size
199 *
200 * The number and size of the old block is given, and a preference
201 * and new size is also specified. The allocator attempts to extend
202 * the original block. Failing that, the regular block allocator is
203 * invoked to get an appropriate block.
204 */
205 int
206 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
207 struct inode *ip;
208 daddr_t lbprev;
209 daddr_t bpref;
210 int osize, nsize;
211 struct ucred *cred;
212 struct buf **bpp;
213 daddr_t *blknop;
214 {
215 struct fs *fs = ip->i_fs;
216 struct buf *bp;
217 int cg, request, error;
218 daddr_t bprev, bno;
219
220 #ifdef UVM_PAGE_TRKOWN
221 if (ITOV(ip)->v_type == VREG) {
222 struct vm_page *pg;
223 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
224 voff_t off = trunc_page(lblktosize(fs, lbprev));
225 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
226
227 simple_lock(&uobj->vmobjlock);
228 while (off < endoff) {
229 pg = uvm_pagelookup(uobj, off);
230 KASSERT(pg != NULL);
231 KASSERT(pg->owner == curproc->p_pid);
232 KASSERT((pg->flags & PG_CLEAN) == 0);
233 off += PAGE_SIZE;
234 }
235 simple_unlock(&uobj->vmobjlock);
236 }
237 #endif
238
239 #ifdef DIAGNOSTIC
240 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
241 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
242 printf(
243 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
244 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
245 panic("ffs_realloccg: bad size");
246 }
247 if (cred == NOCRED)
248 panic("ffs_realloccg: missing credential");
249 #endif /* DIAGNOSTIC */
250 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
251 goto nospace;
252 if (fs->fs_magic == FS_UFS2_MAGIC)
253 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
254 else
255 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
256
257 if (bprev == 0) {
258 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
259 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
260 panic("ffs_realloccg: bad bprev");
261 }
262 /*
263 * Allocate the extra space in the buffer.
264 */
265 if (bpp != NULL &&
266 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
267 brelse(bp);
268 return (error);
269 }
270 #ifdef QUOTA
271 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
272 if (bpp != NULL) {
273 brelse(bp);
274 }
275 return (error);
276 }
277 #endif
278 /*
279 * Check for extension in the existing location.
280 */
281 cg = dtog(fs, bprev);
282 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
283 DIP(ip, blocks) += btodb(nsize - osize);
284 ip->i_flag |= IN_CHANGE | IN_UPDATE;
285
286 if (bpp != NULL) {
287 if (bp->b_blkno != fsbtodb(fs, bno))
288 panic("bad blockno");
289 allocbuf(bp, nsize);
290 bp->b_flags |= B_DONE;
291 memset(bp->b_data + osize, 0, nsize - osize);
292 *bpp = bp;
293 }
294 if (blknop != NULL) {
295 *blknop = bno;
296 }
297 return (0);
298 }
299 /*
300 * Allocate a new disk location.
301 */
302 if (bpref >= fs->fs_size)
303 bpref = 0;
304 switch ((int)fs->fs_optim) {
305 case FS_OPTSPACE:
306 /*
307 * Allocate an exact sized fragment. Although this makes
308 * best use of space, we will waste time relocating it if
309 * the file continues to grow. If the fragmentation is
310 * less than half of the minimum free reserve, we choose
311 * to begin optimizing for time.
312 */
313 request = nsize;
314 if (fs->fs_minfree < 5 ||
315 fs->fs_cstotal.cs_nffree >
316 fs->fs_dsize * fs->fs_minfree / (2 * 100))
317 break;
318
319 if (ffs_log_changeopt) {
320 log(LOG_NOTICE,
321 "%s: optimization changed from SPACE to TIME\n",
322 fs->fs_fsmnt);
323 }
324
325 fs->fs_optim = FS_OPTTIME;
326 break;
327 case FS_OPTTIME:
328 /*
329 * At this point we have discovered a file that is trying to
330 * grow a small fragment to a larger fragment. To save time,
331 * we allocate a full sized block, then free the unused portion.
332 * If the file continues to grow, the `ffs_fragextend' call
333 * above will be able to grow it in place without further
334 * copying. If aberrant programs cause disk fragmentation to
335 * grow within 2% of the free reserve, we choose to begin
336 * optimizing for space.
337 */
338 request = fs->fs_bsize;
339 if (fs->fs_cstotal.cs_nffree <
340 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
341 break;
342
343 if (ffs_log_changeopt) {
344 log(LOG_NOTICE,
345 "%s: optimization changed from TIME to SPACE\n",
346 fs->fs_fsmnt);
347 }
348
349 fs->fs_optim = FS_OPTSPACE;
350 break;
351 default:
352 printf("dev = 0x%x, optim = %d, fs = %s\n",
353 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
354 panic("ffs_realloccg: bad optim");
355 /* NOTREACHED */
356 }
357 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
358 if (bno > 0) {
359 if (!DOINGSOFTDEP(ITOV(ip)))
360 ffs_blkfree(ip, bprev, (long)osize);
361 if (nsize < request)
362 ffs_blkfree(ip, bno + numfrags(fs, nsize),
363 (long)(request - nsize));
364 DIP(ip, blocks) += btodb(nsize - osize);
365 ip->i_flag |= IN_CHANGE | IN_UPDATE;
366 if (bpp != NULL) {
367 bp->b_blkno = fsbtodb(fs, bno);
368 allocbuf(bp, nsize);
369 bp->b_flags |= B_DONE;
370 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
371 *bpp = bp;
372 }
373 if (blknop != NULL) {
374 *blknop = bno;
375 }
376 return (0);
377 }
378 #ifdef QUOTA
379 /*
380 * Restore user's disk quota because allocation failed.
381 */
382 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
383 #endif
384 if (bpp != NULL) {
385 brelse(bp);
386 }
387
388 nospace:
389 /*
390 * no space available
391 */
392 ffs_fserr(fs, cred->cr_uid, "file system full");
393 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
394 return (ENOSPC);
395 }
396
397 /*
398 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
399 *
400 * The vnode and an array of buffer pointers for a range of sequential
401 * logical blocks to be made contiguous is given. The allocator attempts
402 * to find a range of sequential blocks starting as close as possible
403 * from the end of the allocation for the logical block immediately
404 * preceding the current range. If successful, the physical block numbers
405 * in the buffer pointers and in the inode are changed to reflect the new
406 * allocation. If unsuccessful, the allocation is left unchanged. The
407 * success in doing the reallocation is returned. Note that the error
408 * return is not reflected back to the user. Rather the previous block
409 * allocation will be used.
410
411 */
412 #ifdef XXXUBC
413 #ifdef DEBUG
414 #include <sys/sysctl.h>
415 int prtrealloc = 0;
416 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
417 #endif
418 #endif
419
420 /*
421 * NOTE: when re-enabling this, it must be updated for UFS2.
422 */
423
424 int doasyncfree = 1;
425
426 int
427 ffs_reallocblks(v)
428 void *v;
429 {
430 #ifdef XXXUBC
431 struct vop_reallocblks_args /* {
432 struct vnode *a_vp;
433 struct cluster_save *a_buflist;
434 } */ *ap = v;
435 struct fs *fs;
436 struct inode *ip;
437 struct vnode *vp;
438 struct buf *sbp, *ebp;
439 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
440 struct cluster_save *buflist;
441 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
442 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
443 int i, len, start_lvl, end_lvl, pref, ssize;
444 #endif /* XXXUBC */
445
446 /* XXXUBC don't reallocblks for now */
447 return ENOSPC;
448
449 #ifdef XXXUBC
450 vp = ap->a_vp;
451 ip = VTOI(vp);
452 fs = ip->i_fs;
453 if (fs->fs_contigsumsize <= 0)
454 return (ENOSPC);
455 buflist = ap->a_buflist;
456 len = buflist->bs_nchildren;
457 start_lbn = buflist->bs_children[0]->b_lblkno;
458 end_lbn = start_lbn + len - 1;
459 #ifdef DIAGNOSTIC
460 for (i = 0; i < len; i++)
461 if (!ffs_checkblk(ip,
462 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
463 panic("ffs_reallocblks: unallocated block 1");
464 for (i = 1; i < len; i++)
465 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
466 panic("ffs_reallocblks: non-logical cluster");
467 blkno = buflist->bs_children[0]->b_blkno;
468 ssize = fsbtodb(fs, fs->fs_frag);
469 for (i = 1; i < len - 1; i++)
470 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
471 panic("ffs_reallocblks: non-physical cluster %d", i);
472 #endif
473 /*
474 * If the latest allocation is in a new cylinder group, assume that
475 * the filesystem has decided to move and do not force it back to
476 * the previous cylinder group.
477 */
478 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
479 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
480 return (ENOSPC);
481 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
482 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
483 return (ENOSPC);
484 /*
485 * Get the starting offset and block map for the first block.
486 */
487 if (start_lvl == 0) {
488 sbap = &ip->i_ffs1_db[0];
489 soff = start_lbn;
490 } else {
491 idp = &start_ap[start_lvl - 1];
492 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
493 brelse(sbp);
494 return (ENOSPC);
495 }
496 sbap = (int32_t *)sbp->b_data;
497 soff = idp->in_off;
498 }
499 /*
500 * Find the preferred location for the cluster.
501 */
502 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
503 /*
504 * If the block range spans two block maps, get the second map.
505 */
506 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
507 ssize = len;
508 } else {
509 #ifdef DIAGNOSTIC
510 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
511 panic("ffs_reallocblk: start == end");
512 #endif
513 ssize = len - (idp->in_off + 1);
514 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
515 goto fail;
516 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
517 }
518 /*
519 * Search the block map looking for an allocation of the desired size.
520 */
521 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
522 len, ffs_clusteralloc)) == 0)
523 goto fail;
524 /*
525 * We have found a new contiguous block.
526 *
527 * First we have to replace the old block pointers with the new
528 * block pointers in the inode and indirect blocks associated
529 * with the file.
530 */
531 #ifdef DEBUG
532 if (prtrealloc)
533 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
534 start_lbn, end_lbn);
535 #endif
536 blkno = newblk;
537 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
538 daddr_t ba;
539
540 if (i == ssize) {
541 bap = ebap;
542 soff = -i;
543 }
544 /* XXX ondisk32 */
545 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
546 #ifdef DIAGNOSTIC
547 if (!ffs_checkblk(ip,
548 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
549 panic("ffs_reallocblks: unallocated block 2");
550 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
551 panic("ffs_reallocblks: alloc mismatch");
552 #endif
553 #ifdef DEBUG
554 if (prtrealloc)
555 printf(" %d,", ba);
556 #endif
557 if (DOINGSOFTDEP(vp)) {
558 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
559 softdep_setup_allocdirect(ip, start_lbn + i,
560 blkno, ba, fs->fs_bsize, fs->fs_bsize,
561 buflist->bs_children[i]);
562 else
563 softdep_setup_allocindir_page(ip, start_lbn + i,
564 i < ssize ? sbp : ebp, soff + i, blkno,
565 ba, buflist->bs_children[i]);
566 }
567 /* XXX ondisk32 */
568 *bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
569 }
570 /*
571 * Next we must write out the modified inode and indirect blocks.
572 * For strict correctness, the writes should be synchronous since
573 * the old block values may have been written to disk. In practise
574 * they are almost never written, but if we are concerned about
575 * strict correctness, the `doasyncfree' flag should be set to zero.
576 *
577 * The test on `doasyncfree' should be changed to test a flag
578 * that shows whether the associated buffers and inodes have
579 * been written. The flag should be set when the cluster is
580 * started and cleared whenever the buffer or inode is flushed.
581 * We can then check below to see if it is set, and do the
582 * synchronous write only when it has been cleared.
583 */
584 if (sbap != &ip->i_ffs1_db[0]) {
585 if (doasyncfree)
586 bdwrite(sbp);
587 else
588 bwrite(sbp);
589 } else {
590 ip->i_flag |= IN_CHANGE | IN_UPDATE;
591 if (!doasyncfree)
592 VOP_UPDATE(vp, NULL, NULL, 1);
593 }
594 if (ssize < len) {
595 if (doasyncfree)
596 bdwrite(ebp);
597 else
598 bwrite(ebp);
599 }
600 /*
601 * Last, free the old blocks and assign the new blocks to the buffers.
602 */
603 #ifdef DEBUG
604 if (prtrealloc)
605 printf("\n\tnew:");
606 #endif
607 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
608 if (!DOINGSOFTDEP(vp))
609 ffs_blkfree(ip,
610 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
611 fs->fs_bsize);
612 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
613 #ifdef DEBUG
614 if (!ffs_checkblk(ip,
615 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
616 panic("ffs_reallocblks: unallocated block 3");
617 if (prtrealloc)
618 printf(" %d,", blkno);
619 #endif
620 }
621 #ifdef DEBUG
622 if (prtrealloc) {
623 prtrealloc--;
624 printf("\n");
625 }
626 #endif
627 return (0);
628
629 fail:
630 if (ssize < len)
631 brelse(ebp);
632 if (sbap != &ip->i_ffs1_db[0])
633 brelse(sbp);
634 return (ENOSPC);
635 #endif /* XXXUBC */
636 }
637
638 /*
639 * Allocate an inode in the file system.
640 *
641 * If allocating a directory, use ffs_dirpref to select the inode.
642 * If allocating in a directory, the following hierarchy is followed:
643 * 1) allocate the preferred inode.
644 * 2) allocate an inode in the same cylinder group.
645 * 3) quadradically rehash into other cylinder groups, until an
646 * available inode is located.
647 * If no inode preference is given the following hierarchy is used
648 * to allocate an inode:
649 * 1) allocate an inode in cylinder group 0.
650 * 2) quadradically rehash into other cylinder groups, until an
651 * available inode is located.
652 */
653 int
654 ffs_valloc(v)
655 void *v;
656 {
657 struct vop_valloc_args /* {
658 struct vnode *a_pvp;
659 int a_mode;
660 struct ucred *a_cred;
661 struct vnode **a_vpp;
662 } */ *ap = v;
663 struct vnode *pvp = ap->a_pvp;
664 struct inode *pip;
665 struct fs *fs;
666 struct inode *ip;
667 struct timespec ts;
668 mode_t mode = ap->a_mode;
669 ino_t ino, ipref;
670 int cg, error;
671
672 *ap->a_vpp = NULL;
673 pip = VTOI(pvp);
674 fs = pip->i_fs;
675 if (fs->fs_cstotal.cs_nifree == 0)
676 goto noinodes;
677
678 if ((mode & IFMT) == IFDIR)
679 ipref = ffs_dirpref(pip);
680 else
681 ipref = pip->i_number;
682 if (ipref >= fs->fs_ncg * fs->fs_ipg)
683 ipref = 0;
684 cg = ino_to_cg(fs, ipref);
685 /*
686 * Track number of dirs created one after another
687 * in a same cg without intervening by files.
688 */
689 if ((mode & IFMT) == IFDIR) {
690 if (fs->fs_contigdirs[cg] < 65535)
691 fs->fs_contigdirs[cg]++;
692 } else {
693 if (fs->fs_contigdirs[cg] > 0)
694 fs->fs_contigdirs[cg]--;
695 }
696 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
697 if (ino == 0)
698 goto noinodes;
699 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
700 if (error) {
701 VOP_VFREE(pvp, ino, mode);
702 return (error);
703 }
704 ip = VTOI(*ap->a_vpp);
705 if (ip->i_mode) {
706 #if 0
707 printf("mode = 0%o, inum = %d, fs = %s\n",
708 ip->i_mode, ip->i_number, fs->fs_fsmnt);
709 #else
710 printf("dmode %x mode %x dgen %x gen %x\n",
711 DIP(ip, mode), ip->i_mode,
712 DIP(ip, gen), ip->i_gen);
713 printf("size %llx blocks %llx\n",
714 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
715 printf("ino %u ipref %u\n", ino, ipref);
716 #if 0
717 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
718 (int)fs->fs_bsize, NOCRED, &bp);
719 #endif
720
721 #endif
722 panic("ffs_valloc: dup alloc");
723 }
724 if (DIP(ip, blocks)) { /* XXX */
725 printf("free inode %s/%d had %" PRId64 " blocks\n",
726 fs->fs_fsmnt, ino, DIP(ip, blocks));
727 DIP(ip, blocks) = 0;
728 }
729 ip->i_flag &= ~IN_SPACECOUNTED;
730 ip->i_flags = 0;
731 DIP(ip, flags) = 0;
732 /*
733 * Set up a new generation number for this inode.
734 */
735 ip->i_gen++;
736 DIP(ip, gen) = ip->i_gen;
737 if (fs->fs_magic == FS_UFS2_MAGIC) {
738 TIMEVAL_TO_TIMESPEC(&time, &ts);
739 ip->i_ffs2_birthtime = ts.tv_sec;
740 ip->i_ffs2_birthnsec = ts.tv_nsec;
741 }
742 return (0);
743 noinodes:
744 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
745 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
746 return (ENOSPC);
747 }
748
749 /*
750 * Find a cylinder group in which to place a directory.
751 *
752 * The policy implemented by this algorithm is to allocate a
753 * directory inode in the same cylinder group as its parent
754 * directory, but also to reserve space for its files inodes
755 * and data. Restrict the number of directories which may be
756 * allocated one after another in the same cylinder group
757 * without intervening allocation of files.
758 *
759 * If we allocate a first level directory then force allocation
760 * in another cylinder group.
761 */
762 static ino_t
763 ffs_dirpref(pip)
764 struct inode *pip;
765 {
766 register struct fs *fs;
767 int cg, prefcg, dirsize, cgsize;
768 int avgifree, avgbfree, avgndir, curdirsize;
769 int minifree, minbfree, maxndir;
770 int mincg, minndir;
771 int maxcontigdirs;
772
773 fs = pip->i_fs;
774
775 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
776 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
777 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
778
779 /*
780 * Force allocation in another cg if creating a first level dir.
781 */
782 if (ITOV(pip)->v_flag & VROOT) {
783 prefcg = random() % fs->fs_ncg;
784 mincg = prefcg;
785 minndir = fs->fs_ipg;
786 for (cg = prefcg; cg < fs->fs_ncg; cg++)
787 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
788 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
789 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
790 mincg = cg;
791 minndir = fs->fs_cs(fs, cg).cs_ndir;
792 }
793 for (cg = 0; cg < prefcg; cg++)
794 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
795 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
796 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
797 mincg = cg;
798 minndir = fs->fs_cs(fs, cg).cs_ndir;
799 }
800 return ((ino_t)(fs->fs_ipg * mincg));
801 }
802
803 /*
804 * Count various limits which used for
805 * optimal allocation of a directory inode.
806 */
807 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
808 minifree = avgifree - fs->fs_ipg / 4;
809 if (minifree < 0)
810 minifree = 0;
811 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
812 if (minbfree < 0)
813 minbfree = 0;
814 cgsize = fs->fs_fsize * fs->fs_fpg;
815 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
816 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
817 if (dirsize < curdirsize)
818 dirsize = curdirsize;
819 maxcontigdirs = min(cgsize / dirsize, 255);
820 if (fs->fs_avgfpdir > 0)
821 maxcontigdirs = min(maxcontigdirs,
822 fs->fs_ipg / fs->fs_avgfpdir);
823 if (maxcontigdirs == 0)
824 maxcontigdirs = 1;
825
826 /*
827 * Limit number of dirs in one cg and reserve space for
828 * regular files, but only if we have no deficit in
829 * inodes or space.
830 */
831 prefcg = ino_to_cg(fs, pip->i_number);
832 for (cg = prefcg; cg < fs->fs_ncg; cg++)
833 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
834 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
835 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
836 if (fs->fs_contigdirs[cg] < maxcontigdirs)
837 return ((ino_t)(fs->fs_ipg * cg));
838 }
839 for (cg = 0; cg < prefcg; cg++)
840 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
841 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
842 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
843 if (fs->fs_contigdirs[cg] < maxcontigdirs)
844 return ((ino_t)(fs->fs_ipg * cg));
845 }
846 /*
847 * This is a backstop when we are deficient in space.
848 */
849 for (cg = prefcg; cg < fs->fs_ncg; cg++)
850 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
851 return ((ino_t)(fs->fs_ipg * cg));
852 for (cg = 0; cg < prefcg; cg++)
853 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
854 break;
855 return ((ino_t)(fs->fs_ipg * cg));
856 }
857
858 /*
859 * Select the desired position for the next block in a file. The file is
860 * logically divided into sections. The first section is composed of the
861 * direct blocks. Each additional section contains fs_maxbpg blocks.
862 *
863 * If no blocks have been allocated in the first section, the policy is to
864 * request a block in the same cylinder group as the inode that describes
865 * the file. If no blocks have been allocated in any other section, the
866 * policy is to place the section in a cylinder group with a greater than
867 * average number of free blocks. An appropriate cylinder group is found
868 * by using a rotor that sweeps the cylinder groups. When a new group of
869 * blocks is needed, the sweep begins in the cylinder group following the
870 * cylinder group from which the previous allocation was made. The sweep
871 * continues until a cylinder group with greater than the average number
872 * of free blocks is found. If the allocation is for the first block in an
873 * indirect block, the information on the previous allocation is unavailable;
874 * here a best guess is made based upon the logical block number being
875 * allocated.
876 *
877 * If a section is already partially allocated, the policy is to
878 * contiguously allocate fs_maxcontig blocks. The end of one of these
879 * contiguous blocks and the beginning of the next is laid out
880 * contigously if possible.
881 */
882 daddr_t
883 ffs_blkpref_ufs1(ip, lbn, indx, bap)
884 struct inode *ip;
885 daddr_t lbn;
886 int indx;
887 int32_t *bap; /* XXX ondisk32 */
888 {
889 struct fs *fs;
890 int cg;
891 int avgbfree, startcg;
892
893 fs = ip->i_fs;
894 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
895 if (lbn < NDADDR + NINDIR(fs)) {
896 cg = ino_to_cg(fs, ip->i_number);
897 return (fs->fs_fpg * cg + fs->fs_frag);
898 }
899 /*
900 * Find a cylinder with greater than average number of
901 * unused data blocks.
902 */
903 if (indx == 0 || bap[indx - 1] == 0)
904 startcg =
905 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
906 else
907 startcg = dtog(fs,
908 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
909 startcg %= fs->fs_ncg;
910 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
911 for (cg = startcg; cg < fs->fs_ncg; cg++)
912 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
913 return (fs->fs_fpg * cg + fs->fs_frag);
914 }
915 for (cg = 0; cg < startcg; cg++)
916 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
917 return (fs->fs_fpg * cg + fs->fs_frag);
918 }
919 return (0);
920 }
921 /*
922 * We just always try to lay things out contiguously.
923 */
924 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
925 }
926
927 daddr_t
928 ffs_blkpref_ufs2(ip, lbn, indx, bap)
929 struct inode *ip;
930 daddr_t lbn;
931 int indx;
932 int64_t *bap;
933 {
934 struct fs *fs;
935 int cg;
936 int avgbfree, startcg;
937
938 fs = ip->i_fs;
939 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
940 if (lbn < NDADDR + NINDIR(fs)) {
941 cg = ino_to_cg(fs, ip->i_number);
942 return (fs->fs_fpg * cg + fs->fs_frag);
943 }
944 /*
945 * Find a cylinder with greater than average number of
946 * unused data blocks.
947 */
948 if (indx == 0 || bap[indx - 1] == 0)
949 startcg =
950 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
951 else
952 startcg = dtog(fs,
953 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
954 startcg %= fs->fs_ncg;
955 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
956 for (cg = startcg; cg < fs->fs_ncg; cg++)
957 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
958 return (fs->fs_fpg * cg + fs->fs_frag);
959 }
960 for (cg = 0; cg < startcg; cg++)
961 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
962 return (fs->fs_fpg * cg + fs->fs_frag);
963 }
964 return (0);
965 }
966 /*
967 * We just always try to lay things out contiguously.
968 */
969 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
970 }
971
972
973 /*
974 * Implement the cylinder overflow algorithm.
975 *
976 * The policy implemented by this algorithm is:
977 * 1) allocate the block in its requested cylinder group.
978 * 2) quadradically rehash on the cylinder group number.
979 * 3) brute force search for a free block.
980 */
981 /*VARARGS5*/
982 static daddr_t
983 ffs_hashalloc(ip, cg, pref, size, allocator)
984 struct inode *ip;
985 int cg;
986 daddr_t pref;
987 int size; /* size for data blocks, mode for inodes */
988 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
989 {
990 struct fs *fs;
991 daddr_t result;
992 int i, icg = cg;
993
994 fs = ip->i_fs;
995 /*
996 * 1: preferred cylinder group
997 */
998 result = (*allocator)(ip, cg, pref, size);
999 if (result)
1000 return (result);
1001 /*
1002 * 2: quadratic rehash
1003 */
1004 for (i = 1; i < fs->fs_ncg; i *= 2) {
1005 cg += i;
1006 if (cg >= fs->fs_ncg)
1007 cg -= fs->fs_ncg;
1008 result = (*allocator)(ip, cg, 0, size);
1009 if (result)
1010 return (result);
1011 }
1012 /*
1013 * 3: brute force search
1014 * Note that we start at i == 2, since 0 was checked initially,
1015 * and 1 is always checked in the quadratic rehash.
1016 */
1017 cg = (icg + 2) % fs->fs_ncg;
1018 for (i = 2; i < fs->fs_ncg; i++) {
1019 result = (*allocator)(ip, cg, 0, size);
1020 if (result)
1021 return (result);
1022 cg++;
1023 if (cg == fs->fs_ncg)
1024 cg = 0;
1025 }
1026 return (0);
1027 }
1028
1029 /*
1030 * Determine whether a fragment can be extended.
1031 *
1032 * Check to see if the necessary fragments are available, and
1033 * if they are, allocate them.
1034 */
1035 static daddr_t
1036 ffs_fragextend(ip, cg, bprev, osize, nsize)
1037 struct inode *ip;
1038 int cg;
1039 daddr_t bprev;
1040 int osize, nsize;
1041 {
1042 struct fs *fs;
1043 struct cg *cgp;
1044 struct buf *bp;
1045 daddr_t bno;
1046 int frags, bbase;
1047 int i, error;
1048
1049 fs = ip->i_fs;
1050 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1051 return (0);
1052 frags = numfrags(fs, nsize);
1053 bbase = fragnum(fs, bprev);
1054 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1055 /* cannot extend across a block boundary */
1056 return (0);
1057 }
1058 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1059 (int)fs->fs_cgsize, NOCRED, &bp);
1060 if (error) {
1061 brelse(bp);
1062 return (0);
1063 }
1064 cgp = (struct cg *)bp->b_data;
1065 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1066 brelse(bp);
1067 return (0);
1068 }
1069 cgp->cg_old_time = cgp->cg_time =
1070 ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1071 bno = dtogd(fs, bprev);
1072 for (i = numfrags(fs, osize); i < frags; i++)
1073 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
1074 brelse(bp);
1075 return (0);
1076 }
1077 /*
1078 * the current fragment can be extended
1079 * deduct the count on fragment being extended into
1080 * increase the count on the remaining fragment (if any)
1081 * allocate the extended piece
1082 */
1083 for (i = frags; i < fs->fs_frag - bbase; i++)
1084 if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1085 break;
1086 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1087 if (i != frags)
1088 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1089 for (i = numfrags(fs, osize); i < frags; i++) {
1090 clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1091 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1092 fs->fs_cstotal.cs_nffree--;
1093 fs->fs_cs(fs, cg).cs_nffree--;
1094 }
1095 fs->fs_fmod = 1;
1096 if (DOINGSOFTDEP(ITOV(ip)))
1097 softdep_setup_blkmapdep(bp, fs, bprev);
1098 bdwrite(bp);
1099 return (bprev);
1100 }
1101
1102 /*
1103 * Determine whether a block can be allocated.
1104 *
1105 * Check to see if a block of the appropriate size is available,
1106 * and if it is, allocate it.
1107 */
1108 static daddr_t
1109 ffs_alloccg(ip, cg, bpref, size)
1110 struct inode *ip;
1111 int cg;
1112 daddr_t bpref;
1113 int size;
1114 {
1115 struct cg *cgp;
1116 struct buf *bp;
1117 int32_t bno;
1118 daddr_t blkno;
1119 int error, frags, allocsiz, i;
1120 struct fs *fs = ip->i_fs;
1121 #ifdef FFS_EI
1122 const int needswap = UFS_FSNEEDSWAP(fs);
1123 #endif
1124
1125 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1126 return (0);
1127 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1128 (int)fs->fs_cgsize, NOCRED, &bp);
1129 if (error) {
1130 brelse(bp);
1131 return (0);
1132 }
1133 cgp = (struct cg *)bp->b_data;
1134 if (!cg_chkmagic(cgp, needswap) ||
1135 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1136 brelse(bp);
1137 return (0);
1138 }
1139 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1140 if (size == fs->fs_bsize) {
1141 blkno = ffs_alloccgblk(ip, bp, bpref);
1142 bdwrite(bp);
1143 return (blkno);
1144 }
1145 /*
1146 * check to see if any fragments are already available
1147 * allocsiz is the size which will be allocated, hacking
1148 * it down to a smaller size if necessary
1149 */
1150 frags = numfrags(fs, size);
1151 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1152 if (cgp->cg_frsum[allocsiz] != 0)
1153 break;
1154 if (allocsiz == fs->fs_frag) {
1155 /*
1156 * no fragments were available, so a block will be
1157 * allocated, and hacked up
1158 */
1159 if (cgp->cg_cs.cs_nbfree == 0) {
1160 brelse(bp);
1161 return (0);
1162 }
1163 blkno = ffs_alloccgblk(ip, bp, bpref);
1164 bno = dtogd(fs, blkno);
1165 for (i = frags; i < fs->fs_frag; i++)
1166 setbit(cg_blksfree(cgp, needswap), bno + i);
1167 i = fs->fs_frag - frags;
1168 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1169 fs->fs_cstotal.cs_nffree += i;
1170 fs->fs_cs(fs, cg).cs_nffree += i;
1171 fs->fs_fmod = 1;
1172 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1173 bdwrite(bp);
1174 return (blkno);
1175 }
1176 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1177 #if 0
1178 /*
1179 * XXX fvdl mapsearch will panic, and never return -1
1180 * also: returning NULL as daddr_t ?
1181 */
1182 if (bno < 0) {
1183 brelse(bp);
1184 return (0);
1185 }
1186 #endif
1187 for (i = 0; i < frags; i++)
1188 clrbit(cg_blksfree(cgp, needswap), bno + i);
1189 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1190 fs->fs_cstotal.cs_nffree -= frags;
1191 fs->fs_cs(fs, cg).cs_nffree -= frags;
1192 fs->fs_fmod = 1;
1193 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1194 if (frags != allocsiz)
1195 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1196 blkno = cg * fs->fs_fpg + bno;
1197 if (DOINGSOFTDEP(ITOV(ip)))
1198 softdep_setup_blkmapdep(bp, fs, blkno);
1199 bdwrite(bp);
1200 return blkno;
1201 }
1202
1203 /*
1204 * Allocate a block in a cylinder group.
1205 *
1206 * This algorithm implements the following policy:
1207 * 1) allocate the requested block.
1208 * 2) allocate a rotationally optimal block in the same cylinder.
1209 * 3) allocate the next available block on the block rotor for the
1210 * specified cylinder group.
1211 * Note that this routine only allocates fs_bsize blocks; these
1212 * blocks may be fragmented by the routine that allocates them.
1213 */
1214 static daddr_t
1215 ffs_alloccgblk(ip, bp, bpref)
1216 struct inode *ip;
1217 struct buf *bp;
1218 daddr_t bpref;
1219 {
1220 struct cg *cgp;
1221 daddr_t blkno;
1222 int32_t bno;
1223 struct fs *fs = ip->i_fs;
1224 u_int8_t *blksfree;
1225 #ifdef FFS_EI
1226 const int needswap = UFS_FSNEEDSWAP(fs);
1227 #endif
1228
1229 cgp = (struct cg *)bp->b_data;
1230 blksfree = cg_blksfree(cgp, needswap);
1231 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1232 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1233 } else {
1234 bpref = blknum(fs, bpref);
1235 bno = dtogd(fs, bpref);
1236 /*
1237 * if the requested block is available, use it
1238 */
1239 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1240 goto gotit;
1241 }
1242 /*
1243 * Take the next available block in this cylinder group.
1244 */
1245 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1246 if (bno < 0)
1247 return (0);
1248 cgp->cg_rotor = ufs_rw32(bno, needswap);
1249 gotit:
1250 blkno = fragstoblks(fs, bno);
1251 ffs_clrblock(fs, blksfree, blkno);
1252 ffs_clusteracct(fs, cgp, blkno, -1);
1253 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1254 fs->fs_cstotal.cs_nbfree--;
1255 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1256 fs->fs_fmod = 1;
1257 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1258 if (DOINGSOFTDEP(ITOV(ip)))
1259 softdep_setup_blkmapdep(bp, fs, blkno);
1260 return (blkno);
1261 }
1262
1263 #ifdef XXXUBC
1264 /*
1265 * Determine whether a cluster can be allocated.
1266 *
1267 * We do not currently check for optimal rotational layout if there
1268 * are multiple choices in the same cylinder group. Instead we just
1269 * take the first one that we find following bpref.
1270 */
1271
1272 /*
1273 * This function must be fixed for UFS2 if re-enabled.
1274 */
1275 static daddr_t
1276 ffs_clusteralloc(ip, cg, bpref, len)
1277 struct inode *ip;
1278 int cg;
1279 daddr_t bpref;
1280 int len;
1281 {
1282 struct fs *fs;
1283 struct cg *cgp;
1284 struct buf *bp;
1285 int i, got, run, bno, bit, map;
1286 u_char *mapp;
1287 int32_t *lp;
1288
1289 fs = ip->i_fs;
1290 if (fs->fs_maxcluster[cg] < len)
1291 return (0);
1292 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1293 NOCRED, &bp))
1294 goto fail;
1295 cgp = (struct cg *)bp->b_data;
1296 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1297 goto fail;
1298 /*
1299 * Check to see if a cluster of the needed size (or bigger) is
1300 * available in this cylinder group.
1301 */
1302 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1303 for (i = len; i <= fs->fs_contigsumsize; i++)
1304 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1305 break;
1306 if (i > fs->fs_contigsumsize) {
1307 /*
1308 * This is the first time looking for a cluster in this
1309 * cylinder group. Update the cluster summary information
1310 * to reflect the true maximum sized cluster so that
1311 * future cluster allocation requests can avoid reading
1312 * the cylinder group map only to find no clusters.
1313 */
1314 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1315 for (i = len - 1; i > 0; i--)
1316 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1317 break;
1318 fs->fs_maxcluster[cg] = i;
1319 goto fail;
1320 }
1321 /*
1322 * Search the cluster map to find a big enough cluster.
1323 * We take the first one that we find, even if it is larger
1324 * than we need as we prefer to get one close to the previous
1325 * block allocation. We do not search before the current
1326 * preference point as we do not want to allocate a block
1327 * that is allocated before the previous one (as we will
1328 * then have to wait for another pass of the elevator
1329 * algorithm before it will be read). We prefer to fail and
1330 * be recalled to try an allocation in the next cylinder group.
1331 */
1332 if (dtog(fs, bpref) != cg)
1333 bpref = 0;
1334 else
1335 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1336 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1337 map = *mapp++;
1338 bit = 1 << (bpref % NBBY);
1339 for (run = 0, got = bpref;
1340 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1341 if ((map & bit) == 0) {
1342 run = 0;
1343 } else {
1344 run++;
1345 if (run == len)
1346 break;
1347 }
1348 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1349 bit <<= 1;
1350 } else {
1351 map = *mapp++;
1352 bit = 1;
1353 }
1354 }
1355 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1356 goto fail;
1357 /*
1358 * Allocate the cluster that we have found.
1359 */
1360 #ifdef DIAGNOSTIC
1361 for (i = 1; i <= len; i++)
1362 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1363 got - run + i))
1364 panic("ffs_clusteralloc: map mismatch");
1365 #endif
1366 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1367 if (dtog(fs, bno) != cg)
1368 panic("ffs_clusteralloc: allocated out of group");
1369 len = blkstofrags(fs, len);
1370 for (i = 0; i < len; i += fs->fs_frag)
1371 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1372 panic("ffs_clusteralloc: lost block");
1373 bdwrite(bp);
1374 return (bno);
1375
1376 fail:
1377 brelse(bp);
1378 return (0);
1379 }
1380 #endif /* XXXUBC */
1381
1382 /*
1383 * Determine whether an inode can be allocated.
1384 *
1385 * Check to see if an inode is available, and if it is,
1386 * allocate it using the following policy:
1387 * 1) allocate the requested inode.
1388 * 2) allocate the next available inode after the requested
1389 * inode in the specified cylinder group.
1390 */
1391 static daddr_t
1392 ffs_nodealloccg(ip, cg, ipref, mode)
1393 struct inode *ip;
1394 int cg;
1395 daddr_t ipref;
1396 int mode;
1397 {
1398 struct cg *cgp;
1399 struct buf *bp, *ibp;
1400 u_int8_t *inosused;
1401 int error, start, len, loc, map, i;
1402 struct fs *fs = ip->i_fs;
1403 int32_t initediblk;
1404 struct ufs2_dinode *dp2;
1405 #ifdef FFS_EI
1406 const int needswap = UFS_FSNEEDSWAP(fs);
1407 #endif
1408
1409 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1410 return (0);
1411 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1412 (int)fs->fs_cgsize, NOCRED, &bp);
1413 if (error) {
1414 brelse(bp);
1415 return (0);
1416 }
1417 cgp = (struct cg *)bp->b_data;
1418 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1419 brelse(bp);
1420 return (0);
1421 }
1422 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1423 inosused = cg_inosused(cgp, needswap);
1424 if (ipref) {
1425 ipref %= fs->fs_ipg;
1426 if (isclr(inosused, ipref))
1427 goto gotit;
1428 }
1429 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1430 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1431 NBBY);
1432 loc = skpc(0xff, len, &inosused[start]);
1433 if (loc == 0) {
1434 len = start + 1;
1435 start = 0;
1436 loc = skpc(0xff, len, &inosused[0]);
1437 if (loc == 0) {
1438 printf("cg = %d, irotor = %d, fs = %s\n",
1439 cg, ufs_rw32(cgp->cg_irotor, needswap),
1440 fs->fs_fsmnt);
1441 panic("ffs_nodealloccg: map corrupted");
1442 /* NOTREACHED */
1443 }
1444 }
1445 i = start + len - loc;
1446 map = inosused[i];
1447 ipref = i * NBBY;
1448 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1449 if ((map & i) == 0) {
1450 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1451 goto gotit;
1452 }
1453 }
1454 printf("fs = %s\n", fs->fs_fsmnt);
1455 panic("ffs_nodealloccg: block not in map");
1456 /* NOTREACHED */
1457 gotit:
1458 if (DOINGSOFTDEP(ITOV(ip)))
1459 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1460 setbit(inosused, ipref);
1461 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1462 fs->fs_cstotal.cs_nifree--;
1463 fs->fs_cs(fs, cg).cs_nifree--;
1464 fs->fs_fmod = 1;
1465 if ((mode & IFMT) == IFDIR) {
1466 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1467 fs->fs_cstotal.cs_ndir++;
1468 fs->fs_cs(fs, cg).cs_ndir++;
1469 }
1470 /*
1471 * Check to see if we need to initialize more inodes.
1472 */
1473 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1474 if (fs->fs_magic == FS_UFS2_MAGIC &&
1475 ipref + INOPB(fs) > initediblk &&
1476 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1477 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1478 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1479 (int)fs->fs_bsize, 0, 0);
1480 memset(ibp->b_data, 0, fs->fs_bsize);
1481 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1482 for (i = 0; i < INOPB(fs); i++) {
1483 /*
1484 * Don't bother to swap, it's supposed to be
1485 * random, after all.
1486 */
1487 dp2->di_gen = random() / 2 + 1;
1488 dp2++;
1489 }
1490 bawrite(ibp);
1491 initediblk += INOPB(fs);
1492 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1493 }
1494
1495 bdwrite(bp);
1496 return (cg * fs->fs_ipg + ipref);
1497 }
1498
1499 /*
1500 * Free a block or fragment.
1501 *
1502 * The specified block or fragment is placed back in the
1503 * free map. If a fragment is deallocated, a possible
1504 * block reassembly is checked.
1505 */
1506 void
1507 ffs_blkfree(ip, bno, size)
1508 struct inode *ip;
1509 daddr_t bno;
1510 long size;
1511 {
1512 struct cg *cgp;
1513 struct buf *bp;
1514 int32_t fragno, cgbno;
1515 int i, error, cg, blk, frags, bbase;
1516 struct fs *fs = ip->i_fs;
1517 const int needswap = UFS_FSNEEDSWAP(fs);
1518
1519 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1520 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1521 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1522 "size = %ld, fs = %s\n",
1523 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1524 panic("blkfree: bad size");
1525 }
1526 cg = dtog(fs, bno);
1527 if (bno >= fs->fs_size) {
1528 printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
1529 ffs_fserr(fs, ip->i_uid, "bad block");
1530 return;
1531 }
1532 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1533 (int)fs->fs_cgsize, NOCRED, &bp);
1534 if (error) {
1535 brelse(bp);
1536 return;
1537 }
1538 cgp = (struct cg *)bp->b_data;
1539 if (!cg_chkmagic(cgp, needswap)) {
1540 brelse(bp);
1541 return;
1542 }
1543 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1544 cgbno = dtogd(fs, bno);
1545 if (size == fs->fs_bsize) {
1546 fragno = fragstoblks(fs, cgbno);
1547 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
1548 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1549 ip->i_dev, bno, fs->fs_fsmnt);
1550 panic("blkfree: freeing free block");
1551 }
1552 ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
1553 ffs_clusteracct(fs, cgp, fragno, 1);
1554 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1555 fs->fs_cstotal.cs_nbfree++;
1556 fs->fs_cs(fs, cg).cs_nbfree++;
1557 } else {
1558 bbase = cgbno - fragnum(fs, cgbno);
1559 /*
1560 * decrement the counts associated with the old frags
1561 */
1562 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1563 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1564 /*
1565 * deallocate the fragment
1566 */
1567 frags = numfrags(fs, size);
1568 for (i = 0; i < frags; i++) {
1569 if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
1570 printf("dev = 0x%x, block = %" PRId64
1571 ", fs = %s\n",
1572 ip->i_dev, bno + i, fs->fs_fsmnt);
1573 panic("blkfree: freeing free frag");
1574 }
1575 setbit(cg_blksfree(cgp, needswap), cgbno + i);
1576 }
1577 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1578 fs->fs_cstotal.cs_nffree += i;
1579 fs->fs_cs(fs, cg).cs_nffree += i;
1580 /*
1581 * add back in counts associated with the new frags
1582 */
1583 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1584 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1585 /*
1586 * if a complete block has been reassembled, account for it
1587 */
1588 fragno = fragstoblks(fs, bbase);
1589 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
1590 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1591 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1592 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1593 ffs_clusteracct(fs, cgp, fragno, 1);
1594 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1595 fs->fs_cstotal.cs_nbfree++;
1596 fs->fs_cs(fs, cg).cs_nbfree++;
1597 }
1598 }
1599 fs->fs_fmod = 1;
1600 bdwrite(bp);
1601 }
1602
1603 #if defined(DIAGNOSTIC) || defined(DEBUG)
1604 #ifdef XXXUBC
1605 /*
1606 * Verify allocation of a block or fragment. Returns true if block or
1607 * fragment is allocated, false if it is free.
1608 */
1609 static int
1610 ffs_checkblk(ip, bno, size)
1611 struct inode *ip;
1612 daddr_t bno;
1613 long size;
1614 {
1615 struct fs *fs;
1616 struct cg *cgp;
1617 struct buf *bp;
1618 int i, error, frags, free;
1619
1620 fs = ip->i_fs;
1621 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1622 printf("bsize = %d, size = %ld, fs = %s\n",
1623 fs->fs_bsize, size, fs->fs_fsmnt);
1624 panic("checkblk: bad size");
1625 }
1626 if (bno >= fs->fs_size)
1627 panic("checkblk: bad block %d", bno);
1628 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1629 (int)fs->fs_cgsize, NOCRED, &bp);
1630 if (error) {
1631 brelse(bp);
1632 return 0;
1633 }
1634 cgp = (struct cg *)bp->b_data;
1635 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1636 brelse(bp);
1637 return 0;
1638 }
1639 bno = dtogd(fs, bno);
1640 if (size == fs->fs_bsize) {
1641 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1642 fragstoblks(fs, bno));
1643 } else {
1644 frags = numfrags(fs, size);
1645 for (free = 0, i = 0; i < frags; i++)
1646 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1647 free++;
1648 if (free != 0 && free != frags)
1649 panic("checkblk: partially free fragment");
1650 }
1651 brelse(bp);
1652 return (!free);
1653 }
1654 #endif /* XXXUBC */
1655 #endif /* DIAGNOSTIC */
1656
1657 /*
1658 * Free an inode.
1659 */
1660 int
1661 ffs_vfree(v)
1662 void *v;
1663 {
1664 struct vop_vfree_args /* {
1665 struct vnode *a_pvp;
1666 ino_t a_ino;
1667 int a_mode;
1668 } */ *ap = v;
1669
1670 if (DOINGSOFTDEP(ap->a_pvp)) {
1671 softdep_freefile(ap);
1672 return (0);
1673 }
1674 return (ffs_freefile(ap));
1675 }
1676
1677 /*
1678 * Do the actual free operation.
1679 * The specified inode is placed back in the free map.
1680 */
1681 int
1682 ffs_freefile(v)
1683 void *v;
1684 {
1685 struct vop_vfree_args /* {
1686 struct vnode *a_pvp;
1687 ino_t a_ino;
1688 int a_mode;
1689 } */ *ap = v;
1690 struct cg *cgp;
1691 struct inode *pip = VTOI(ap->a_pvp);
1692 struct fs *fs = pip->i_fs;
1693 ino_t ino = ap->a_ino;
1694 struct buf *bp;
1695 int error, cg;
1696 #ifdef FFS_EI
1697 const int needswap = UFS_FSNEEDSWAP(fs);
1698 #endif
1699
1700 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1701 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1702 pip->i_dev, ino, fs->fs_fsmnt);
1703 cg = ino_to_cg(fs, ino);
1704 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1705 (int)fs->fs_cgsize, NOCRED, &bp);
1706 if (error) {
1707 brelse(bp);
1708 return (error);
1709 }
1710 cgp = (struct cg *)bp->b_data;
1711 if (!cg_chkmagic(cgp, needswap)) {
1712 brelse(bp);
1713 return (0);
1714 }
1715 cgp->cg_old_time = cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1716 ino %= fs->fs_ipg;
1717 if (isclr(cg_inosused(cgp, needswap), ino)) {
1718 printf("dev = 0x%x, ino = %d, fs = %s\n",
1719 pip->i_dev, ino, fs->fs_fsmnt);
1720 if (fs->fs_ronly == 0)
1721 panic("ifree: freeing free inode");
1722 }
1723 clrbit(cg_inosused(cgp, needswap), ino);
1724 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1725 cgp->cg_irotor = ufs_rw32(ino, needswap);
1726 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1727 fs->fs_cstotal.cs_nifree++;
1728 fs->fs_cs(fs, cg).cs_nifree++;
1729 if ((ap->a_mode & IFMT) == IFDIR) {
1730 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1731 fs->fs_cstotal.cs_ndir--;
1732 fs->fs_cs(fs, cg).cs_ndir--;
1733 }
1734 fs->fs_fmod = 1;
1735 bdwrite(bp);
1736 return (0);
1737 }
1738
1739 /*
1740 * Find a block of the specified size in the specified cylinder group.
1741 *
1742 * It is a panic if a request is made to find a block if none are
1743 * available.
1744 */
1745 static int32_t
1746 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1747 struct fs *fs;
1748 struct cg *cgp;
1749 daddr_t bpref;
1750 int allocsiz;
1751 {
1752 int32_t bno;
1753 int start, len, loc, i;
1754 int blk, field, subfield, pos;
1755 int ostart, olen;
1756 #ifdef FFS_EI
1757 const int needswap = UFS_FSNEEDSWAP(fs);
1758 #endif
1759
1760 /*
1761 * find the fragment by searching through the free block
1762 * map for an appropriate bit pattern
1763 */
1764 if (bpref)
1765 start = dtogd(fs, bpref) / NBBY;
1766 else
1767 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1768 len = howmany(fs->fs_fpg, NBBY) - start;
1769 ostart = start;
1770 olen = len;
1771 loc = scanc((u_int)len,
1772 (const u_char *)&cg_blksfree(cgp, needswap)[start],
1773 (const u_char *)fragtbl[fs->fs_frag],
1774 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1775 if (loc == 0) {
1776 len = start + 1;
1777 start = 0;
1778 loc = scanc((u_int)len,
1779 (const u_char *)&cg_blksfree(cgp, needswap)[0],
1780 (const u_char *)fragtbl[fs->fs_frag],
1781 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1782 if (loc == 0) {
1783 printf("start = %d, len = %d, fs = %s\n",
1784 ostart, olen, fs->fs_fsmnt);
1785 printf("offset=%d %ld\n",
1786 ufs_rw32(cgp->cg_freeoff, needswap),
1787 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1788 panic("ffs_alloccg: map corrupted");
1789 /* NOTREACHED */
1790 }
1791 }
1792 bno = (start + len - loc) * NBBY;
1793 cgp->cg_frotor = ufs_rw32(bno, needswap);
1794 /*
1795 * found the byte in the map
1796 * sift through the bits to find the selected frag
1797 */
1798 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1799 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1800 blk <<= 1;
1801 field = around[allocsiz];
1802 subfield = inside[allocsiz];
1803 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1804 if ((blk & field) == subfield)
1805 return (bno + pos);
1806 field <<= 1;
1807 subfield <<= 1;
1808 }
1809 }
1810 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1811 panic("ffs_alloccg: block not in map");
1812 /* return (-1); */
1813 }
1814
1815 /*
1816 * Update the cluster map because of an allocation or free.
1817 *
1818 * Cnt == 1 means free; cnt == -1 means allocating.
1819 */
1820 void
1821 ffs_clusteracct(fs, cgp, blkno, cnt)
1822 struct fs *fs;
1823 struct cg *cgp;
1824 int32_t blkno;
1825 int cnt;
1826 {
1827 int32_t *sump;
1828 int32_t *lp;
1829 u_char *freemapp, *mapp;
1830 int i, start, end, forw, back, map, bit;
1831 #ifdef FFS_EI
1832 const int needswap = UFS_FSNEEDSWAP(fs);
1833 #endif
1834
1835 if (fs->fs_contigsumsize <= 0)
1836 return;
1837 freemapp = cg_clustersfree(cgp, needswap);
1838 sump = cg_clustersum(cgp, needswap);
1839 /*
1840 * Allocate or clear the actual block.
1841 */
1842 if (cnt > 0)
1843 setbit(freemapp, blkno);
1844 else
1845 clrbit(freemapp, blkno);
1846 /*
1847 * Find the size of the cluster going forward.
1848 */
1849 start = blkno + 1;
1850 end = start + fs->fs_contigsumsize;
1851 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1852 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1853 mapp = &freemapp[start / NBBY];
1854 map = *mapp++;
1855 bit = 1 << (start % NBBY);
1856 for (i = start; i < end; i++) {
1857 if ((map & bit) == 0)
1858 break;
1859 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1860 bit <<= 1;
1861 } else {
1862 map = *mapp++;
1863 bit = 1;
1864 }
1865 }
1866 forw = i - start;
1867 /*
1868 * Find the size of the cluster going backward.
1869 */
1870 start = blkno - 1;
1871 end = start - fs->fs_contigsumsize;
1872 if (end < 0)
1873 end = -1;
1874 mapp = &freemapp[start / NBBY];
1875 map = *mapp--;
1876 bit = 1 << (start % NBBY);
1877 for (i = start; i > end; i--) {
1878 if ((map & bit) == 0)
1879 break;
1880 if ((i & (NBBY - 1)) != 0) {
1881 bit >>= 1;
1882 } else {
1883 map = *mapp--;
1884 bit = 1 << (NBBY - 1);
1885 }
1886 }
1887 back = start - i;
1888 /*
1889 * Account for old cluster and the possibly new forward and
1890 * back clusters.
1891 */
1892 i = back + forw + 1;
1893 if (i > fs->fs_contigsumsize)
1894 i = fs->fs_contigsumsize;
1895 ufs_add32(sump[i], cnt, needswap);
1896 if (back > 0)
1897 ufs_add32(sump[back], -cnt, needswap);
1898 if (forw > 0)
1899 ufs_add32(sump[forw], -cnt, needswap);
1900
1901 /*
1902 * Update cluster summary information.
1903 */
1904 lp = &sump[fs->fs_contigsumsize];
1905 for (i = fs->fs_contigsumsize; i > 0; i--)
1906 if (ufs_rw32(*lp--, needswap) > 0)
1907 break;
1908 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1909 }
1910
1911 /*
1912 * Fserr prints the name of a file system with an error diagnostic.
1913 *
1914 * The form of the error message is:
1915 * fs: error message
1916 */
1917 static void
1918 ffs_fserr(fs, uid, cp)
1919 struct fs *fs;
1920 u_int uid;
1921 char *cp;
1922 {
1923
1924 log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1925 uid, curproc->p_comm, fs->fs_fsmnt, cp);
1926 }
1927