ffs_alloc.c revision 1.67 1 /* $NetBSD: ffs_alloc.c,v 1.67 2003/06/29 18:43:40 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.67 2003/06/29 18:43:40 thorpej Exp $");
49
50 #if defined(_KERNEL_OPT)
51 #include "opt_ffs.h"
52 #include "opt_quota.h"
53 #endif
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/buf.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/kernel.h>
62 #include <sys/syslog.h>
63
64 #include <ufs/ufs/quota.h>
65 #include <ufs/ufs/ufsmount.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/ufs_extern.h>
68 #include <ufs/ufs/ufs_bswap.h>
69
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72
73 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
74 static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
75 #ifdef XXXUBC
76 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
77 #endif
78 static ino_t ffs_dirpref __P((struct inode *));
79 static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
80 static void ffs_fserr __P((struct fs *, u_int, char *));
81 static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
82 daddr_t (*)(struct inode *, int, daddr_t, int)));
83 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
84 static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
85 daddr_t, int));
86 #if defined(DIAGNOSTIC) || defined(DEBUG)
87 #ifdef XXXUBC
88 static int ffs_checkblk __P((struct inode *, daddr_t, long size));
89 #endif
90 #endif
91
92 /* if 1, changes in optimalization strategy are logged */
93 int ffs_log_changeopt = 0;
94
95 /* in ffs_tables.c */
96 extern const int inside[], around[];
97 extern const u_char * const fragtbl[];
98
99 /*
100 * Allocate a block in the file system.
101 *
102 * The size of the requested block is given, which must be some
103 * multiple of fs_fsize and <= fs_bsize.
104 * A preference may be optionally specified. If a preference is given
105 * the following hierarchy is used to allocate a block:
106 * 1) allocate the requested block.
107 * 2) allocate a rotationally optimal block in the same cylinder.
108 * 3) allocate a block in the same cylinder group.
109 * 4) quadradically rehash into other cylinder groups, until an
110 * available block is located.
111 * If no block preference is given the following hierarchy is used
112 * to allocate a block:
113 * 1) allocate a block in the cylinder group that contains the
114 * inode for the file.
115 * 2) quadradically rehash into other cylinder groups, until an
116 * available block is located.
117 */
118 int
119 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
120 struct inode *ip;
121 daddr_t lbn, bpref;
122 int size;
123 struct ucred *cred;
124 daddr_t *bnp;
125 {
126 struct fs *fs;
127 daddr_t bno;
128 int cg;
129 #ifdef QUOTA
130 int error;
131 #endif
132
133 fs = ip->i_fs;
134
135 #ifdef UVM_PAGE_TRKOWN
136 if (ITOV(ip)->v_type == VREG &&
137 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
138 struct vm_page *pg;
139 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
140 voff_t off = trunc_page(lblktosize(fs, lbn));
141 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
142
143 simple_lock(&uobj->vmobjlock);
144 while (off < endoff) {
145 pg = uvm_pagelookup(uobj, off);
146 KASSERT(pg != NULL);
147 KASSERT(pg->owner == curproc->p_pid);
148 KASSERT((pg->flags & PG_CLEAN) == 0);
149 off += PAGE_SIZE;
150 }
151 simple_unlock(&uobj->vmobjlock);
152 }
153 #endif
154
155 *bnp = 0;
156 #ifdef DIAGNOSTIC
157 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
158 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
159 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
160 panic("ffs_alloc: bad size");
161 }
162 if (cred == NOCRED)
163 panic("ffs_alloc: missing credential");
164 #endif /* DIAGNOSTIC */
165 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
166 goto nospace;
167 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
168 goto nospace;
169 #ifdef QUOTA
170 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
171 return (error);
172 #endif
173 if (bpref >= fs->fs_size)
174 bpref = 0;
175 if (bpref == 0)
176 cg = ino_to_cg(fs, ip->i_number);
177 else
178 cg = dtog(fs, bpref);
179 bno = ffs_hashalloc(ip, cg, (long)bpref, size,
180 ffs_alloccg);
181 if (bno > 0) {
182 DIP_ADD(ip, blocks, btodb(size));
183 ip->i_flag |= IN_CHANGE | IN_UPDATE;
184 *bnp = bno;
185 return (0);
186 }
187 #ifdef QUOTA
188 /*
189 * Restore user's disk quota because allocation failed.
190 */
191 (void) chkdq(ip, -btodb(size), cred, FORCE);
192 #endif
193 nospace:
194 ffs_fserr(fs, cred->cr_uid, "file system full");
195 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
196 return (ENOSPC);
197 }
198
199 /*
200 * Reallocate a fragment to a bigger size
201 *
202 * The number and size of the old block is given, and a preference
203 * and new size is also specified. The allocator attempts to extend
204 * the original block. Failing that, the regular block allocator is
205 * invoked to get an appropriate block.
206 */
207 int
208 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
209 struct inode *ip;
210 daddr_t lbprev;
211 daddr_t bpref;
212 int osize, nsize;
213 struct ucred *cred;
214 struct buf **bpp;
215 daddr_t *blknop;
216 {
217 struct fs *fs;
218 struct buf *bp;
219 int cg, request, error;
220 daddr_t bprev, bno;
221
222 fs = ip->i_fs;
223 #ifdef UVM_PAGE_TRKOWN
224 if (ITOV(ip)->v_type == VREG) {
225 struct vm_page *pg;
226 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
227 voff_t off = trunc_page(lblktosize(fs, lbprev));
228 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
229
230 simple_lock(&uobj->vmobjlock);
231 while (off < endoff) {
232 pg = uvm_pagelookup(uobj, off);
233 KASSERT(pg != NULL);
234 KASSERT(pg->owner == curproc->p_pid);
235 KASSERT((pg->flags & PG_CLEAN) == 0);
236 off += PAGE_SIZE;
237 }
238 simple_unlock(&uobj->vmobjlock);
239 }
240 #endif
241
242 #ifdef DIAGNOSTIC
243 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
244 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
245 printf(
246 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
247 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
248 panic("ffs_realloccg: bad size");
249 }
250 if (cred == NOCRED)
251 panic("ffs_realloccg: missing credential");
252 #endif /* DIAGNOSTIC */
253 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
254 goto nospace;
255 if (fs->fs_magic == FS_UFS2_MAGIC)
256 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
257 else
258 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
259
260 if (bprev == 0) {
261 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
262 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
263 panic("ffs_realloccg: bad bprev");
264 }
265 /*
266 * Allocate the extra space in the buffer.
267 */
268 if (bpp != NULL &&
269 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
270 brelse(bp);
271 return (error);
272 }
273 #ifdef QUOTA
274 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
275 if (bpp != NULL) {
276 brelse(bp);
277 }
278 return (error);
279 }
280 #endif
281 /*
282 * Check for extension in the existing location.
283 */
284 cg = dtog(fs, bprev);
285 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
286 DIP_ADD(ip, blocks, btodb(nsize - osize));
287 ip->i_flag |= IN_CHANGE | IN_UPDATE;
288
289 if (bpp != NULL) {
290 if (bp->b_blkno != fsbtodb(fs, bno))
291 panic("bad blockno");
292 allocbuf(bp, nsize);
293 bp->b_flags |= B_DONE;
294 memset(bp->b_data + osize, 0, nsize - osize);
295 *bpp = bp;
296 }
297 if (blknop != NULL) {
298 *blknop = bno;
299 }
300 return (0);
301 }
302 /*
303 * Allocate a new disk location.
304 */
305 if (bpref >= fs->fs_size)
306 bpref = 0;
307 switch ((int)fs->fs_optim) {
308 case FS_OPTSPACE:
309 /*
310 * Allocate an exact sized fragment. Although this makes
311 * best use of space, we will waste time relocating it if
312 * the file continues to grow. If the fragmentation is
313 * less than half of the minimum free reserve, we choose
314 * to begin optimizing for time.
315 */
316 request = nsize;
317 if (fs->fs_minfree < 5 ||
318 fs->fs_cstotal.cs_nffree >
319 fs->fs_dsize * fs->fs_minfree / (2 * 100))
320 break;
321
322 if (ffs_log_changeopt) {
323 log(LOG_NOTICE,
324 "%s: optimization changed from SPACE to TIME\n",
325 fs->fs_fsmnt);
326 }
327
328 fs->fs_optim = FS_OPTTIME;
329 break;
330 case FS_OPTTIME:
331 /*
332 * At this point we have discovered a file that is trying to
333 * grow a small fragment to a larger fragment. To save time,
334 * we allocate a full sized block, then free the unused portion.
335 * If the file continues to grow, the `ffs_fragextend' call
336 * above will be able to grow it in place without further
337 * copying. If aberrant programs cause disk fragmentation to
338 * grow within 2% of the free reserve, we choose to begin
339 * optimizing for space.
340 */
341 request = fs->fs_bsize;
342 if (fs->fs_cstotal.cs_nffree <
343 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
344 break;
345
346 if (ffs_log_changeopt) {
347 log(LOG_NOTICE,
348 "%s: optimization changed from TIME to SPACE\n",
349 fs->fs_fsmnt);
350 }
351
352 fs->fs_optim = FS_OPTSPACE;
353 break;
354 default:
355 printf("dev = 0x%x, optim = %d, fs = %s\n",
356 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
357 panic("ffs_realloccg: bad optim");
358 /* NOTREACHED */
359 }
360 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
361 if (bno > 0) {
362 if (!DOINGSOFTDEP(ITOV(ip)))
363 ffs_blkfree(ip, bprev, (long)osize);
364 if (nsize < request)
365 ffs_blkfree(ip, bno + numfrags(fs, nsize),
366 (long)(request - nsize));
367 DIP_ADD(ip, blocks, btodb(nsize - osize));
368 ip->i_flag |= IN_CHANGE | IN_UPDATE;
369 if (bpp != NULL) {
370 bp->b_blkno = fsbtodb(fs, bno);
371 allocbuf(bp, nsize);
372 bp->b_flags |= B_DONE;
373 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
374 *bpp = bp;
375 }
376 if (blknop != NULL) {
377 *blknop = bno;
378 }
379 return (0);
380 }
381 #ifdef QUOTA
382 /*
383 * Restore user's disk quota because allocation failed.
384 */
385 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
386 #endif
387 if (bpp != NULL) {
388 brelse(bp);
389 }
390
391 nospace:
392 /*
393 * no space available
394 */
395 ffs_fserr(fs, cred->cr_uid, "file system full");
396 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
397 return (ENOSPC);
398 }
399
400 /*
401 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
402 *
403 * The vnode and an array of buffer pointers for a range of sequential
404 * logical blocks to be made contiguous is given. The allocator attempts
405 * to find a range of sequential blocks starting as close as possible
406 * from the end of the allocation for the logical block immediately
407 * preceding the current range. If successful, the physical block numbers
408 * in the buffer pointers and in the inode are changed to reflect the new
409 * allocation. If unsuccessful, the allocation is left unchanged. The
410 * success in doing the reallocation is returned. Note that the error
411 * return is not reflected back to the user. Rather the previous block
412 * allocation will be used.
413
414 */
415 #ifdef XXXUBC
416 #ifdef DEBUG
417 #include <sys/sysctl.h>
418 int prtrealloc = 0;
419 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
420 #endif
421 #endif
422
423 /*
424 * NOTE: when re-enabling this, it must be updated for UFS2.
425 */
426
427 int doasyncfree = 1;
428
429 int
430 ffs_reallocblks(v)
431 void *v;
432 {
433 #ifdef XXXUBC
434 struct vop_reallocblks_args /* {
435 struct vnode *a_vp;
436 struct cluster_save *a_buflist;
437 } */ *ap = v;
438 struct fs *fs;
439 struct inode *ip;
440 struct vnode *vp;
441 struct buf *sbp, *ebp;
442 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
443 struct cluster_save *buflist;
444 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
445 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
446 int i, len, start_lvl, end_lvl, pref, ssize;
447 #endif /* XXXUBC */
448
449 /* XXXUBC don't reallocblks for now */
450 return ENOSPC;
451
452 #ifdef XXXUBC
453 vp = ap->a_vp;
454 ip = VTOI(vp);
455 fs = ip->i_fs;
456 if (fs->fs_contigsumsize <= 0)
457 return (ENOSPC);
458 buflist = ap->a_buflist;
459 len = buflist->bs_nchildren;
460 start_lbn = buflist->bs_children[0]->b_lblkno;
461 end_lbn = start_lbn + len - 1;
462 #ifdef DIAGNOSTIC
463 for (i = 0; i < len; i++)
464 if (!ffs_checkblk(ip,
465 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
466 panic("ffs_reallocblks: unallocated block 1");
467 for (i = 1; i < len; i++)
468 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
469 panic("ffs_reallocblks: non-logical cluster");
470 blkno = buflist->bs_children[0]->b_blkno;
471 ssize = fsbtodb(fs, fs->fs_frag);
472 for (i = 1; i < len - 1; i++)
473 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
474 panic("ffs_reallocblks: non-physical cluster %d", i);
475 #endif
476 /*
477 * If the latest allocation is in a new cylinder group, assume that
478 * the filesystem has decided to move and do not force it back to
479 * the previous cylinder group.
480 */
481 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
482 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
483 return (ENOSPC);
484 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
485 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
486 return (ENOSPC);
487 /*
488 * Get the starting offset and block map for the first block.
489 */
490 if (start_lvl == 0) {
491 sbap = &ip->i_ffs1_db[0];
492 soff = start_lbn;
493 } else {
494 idp = &start_ap[start_lvl - 1];
495 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
496 brelse(sbp);
497 return (ENOSPC);
498 }
499 sbap = (int32_t *)sbp->b_data;
500 soff = idp->in_off;
501 }
502 /*
503 * Find the preferred location for the cluster.
504 */
505 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
506 /*
507 * If the block range spans two block maps, get the second map.
508 */
509 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
510 ssize = len;
511 } else {
512 #ifdef DIAGNOSTIC
513 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
514 panic("ffs_reallocblk: start == end");
515 #endif
516 ssize = len - (idp->in_off + 1);
517 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
518 goto fail;
519 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
520 }
521 /*
522 * Search the block map looking for an allocation of the desired size.
523 */
524 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
525 len, ffs_clusteralloc)) == 0)
526 goto fail;
527 /*
528 * We have found a new contiguous block.
529 *
530 * First we have to replace the old block pointers with the new
531 * block pointers in the inode and indirect blocks associated
532 * with the file.
533 */
534 #ifdef DEBUG
535 if (prtrealloc)
536 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
537 start_lbn, end_lbn);
538 #endif
539 blkno = newblk;
540 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
541 daddr_t ba;
542
543 if (i == ssize) {
544 bap = ebap;
545 soff = -i;
546 }
547 /* XXX ondisk32 */
548 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
549 #ifdef DIAGNOSTIC
550 if (!ffs_checkblk(ip,
551 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
552 panic("ffs_reallocblks: unallocated block 2");
553 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
554 panic("ffs_reallocblks: alloc mismatch");
555 #endif
556 #ifdef DEBUG
557 if (prtrealloc)
558 printf(" %d,", ba);
559 #endif
560 if (DOINGSOFTDEP(vp)) {
561 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
562 softdep_setup_allocdirect(ip, start_lbn + i,
563 blkno, ba, fs->fs_bsize, fs->fs_bsize,
564 buflist->bs_children[i]);
565 else
566 softdep_setup_allocindir_page(ip, start_lbn + i,
567 i < ssize ? sbp : ebp, soff + i, blkno,
568 ba, buflist->bs_children[i]);
569 }
570 /* XXX ondisk32 */
571 *bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
572 }
573 /*
574 * Next we must write out the modified inode and indirect blocks.
575 * For strict correctness, the writes should be synchronous since
576 * the old block values may have been written to disk. In practise
577 * they are almost never written, but if we are concerned about
578 * strict correctness, the `doasyncfree' flag should be set to zero.
579 *
580 * The test on `doasyncfree' should be changed to test a flag
581 * that shows whether the associated buffers and inodes have
582 * been written. The flag should be set when the cluster is
583 * started and cleared whenever the buffer or inode is flushed.
584 * We can then check below to see if it is set, and do the
585 * synchronous write only when it has been cleared.
586 */
587 if (sbap != &ip->i_ffs1_db[0]) {
588 if (doasyncfree)
589 bdwrite(sbp);
590 else
591 bwrite(sbp);
592 } else {
593 ip->i_flag |= IN_CHANGE | IN_UPDATE;
594 if (!doasyncfree)
595 VOP_UPDATE(vp, NULL, NULL, 1);
596 }
597 if (ssize < len) {
598 if (doasyncfree)
599 bdwrite(ebp);
600 else
601 bwrite(ebp);
602 }
603 /*
604 * Last, free the old blocks and assign the new blocks to the buffers.
605 */
606 #ifdef DEBUG
607 if (prtrealloc)
608 printf("\n\tnew:");
609 #endif
610 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
611 if (!DOINGSOFTDEP(vp))
612 ffs_blkfree(ip,
613 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
614 fs->fs_bsize);
615 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
616 #ifdef DEBUG
617 if (!ffs_checkblk(ip,
618 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
619 panic("ffs_reallocblks: unallocated block 3");
620 if (prtrealloc)
621 printf(" %d,", blkno);
622 #endif
623 }
624 #ifdef DEBUG
625 if (prtrealloc) {
626 prtrealloc--;
627 printf("\n");
628 }
629 #endif
630 return (0);
631
632 fail:
633 if (ssize < len)
634 brelse(ebp);
635 if (sbap != &ip->i_ffs1_db[0])
636 brelse(sbp);
637 return (ENOSPC);
638 #endif /* XXXUBC */
639 }
640
641 /*
642 * Allocate an inode in the file system.
643 *
644 * If allocating a directory, use ffs_dirpref to select the inode.
645 * If allocating in a directory, the following hierarchy is followed:
646 * 1) allocate the preferred inode.
647 * 2) allocate an inode in the same cylinder group.
648 * 3) quadradically rehash into other cylinder groups, until an
649 * available inode is located.
650 * If no inode preference is given the following hierarchy is used
651 * to allocate an inode:
652 * 1) allocate an inode in cylinder group 0.
653 * 2) quadradically rehash into other cylinder groups, until an
654 * available inode is located.
655 */
656 int
657 ffs_valloc(v)
658 void *v;
659 {
660 struct vop_valloc_args /* {
661 struct vnode *a_pvp;
662 int a_mode;
663 struct ucred *a_cred;
664 struct vnode **a_vpp;
665 } */ *ap = v;
666 struct vnode *pvp = ap->a_pvp;
667 struct inode *pip;
668 struct fs *fs;
669 struct inode *ip;
670 struct timespec ts;
671 mode_t mode = ap->a_mode;
672 ino_t ino, ipref;
673 int cg, error;
674
675 *ap->a_vpp = NULL;
676 pip = VTOI(pvp);
677 fs = pip->i_fs;
678 if (fs->fs_cstotal.cs_nifree == 0)
679 goto noinodes;
680
681 if ((mode & IFMT) == IFDIR)
682 ipref = ffs_dirpref(pip);
683 else
684 ipref = pip->i_number;
685 if (ipref >= fs->fs_ncg * fs->fs_ipg)
686 ipref = 0;
687 cg = ino_to_cg(fs, ipref);
688 /*
689 * Track number of dirs created one after another
690 * in a same cg without intervening by files.
691 */
692 if ((mode & IFMT) == IFDIR) {
693 if (fs->fs_contigdirs[cg] < 255)
694 fs->fs_contigdirs[cg]++;
695 } else {
696 if (fs->fs_contigdirs[cg] > 0)
697 fs->fs_contigdirs[cg]--;
698 }
699 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
700 if (ino == 0)
701 goto noinodes;
702 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
703 if (error) {
704 VOP_VFREE(pvp, ino, mode);
705 return (error);
706 }
707 ip = VTOI(*ap->a_vpp);
708 if (ip->i_mode) {
709 #if 0
710 printf("mode = 0%o, inum = %d, fs = %s\n",
711 ip->i_mode, ip->i_number, fs->fs_fsmnt);
712 #else
713 printf("dmode %x mode %x dgen %x gen %x\n",
714 DIP(ip, mode), ip->i_mode,
715 DIP(ip, gen), ip->i_gen);
716 printf("size %llx blocks %llx\n",
717 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
718 printf("ino %u ipref %u\n", ino, ipref);
719 #if 0
720 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
721 (int)fs->fs_bsize, NOCRED, &bp);
722 #endif
723
724 #endif
725 panic("ffs_valloc: dup alloc");
726 }
727 if (DIP(ip, blocks)) { /* XXX */
728 printf("free inode %s/%d had %" PRId64 " blocks\n",
729 fs->fs_fsmnt, ino, DIP(ip, blocks));
730 DIP_ASSIGN(ip, blocks, 0);
731 }
732 ip->i_flag &= ~IN_SPACECOUNTED;
733 ip->i_flags = 0;
734 DIP_ASSIGN(ip, flags, 0);
735 /*
736 * Set up a new generation number for this inode.
737 */
738 ip->i_gen++;
739 DIP_ASSIGN(ip, gen, ip->i_gen);
740 if (fs->fs_magic == FS_UFS2_MAGIC) {
741 TIMEVAL_TO_TIMESPEC(&time, &ts);
742 ip->i_ffs2_birthtime = ts.tv_sec;
743 ip->i_ffs2_birthnsec = ts.tv_nsec;
744 }
745 return (0);
746 noinodes:
747 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
748 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
749 return (ENOSPC);
750 }
751
752 /*
753 * Find a cylinder group in which to place a directory.
754 *
755 * The policy implemented by this algorithm is to allocate a
756 * directory inode in the same cylinder group as its parent
757 * directory, but also to reserve space for its files inodes
758 * and data. Restrict the number of directories which may be
759 * allocated one after another in the same cylinder group
760 * without intervening allocation of files.
761 *
762 * If we allocate a first level directory then force allocation
763 * in another cylinder group.
764 */
765 static ino_t
766 ffs_dirpref(pip)
767 struct inode *pip;
768 {
769 register struct fs *fs;
770 int cg, prefcg, dirsize, cgsize;
771 int avgifree, avgbfree, avgndir, curdirsize;
772 int minifree, minbfree, maxndir;
773 int mincg, minndir;
774 int maxcontigdirs;
775
776 fs = pip->i_fs;
777
778 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
779 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
780 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
781
782 /*
783 * Force allocation in another cg if creating a first level dir.
784 */
785 if (ITOV(pip)->v_flag & VROOT) {
786 prefcg = random() % fs->fs_ncg;
787 mincg = prefcg;
788 minndir = fs->fs_ipg;
789 for (cg = prefcg; cg < fs->fs_ncg; cg++)
790 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
791 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
792 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
793 mincg = cg;
794 minndir = fs->fs_cs(fs, cg).cs_ndir;
795 }
796 for (cg = 0; cg < prefcg; cg++)
797 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
798 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
799 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
800 mincg = cg;
801 minndir = fs->fs_cs(fs, cg).cs_ndir;
802 }
803 return ((ino_t)(fs->fs_ipg * mincg));
804 }
805
806 /*
807 * Count various limits which used for
808 * optimal allocation of a directory inode.
809 */
810 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
811 minifree = avgifree - fs->fs_ipg / 4;
812 if (minifree < 0)
813 minifree = 0;
814 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
815 if (minbfree < 0)
816 minbfree = 0;
817 cgsize = fs->fs_fsize * fs->fs_fpg;
818 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
819 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
820 if (dirsize < curdirsize)
821 dirsize = curdirsize;
822 maxcontigdirs = min(cgsize / dirsize, 255);
823 if (fs->fs_avgfpdir > 0)
824 maxcontigdirs = min(maxcontigdirs,
825 fs->fs_ipg / fs->fs_avgfpdir);
826 if (maxcontigdirs == 0)
827 maxcontigdirs = 1;
828
829 /*
830 * Limit number of dirs in one cg and reserve space for
831 * regular files, but only if we have no deficit in
832 * inodes or space.
833 */
834 prefcg = ino_to_cg(fs, pip->i_number);
835 for (cg = prefcg; cg < fs->fs_ncg; cg++)
836 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
837 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
838 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
839 if (fs->fs_contigdirs[cg] < maxcontigdirs)
840 return ((ino_t)(fs->fs_ipg * cg));
841 }
842 for (cg = 0; cg < prefcg; cg++)
843 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
844 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
845 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
846 if (fs->fs_contigdirs[cg] < maxcontigdirs)
847 return ((ino_t)(fs->fs_ipg * cg));
848 }
849 /*
850 * This is a backstop when we are deficient in space.
851 */
852 for (cg = prefcg; cg < fs->fs_ncg; cg++)
853 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
854 return ((ino_t)(fs->fs_ipg * cg));
855 for (cg = 0; cg < prefcg; cg++)
856 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
857 break;
858 return ((ino_t)(fs->fs_ipg * cg));
859 }
860
861 /*
862 * Select the desired position for the next block in a file. The file is
863 * logically divided into sections. The first section is composed of the
864 * direct blocks. Each additional section contains fs_maxbpg blocks.
865 *
866 * If no blocks have been allocated in the first section, the policy is to
867 * request a block in the same cylinder group as the inode that describes
868 * the file. If no blocks have been allocated in any other section, the
869 * policy is to place the section in a cylinder group with a greater than
870 * average number of free blocks. An appropriate cylinder group is found
871 * by using a rotor that sweeps the cylinder groups. When a new group of
872 * blocks is needed, the sweep begins in the cylinder group following the
873 * cylinder group from which the previous allocation was made. The sweep
874 * continues until a cylinder group with greater than the average number
875 * of free blocks is found. If the allocation is for the first block in an
876 * indirect block, the information on the previous allocation is unavailable;
877 * here a best guess is made based upon the logical block number being
878 * allocated.
879 *
880 * If a section is already partially allocated, the policy is to
881 * contiguously allocate fs_maxcontig blocks. The end of one of these
882 * contiguous blocks and the beginning of the next is laid out
883 * contigously if possible.
884 */
885 daddr_t
886 ffs_blkpref_ufs1(ip, lbn, indx, bap)
887 struct inode *ip;
888 daddr_t lbn;
889 int indx;
890 int32_t *bap; /* XXX ondisk32 */
891 {
892 struct fs *fs;
893 int cg;
894 int avgbfree, startcg;
895
896 fs = ip->i_fs;
897 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
898 if (lbn < NDADDR + NINDIR(fs)) {
899 cg = ino_to_cg(fs, ip->i_number);
900 return (fs->fs_fpg * cg + fs->fs_frag);
901 }
902 /*
903 * Find a cylinder with greater than average number of
904 * unused data blocks.
905 */
906 if (indx == 0 || bap[indx - 1] == 0)
907 startcg =
908 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
909 else
910 startcg = dtog(fs,
911 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
912 startcg %= fs->fs_ncg;
913 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
914 for (cg = startcg; cg < fs->fs_ncg; cg++)
915 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
916 return (fs->fs_fpg * cg + fs->fs_frag);
917 }
918 for (cg = 0; cg < startcg; cg++)
919 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
920 return (fs->fs_fpg * cg + fs->fs_frag);
921 }
922 return (0);
923 }
924 /*
925 * We just always try to lay things out contiguously.
926 */
927 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
928 }
929
930 daddr_t
931 ffs_blkpref_ufs2(ip, lbn, indx, bap)
932 struct inode *ip;
933 daddr_t lbn;
934 int indx;
935 int64_t *bap;
936 {
937 struct fs *fs;
938 int cg;
939 int avgbfree, startcg;
940
941 fs = ip->i_fs;
942 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
943 if (lbn < NDADDR + NINDIR(fs)) {
944 cg = ino_to_cg(fs, ip->i_number);
945 return (fs->fs_fpg * cg + fs->fs_frag);
946 }
947 /*
948 * Find a cylinder with greater than average number of
949 * unused data blocks.
950 */
951 if (indx == 0 || bap[indx - 1] == 0)
952 startcg =
953 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
954 else
955 startcg = dtog(fs,
956 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
957 startcg %= fs->fs_ncg;
958 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
959 for (cg = startcg; cg < fs->fs_ncg; cg++)
960 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
961 return (fs->fs_fpg * cg + fs->fs_frag);
962 }
963 for (cg = 0; cg < startcg; cg++)
964 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
965 return (fs->fs_fpg * cg + fs->fs_frag);
966 }
967 return (0);
968 }
969 /*
970 * We just always try to lay things out contiguously.
971 */
972 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
973 }
974
975
976 /*
977 * Implement the cylinder overflow algorithm.
978 *
979 * The policy implemented by this algorithm is:
980 * 1) allocate the block in its requested cylinder group.
981 * 2) quadradically rehash on the cylinder group number.
982 * 3) brute force search for a free block.
983 */
984 /*VARARGS5*/
985 static daddr_t
986 ffs_hashalloc(ip, cg, pref, size, allocator)
987 struct inode *ip;
988 int cg;
989 daddr_t pref;
990 int size; /* size for data blocks, mode for inodes */
991 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
992 {
993 struct fs *fs;
994 daddr_t result;
995 int i, icg = cg;
996
997 fs = ip->i_fs;
998 /*
999 * 1: preferred cylinder group
1000 */
1001 result = (*allocator)(ip, cg, pref, size);
1002 if (result)
1003 return (result);
1004 /*
1005 * 2: quadratic rehash
1006 */
1007 for (i = 1; i < fs->fs_ncg; i *= 2) {
1008 cg += i;
1009 if (cg >= fs->fs_ncg)
1010 cg -= fs->fs_ncg;
1011 result = (*allocator)(ip, cg, 0, size);
1012 if (result)
1013 return (result);
1014 }
1015 /*
1016 * 3: brute force search
1017 * Note that we start at i == 2, since 0 was checked initially,
1018 * and 1 is always checked in the quadratic rehash.
1019 */
1020 cg = (icg + 2) % fs->fs_ncg;
1021 for (i = 2; i < fs->fs_ncg; i++) {
1022 result = (*allocator)(ip, cg, 0, size);
1023 if (result)
1024 return (result);
1025 cg++;
1026 if (cg == fs->fs_ncg)
1027 cg = 0;
1028 }
1029 return (0);
1030 }
1031
1032 /*
1033 * Determine whether a fragment can be extended.
1034 *
1035 * Check to see if the necessary fragments are available, and
1036 * if they are, allocate them.
1037 */
1038 static daddr_t
1039 ffs_fragextend(ip, cg, bprev, osize, nsize)
1040 struct inode *ip;
1041 int cg;
1042 daddr_t bprev;
1043 int osize, nsize;
1044 {
1045 struct fs *fs;
1046 struct cg *cgp;
1047 struct buf *bp;
1048 daddr_t bno;
1049 int frags, bbase;
1050 int i, error;
1051 u_int8_t *blksfree;
1052
1053 fs = ip->i_fs;
1054 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1055 return (0);
1056 frags = numfrags(fs, nsize);
1057 bbase = fragnum(fs, bprev);
1058 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1059 /* cannot extend across a block boundary */
1060 return (0);
1061 }
1062 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1063 (int)fs->fs_cgsize, NOCRED, &bp);
1064 if (error) {
1065 brelse(bp);
1066 return (0);
1067 }
1068 cgp = (struct cg *)bp->b_data;
1069 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1070 brelse(bp);
1071 return (0);
1072 }
1073 cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1074 cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
1075 bno = dtogd(fs, bprev);
1076 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1077 for (i = numfrags(fs, osize); i < frags; i++)
1078 if (isclr(blksfree, bno + i)) {
1079 brelse(bp);
1080 return (0);
1081 }
1082 /*
1083 * the current fragment can be extended
1084 * deduct the count on fragment being extended into
1085 * increase the count on the remaining fragment (if any)
1086 * allocate the extended piece
1087 */
1088 for (i = frags; i < fs->fs_frag - bbase; i++)
1089 if (isclr(blksfree, bno + i))
1090 break;
1091 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1092 if (i != frags)
1093 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1094 for (i = numfrags(fs, osize); i < frags; i++) {
1095 clrbit(blksfree, bno + i);
1096 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1097 fs->fs_cstotal.cs_nffree--;
1098 fs->fs_cs(fs, cg).cs_nffree--;
1099 }
1100 fs->fs_fmod = 1;
1101 if (DOINGSOFTDEP(ITOV(ip)))
1102 softdep_setup_blkmapdep(bp, fs, bprev);
1103 bdwrite(bp);
1104 return (bprev);
1105 }
1106
1107 /*
1108 * Determine whether a block can be allocated.
1109 *
1110 * Check to see if a block of the appropriate size is available,
1111 * and if it is, allocate it.
1112 */
1113 static daddr_t
1114 ffs_alloccg(ip, cg, bpref, size)
1115 struct inode *ip;
1116 int cg;
1117 daddr_t bpref;
1118 int size;
1119 {
1120 struct fs *fs = ip->i_fs;
1121 struct cg *cgp;
1122 struct buf *bp;
1123 int32_t bno;
1124 daddr_t blkno;
1125 int error, frags, allocsiz, i;
1126 u_int8_t *blksfree;
1127 #ifdef FFS_EI
1128 const int needswap = UFS_FSNEEDSWAP(fs);
1129 #endif
1130
1131 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1132 return (0);
1133 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1134 (int)fs->fs_cgsize, NOCRED, &bp);
1135 if (error) {
1136 brelse(bp);
1137 return (0);
1138 }
1139 cgp = (struct cg *)bp->b_data;
1140 if (!cg_chkmagic(cgp, needswap) ||
1141 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1142 brelse(bp);
1143 return (0);
1144 }
1145 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1146 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1147 if (size == fs->fs_bsize) {
1148 blkno = ffs_alloccgblk(ip, bp, bpref);
1149 bdwrite(bp);
1150 return (blkno);
1151 }
1152 /*
1153 * check to see if any fragments are already available
1154 * allocsiz is the size which will be allocated, hacking
1155 * it down to a smaller size if necessary
1156 */
1157 blksfree = cg_blksfree(cgp, needswap);
1158 frags = numfrags(fs, size);
1159 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1160 if (cgp->cg_frsum[allocsiz] != 0)
1161 break;
1162 if (allocsiz == fs->fs_frag) {
1163 /*
1164 * no fragments were available, so a block will be
1165 * allocated, and hacked up
1166 */
1167 if (cgp->cg_cs.cs_nbfree == 0) {
1168 brelse(bp);
1169 return (0);
1170 }
1171 blkno = ffs_alloccgblk(ip, bp, bpref);
1172 bno = dtogd(fs, blkno);
1173 for (i = frags; i < fs->fs_frag; i++)
1174 setbit(blksfree, bno + i);
1175 i = fs->fs_frag - frags;
1176 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1177 fs->fs_cstotal.cs_nffree += i;
1178 fs->fs_cs(fs, cg).cs_nffree += i;
1179 fs->fs_fmod = 1;
1180 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1181 bdwrite(bp);
1182 return (blkno);
1183 }
1184 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1185 #if 0
1186 /*
1187 * XXX fvdl mapsearch will panic, and never return -1
1188 * also: returning NULL as daddr_t ?
1189 */
1190 if (bno < 0) {
1191 brelse(bp);
1192 return (0);
1193 }
1194 #endif
1195 for (i = 0; i < frags; i++)
1196 clrbit(blksfree, bno + i);
1197 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1198 fs->fs_cstotal.cs_nffree -= frags;
1199 fs->fs_cs(fs, cg).cs_nffree -= frags;
1200 fs->fs_fmod = 1;
1201 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1202 if (frags != allocsiz)
1203 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1204 blkno = cg * fs->fs_fpg + bno;
1205 if (DOINGSOFTDEP(ITOV(ip)))
1206 softdep_setup_blkmapdep(bp, fs, blkno);
1207 bdwrite(bp);
1208 return blkno;
1209 }
1210
1211 /*
1212 * Allocate a block in a cylinder group.
1213 *
1214 * This algorithm implements the following policy:
1215 * 1) allocate the requested block.
1216 * 2) allocate a rotationally optimal block in the same cylinder.
1217 * 3) allocate the next available block on the block rotor for the
1218 * specified cylinder group.
1219 * Note that this routine only allocates fs_bsize blocks; these
1220 * blocks may be fragmented by the routine that allocates them.
1221 */
1222 static daddr_t
1223 ffs_alloccgblk(ip, bp, bpref)
1224 struct inode *ip;
1225 struct buf *bp;
1226 daddr_t bpref;
1227 {
1228 struct fs *fs = ip->i_fs;
1229 struct cg *cgp;
1230 daddr_t blkno;
1231 int32_t bno;
1232 u_int8_t *blksfree;
1233 #ifdef FFS_EI
1234 const int needswap = UFS_FSNEEDSWAP(fs);
1235 #endif
1236
1237 cgp = (struct cg *)bp->b_data;
1238 blksfree = cg_blksfree(cgp, needswap);
1239 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1240 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1241 } else {
1242 bpref = blknum(fs, bpref);
1243 bno = dtogd(fs, bpref);
1244 /*
1245 * if the requested block is available, use it
1246 */
1247 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1248 goto gotit;
1249 }
1250 /*
1251 * Take the next available block in this cylinder group.
1252 */
1253 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1254 if (bno < 0)
1255 return (0);
1256 cgp->cg_rotor = ufs_rw32(bno, needswap);
1257 gotit:
1258 blkno = fragstoblks(fs, bno);
1259 ffs_clrblock(fs, blksfree, blkno);
1260 ffs_clusteracct(fs, cgp, blkno, -1);
1261 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1262 fs->fs_cstotal.cs_nbfree--;
1263 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1264 fs->fs_fmod = 1;
1265 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1266 if (DOINGSOFTDEP(ITOV(ip)))
1267 softdep_setup_blkmapdep(bp, fs, blkno);
1268 return (blkno);
1269 }
1270
1271 #ifdef XXXUBC
1272 /*
1273 * Determine whether a cluster can be allocated.
1274 *
1275 * We do not currently check for optimal rotational layout if there
1276 * are multiple choices in the same cylinder group. Instead we just
1277 * take the first one that we find following bpref.
1278 */
1279
1280 /*
1281 * This function must be fixed for UFS2 if re-enabled.
1282 */
1283 static daddr_t
1284 ffs_clusteralloc(ip, cg, bpref, len)
1285 struct inode *ip;
1286 int cg;
1287 daddr_t bpref;
1288 int len;
1289 {
1290 struct fs *fs;
1291 struct cg *cgp;
1292 struct buf *bp;
1293 int i, got, run, bno, bit, map;
1294 u_char *mapp;
1295 int32_t *lp;
1296
1297 fs = ip->i_fs;
1298 if (fs->fs_maxcluster[cg] < len)
1299 return (0);
1300 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1301 NOCRED, &bp))
1302 goto fail;
1303 cgp = (struct cg *)bp->b_data;
1304 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1305 goto fail;
1306 /*
1307 * Check to see if a cluster of the needed size (or bigger) is
1308 * available in this cylinder group.
1309 */
1310 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1311 for (i = len; i <= fs->fs_contigsumsize; i++)
1312 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1313 break;
1314 if (i > fs->fs_contigsumsize) {
1315 /*
1316 * This is the first time looking for a cluster in this
1317 * cylinder group. Update the cluster summary information
1318 * to reflect the true maximum sized cluster so that
1319 * future cluster allocation requests can avoid reading
1320 * the cylinder group map only to find no clusters.
1321 */
1322 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1323 for (i = len - 1; i > 0; i--)
1324 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1325 break;
1326 fs->fs_maxcluster[cg] = i;
1327 goto fail;
1328 }
1329 /*
1330 * Search the cluster map to find a big enough cluster.
1331 * We take the first one that we find, even if it is larger
1332 * than we need as we prefer to get one close to the previous
1333 * block allocation. We do not search before the current
1334 * preference point as we do not want to allocate a block
1335 * that is allocated before the previous one (as we will
1336 * then have to wait for another pass of the elevator
1337 * algorithm before it will be read). We prefer to fail and
1338 * be recalled to try an allocation in the next cylinder group.
1339 */
1340 if (dtog(fs, bpref) != cg)
1341 bpref = 0;
1342 else
1343 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1344 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1345 map = *mapp++;
1346 bit = 1 << (bpref % NBBY);
1347 for (run = 0, got = bpref;
1348 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1349 if ((map & bit) == 0) {
1350 run = 0;
1351 } else {
1352 run++;
1353 if (run == len)
1354 break;
1355 }
1356 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1357 bit <<= 1;
1358 } else {
1359 map = *mapp++;
1360 bit = 1;
1361 }
1362 }
1363 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1364 goto fail;
1365 /*
1366 * Allocate the cluster that we have found.
1367 */
1368 #ifdef DIAGNOSTIC
1369 for (i = 1; i <= len; i++)
1370 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1371 got - run + i))
1372 panic("ffs_clusteralloc: map mismatch");
1373 #endif
1374 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1375 if (dtog(fs, bno) != cg)
1376 panic("ffs_clusteralloc: allocated out of group");
1377 len = blkstofrags(fs, len);
1378 for (i = 0; i < len; i += fs->fs_frag)
1379 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1380 panic("ffs_clusteralloc: lost block");
1381 bdwrite(bp);
1382 return (bno);
1383
1384 fail:
1385 brelse(bp);
1386 return (0);
1387 }
1388 #endif /* XXXUBC */
1389
1390 /*
1391 * Determine whether an inode can be allocated.
1392 *
1393 * Check to see if an inode is available, and if it is,
1394 * allocate it using the following policy:
1395 * 1) allocate the requested inode.
1396 * 2) allocate the next available inode after the requested
1397 * inode in the specified cylinder group.
1398 */
1399 static daddr_t
1400 ffs_nodealloccg(ip, cg, ipref, mode)
1401 struct inode *ip;
1402 int cg;
1403 daddr_t ipref;
1404 int mode;
1405 {
1406 struct fs *fs = ip->i_fs;
1407 struct cg *cgp;
1408 struct buf *bp, *ibp;
1409 u_int8_t *inosused;
1410 int error, start, len, loc, map, i;
1411 int32_t initediblk;
1412 struct ufs2_dinode *dp2;
1413 #ifdef FFS_EI
1414 const int needswap = UFS_FSNEEDSWAP(fs);
1415 #endif
1416
1417 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1418 return (0);
1419 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1420 (int)fs->fs_cgsize, NOCRED, &bp);
1421 if (error) {
1422 brelse(bp);
1423 return (0);
1424 }
1425 cgp = (struct cg *)bp->b_data;
1426 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1427 brelse(bp);
1428 return (0);
1429 }
1430 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1431 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1432 inosused = cg_inosused(cgp, needswap);
1433 if (ipref) {
1434 ipref %= fs->fs_ipg;
1435 if (isclr(inosused, ipref))
1436 goto gotit;
1437 }
1438 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1439 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1440 NBBY);
1441 loc = skpc(0xff, len, &inosused[start]);
1442 if (loc == 0) {
1443 len = start + 1;
1444 start = 0;
1445 loc = skpc(0xff, len, &inosused[0]);
1446 if (loc == 0) {
1447 printf("cg = %d, irotor = %d, fs = %s\n",
1448 cg, ufs_rw32(cgp->cg_irotor, needswap),
1449 fs->fs_fsmnt);
1450 panic("ffs_nodealloccg: map corrupted");
1451 /* NOTREACHED */
1452 }
1453 }
1454 i = start + len - loc;
1455 map = inosused[i];
1456 ipref = i * NBBY;
1457 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1458 if ((map & i) == 0) {
1459 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1460 goto gotit;
1461 }
1462 }
1463 printf("fs = %s\n", fs->fs_fsmnt);
1464 panic("ffs_nodealloccg: block not in map");
1465 /* NOTREACHED */
1466 gotit:
1467 if (DOINGSOFTDEP(ITOV(ip)))
1468 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1469 setbit(inosused, ipref);
1470 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1471 fs->fs_cstotal.cs_nifree--;
1472 fs->fs_cs(fs, cg).cs_nifree--;
1473 fs->fs_fmod = 1;
1474 if ((mode & IFMT) == IFDIR) {
1475 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1476 fs->fs_cstotal.cs_ndir++;
1477 fs->fs_cs(fs, cg).cs_ndir++;
1478 }
1479 /*
1480 * Check to see if we need to initialize more inodes.
1481 */
1482 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1483 if (fs->fs_magic == FS_UFS2_MAGIC &&
1484 ipref + INOPB(fs) > initediblk &&
1485 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1486 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1487 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1488 (int)fs->fs_bsize, 0, 0);
1489 memset(ibp->b_data, 0, fs->fs_bsize);
1490 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1491 for (i = 0; i < INOPB(fs); i++) {
1492 /*
1493 * Don't bother to swap, it's supposed to be
1494 * random, after all.
1495 */
1496 dp2->di_gen = random() / 2 + 1;
1497 dp2++;
1498 }
1499 bawrite(ibp);
1500 initediblk += INOPB(fs);
1501 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1502 }
1503
1504 bdwrite(bp);
1505 return (cg * fs->fs_ipg + ipref);
1506 }
1507
1508 /*
1509 * Free a block or fragment.
1510 *
1511 * The specified block or fragment is placed back in the
1512 * free map. If a fragment is deallocated, a possible
1513 * block reassembly is checked.
1514 */
1515 void
1516 ffs_blkfree(ip, bno, size)
1517 struct inode *ip;
1518 daddr_t bno;
1519 long size;
1520 {
1521 struct fs *fs = ip->i_fs;
1522 struct cg *cgp;
1523 struct buf *bp;
1524 int32_t fragno, cgbno;
1525 int i, error, cg, blk, frags, bbase;
1526 u_int8_t *blksfree;
1527 const int needswap = UFS_FSNEEDSWAP(fs);
1528
1529 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1530 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1531 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1532 "size = %ld, fs = %s\n",
1533 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1534 panic("blkfree: bad size");
1535 }
1536 cg = dtog(fs, bno);
1537 if (bno >= fs->fs_size) {
1538 printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
1539 ffs_fserr(fs, ip->i_uid, "bad block");
1540 return;
1541 }
1542 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1543 (int)fs->fs_cgsize, NOCRED, &bp);
1544 if (error) {
1545 brelse(bp);
1546 return;
1547 }
1548 cgp = (struct cg *)bp->b_data;
1549 if (!cg_chkmagic(cgp, needswap)) {
1550 brelse(bp);
1551 return;
1552 }
1553 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1554 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1555 cgbno = dtogd(fs, bno);
1556 blksfree = cg_blksfree(cgp, needswap);
1557 if (size == fs->fs_bsize) {
1558 fragno = fragstoblks(fs, cgbno);
1559 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1560 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1561 ip->i_dev, bno, fs->fs_fsmnt);
1562 panic("blkfree: freeing free block");
1563 }
1564 ffs_setblock(fs, blksfree, fragno);
1565 ffs_clusteracct(fs, cgp, fragno, 1);
1566 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1567 fs->fs_cstotal.cs_nbfree++;
1568 fs->fs_cs(fs, cg).cs_nbfree++;
1569 } else {
1570 bbase = cgbno - fragnum(fs, cgbno);
1571 /*
1572 * decrement the counts associated with the old frags
1573 */
1574 blk = blkmap(fs, blksfree, bbase);
1575 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1576 /*
1577 * deallocate the fragment
1578 */
1579 frags = numfrags(fs, size);
1580 for (i = 0; i < frags; i++) {
1581 if (isset(blksfree, cgbno + i)) {
1582 printf("dev = 0x%x, block = %" PRId64
1583 ", fs = %s\n",
1584 ip->i_dev, bno + i, fs->fs_fsmnt);
1585 panic("blkfree: freeing free frag");
1586 }
1587 setbit(blksfree, cgbno + i);
1588 }
1589 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1590 fs->fs_cstotal.cs_nffree += i;
1591 fs->fs_cs(fs, cg).cs_nffree += i;
1592 /*
1593 * add back in counts associated with the new frags
1594 */
1595 blk = blkmap(fs, blksfree, bbase);
1596 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1597 /*
1598 * if a complete block has been reassembled, account for it
1599 */
1600 fragno = fragstoblks(fs, bbase);
1601 if (ffs_isblock(fs, blksfree, fragno)) {
1602 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1603 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1604 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1605 ffs_clusteracct(fs, cgp, fragno, 1);
1606 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1607 fs->fs_cstotal.cs_nbfree++;
1608 fs->fs_cs(fs, cg).cs_nbfree++;
1609 }
1610 }
1611 fs->fs_fmod = 1;
1612 bdwrite(bp);
1613 }
1614
1615 #if defined(DIAGNOSTIC) || defined(DEBUG)
1616 #ifdef XXXUBC
1617 /*
1618 * Verify allocation of a block or fragment. Returns true if block or
1619 * fragment is allocated, false if it is free.
1620 */
1621 static int
1622 ffs_checkblk(ip, bno, size)
1623 struct inode *ip;
1624 daddr_t bno;
1625 long size;
1626 {
1627 struct fs *fs;
1628 struct cg *cgp;
1629 struct buf *bp;
1630 int i, error, frags, free;
1631
1632 fs = ip->i_fs;
1633 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1634 printf("bsize = %d, size = %ld, fs = %s\n",
1635 fs->fs_bsize, size, fs->fs_fsmnt);
1636 panic("checkblk: bad size");
1637 }
1638 if (bno >= fs->fs_size)
1639 panic("checkblk: bad block %d", bno);
1640 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1641 (int)fs->fs_cgsize, NOCRED, &bp);
1642 if (error) {
1643 brelse(bp);
1644 return 0;
1645 }
1646 cgp = (struct cg *)bp->b_data;
1647 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1648 brelse(bp);
1649 return 0;
1650 }
1651 bno = dtogd(fs, bno);
1652 if (size == fs->fs_bsize) {
1653 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1654 fragstoblks(fs, bno));
1655 } else {
1656 frags = numfrags(fs, size);
1657 for (free = 0, i = 0; i < frags; i++)
1658 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1659 free++;
1660 if (free != 0 && free != frags)
1661 panic("checkblk: partially free fragment");
1662 }
1663 brelse(bp);
1664 return (!free);
1665 }
1666 #endif /* XXXUBC */
1667 #endif /* DIAGNOSTIC */
1668
1669 /*
1670 * Free an inode.
1671 */
1672 int
1673 ffs_vfree(v)
1674 void *v;
1675 {
1676 struct vop_vfree_args /* {
1677 struct vnode *a_pvp;
1678 ino_t a_ino;
1679 int a_mode;
1680 } */ *ap = v;
1681
1682 if (DOINGSOFTDEP(ap->a_pvp)) {
1683 softdep_freefile(ap);
1684 return (0);
1685 }
1686 return (ffs_freefile(ap));
1687 }
1688
1689 /*
1690 * Do the actual free operation.
1691 * The specified inode is placed back in the free map.
1692 */
1693 int
1694 ffs_freefile(v)
1695 void *v;
1696 {
1697 struct vop_vfree_args /* {
1698 struct vnode *a_pvp;
1699 ino_t a_ino;
1700 int a_mode;
1701 } */ *ap = v;
1702 struct cg *cgp;
1703 struct inode *pip = VTOI(ap->a_pvp);
1704 struct fs *fs = pip->i_fs;
1705 ino_t ino = ap->a_ino;
1706 struct buf *bp;
1707 int error, cg;
1708 u_int8_t *inosused;
1709 #ifdef FFS_EI
1710 const int needswap = UFS_FSNEEDSWAP(fs);
1711 #endif
1712
1713 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1714 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1715 pip->i_dev, ino, fs->fs_fsmnt);
1716 cg = ino_to_cg(fs, ino);
1717 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1718 (int)fs->fs_cgsize, NOCRED, &bp);
1719 if (error) {
1720 brelse(bp);
1721 return (error);
1722 }
1723 cgp = (struct cg *)bp->b_data;
1724 if (!cg_chkmagic(cgp, needswap)) {
1725 brelse(bp);
1726 return (0);
1727 }
1728 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1729 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1730 inosused = cg_inosused(cgp, needswap);
1731 ino %= fs->fs_ipg;
1732 if (isclr(inosused, ino)) {
1733 printf("dev = 0x%x, ino = %d, fs = %s\n",
1734 pip->i_dev, ino, fs->fs_fsmnt);
1735 if (fs->fs_ronly == 0)
1736 panic("ifree: freeing free inode");
1737 }
1738 clrbit(inosused, ino);
1739 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1740 cgp->cg_irotor = ufs_rw32(ino, needswap);
1741 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1742 fs->fs_cstotal.cs_nifree++;
1743 fs->fs_cs(fs, cg).cs_nifree++;
1744 if ((ap->a_mode & IFMT) == IFDIR) {
1745 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1746 fs->fs_cstotal.cs_ndir--;
1747 fs->fs_cs(fs, cg).cs_ndir--;
1748 }
1749 fs->fs_fmod = 1;
1750 bdwrite(bp);
1751 return (0);
1752 }
1753
1754 /*
1755 * Find a block of the specified size in the specified cylinder group.
1756 *
1757 * It is a panic if a request is made to find a block if none are
1758 * available.
1759 */
1760 static int32_t
1761 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1762 struct fs *fs;
1763 struct cg *cgp;
1764 daddr_t bpref;
1765 int allocsiz;
1766 {
1767 int32_t bno;
1768 int start, len, loc, i;
1769 int blk, field, subfield, pos;
1770 int ostart, olen;
1771 u_int8_t *blksfree;
1772 #ifdef FFS_EI
1773 const int needswap = UFS_FSNEEDSWAP(fs);
1774 #endif
1775
1776 /*
1777 * find the fragment by searching through the free block
1778 * map for an appropriate bit pattern
1779 */
1780 if (bpref)
1781 start = dtogd(fs, bpref) / NBBY;
1782 else
1783 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1784 blksfree = cg_blksfree(cgp, needswap);
1785 len = howmany(fs->fs_fpg, NBBY) - start;
1786 ostart = start;
1787 olen = len;
1788 loc = scanc((u_int)len,
1789 (const u_char *)&blksfree[start],
1790 (const u_char *)fragtbl[fs->fs_frag],
1791 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1792 if (loc == 0) {
1793 len = start + 1;
1794 start = 0;
1795 loc = scanc((u_int)len,
1796 (const u_char *)&blksfree[0],
1797 (const u_char *)fragtbl[fs->fs_frag],
1798 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1799 if (loc == 0) {
1800 printf("start = %d, len = %d, fs = %s\n",
1801 ostart, olen, fs->fs_fsmnt);
1802 printf("offset=%d %ld\n",
1803 ufs_rw32(cgp->cg_freeoff, needswap),
1804 (long)blksfree - (long)cgp);
1805 printf("cg %d\n", cgp->cg_cgx);
1806 panic("ffs_alloccg: map corrupted");
1807 /* NOTREACHED */
1808 }
1809 }
1810 bno = (start + len - loc) * NBBY;
1811 cgp->cg_frotor = ufs_rw32(bno, needswap);
1812 /*
1813 * found the byte in the map
1814 * sift through the bits to find the selected frag
1815 */
1816 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1817 blk = blkmap(fs, blksfree, bno);
1818 blk <<= 1;
1819 field = around[allocsiz];
1820 subfield = inside[allocsiz];
1821 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1822 if ((blk & field) == subfield)
1823 return (bno + pos);
1824 field <<= 1;
1825 subfield <<= 1;
1826 }
1827 }
1828 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1829 panic("ffs_alloccg: block not in map");
1830 /* return (-1); */
1831 }
1832
1833 /*
1834 * Update the cluster map because of an allocation or free.
1835 *
1836 * Cnt == 1 means free; cnt == -1 means allocating.
1837 */
1838 void
1839 ffs_clusteracct(fs, cgp, blkno, cnt)
1840 struct fs *fs;
1841 struct cg *cgp;
1842 int32_t blkno;
1843 int cnt;
1844 {
1845 int32_t *sump;
1846 int32_t *lp;
1847 u_char *freemapp, *mapp;
1848 int i, start, end, forw, back, map, bit;
1849 #ifdef FFS_EI
1850 const int needswap = UFS_FSNEEDSWAP(fs);
1851 #endif
1852
1853 if (fs->fs_contigsumsize <= 0)
1854 return;
1855 freemapp = cg_clustersfree(cgp, needswap);
1856 sump = cg_clustersum(cgp, needswap);
1857 /*
1858 * Allocate or clear the actual block.
1859 */
1860 if (cnt > 0)
1861 setbit(freemapp, blkno);
1862 else
1863 clrbit(freemapp, blkno);
1864 /*
1865 * Find the size of the cluster going forward.
1866 */
1867 start = blkno + 1;
1868 end = start + fs->fs_contigsumsize;
1869 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1870 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1871 mapp = &freemapp[start / NBBY];
1872 map = *mapp++;
1873 bit = 1 << (start % NBBY);
1874 for (i = start; i < end; i++) {
1875 if ((map & bit) == 0)
1876 break;
1877 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1878 bit <<= 1;
1879 } else {
1880 map = *mapp++;
1881 bit = 1;
1882 }
1883 }
1884 forw = i - start;
1885 /*
1886 * Find the size of the cluster going backward.
1887 */
1888 start = blkno - 1;
1889 end = start - fs->fs_contigsumsize;
1890 if (end < 0)
1891 end = -1;
1892 mapp = &freemapp[start / NBBY];
1893 map = *mapp--;
1894 bit = 1 << (start % NBBY);
1895 for (i = start; i > end; i--) {
1896 if ((map & bit) == 0)
1897 break;
1898 if ((i & (NBBY - 1)) != 0) {
1899 bit >>= 1;
1900 } else {
1901 map = *mapp--;
1902 bit = 1 << (NBBY - 1);
1903 }
1904 }
1905 back = start - i;
1906 /*
1907 * Account for old cluster and the possibly new forward and
1908 * back clusters.
1909 */
1910 i = back + forw + 1;
1911 if (i > fs->fs_contigsumsize)
1912 i = fs->fs_contigsumsize;
1913 ufs_add32(sump[i], cnt, needswap);
1914 if (back > 0)
1915 ufs_add32(sump[back], -cnt, needswap);
1916 if (forw > 0)
1917 ufs_add32(sump[forw], -cnt, needswap);
1918
1919 /*
1920 * Update cluster summary information.
1921 */
1922 lp = &sump[fs->fs_contigsumsize];
1923 for (i = fs->fs_contigsumsize; i > 0; i--)
1924 if (ufs_rw32(*lp--, needswap) > 0)
1925 break;
1926 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1927 }
1928
1929 /*
1930 * Fserr prints the name of a file system with an error diagnostic.
1931 *
1932 * The form of the error message is:
1933 * fs: error message
1934 */
1935 static void
1936 ffs_fserr(fs, uid, cp)
1937 struct fs *fs;
1938 u_int uid;
1939 char *cp;
1940 {
1941
1942 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1943 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1944 }
1945