Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.71
      1 /*	$NetBSD: ffs_alloc.c,v 1.71 2003/11/27 04:52:55 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  * All rights reserved.
      6  *
      7  * This software was developed for the FreeBSD Project by Marshall
      8  * Kirk McKusick and Network Associates Laboratories, the Security
      9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  * research program
     12  *
     13  * Copyright (c) 1982, 1986, 1989, 1993
     14  *	The Regents of the University of California.  All rights reserved.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.71 2003/11/27 04:52:55 mycroft Exp $");
     45 
     46 #if defined(_KERNEL_OPT)
     47 #include "opt_ffs.h"
     48 #include "opt_quota.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/buf.h>
     54 #include <sys/proc.h>
     55 #include <sys/vnode.h>
     56 #include <sys/mount.h>
     57 #include <sys/kernel.h>
     58 #include <sys/syslog.h>
     59 
     60 #include <ufs/ufs/quota.h>
     61 #include <ufs/ufs/ufsmount.h>
     62 #include <ufs/ufs/inode.h>
     63 #include <ufs/ufs/ufs_extern.h>
     64 #include <ufs/ufs/ufs_bswap.h>
     65 
     66 #include <ufs/ffs/fs.h>
     67 #include <ufs/ffs/ffs_extern.h>
     68 
     69 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
     70 static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
     71 #ifdef XXXUBC
     72 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     73 #endif
     74 static ino_t ffs_dirpref __P((struct inode *));
     75 static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
     76 static void ffs_fserr __P((struct fs *, u_int, char *));
     77 static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
     78     daddr_t (*)(struct inode *, int, daddr_t, int)));
     79 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     80 static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
     81 				      daddr_t, int));
     82 #if defined(DIAGNOSTIC) || defined(DEBUG)
     83 #ifdef XXXUBC
     84 static int ffs_checkblk __P((struct inode *, daddr_t, long size));
     85 #endif
     86 #endif
     87 
     88 /* if 1, changes in optimalization strategy are logged */
     89 int ffs_log_changeopt = 0;
     90 
     91 /* in ffs_tables.c */
     92 extern const int inside[], around[];
     93 extern const u_char * const fragtbl[];
     94 
     95 /*
     96  * Allocate a block in the file system.
     97  *
     98  * The size of the requested block is given, which must be some
     99  * multiple of fs_fsize and <= fs_bsize.
    100  * A preference may be optionally specified. If a preference is given
    101  * the following hierarchy is used to allocate a block:
    102  *   1) allocate the requested block.
    103  *   2) allocate a rotationally optimal block in the same cylinder.
    104  *   3) allocate a block in the same cylinder group.
    105  *   4) quadradically rehash into other cylinder groups, until an
    106  *      available block is located.
    107  * If no block preference is given the following hierarchy is used
    108  * to allocate a block:
    109  *   1) allocate a block in the cylinder group that contains the
    110  *      inode for the file.
    111  *   2) quadradically rehash into other cylinder groups, until an
    112  *      available block is located.
    113  */
    114 int
    115 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    116 	struct inode *ip;
    117 	daddr_t lbn, bpref;
    118 	int size;
    119 	struct ucred *cred;
    120 	daddr_t *bnp;
    121 {
    122 	struct fs *fs;
    123 	daddr_t bno;
    124 	int cg;
    125 #ifdef QUOTA
    126 	int error;
    127 #endif
    128 
    129 	fs = ip->i_fs;
    130 
    131 #ifdef UVM_PAGE_TRKOWN
    132 	if (ITOV(ip)->v_type == VREG &&
    133 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    134 		struct vm_page *pg;
    135 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    136 		voff_t off = trunc_page(lblktosize(fs, lbn));
    137 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    138 
    139 		simple_lock(&uobj->vmobjlock);
    140 		while (off < endoff) {
    141 			pg = uvm_pagelookup(uobj, off);
    142 			KASSERT(pg != NULL);
    143 			KASSERT(pg->owner == curproc->p_pid);
    144 			KASSERT((pg->flags & PG_CLEAN) == 0);
    145 			off += PAGE_SIZE;
    146 		}
    147 		simple_unlock(&uobj->vmobjlock);
    148 	}
    149 #endif
    150 
    151 	*bnp = 0;
    152 #ifdef DIAGNOSTIC
    153 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    154 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    155 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    156 		panic("ffs_alloc: bad size");
    157 	}
    158 	if (cred == NOCRED)
    159 		panic("ffs_alloc: missing credential");
    160 #endif /* DIAGNOSTIC */
    161 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    162 		goto nospace;
    163 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    164 		goto nospace;
    165 #ifdef QUOTA
    166 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    167 		return (error);
    168 #endif
    169 	if (bpref >= fs->fs_size)
    170 		bpref = 0;
    171 	if (bpref == 0)
    172 		cg = ino_to_cg(fs, ip->i_number);
    173 	else
    174 		cg = dtog(fs, bpref);
    175 	bno = ffs_hashalloc(ip, cg, (long)bpref, size,
    176 	    			     ffs_alloccg);
    177 	if (bno > 0) {
    178 		DIP_ADD(ip, blocks, btodb(size));
    179 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    180 		*bnp = bno;
    181 		return (0);
    182 	}
    183 #ifdef QUOTA
    184 	/*
    185 	 * Restore user's disk quota because allocation failed.
    186 	 */
    187 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    188 #endif
    189 nospace:
    190 	ffs_fserr(fs, cred->cr_uid, "file system full");
    191 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    192 	return (ENOSPC);
    193 }
    194 
    195 /*
    196  * Reallocate a fragment to a bigger size
    197  *
    198  * The number and size of the old block is given, and a preference
    199  * and new size is also specified. The allocator attempts to extend
    200  * the original block. Failing that, the regular block allocator is
    201  * invoked to get an appropriate block.
    202  */
    203 int
    204 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    205 	struct inode *ip;
    206 	daddr_t lbprev;
    207 	daddr_t bpref;
    208 	int osize, nsize;
    209 	struct ucred *cred;
    210 	struct buf **bpp;
    211 	daddr_t *blknop;
    212 {
    213 	struct fs *fs;
    214 	struct buf *bp;
    215 	int cg, request, error;
    216 	daddr_t bprev, bno;
    217 
    218 	fs = ip->i_fs;
    219 #ifdef UVM_PAGE_TRKOWN
    220 	if (ITOV(ip)->v_type == VREG) {
    221 		struct vm_page *pg;
    222 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    223 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    224 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    225 
    226 		simple_lock(&uobj->vmobjlock);
    227 		while (off < endoff) {
    228 			pg = uvm_pagelookup(uobj, off);
    229 			KASSERT(pg != NULL);
    230 			KASSERT(pg->owner == curproc->p_pid);
    231 			KASSERT((pg->flags & PG_CLEAN) == 0);
    232 			off += PAGE_SIZE;
    233 		}
    234 		simple_unlock(&uobj->vmobjlock);
    235 	}
    236 #endif
    237 
    238 #ifdef DIAGNOSTIC
    239 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    240 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    241 		printf(
    242 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    243 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    244 		panic("ffs_realloccg: bad size");
    245 	}
    246 	if (cred == NOCRED)
    247 		panic("ffs_realloccg: missing credential");
    248 #endif /* DIAGNOSTIC */
    249 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    250 		goto nospace;
    251 	if (fs->fs_magic == FS_UFS2_MAGIC)
    252 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    253 	else
    254 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    255 
    256 	if (bprev == 0) {
    257 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    258 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    259 		panic("ffs_realloccg: bad bprev");
    260 	}
    261 	/*
    262 	 * Allocate the extra space in the buffer.
    263 	 */
    264 	if (bpp != NULL &&
    265 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    266 		brelse(bp);
    267 		return (error);
    268 	}
    269 #ifdef QUOTA
    270 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    271 		if (bpp != NULL) {
    272 			brelse(bp);
    273 		}
    274 		return (error);
    275 	}
    276 #endif
    277 	/*
    278 	 * Check for extension in the existing location.
    279 	 */
    280 	cg = dtog(fs, bprev);
    281 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    282 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    283 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    284 
    285 		if (bpp != NULL) {
    286 			if (bp->b_blkno != fsbtodb(fs, bno))
    287 				panic("bad blockno");
    288 			allocbuf(bp, nsize);
    289 			bp->b_flags |= B_DONE;
    290 			memset(bp->b_data + osize, 0, nsize - osize);
    291 			*bpp = bp;
    292 		}
    293 		if (blknop != NULL) {
    294 			*blknop = bno;
    295 		}
    296 		return (0);
    297 	}
    298 	/*
    299 	 * Allocate a new disk location.
    300 	 */
    301 	if (bpref >= fs->fs_size)
    302 		bpref = 0;
    303 	switch ((int)fs->fs_optim) {
    304 	case FS_OPTSPACE:
    305 		/*
    306 		 * Allocate an exact sized fragment. Although this makes
    307 		 * best use of space, we will waste time relocating it if
    308 		 * the file continues to grow. If the fragmentation is
    309 		 * less than half of the minimum free reserve, we choose
    310 		 * to begin optimizing for time.
    311 		 */
    312 		request = nsize;
    313 		if (fs->fs_minfree < 5 ||
    314 		    fs->fs_cstotal.cs_nffree >
    315 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    316 			break;
    317 
    318 		if (ffs_log_changeopt) {
    319 			log(LOG_NOTICE,
    320 				"%s: optimization changed from SPACE to TIME\n",
    321 				fs->fs_fsmnt);
    322 		}
    323 
    324 		fs->fs_optim = FS_OPTTIME;
    325 		break;
    326 	case FS_OPTTIME:
    327 		/*
    328 		 * At this point we have discovered a file that is trying to
    329 		 * grow a small fragment to a larger fragment. To save time,
    330 		 * we allocate a full sized block, then free the unused portion.
    331 		 * If the file continues to grow, the `ffs_fragextend' call
    332 		 * above will be able to grow it in place without further
    333 		 * copying. If aberrant programs cause disk fragmentation to
    334 		 * grow within 2% of the free reserve, we choose to begin
    335 		 * optimizing for space.
    336 		 */
    337 		request = fs->fs_bsize;
    338 		if (fs->fs_cstotal.cs_nffree <
    339 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    340 			break;
    341 
    342 		if (ffs_log_changeopt) {
    343 			log(LOG_NOTICE,
    344 				"%s: optimization changed from TIME to SPACE\n",
    345 				fs->fs_fsmnt);
    346 		}
    347 
    348 		fs->fs_optim = FS_OPTSPACE;
    349 		break;
    350 	default:
    351 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    352 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    353 		panic("ffs_realloccg: bad optim");
    354 		/* NOTREACHED */
    355 	}
    356 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    357 	if (bno > 0) {
    358 		if (!DOINGSOFTDEP(ITOV(ip)))
    359 			ffs_blkfree(ip, bprev, (long)osize);
    360 		if (nsize < request)
    361 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    362 			    (long)(request - nsize));
    363 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    364 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    365 		if (bpp != NULL) {
    366 			bp->b_blkno = fsbtodb(fs, bno);
    367 			allocbuf(bp, nsize);
    368 			bp->b_flags |= B_DONE;
    369 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    370 			*bpp = bp;
    371 		}
    372 		if (blknop != NULL) {
    373 			*blknop = bno;
    374 		}
    375 		return (0);
    376 	}
    377 #ifdef QUOTA
    378 	/*
    379 	 * Restore user's disk quota because allocation failed.
    380 	 */
    381 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    382 #endif
    383 	if (bpp != NULL) {
    384 		brelse(bp);
    385 	}
    386 
    387 nospace:
    388 	/*
    389 	 * no space available
    390 	 */
    391 	ffs_fserr(fs, cred->cr_uid, "file system full");
    392 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    393 	return (ENOSPC);
    394 }
    395 
    396 /*
    397  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    398  *
    399  * The vnode and an array of buffer pointers for a range of sequential
    400  * logical blocks to be made contiguous is given. The allocator attempts
    401  * to find a range of sequential blocks starting as close as possible
    402  * from the end of the allocation for the logical block immediately
    403  * preceding the current range. If successful, the physical block numbers
    404  * in the buffer pointers and in the inode are changed to reflect the new
    405  * allocation. If unsuccessful, the allocation is left unchanged. The
    406  * success in doing the reallocation is returned. Note that the error
    407  * return is not reflected back to the user. Rather the previous block
    408  * allocation will be used.
    409 
    410  */
    411 #ifdef XXXUBC
    412 #ifdef DEBUG
    413 #include <sys/sysctl.h>
    414 int prtrealloc = 0;
    415 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    416 #endif
    417 #endif
    418 
    419 /*
    420  * NOTE: when re-enabling this, it must be updated for UFS2.
    421  */
    422 
    423 int doasyncfree = 1;
    424 
    425 int
    426 ffs_reallocblks(v)
    427 	void *v;
    428 {
    429 #ifdef XXXUBC
    430 	struct vop_reallocblks_args /* {
    431 		struct vnode *a_vp;
    432 		struct cluster_save *a_buflist;
    433 	} */ *ap = v;
    434 	struct fs *fs;
    435 	struct inode *ip;
    436 	struct vnode *vp;
    437 	struct buf *sbp, *ebp;
    438 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    439 	struct cluster_save *buflist;
    440 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    441 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    442 	int i, len, start_lvl, end_lvl, pref, ssize;
    443 #endif /* XXXUBC */
    444 
    445 	/* XXXUBC don't reallocblks for now */
    446 	return ENOSPC;
    447 
    448 #ifdef XXXUBC
    449 	vp = ap->a_vp;
    450 	ip = VTOI(vp);
    451 	fs = ip->i_fs;
    452 	if (fs->fs_contigsumsize <= 0)
    453 		return (ENOSPC);
    454 	buflist = ap->a_buflist;
    455 	len = buflist->bs_nchildren;
    456 	start_lbn = buflist->bs_children[0]->b_lblkno;
    457 	end_lbn = start_lbn + len - 1;
    458 #ifdef DIAGNOSTIC
    459 	for (i = 0; i < len; i++)
    460 		if (!ffs_checkblk(ip,
    461 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    462 			panic("ffs_reallocblks: unallocated block 1");
    463 	for (i = 1; i < len; i++)
    464 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    465 			panic("ffs_reallocblks: non-logical cluster");
    466 	blkno = buflist->bs_children[0]->b_blkno;
    467 	ssize = fsbtodb(fs, fs->fs_frag);
    468 	for (i = 1; i < len - 1; i++)
    469 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    470 			panic("ffs_reallocblks: non-physical cluster %d", i);
    471 #endif
    472 	/*
    473 	 * If the latest allocation is in a new cylinder group, assume that
    474 	 * the filesystem has decided to move and do not force it back to
    475 	 * the previous cylinder group.
    476 	 */
    477 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    478 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    479 		return (ENOSPC);
    480 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    481 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    482 		return (ENOSPC);
    483 	/*
    484 	 * Get the starting offset and block map for the first block.
    485 	 */
    486 	if (start_lvl == 0) {
    487 		sbap = &ip->i_ffs1_db[0];
    488 		soff = start_lbn;
    489 	} else {
    490 		idp = &start_ap[start_lvl - 1];
    491 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    492 			brelse(sbp);
    493 			return (ENOSPC);
    494 		}
    495 		sbap = (int32_t *)sbp->b_data;
    496 		soff = idp->in_off;
    497 	}
    498 	/*
    499 	 * Find the preferred location for the cluster.
    500 	 */
    501 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    502 	/*
    503 	 * If the block range spans two block maps, get the second map.
    504 	 */
    505 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    506 		ssize = len;
    507 	} else {
    508 #ifdef DIAGNOSTIC
    509 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    510 			panic("ffs_reallocblk: start == end");
    511 #endif
    512 		ssize = len - (idp->in_off + 1);
    513 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    514 			goto fail;
    515 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    516 	}
    517 	/*
    518 	 * Search the block map looking for an allocation of the desired size.
    519 	 */
    520 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    521 	    len, ffs_clusteralloc)) == 0)
    522 		goto fail;
    523 	/*
    524 	 * We have found a new contiguous block.
    525 	 *
    526 	 * First we have to replace the old block pointers with the new
    527 	 * block pointers in the inode and indirect blocks associated
    528 	 * with the file.
    529 	 */
    530 #ifdef DEBUG
    531 	if (prtrealloc)
    532 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    533 		    start_lbn, end_lbn);
    534 #endif
    535 	blkno = newblk;
    536 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    537 		daddr_t ba;
    538 
    539 		if (i == ssize) {
    540 			bap = ebap;
    541 			soff = -i;
    542 		}
    543 		/* XXX ondisk32 */
    544 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    545 #ifdef DIAGNOSTIC
    546 		if (!ffs_checkblk(ip,
    547 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    548 			panic("ffs_reallocblks: unallocated block 2");
    549 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    550 			panic("ffs_reallocblks: alloc mismatch");
    551 #endif
    552 #ifdef DEBUG
    553 		if (prtrealloc)
    554 			printf(" %d,", ba);
    555 #endif
    556  		if (DOINGSOFTDEP(vp)) {
    557  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    558  				softdep_setup_allocdirect(ip, start_lbn + i,
    559  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    560  				    buflist->bs_children[i]);
    561  			else
    562  				softdep_setup_allocindir_page(ip, start_lbn + i,
    563  				    i < ssize ? sbp : ebp, soff + i, blkno,
    564  				    ba, buflist->bs_children[i]);
    565  		}
    566 		/* XXX ondisk32 */
    567 		*bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
    568 	}
    569 	/*
    570 	 * Next we must write out the modified inode and indirect blocks.
    571 	 * For strict correctness, the writes should be synchronous since
    572 	 * the old block values may have been written to disk. In practise
    573 	 * they are almost never written, but if we are concerned about
    574 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    575 	 *
    576 	 * The test on `doasyncfree' should be changed to test a flag
    577 	 * that shows whether the associated buffers and inodes have
    578 	 * been written. The flag should be set when the cluster is
    579 	 * started and cleared whenever the buffer or inode is flushed.
    580 	 * We can then check below to see if it is set, and do the
    581 	 * synchronous write only when it has been cleared.
    582 	 */
    583 	if (sbap != &ip->i_ffs1_db[0]) {
    584 		if (doasyncfree)
    585 			bdwrite(sbp);
    586 		else
    587 			bwrite(sbp);
    588 	} else {
    589 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    590 		if (!doasyncfree)
    591 			VOP_UPDATE(vp, NULL, NULL, 1);
    592 	}
    593 	if (ssize < len) {
    594 		if (doasyncfree)
    595 			bdwrite(ebp);
    596 		else
    597 			bwrite(ebp);
    598 	}
    599 	/*
    600 	 * Last, free the old blocks and assign the new blocks to the buffers.
    601 	 */
    602 #ifdef DEBUG
    603 	if (prtrealloc)
    604 		printf("\n\tnew:");
    605 #endif
    606 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    607 		if (!DOINGSOFTDEP(vp))
    608 			ffs_blkfree(ip,
    609 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    610 			    fs->fs_bsize);
    611 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    612 #ifdef DEBUG
    613 		if (!ffs_checkblk(ip,
    614 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    615 			panic("ffs_reallocblks: unallocated block 3");
    616 		if (prtrealloc)
    617 			printf(" %d,", blkno);
    618 #endif
    619 	}
    620 #ifdef DEBUG
    621 	if (prtrealloc) {
    622 		prtrealloc--;
    623 		printf("\n");
    624 	}
    625 #endif
    626 	return (0);
    627 
    628 fail:
    629 	if (ssize < len)
    630 		brelse(ebp);
    631 	if (sbap != &ip->i_ffs1_db[0])
    632 		brelse(sbp);
    633 	return (ENOSPC);
    634 #endif /* XXXUBC */
    635 }
    636 
    637 /*
    638  * Allocate an inode in the file system.
    639  *
    640  * If allocating a directory, use ffs_dirpref to select the inode.
    641  * If allocating in a directory, the following hierarchy is followed:
    642  *   1) allocate the preferred inode.
    643  *   2) allocate an inode in the same cylinder group.
    644  *   3) quadradically rehash into other cylinder groups, until an
    645  *      available inode is located.
    646  * If no inode preference is given the following hierarchy is used
    647  * to allocate an inode:
    648  *   1) allocate an inode in cylinder group 0.
    649  *   2) quadradically rehash into other cylinder groups, until an
    650  *      available inode is located.
    651  */
    652 int
    653 ffs_valloc(v)
    654 	void *v;
    655 {
    656 	struct vop_valloc_args /* {
    657 		struct vnode *a_pvp;
    658 		int a_mode;
    659 		struct ucred *a_cred;
    660 		struct vnode **a_vpp;
    661 	} */ *ap = v;
    662 	struct vnode *pvp = ap->a_pvp;
    663 	struct inode *pip;
    664 	struct fs *fs;
    665 	struct inode *ip;
    666 	struct timespec ts;
    667 	mode_t mode = ap->a_mode;
    668 	ino_t ino, ipref;
    669 	int cg, error;
    670 
    671 	*ap->a_vpp = NULL;
    672 	pip = VTOI(pvp);
    673 	fs = pip->i_fs;
    674 	if (fs->fs_cstotal.cs_nifree == 0)
    675 		goto noinodes;
    676 
    677 	if ((mode & IFMT) == IFDIR)
    678 		ipref = ffs_dirpref(pip);
    679 	else
    680 		ipref = pip->i_number;
    681 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    682 		ipref = 0;
    683 	cg = ino_to_cg(fs, ipref);
    684 	/*
    685 	 * Track number of dirs created one after another
    686 	 * in a same cg without intervening by files.
    687 	 */
    688 	if ((mode & IFMT) == IFDIR) {
    689 		if (fs->fs_contigdirs[cg] < 255)
    690 			fs->fs_contigdirs[cg]++;
    691 	} else {
    692 		if (fs->fs_contigdirs[cg] > 0)
    693 			fs->fs_contigdirs[cg]--;
    694 	}
    695 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    696 	if (ino == 0)
    697 		goto noinodes;
    698 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    699 	if (error) {
    700 		VOP_VFREE(pvp, ino, mode);
    701 		return (error);
    702 	}
    703 	ip = VTOI(*ap->a_vpp);
    704 	if (ip->i_mode) {
    705 #if 0
    706 		printf("mode = 0%o, inum = %d, fs = %s\n",
    707 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    708 #else
    709 		printf("dmode %x mode %x dgen %x gen %x\n",
    710 		    DIP(ip, mode), ip->i_mode,
    711 		    DIP(ip, gen), ip->i_gen);
    712 		printf("size %llx blocks %llx\n",
    713 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    714 		printf("ino %u ipref %u\n", ino, ipref);
    715 #if 0
    716 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    717 		    (int)fs->fs_bsize, NOCRED, &bp);
    718 #endif
    719 
    720 #endif
    721 		panic("ffs_valloc: dup alloc");
    722 	}
    723 	if (DIP(ip, blocks)) {				/* XXX */
    724 		printf("free inode %s/%d had %" PRId64 " blocks\n",
    725 		    fs->fs_fsmnt, ino, DIP(ip, blocks));
    726 		DIP_ASSIGN(ip, blocks, 0);
    727 	}
    728 	ip->i_flag &= ~IN_SPACECOUNTED;
    729 	ip->i_flags = 0;
    730 	DIP_ASSIGN(ip, flags, 0);
    731 	/*
    732 	 * Set up a new generation number for this inode.
    733 	 */
    734 	ip->i_gen++;
    735 	DIP_ASSIGN(ip, gen, ip->i_gen);
    736 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    737 		TIMEVAL_TO_TIMESPEC(&time, &ts);
    738 		ip->i_ffs2_birthtime = ts.tv_sec;
    739 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    740 	}
    741 	return (0);
    742 noinodes:
    743 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    744 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    745 	return (ENOSPC);
    746 }
    747 
    748 /*
    749  * Find a cylinder group in which to place a directory.
    750  *
    751  * The policy implemented by this algorithm is to allocate a
    752  * directory inode in the same cylinder group as its parent
    753  * directory, but also to reserve space for its files inodes
    754  * and data. Restrict the number of directories which may be
    755  * allocated one after another in the same cylinder group
    756  * without intervening allocation of files.
    757  *
    758  * If we allocate a first level directory then force allocation
    759  * in another cylinder group.
    760  */
    761 static ino_t
    762 ffs_dirpref(pip)
    763 	struct inode *pip;
    764 {
    765 	register struct fs *fs;
    766 	int cg, prefcg, dirsize, cgsize;
    767 	int avgifree, avgbfree, avgndir, curdirsize;
    768 	int minifree, minbfree, maxndir;
    769 	int mincg, minndir;
    770 	int maxcontigdirs;
    771 
    772 	fs = pip->i_fs;
    773 
    774 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    775 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    776 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    777 
    778 	/*
    779 	 * Force allocation in another cg if creating a first level dir.
    780 	 */
    781 	if (ITOV(pip)->v_flag & VROOT) {
    782 		prefcg = random() % fs->fs_ncg;
    783 		mincg = prefcg;
    784 		minndir = fs->fs_ipg;
    785 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    786 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    787 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    788 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    789 				mincg = cg;
    790 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    791 			}
    792 		for (cg = 0; cg < prefcg; cg++)
    793 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    794 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    795 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    796 				mincg = cg;
    797 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    798 			}
    799 		return ((ino_t)(fs->fs_ipg * mincg));
    800 	}
    801 
    802 	/*
    803 	 * Count various limits which used for
    804 	 * optimal allocation of a directory inode.
    805 	 */
    806 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    807 	minifree = avgifree - fs->fs_ipg / 4;
    808 	if (minifree < 0)
    809 		minifree = 0;
    810 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    811 	if (minbfree < 0)
    812 		minbfree = 0;
    813 	cgsize = fs->fs_fsize * fs->fs_fpg;
    814 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    815 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    816 	if (dirsize < curdirsize)
    817 		dirsize = curdirsize;
    818 	maxcontigdirs = min(cgsize / dirsize, 255);
    819 	if (fs->fs_avgfpdir > 0)
    820 		maxcontigdirs = min(maxcontigdirs,
    821 				    fs->fs_ipg / fs->fs_avgfpdir);
    822 	if (maxcontigdirs == 0)
    823 		maxcontigdirs = 1;
    824 
    825 	/*
    826 	 * Limit number of dirs in one cg and reserve space for
    827 	 * regular files, but only if we have no deficit in
    828 	 * inodes or space.
    829 	 */
    830 	prefcg = ino_to_cg(fs, pip->i_number);
    831 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    832 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    833 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    834 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    835 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    836 				return ((ino_t)(fs->fs_ipg * cg));
    837 		}
    838 	for (cg = 0; cg < prefcg; cg++)
    839 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    840 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    841 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    842 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    843 				return ((ino_t)(fs->fs_ipg * cg));
    844 		}
    845 	/*
    846 	 * This is a backstop when we are deficient in space.
    847 	 */
    848 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    849 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    850 			return ((ino_t)(fs->fs_ipg * cg));
    851 	for (cg = 0; cg < prefcg; cg++)
    852 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    853 			break;
    854 	return ((ino_t)(fs->fs_ipg * cg));
    855 }
    856 
    857 /*
    858  * Select the desired position for the next block in a file.  The file is
    859  * logically divided into sections. The first section is composed of the
    860  * direct blocks. Each additional section contains fs_maxbpg blocks.
    861  *
    862  * If no blocks have been allocated in the first section, the policy is to
    863  * request a block in the same cylinder group as the inode that describes
    864  * the file. If no blocks have been allocated in any other section, the
    865  * policy is to place the section in a cylinder group with a greater than
    866  * average number of free blocks.  An appropriate cylinder group is found
    867  * by using a rotor that sweeps the cylinder groups. When a new group of
    868  * blocks is needed, the sweep begins in the cylinder group following the
    869  * cylinder group from which the previous allocation was made. The sweep
    870  * continues until a cylinder group with greater than the average number
    871  * of free blocks is found. If the allocation is for the first block in an
    872  * indirect block, the information on the previous allocation is unavailable;
    873  * here a best guess is made based upon the logical block number being
    874  * allocated.
    875  *
    876  * If a section is already partially allocated, the policy is to
    877  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    878  * contiguous blocks and the beginning of the next is laid out
    879  * contigously if possible.
    880  */
    881 daddr_t
    882 ffs_blkpref_ufs1(ip, lbn, indx, bap)
    883 	struct inode *ip;
    884 	daddr_t lbn;
    885 	int indx;
    886 	int32_t *bap;	/* XXX ondisk32 */
    887 {
    888 	struct fs *fs;
    889 	int cg;
    890 	int avgbfree, startcg;
    891 
    892 	fs = ip->i_fs;
    893 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    894 		if (lbn < NDADDR + NINDIR(fs)) {
    895 			cg = ino_to_cg(fs, ip->i_number);
    896 			return (fs->fs_fpg * cg + fs->fs_frag);
    897 		}
    898 		/*
    899 		 * Find a cylinder with greater than average number of
    900 		 * unused data blocks.
    901 		 */
    902 		if (indx == 0 || bap[indx - 1] == 0)
    903 			startcg =
    904 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    905 		else
    906 			startcg = dtog(fs,
    907 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    908 		startcg %= fs->fs_ncg;
    909 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    910 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    911 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    912 				return (fs->fs_fpg * cg + fs->fs_frag);
    913 			}
    914 		for (cg = 0; cg < startcg; cg++)
    915 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    916 				return (fs->fs_fpg * cg + fs->fs_frag);
    917 			}
    918 		return (0);
    919 	}
    920 	/*
    921 	 * We just always try to lay things out contiguously.
    922 	 */
    923 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    924 }
    925 
    926 daddr_t
    927 ffs_blkpref_ufs2(ip, lbn, indx, bap)
    928 	struct inode *ip;
    929 	daddr_t lbn;
    930 	int indx;
    931 	int64_t *bap;
    932 {
    933 	struct fs *fs;
    934 	int cg;
    935 	int avgbfree, startcg;
    936 
    937 	fs = ip->i_fs;
    938 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    939 		if (lbn < NDADDR + NINDIR(fs)) {
    940 			cg = ino_to_cg(fs, ip->i_number);
    941 			return (fs->fs_fpg * cg + fs->fs_frag);
    942 		}
    943 		/*
    944 		 * Find a cylinder with greater than average number of
    945 		 * unused data blocks.
    946 		 */
    947 		if (indx == 0 || bap[indx - 1] == 0)
    948 			startcg =
    949 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    950 		else
    951 			startcg = dtog(fs,
    952 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    953 		startcg %= fs->fs_ncg;
    954 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    955 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    956 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    957 				return (fs->fs_fpg * cg + fs->fs_frag);
    958 			}
    959 		for (cg = 0; cg < startcg; cg++)
    960 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    961 				return (fs->fs_fpg * cg + fs->fs_frag);
    962 			}
    963 		return (0);
    964 	}
    965 	/*
    966 	 * We just always try to lay things out contiguously.
    967 	 */
    968 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    969 }
    970 
    971 
    972 /*
    973  * Implement the cylinder overflow algorithm.
    974  *
    975  * The policy implemented by this algorithm is:
    976  *   1) allocate the block in its requested cylinder group.
    977  *   2) quadradically rehash on the cylinder group number.
    978  *   3) brute force search for a free block.
    979  */
    980 /*VARARGS5*/
    981 static daddr_t
    982 ffs_hashalloc(ip, cg, pref, size, allocator)
    983 	struct inode *ip;
    984 	int cg;
    985 	daddr_t pref;
    986 	int size;	/* size for data blocks, mode for inodes */
    987 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    988 {
    989 	struct fs *fs;
    990 	daddr_t result;
    991 	int i, icg = cg;
    992 
    993 	fs = ip->i_fs;
    994 	/*
    995 	 * 1: preferred cylinder group
    996 	 */
    997 	result = (*allocator)(ip, cg, pref, size);
    998 	if (result)
    999 		return (result);
   1000 	/*
   1001 	 * 2: quadratic rehash
   1002 	 */
   1003 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1004 		cg += i;
   1005 		if (cg >= fs->fs_ncg)
   1006 			cg -= fs->fs_ncg;
   1007 		result = (*allocator)(ip, cg, 0, size);
   1008 		if (result)
   1009 			return (result);
   1010 	}
   1011 	/*
   1012 	 * 3: brute force search
   1013 	 * Note that we start at i == 2, since 0 was checked initially,
   1014 	 * and 1 is always checked in the quadratic rehash.
   1015 	 */
   1016 	cg = (icg + 2) % fs->fs_ncg;
   1017 	for (i = 2; i < fs->fs_ncg; i++) {
   1018 		result = (*allocator)(ip, cg, 0, size);
   1019 		if (result)
   1020 			return (result);
   1021 		cg++;
   1022 		if (cg == fs->fs_ncg)
   1023 			cg = 0;
   1024 	}
   1025 	return (0);
   1026 }
   1027 
   1028 /*
   1029  * Determine whether a fragment can be extended.
   1030  *
   1031  * Check to see if the necessary fragments are available, and
   1032  * if they are, allocate them.
   1033  */
   1034 static daddr_t
   1035 ffs_fragextend(ip, cg, bprev, osize, nsize)
   1036 	struct inode *ip;
   1037 	int cg;
   1038 	daddr_t bprev;
   1039 	int osize, nsize;
   1040 {
   1041 	struct fs *fs;
   1042 	struct cg *cgp;
   1043 	struct buf *bp;
   1044 	daddr_t bno;
   1045 	int frags, bbase;
   1046 	int i, error;
   1047 	u_int8_t *blksfree;
   1048 
   1049 	fs = ip->i_fs;
   1050 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1051 		return (0);
   1052 	frags = numfrags(fs, nsize);
   1053 	bbase = fragnum(fs, bprev);
   1054 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1055 		/* cannot extend across a block boundary */
   1056 		return (0);
   1057 	}
   1058 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1059 		(int)fs->fs_cgsize, NOCRED, &bp);
   1060 	if (error) {
   1061 		brelse(bp);
   1062 		return (0);
   1063 	}
   1064 	cgp = (struct cg *)bp->b_data;
   1065 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1066 		brelse(bp);
   1067 		return (0);
   1068 	}
   1069 	cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1070 	cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1071 	bno = dtogd(fs, bprev);
   1072 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1073 	for (i = numfrags(fs, osize); i < frags; i++)
   1074 		if (isclr(blksfree, bno + i)) {
   1075 			brelse(bp);
   1076 			return (0);
   1077 		}
   1078 	/*
   1079 	 * the current fragment can be extended
   1080 	 * deduct the count on fragment being extended into
   1081 	 * increase the count on the remaining fragment (if any)
   1082 	 * allocate the extended piece
   1083 	 */
   1084 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1085 		if (isclr(blksfree, bno + i))
   1086 			break;
   1087 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1088 	if (i != frags)
   1089 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1090 	for (i = numfrags(fs, osize); i < frags; i++) {
   1091 		clrbit(blksfree, bno + i);
   1092 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1093 		fs->fs_cstotal.cs_nffree--;
   1094 		fs->fs_cs(fs, cg).cs_nffree--;
   1095 	}
   1096 	fs->fs_fmod = 1;
   1097 	if (DOINGSOFTDEP(ITOV(ip)))
   1098 		softdep_setup_blkmapdep(bp, fs, bprev);
   1099 	bdwrite(bp);
   1100 	return (bprev);
   1101 }
   1102 
   1103 /*
   1104  * Determine whether a block can be allocated.
   1105  *
   1106  * Check to see if a block of the appropriate size is available,
   1107  * and if it is, allocate it.
   1108  */
   1109 static daddr_t
   1110 ffs_alloccg(ip, cg, bpref, size)
   1111 	struct inode *ip;
   1112 	int cg;
   1113 	daddr_t bpref;
   1114 	int size;
   1115 {
   1116 	struct fs *fs = ip->i_fs;
   1117 	struct cg *cgp;
   1118 	struct buf *bp;
   1119 	int32_t bno;
   1120 	daddr_t blkno;
   1121 	int error, frags, allocsiz, i;
   1122 	u_int8_t *blksfree;
   1123 #ifdef FFS_EI
   1124 	const int needswap = UFS_FSNEEDSWAP(fs);
   1125 #endif
   1126 
   1127 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1128 		return (0);
   1129 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1130 		(int)fs->fs_cgsize, NOCRED, &bp);
   1131 	if (error) {
   1132 		brelse(bp);
   1133 		return (0);
   1134 	}
   1135 	cgp = (struct cg *)bp->b_data;
   1136 	if (!cg_chkmagic(cgp, needswap) ||
   1137 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1138 		brelse(bp);
   1139 		return (0);
   1140 	}
   1141 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1142 	cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1143 	if (size == fs->fs_bsize) {
   1144 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1145 		bdwrite(bp);
   1146 		return (blkno);
   1147 	}
   1148 	/*
   1149 	 * check to see if any fragments are already available
   1150 	 * allocsiz is the size which will be allocated, hacking
   1151 	 * it down to a smaller size if necessary
   1152 	 */
   1153 	blksfree = cg_blksfree(cgp, needswap);
   1154 	frags = numfrags(fs, size);
   1155 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1156 		if (cgp->cg_frsum[allocsiz] != 0)
   1157 			break;
   1158 	if (allocsiz == fs->fs_frag) {
   1159 		/*
   1160 		 * no fragments were available, so a block will be
   1161 		 * allocated, and hacked up
   1162 		 */
   1163 		if (cgp->cg_cs.cs_nbfree == 0) {
   1164 			brelse(bp);
   1165 			return (0);
   1166 		}
   1167 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1168 		bno = dtogd(fs, blkno);
   1169 		for (i = frags; i < fs->fs_frag; i++)
   1170 			setbit(blksfree, bno + i);
   1171 		i = fs->fs_frag - frags;
   1172 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1173 		fs->fs_cstotal.cs_nffree += i;
   1174 		fs->fs_cs(fs, cg).cs_nffree += i;
   1175 		fs->fs_fmod = 1;
   1176 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1177 		bdwrite(bp);
   1178 		return (blkno);
   1179 	}
   1180 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1181 #if 0
   1182 	/*
   1183 	 * XXX fvdl mapsearch will panic, and never return -1
   1184 	 *          also: returning NULL as daddr_t ?
   1185 	 */
   1186 	if (bno < 0) {
   1187 		brelse(bp);
   1188 		return (0);
   1189 	}
   1190 #endif
   1191 	for (i = 0; i < frags; i++)
   1192 		clrbit(blksfree, bno + i);
   1193 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1194 	fs->fs_cstotal.cs_nffree -= frags;
   1195 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1196 	fs->fs_fmod = 1;
   1197 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1198 	if (frags != allocsiz)
   1199 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1200 	blkno = cg * fs->fs_fpg + bno;
   1201 	if (DOINGSOFTDEP(ITOV(ip)))
   1202 		softdep_setup_blkmapdep(bp, fs, blkno);
   1203 	bdwrite(bp);
   1204 	return blkno;
   1205 }
   1206 
   1207 /*
   1208  * Allocate a block in a cylinder group.
   1209  *
   1210  * This algorithm implements the following policy:
   1211  *   1) allocate the requested block.
   1212  *   2) allocate a rotationally optimal block in the same cylinder.
   1213  *   3) allocate the next available block on the block rotor for the
   1214  *      specified cylinder group.
   1215  * Note that this routine only allocates fs_bsize blocks; these
   1216  * blocks may be fragmented by the routine that allocates them.
   1217  */
   1218 static daddr_t
   1219 ffs_alloccgblk(ip, bp, bpref)
   1220 	struct inode *ip;
   1221 	struct buf *bp;
   1222 	daddr_t bpref;
   1223 {
   1224 	struct fs *fs = ip->i_fs;
   1225 	struct cg *cgp;
   1226 	daddr_t blkno;
   1227 	int32_t bno;
   1228 	u_int8_t *blksfree;
   1229 #ifdef FFS_EI
   1230 	const int needswap = UFS_FSNEEDSWAP(fs);
   1231 #endif
   1232 
   1233 	cgp = (struct cg *)bp->b_data;
   1234 	blksfree = cg_blksfree(cgp, needswap);
   1235 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1236 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1237 	} else {
   1238 		bpref = blknum(fs, bpref);
   1239 		bno = dtogd(fs, bpref);
   1240 		/*
   1241 		 * if the requested block is available, use it
   1242 		 */
   1243 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1244 			goto gotit;
   1245 	}
   1246 	/*
   1247 	 * Take the next available block in this cylinder group.
   1248 	 */
   1249 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1250 	if (bno < 0)
   1251 		return (0);
   1252 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1253 gotit:
   1254 	blkno = fragstoblks(fs, bno);
   1255 	ffs_clrblock(fs, blksfree, blkno);
   1256 	ffs_clusteracct(fs, cgp, blkno, -1);
   1257 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1258 	fs->fs_cstotal.cs_nbfree--;
   1259 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1260 	fs->fs_fmod = 1;
   1261 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1262 	if (DOINGSOFTDEP(ITOV(ip)))
   1263 		softdep_setup_blkmapdep(bp, fs, blkno);
   1264 	return (blkno);
   1265 }
   1266 
   1267 #ifdef XXXUBC
   1268 /*
   1269  * Determine whether a cluster can be allocated.
   1270  *
   1271  * We do not currently check for optimal rotational layout if there
   1272  * are multiple choices in the same cylinder group. Instead we just
   1273  * take the first one that we find following bpref.
   1274  */
   1275 
   1276 /*
   1277  * This function must be fixed for UFS2 if re-enabled.
   1278  */
   1279 static daddr_t
   1280 ffs_clusteralloc(ip, cg, bpref, len)
   1281 	struct inode *ip;
   1282 	int cg;
   1283 	daddr_t bpref;
   1284 	int len;
   1285 {
   1286 	struct fs *fs;
   1287 	struct cg *cgp;
   1288 	struct buf *bp;
   1289 	int i, got, run, bno, bit, map;
   1290 	u_char *mapp;
   1291 	int32_t *lp;
   1292 
   1293 	fs = ip->i_fs;
   1294 	if (fs->fs_maxcluster[cg] < len)
   1295 		return (0);
   1296 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1297 	    NOCRED, &bp))
   1298 		goto fail;
   1299 	cgp = (struct cg *)bp->b_data;
   1300 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1301 		goto fail;
   1302 	/*
   1303 	 * Check to see if a cluster of the needed size (or bigger) is
   1304 	 * available in this cylinder group.
   1305 	 */
   1306 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1307 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1308 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1309 			break;
   1310 	if (i > fs->fs_contigsumsize) {
   1311 		/*
   1312 		 * This is the first time looking for a cluster in this
   1313 		 * cylinder group. Update the cluster summary information
   1314 		 * to reflect the true maximum sized cluster so that
   1315 		 * future cluster allocation requests can avoid reading
   1316 		 * the cylinder group map only to find no clusters.
   1317 		 */
   1318 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1319 		for (i = len - 1; i > 0; i--)
   1320 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1321 				break;
   1322 		fs->fs_maxcluster[cg] = i;
   1323 		goto fail;
   1324 	}
   1325 	/*
   1326 	 * Search the cluster map to find a big enough cluster.
   1327 	 * We take the first one that we find, even if it is larger
   1328 	 * than we need as we prefer to get one close to the previous
   1329 	 * block allocation. We do not search before the current
   1330 	 * preference point as we do not want to allocate a block
   1331 	 * that is allocated before the previous one (as we will
   1332 	 * then have to wait for another pass of the elevator
   1333 	 * algorithm before it will be read). We prefer to fail and
   1334 	 * be recalled to try an allocation in the next cylinder group.
   1335 	 */
   1336 	if (dtog(fs, bpref) != cg)
   1337 		bpref = 0;
   1338 	else
   1339 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1340 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1341 	map = *mapp++;
   1342 	bit = 1 << (bpref % NBBY);
   1343 	for (run = 0, got = bpref;
   1344 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1345 		if ((map & bit) == 0) {
   1346 			run = 0;
   1347 		} else {
   1348 			run++;
   1349 			if (run == len)
   1350 				break;
   1351 		}
   1352 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1353 			bit <<= 1;
   1354 		} else {
   1355 			map = *mapp++;
   1356 			bit = 1;
   1357 		}
   1358 	}
   1359 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1360 		goto fail;
   1361 	/*
   1362 	 * Allocate the cluster that we have found.
   1363 	 */
   1364 #ifdef DIAGNOSTIC
   1365 	for (i = 1; i <= len; i++)
   1366 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1367 		    got - run + i))
   1368 			panic("ffs_clusteralloc: map mismatch");
   1369 #endif
   1370 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1371 	if (dtog(fs, bno) != cg)
   1372 		panic("ffs_clusteralloc: allocated out of group");
   1373 	len = blkstofrags(fs, len);
   1374 	for (i = 0; i < len; i += fs->fs_frag)
   1375 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1376 			panic("ffs_clusteralloc: lost block");
   1377 	bdwrite(bp);
   1378 	return (bno);
   1379 
   1380 fail:
   1381 	brelse(bp);
   1382 	return (0);
   1383 }
   1384 #endif /* XXXUBC */
   1385 
   1386 /*
   1387  * Determine whether an inode can be allocated.
   1388  *
   1389  * Check to see if an inode is available, and if it is,
   1390  * allocate it using the following policy:
   1391  *   1) allocate the requested inode.
   1392  *   2) allocate the next available inode after the requested
   1393  *      inode in the specified cylinder group.
   1394  */
   1395 static daddr_t
   1396 ffs_nodealloccg(ip, cg, ipref, mode)
   1397 	struct inode *ip;
   1398 	int cg;
   1399 	daddr_t ipref;
   1400 	int mode;
   1401 {
   1402 	struct fs *fs = ip->i_fs;
   1403 	struct cg *cgp;
   1404 	struct buf *bp, *ibp;
   1405 	u_int8_t *inosused;
   1406 	int error, start, len, loc, map, i;
   1407 	int32_t initediblk;
   1408 	struct ufs2_dinode *dp2;
   1409 #ifdef FFS_EI
   1410 	const int needswap = UFS_FSNEEDSWAP(fs);
   1411 #endif
   1412 
   1413 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1414 		return (0);
   1415 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1416 		(int)fs->fs_cgsize, NOCRED, &bp);
   1417 	if (error) {
   1418 		brelse(bp);
   1419 		return (0);
   1420 	}
   1421 	cgp = (struct cg *)bp->b_data;
   1422 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1423 		brelse(bp);
   1424 		return (0);
   1425 	}
   1426 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1427 	cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1428 	inosused = cg_inosused(cgp, needswap);
   1429 	if (ipref) {
   1430 		ipref %= fs->fs_ipg;
   1431 		if (isclr(inosused, ipref))
   1432 			goto gotit;
   1433 	}
   1434 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1435 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1436 		NBBY);
   1437 	loc = skpc(0xff, len, &inosused[start]);
   1438 	if (loc == 0) {
   1439 		len = start + 1;
   1440 		start = 0;
   1441 		loc = skpc(0xff, len, &inosused[0]);
   1442 		if (loc == 0) {
   1443 			printf("cg = %d, irotor = %d, fs = %s\n",
   1444 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1445 				fs->fs_fsmnt);
   1446 			panic("ffs_nodealloccg: map corrupted");
   1447 			/* NOTREACHED */
   1448 		}
   1449 	}
   1450 	i = start + len - loc;
   1451 	map = inosused[i];
   1452 	ipref = i * NBBY;
   1453 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1454 		if ((map & i) == 0) {
   1455 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1456 			goto gotit;
   1457 		}
   1458 	}
   1459 	printf("fs = %s\n", fs->fs_fsmnt);
   1460 	panic("ffs_nodealloccg: block not in map");
   1461 	/* NOTREACHED */
   1462 gotit:
   1463 	if (DOINGSOFTDEP(ITOV(ip)))
   1464 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1465 	setbit(inosused, ipref);
   1466 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1467 	fs->fs_cstotal.cs_nifree--;
   1468 	fs->fs_cs(fs, cg).cs_nifree--;
   1469 	fs->fs_fmod = 1;
   1470 	if ((mode & IFMT) == IFDIR) {
   1471 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1472 		fs->fs_cstotal.cs_ndir++;
   1473 		fs->fs_cs(fs, cg).cs_ndir++;
   1474 	}
   1475 	/*
   1476 	 * Check to see if we need to initialize more inodes.
   1477 	 */
   1478 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1479 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1480 	    ipref + INOPB(fs) > initediblk &&
   1481 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1482 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1483 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1484 		    (int)fs->fs_bsize, 0, 0);
   1485 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1486 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1487 		    for (i = 0; i < INOPB(fs); i++) {
   1488 			/*
   1489 			 * Don't bother to swap, it's supposed to be
   1490 			 * random, after all.
   1491 			 */
   1492 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1493 			dp2++;
   1494 		}
   1495 		bawrite(ibp);
   1496 		initediblk += INOPB(fs);
   1497 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1498 	}
   1499 
   1500 	bdwrite(bp);
   1501 	return (cg * fs->fs_ipg + ipref);
   1502 }
   1503 
   1504 /*
   1505  * Free a block or fragment.
   1506  *
   1507  * The specified block or fragment is placed back in the
   1508  * free map. If a fragment is deallocated, a possible
   1509  * block reassembly is checked.
   1510  */
   1511 void
   1512 ffs_blkfree(ip, bno, size)
   1513 	struct inode *ip;
   1514 	daddr_t bno;
   1515 	long size;
   1516 {
   1517 	struct fs *fs = ip->i_fs;
   1518 	struct cg *cgp;
   1519 	struct buf *bp;
   1520 	int32_t fragno, cgbno;
   1521 	int i, error, cg, blk, frags, bbase;
   1522 	u_int8_t *blksfree;
   1523 	const int needswap = UFS_FSNEEDSWAP(fs);
   1524 
   1525 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1526 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1527 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1528 		       "size = %ld, fs = %s\n",
   1529 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1530 		panic("blkfree: bad size");
   1531 	}
   1532 	cg = dtog(fs, bno);
   1533 	if (bno >= fs->fs_size) {
   1534 		printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
   1535 		ffs_fserr(fs, ip->i_uid, "bad block");
   1536 		return;
   1537 	}
   1538 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1539 		(int)fs->fs_cgsize, NOCRED, &bp);
   1540 	if (error) {
   1541 		brelse(bp);
   1542 		return;
   1543 	}
   1544 	cgp = (struct cg *)bp->b_data;
   1545 	if (!cg_chkmagic(cgp, needswap)) {
   1546 		brelse(bp);
   1547 		return;
   1548 	}
   1549 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1550 	cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1551 	cgbno = dtogd(fs, bno);
   1552 	blksfree = cg_blksfree(cgp, needswap);
   1553 	if (size == fs->fs_bsize) {
   1554 		fragno = fragstoblks(fs, cgbno);
   1555 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1556 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1557 			    ip->i_dev, bno, fs->fs_fsmnt);
   1558 			panic("blkfree: freeing free block");
   1559 		}
   1560 		ffs_setblock(fs, blksfree, fragno);
   1561 		ffs_clusteracct(fs, cgp, fragno, 1);
   1562 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1563 		fs->fs_cstotal.cs_nbfree++;
   1564 		fs->fs_cs(fs, cg).cs_nbfree++;
   1565 	} else {
   1566 		bbase = cgbno - fragnum(fs, cgbno);
   1567 		/*
   1568 		 * decrement the counts associated with the old frags
   1569 		 */
   1570 		blk = blkmap(fs, blksfree, bbase);
   1571 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1572 		/*
   1573 		 * deallocate the fragment
   1574 		 */
   1575 		frags = numfrags(fs, size);
   1576 		for (i = 0; i < frags; i++) {
   1577 			if (isset(blksfree, cgbno + i)) {
   1578 				printf("dev = 0x%x, block = %" PRId64
   1579 				       ", fs = %s\n",
   1580 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1581 				panic("blkfree: freeing free frag");
   1582 			}
   1583 			setbit(blksfree, cgbno + i);
   1584 		}
   1585 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1586 		fs->fs_cstotal.cs_nffree += i;
   1587 		fs->fs_cs(fs, cg).cs_nffree += i;
   1588 		/*
   1589 		 * add back in counts associated with the new frags
   1590 		 */
   1591 		blk = blkmap(fs, blksfree, bbase);
   1592 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1593 		/*
   1594 		 * if a complete block has been reassembled, account for it
   1595 		 */
   1596 		fragno = fragstoblks(fs, bbase);
   1597 		if (ffs_isblock(fs, blksfree, fragno)) {
   1598 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1599 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1600 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1601 			ffs_clusteracct(fs, cgp, fragno, 1);
   1602 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1603 			fs->fs_cstotal.cs_nbfree++;
   1604 			fs->fs_cs(fs, cg).cs_nbfree++;
   1605 		}
   1606 	}
   1607 	fs->fs_fmod = 1;
   1608 	bdwrite(bp);
   1609 }
   1610 
   1611 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1612 #ifdef XXXUBC
   1613 /*
   1614  * Verify allocation of a block or fragment. Returns true if block or
   1615  * fragment is allocated, false if it is free.
   1616  */
   1617 static int
   1618 ffs_checkblk(ip, bno, size)
   1619 	struct inode *ip;
   1620 	daddr_t bno;
   1621 	long size;
   1622 {
   1623 	struct fs *fs;
   1624 	struct cg *cgp;
   1625 	struct buf *bp;
   1626 	int i, error, frags, free;
   1627 
   1628 	fs = ip->i_fs;
   1629 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1630 		printf("bsize = %d, size = %ld, fs = %s\n",
   1631 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1632 		panic("checkblk: bad size");
   1633 	}
   1634 	if (bno >= fs->fs_size)
   1635 		panic("checkblk: bad block %d", bno);
   1636 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1637 		(int)fs->fs_cgsize, NOCRED, &bp);
   1638 	if (error) {
   1639 		brelse(bp);
   1640 		return 0;
   1641 	}
   1642 	cgp = (struct cg *)bp->b_data;
   1643 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1644 		brelse(bp);
   1645 		return 0;
   1646 	}
   1647 	bno = dtogd(fs, bno);
   1648 	if (size == fs->fs_bsize) {
   1649 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1650 			fragstoblks(fs, bno));
   1651 	} else {
   1652 		frags = numfrags(fs, size);
   1653 		for (free = 0, i = 0; i < frags; i++)
   1654 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1655 				free++;
   1656 		if (free != 0 && free != frags)
   1657 			panic("checkblk: partially free fragment");
   1658 	}
   1659 	brelse(bp);
   1660 	return (!free);
   1661 }
   1662 #endif /* XXXUBC */
   1663 #endif /* DIAGNOSTIC */
   1664 
   1665 /*
   1666  * Free an inode.
   1667  */
   1668 int
   1669 ffs_vfree(v)
   1670 	void *v;
   1671 {
   1672 	struct vop_vfree_args /* {
   1673 		struct vnode *a_pvp;
   1674 		ino_t a_ino;
   1675 		int a_mode;
   1676 	} */ *ap = v;
   1677 
   1678 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1679 		softdep_freefile(ap);
   1680 		return (0);
   1681 	}
   1682 	return (ffs_freefile(ap));
   1683 }
   1684 
   1685 /*
   1686  * Do the actual free operation.
   1687  * The specified inode is placed back in the free map.
   1688  */
   1689 int
   1690 ffs_freefile(v)
   1691 	void *v;
   1692 {
   1693 	struct vop_vfree_args /* {
   1694 		struct vnode *a_pvp;
   1695 		ino_t a_ino;
   1696 		int a_mode;
   1697 	} */ *ap = v;
   1698 	struct cg *cgp;
   1699 	struct inode *pip = VTOI(ap->a_pvp);
   1700 	struct fs *fs = pip->i_fs;
   1701 	ino_t ino = ap->a_ino;
   1702 	struct buf *bp;
   1703 	int error, cg;
   1704 	u_int8_t *inosused;
   1705 #ifdef FFS_EI
   1706 	const int needswap = UFS_FSNEEDSWAP(fs);
   1707 #endif
   1708 
   1709 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1710 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
   1711 		    pip->i_dev, ino, fs->fs_fsmnt);
   1712 	cg = ino_to_cg(fs, ino);
   1713 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1714 		(int)fs->fs_cgsize, NOCRED, &bp);
   1715 	if (error) {
   1716 		brelse(bp);
   1717 		return (error);
   1718 	}
   1719 	cgp = (struct cg *)bp->b_data;
   1720 	if (!cg_chkmagic(cgp, needswap)) {
   1721 		brelse(bp);
   1722 		return (0);
   1723 	}
   1724 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1725 	cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1726 	inosused = cg_inosused(cgp, needswap);
   1727 	ino %= fs->fs_ipg;
   1728 	if (isclr(inosused, ino)) {
   1729 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1730 		    pip->i_dev, ino, fs->fs_fsmnt);
   1731 		if (fs->fs_ronly == 0)
   1732 			panic("ifree: freeing free inode");
   1733 	}
   1734 	clrbit(inosused, ino);
   1735 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1736 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1737 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1738 	fs->fs_cstotal.cs_nifree++;
   1739 	fs->fs_cs(fs, cg).cs_nifree++;
   1740 	if ((ap->a_mode & IFMT) == IFDIR) {
   1741 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1742 		fs->fs_cstotal.cs_ndir--;
   1743 		fs->fs_cs(fs, cg).cs_ndir--;
   1744 	}
   1745 	fs->fs_fmod = 1;
   1746 	bdwrite(bp);
   1747 	return (0);
   1748 }
   1749 
   1750 /*
   1751  * Find a block of the specified size in the specified cylinder group.
   1752  *
   1753  * It is a panic if a request is made to find a block if none are
   1754  * available.
   1755  */
   1756 static int32_t
   1757 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1758 	struct fs *fs;
   1759 	struct cg *cgp;
   1760 	daddr_t bpref;
   1761 	int allocsiz;
   1762 {
   1763 	int32_t bno;
   1764 	int start, len, loc, i;
   1765 	int blk, field, subfield, pos;
   1766 	int ostart, olen;
   1767 	u_int8_t *blksfree;
   1768 #ifdef FFS_EI
   1769 	const int needswap = UFS_FSNEEDSWAP(fs);
   1770 #endif
   1771 
   1772 	/*
   1773 	 * find the fragment by searching through the free block
   1774 	 * map for an appropriate bit pattern
   1775 	 */
   1776 	if (bpref)
   1777 		start = dtogd(fs, bpref) / NBBY;
   1778 	else
   1779 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1780 	blksfree = cg_blksfree(cgp, needswap);
   1781 	len = howmany(fs->fs_fpg, NBBY) - start;
   1782 	ostart = start;
   1783 	olen = len;
   1784 	loc = scanc((u_int)len,
   1785 		(const u_char *)&blksfree[start],
   1786 		(const u_char *)fragtbl[fs->fs_frag],
   1787 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1788 	if (loc == 0) {
   1789 		len = start + 1;
   1790 		start = 0;
   1791 		loc = scanc((u_int)len,
   1792 			(const u_char *)&blksfree[0],
   1793 			(const u_char *)fragtbl[fs->fs_frag],
   1794 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1795 		if (loc == 0) {
   1796 			printf("start = %d, len = %d, fs = %s\n",
   1797 			    ostart, olen, fs->fs_fsmnt);
   1798 			printf("offset=%d %ld\n",
   1799 				ufs_rw32(cgp->cg_freeoff, needswap),
   1800 				(long)blksfree - (long)cgp);
   1801 			printf("cg %d\n", cgp->cg_cgx);
   1802 			panic("ffs_alloccg: map corrupted");
   1803 			/* NOTREACHED */
   1804 		}
   1805 	}
   1806 	bno = (start + len - loc) * NBBY;
   1807 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1808 	/*
   1809 	 * found the byte in the map
   1810 	 * sift through the bits to find the selected frag
   1811 	 */
   1812 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1813 		blk = blkmap(fs, blksfree, bno);
   1814 		blk <<= 1;
   1815 		field = around[allocsiz];
   1816 		subfield = inside[allocsiz];
   1817 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1818 			if ((blk & field) == subfield)
   1819 				return (bno + pos);
   1820 			field <<= 1;
   1821 			subfield <<= 1;
   1822 		}
   1823 	}
   1824 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1825 	panic("ffs_alloccg: block not in map");
   1826 	/* return (-1); */
   1827 }
   1828 
   1829 /*
   1830  * Update the cluster map because of an allocation or free.
   1831  *
   1832  * Cnt == 1 means free; cnt == -1 means allocating.
   1833  */
   1834 void
   1835 ffs_clusteracct(fs, cgp, blkno, cnt)
   1836 	struct fs *fs;
   1837 	struct cg *cgp;
   1838 	int32_t blkno;
   1839 	int cnt;
   1840 {
   1841 	int32_t *sump;
   1842 	int32_t *lp;
   1843 	u_char *freemapp, *mapp;
   1844 	int i, start, end, forw, back, map, bit;
   1845 #ifdef FFS_EI
   1846 	const int needswap = UFS_FSNEEDSWAP(fs);
   1847 #endif
   1848 
   1849 	if (fs->fs_contigsumsize <= 0)
   1850 		return;
   1851 	freemapp = cg_clustersfree(cgp, needswap);
   1852 	sump = cg_clustersum(cgp, needswap);
   1853 	/*
   1854 	 * Allocate or clear the actual block.
   1855 	 */
   1856 	if (cnt > 0)
   1857 		setbit(freemapp, blkno);
   1858 	else
   1859 		clrbit(freemapp, blkno);
   1860 	/*
   1861 	 * Find the size of the cluster going forward.
   1862 	 */
   1863 	start = blkno + 1;
   1864 	end = start + fs->fs_contigsumsize;
   1865 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1866 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1867 	mapp = &freemapp[start / NBBY];
   1868 	map = *mapp++;
   1869 	bit = 1 << (start % NBBY);
   1870 	for (i = start; i < end; i++) {
   1871 		if ((map & bit) == 0)
   1872 			break;
   1873 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1874 			bit <<= 1;
   1875 		} else {
   1876 			map = *mapp++;
   1877 			bit = 1;
   1878 		}
   1879 	}
   1880 	forw = i - start;
   1881 	/*
   1882 	 * Find the size of the cluster going backward.
   1883 	 */
   1884 	start = blkno - 1;
   1885 	end = start - fs->fs_contigsumsize;
   1886 	if (end < 0)
   1887 		end = -1;
   1888 	mapp = &freemapp[start / NBBY];
   1889 	map = *mapp--;
   1890 	bit = 1 << (start % NBBY);
   1891 	for (i = start; i > end; i--) {
   1892 		if ((map & bit) == 0)
   1893 			break;
   1894 		if ((i & (NBBY - 1)) != 0) {
   1895 			bit >>= 1;
   1896 		} else {
   1897 			map = *mapp--;
   1898 			bit = 1 << (NBBY - 1);
   1899 		}
   1900 	}
   1901 	back = start - i;
   1902 	/*
   1903 	 * Account for old cluster and the possibly new forward and
   1904 	 * back clusters.
   1905 	 */
   1906 	i = back + forw + 1;
   1907 	if (i > fs->fs_contigsumsize)
   1908 		i = fs->fs_contigsumsize;
   1909 	ufs_add32(sump[i], cnt, needswap);
   1910 	if (back > 0)
   1911 		ufs_add32(sump[back], -cnt, needswap);
   1912 	if (forw > 0)
   1913 		ufs_add32(sump[forw], -cnt, needswap);
   1914 
   1915 	/*
   1916 	 * Update cluster summary information.
   1917 	 */
   1918 	lp = &sump[fs->fs_contigsumsize];
   1919 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1920 		if (ufs_rw32(*lp--, needswap) > 0)
   1921 			break;
   1922 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1923 }
   1924 
   1925 /*
   1926  * Fserr prints the name of a file system with an error diagnostic.
   1927  *
   1928  * The form of the error message is:
   1929  *	fs: error message
   1930  */
   1931 static void
   1932 ffs_fserr(fs, uid, cp)
   1933 	struct fs *fs;
   1934 	u_int uid;
   1935 	char *cp;
   1936 {
   1937 
   1938 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1939 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1940 }
   1941