Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.8
      1 /*	$NetBSD: ffs_alloc.c,v 1.8 1995/07/19 15:47:36 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/buf.h>
     41 #include <sys/proc.h>
     42 #include <sys/vnode.h>
     43 #include <sys/mount.h>
     44 #include <sys/kernel.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <vm/vm.h>
     48 
     49 #include <ufs/ufs/quota.h>
     50 #include <ufs/ufs/inode.h>
     51 
     52 #include <ufs/ffs/fs.h>
     53 #include <ufs/ffs/ffs_extern.h>
     54 
     55 extern u_long nextgennumber;
     56 
     57 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     58 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     59 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     60 static ino_t	ffs_dirpref __P((struct fs *));
     61 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     62 static void	ffs_fserr __P((struct fs *, u_int, char *));
     63 static u_long	ffs_hashalloc
     64 		    __P((struct inode *, int, long, int, u_int32_t (*)()));
     65 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     66 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     67 
     68 /*
     69  * Allocate a block in the file system.
     70  *
     71  * The size of the requested block is given, which must be some
     72  * multiple of fs_fsize and <= fs_bsize.
     73  * A preference may be optionally specified. If a preference is given
     74  * the following hierarchy is used to allocate a block:
     75  *   1) allocate the requested block.
     76  *   2) allocate a rotationally optimal block in the same cylinder.
     77  *   3) allocate a block in the same cylinder group.
     78  *   4) quadradically rehash into other cylinder groups, until an
     79  *      available block is located.
     80  * If no block preference is given the following heirarchy is used
     81  * to allocate a block:
     82  *   1) allocate a block in the cylinder group that contains the
     83  *      inode for the file.
     84  *   2) quadradically rehash into other cylinder groups, until an
     85  *      available block is located.
     86  */
     87 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     88 	register struct inode *ip;
     89 	daddr_t lbn, bpref;
     90 	int size;
     91 	struct ucred *cred;
     92 	daddr_t *bnp;
     93 {
     94 	register struct fs *fs;
     95 	daddr_t bno;
     96 	int cg, error;
     97 
     98 	*bnp = 0;
     99 	fs = ip->i_fs;
    100 #ifdef DIAGNOSTIC
    101 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    102 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    103 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    104 		panic("ffs_alloc: bad size");
    105 	}
    106 	if (cred == NOCRED)
    107 		panic("ffs_alloc: missing credential\n");
    108 #endif /* DIAGNOSTIC */
    109 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    110 		goto nospace;
    111 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    112 		goto nospace;
    113 #ifdef QUOTA
    114 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
    115 		return (error);
    116 #endif
    117 	if (bpref >= fs->fs_size)
    118 		bpref = 0;
    119 	if (bpref == 0)
    120 		cg = ino_to_cg(fs, ip->i_number);
    121 	else
    122 		cg = dtog(fs, bpref);
    123 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    124 	    (u_int32_t (*)())ffs_alloccg);
    125 	if (bno > 0) {
    126 		ip->i_blocks += btodb(size);
    127 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    128 		*bnp = bno;
    129 		return (0);
    130 	}
    131 #ifdef QUOTA
    132 	/*
    133 	 * Restore user's disk quota because allocation failed.
    134 	 */
    135 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    136 #endif
    137 nospace:
    138 	ffs_fserr(fs, cred->cr_uid, "file system full");
    139 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    140 	return (ENOSPC);
    141 }
    142 
    143 /*
    144  * Reallocate a fragment to a bigger size
    145  *
    146  * The number and size of the old block is given, and a preference
    147  * and new size is also specified. The allocator attempts to extend
    148  * the original block. Failing that, the regular block allocator is
    149  * invoked to get an appropriate block.
    150  */
    151 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    152 	register struct inode *ip;
    153 	daddr_t lbprev;
    154 	daddr_t bpref;
    155 	int osize, nsize;
    156 	struct ucred *cred;
    157 	struct buf **bpp;
    158 {
    159 	register struct fs *fs;
    160 	struct buf *bp;
    161 	int cg, request, error;
    162 	daddr_t bprev, bno;
    163 
    164 	*bpp = 0;
    165 	fs = ip->i_fs;
    166 #ifdef DIAGNOSTIC
    167 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    168 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    169 		printf(
    170 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    171 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    172 		panic("ffs_realloccg: bad size");
    173 	}
    174 	if (cred == NOCRED)
    175 		panic("ffs_realloccg: missing credential\n");
    176 #endif /* DIAGNOSTIC */
    177 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    178 		goto nospace;
    179 	if ((bprev = ip->i_db[lbprev]) == 0) {
    180 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    181 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    182 		panic("ffs_realloccg: bad bprev");
    183 	}
    184 	/*
    185 	 * Allocate the extra space in the buffer.
    186 	 */
    187 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
    188 		brelse(bp);
    189 		return (error);
    190 	}
    191 #ifdef QUOTA
    192 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
    193 		brelse(bp);
    194 		return (error);
    195 	}
    196 #endif
    197 	/*
    198 	 * Check for extension in the existing location.
    199 	 */
    200 	cg = dtog(fs, bprev);
    201 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
    202 		if (bp->b_blkno != fsbtodb(fs, bno))
    203 			panic("bad blockno");
    204 		ip->i_blocks += btodb(nsize - osize);
    205 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    206 		allocbuf(bp, nsize);
    207 		bp->b_flags |= B_DONE;
    208 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    209 		*bpp = bp;
    210 		return (0);
    211 	}
    212 	/*
    213 	 * Allocate a new disk location.
    214 	 */
    215 	if (bpref >= fs->fs_size)
    216 		bpref = 0;
    217 	switch ((int)fs->fs_optim) {
    218 	case FS_OPTSPACE:
    219 		/*
    220 		 * Allocate an exact sized fragment. Although this makes
    221 		 * best use of space, we will waste time relocating it if
    222 		 * the file continues to grow. If the fragmentation is
    223 		 * less than half of the minimum free reserve, we choose
    224 		 * to begin optimizing for time.
    225 		 */
    226 		request = nsize;
    227 		if (fs->fs_minfree < 5 ||
    228 		    fs->fs_cstotal.cs_nffree >
    229 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    230 			break;
    231 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    232 			fs->fs_fsmnt);
    233 		fs->fs_optim = FS_OPTTIME;
    234 		break;
    235 	case FS_OPTTIME:
    236 		/*
    237 		 * At this point we have discovered a file that is trying to
    238 		 * grow a small fragment to a larger fragment. To save time,
    239 		 * we allocate a full sized block, then free the unused portion.
    240 		 * If the file continues to grow, the `ffs_fragextend' call
    241 		 * above will be able to grow it in place without further
    242 		 * copying. If aberrant programs cause disk fragmentation to
    243 		 * grow within 2% of the free reserve, we choose to begin
    244 		 * optimizing for space.
    245 		 */
    246 		request = fs->fs_bsize;
    247 		if (fs->fs_cstotal.cs_nffree <
    248 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    249 			break;
    250 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    251 			fs->fs_fsmnt);
    252 		fs->fs_optim = FS_OPTSPACE;
    253 		break;
    254 	default:
    255 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    256 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    257 		panic("ffs_realloccg: bad optim");
    258 		/* NOTREACHED */
    259 	}
    260 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    261 	    (u_int32_t (*)())ffs_alloccg);
    262 	if (bno > 0) {
    263 		bp->b_blkno = fsbtodb(fs, bno);
    264 		(void) vnode_pager_uncache(ITOV(ip));
    265 		ffs_blkfree(ip, bprev, (long)osize);
    266 		if (nsize < request)
    267 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    268 			    (long)(request - nsize));
    269 		ip->i_blocks += btodb(nsize - osize);
    270 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271 		allocbuf(bp, nsize);
    272 		bp->b_flags |= B_DONE;
    273 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    274 		*bpp = bp;
    275 		return (0);
    276 	}
    277 #ifdef QUOTA
    278 	/*
    279 	 * Restore user's disk quota because allocation failed.
    280 	 */
    281 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    282 #endif
    283 	brelse(bp);
    284 nospace:
    285 	/*
    286 	 * no space available
    287 	 */
    288 	ffs_fserr(fs, cred->cr_uid, "file system full");
    289 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290 	return (ENOSPC);
    291 }
    292 
    293 /*
    294  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    295  *
    296  * The vnode and an array of buffer pointers for a range of sequential
    297  * logical blocks to be made contiguous is given. The allocator attempts
    298  * to find a range of sequential blocks starting as close as possible to
    299  * an fs_rotdelay offset from the end of the allocation for the logical
    300  * block immediately preceeding the current range. If successful, the
    301  * physical block numbers in the buffer pointers and in the inode are
    302  * changed to reflect the new allocation. If unsuccessful, the allocation
    303  * is left unchanged. The success in doing the reallocation is returned.
    304  * Note that the error return is not reflected back to the user. Rather
    305  * the previous block allocation will be used.
    306  */
    307 #ifdef DEBUG
    308 #include <sys/sysctl.h>
    309 int doasyncfree = 1;
    310 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    311 int prtrealloc = 0;
    312 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    313 #else
    314 #define doasyncfree 1
    315 #endif
    316 
    317 int
    318 ffs_reallocblks(ap)
    319 	struct vop_reallocblks_args /* {
    320 		struct vnode *a_vp;
    321 		struct cluster_save *a_buflist;
    322 	} */ *ap;
    323 {
    324 	struct fs *fs;
    325 	struct inode *ip;
    326 	struct vnode *vp;
    327 	struct buf *sbp, *ebp;
    328 	daddr_t *bap, *sbap, *ebap;
    329 	struct cluster_save *buflist;
    330 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
    331 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    332 	int i, len, start_lvl, end_lvl, pref, ssize;
    333 
    334 	vp = ap->a_vp;
    335 	ip = VTOI(vp);
    336 	fs = ip->i_fs;
    337 	if (fs->fs_contigsumsize <= 0)
    338 		return (ENOSPC);
    339 	buflist = ap->a_buflist;
    340 	len = buflist->bs_nchildren;
    341 	start_lbn = buflist->bs_children[0]->b_lblkno;
    342 	end_lbn = start_lbn + len - 1;
    343 #ifdef DIAGNOSTIC
    344 	for (i = 1; i < len; i++)
    345 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    346 			panic("ffs_reallocblks: non-cluster");
    347 #endif
    348 	/*
    349 	 * If the latest allocation is in a new cylinder group, assume that
    350 	 * the filesystem has decided to move and do not force it back to
    351 	 * the previous cylinder group.
    352 	 */
    353 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    354 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    355 		return (ENOSPC);
    356 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    357 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    358 		return (ENOSPC);
    359 	/*
    360 	 * Get the starting offset and block map for the first block.
    361 	 */
    362 	if (start_lvl == 0) {
    363 		sbap = &ip->i_db[0];
    364 		soff = start_lbn;
    365 	} else {
    366 		idp = &start_ap[start_lvl - 1];
    367 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    368 			brelse(sbp);
    369 			return (ENOSPC);
    370 		}
    371 		sbap = (daddr_t *)sbp->b_data;
    372 		soff = idp->in_off;
    373 	}
    374 	/*
    375 	 * Find the preferred location for the cluster.
    376 	 */
    377 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    378 	/*
    379 	 * If the block range spans two block maps, get the second map.
    380 	 */
    381 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    382 		ssize = len;
    383 	} else {
    384 #ifdef DIAGNOSTIC
    385 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    386 			panic("ffs_reallocblk: start == end");
    387 #endif
    388 		ssize = len - (idp->in_off + 1);
    389 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    390 			goto fail;
    391 		ebap = (daddr_t *)ebp->b_data;
    392 	}
    393 	/*
    394 	 * Search the block map looking for an allocation of the desired size.
    395 	 */
    396 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    397 	    len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
    398 		goto fail;
    399 	/*
    400 	 * We have found a new contiguous block.
    401 	 *
    402 	 * First we have to replace the old block pointers with the new
    403 	 * block pointers in the inode and indirect blocks associated
    404 	 * with the file.
    405 	 */
    406 #ifdef DEBUG
    407 	if (prtrealloc)
    408 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    409 		    start_lbn, end_lbn);
    410 #endif
    411 	blkno = newblk;
    412 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    413 		if (i == ssize)
    414 			bap = ebap;
    415 #ifdef DIAGNOSTIC
    416 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    417 			panic("ffs_reallocblks: alloc mismatch");
    418 #endif
    419 #ifdef DEBUG
    420 		if (prtrealloc)
    421 			printf(" %d,", *bap);
    422 #endif
    423 		*bap++ = blkno;
    424 	}
    425 	/*
    426 	 * Next we must write out the modified inode and indirect blocks.
    427 	 * For strict correctness, the writes should be synchronous since
    428 	 * the old block values may have been written to disk. In practise
    429 	 * they are almost never written, but if we are concerned about
    430 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    431 	 *
    432 	 * The test on `doasyncfree' should be changed to test a flag
    433 	 * that shows whether the associated buffers and inodes have
    434 	 * been written. The flag should be set when the cluster is
    435 	 * started and cleared whenever the buffer or inode is flushed.
    436 	 * We can then check below to see if it is set, and do the
    437 	 * synchronous write only when it has been cleared.
    438 	 */
    439 	if (sbap != &ip->i_db[0]) {
    440 		if (doasyncfree)
    441 			bdwrite(sbp);
    442 		else
    443 			bwrite(sbp);
    444 	} else {
    445 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    446 		if (!doasyncfree)
    447 			VOP_UPDATE(vp, (struct timeval *)&time,
    448 			    (struct timeval *)&time, MNT_WAIT);
    449 	}
    450 	if (ssize < len)
    451 		if (doasyncfree)
    452 			bdwrite(ebp);
    453 		else
    454 			bwrite(ebp);
    455 	/*
    456 	 * Last, free the old blocks and assign the new blocks to the buffers.
    457 	 */
    458 #ifdef DEBUG
    459 	if (prtrealloc)
    460 		printf("\n\tnew:");
    461 #endif
    462 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    463 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    464 		    fs->fs_bsize);
    465 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    466 #ifdef DEBUG
    467 		if (prtrealloc)
    468 			printf(" %d,", blkno);
    469 #endif
    470 	}
    471 #ifdef DEBUG
    472 	if (prtrealloc) {
    473 		prtrealloc--;
    474 		printf("\n");
    475 	}
    476 #endif
    477 	return (0);
    478 
    479 fail:
    480 	if (ssize < len)
    481 		brelse(ebp);
    482 	if (sbap != &ip->i_db[0])
    483 		brelse(sbp);
    484 	return (ENOSPC);
    485 }
    486 
    487 /*
    488  * Allocate an inode in the file system.
    489  *
    490  * If allocating a directory, use ffs_dirpref to select the inode.
    491  * If allocating in a directory, the following hierarchy is followed:
    492  *   1) allocate the preferred inode.
    493  *   2) allocate an inode in the same cylinder group.
    494  *   3) quadradically rehash into other cylinder groups, until an
    495  *      available inode is located.
    496  * If no inode preference is given the following heirarchy is used
    497  * to allocate an inode:
    498  *   1) allocate an inode in cylinder group 0.
    499  *   2) quadradically rehash into other cylinder groups, until an
    500  *      available inode is located.
    501  */
    502 ffs_valloc(ap)
    503 	struct vop_valloc_args /* {
    504 		struct vnode *a_pvp;
    505 		int a_mode;
    506 		struct ucred *a_cred;
    507 		struct vnode **a_vpp;
    508 	} */ *ap;
    509 {
    510 	register struct vnode *pvp = ap->a_pvp;
    511 	register struct inode *pip;
    512 	register struct fs *fs;
    513 	register struct inode *ip;
    514 	mode_t mode = ap->a_mode;
    515 	ino_t ino, ipref;
    516 	int cg, error;
    517 
    518 	*ap->a_vpp = NULL;
    519 	pip = VTOI(pvp);
    520 	fs = pip->i_fs;
    521 	if (fs->fs_cstotal.cs_nifree == 0)
    522 		goto noinodes;
    523 
    524 	if ((mode & IFMT) == IFDIR)
    525 		ipref = ffs_dirpref(fs);
    526 	else
    527 		ipref = pip->i_number;
    528 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    529 		ipref = 0;
    530 	cg = ino_to_cg(fs, ipref);
    531 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    532 	if (ino == 0)
    533 		goto noinodes;
    534 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    535 	if (error) {
    536 		VOP_VFREE(pvp, ino, mode);
    537 		return (error);
    538 	}
    539 	ip = VTOI(*ap->a_vpp);
    540 	if (ip->i_mode) {
    541 		printf("mode = 0%o, inum = %d, fs = %s\n",
    542 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    543 		panic("ffs_valloc: dup alloc");
    544 	}
    545 	if (ip->i_blocks) {				/* XXX */
    546 		printf("free inode %s/%d had %d blocks\n",
    547 		    fs->fs_fsmnt, ino, ip->i_blocks);
    548 		ip->i_blocks = 0;
    549 	}
    550 	ip->i_flags = 0;
    551 	/*
    552 	 * Set up a new generation number for this inode.
    553 	 */
    554 	if (++nextgennumber < (u_long)time.tv_sec)
    555 		nextgennumber = time.tv_sec;
    556 	ip->i_gen = nextgennumber;
    557 	return (0);
    558 noinodes:
    559 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    560 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    561 	return (ENOSPC);
    562 }
    563 
    564 /*
    565  * Find a cylinder to place a directory.
    566  *
    567  * The policy implemented by this algorithm is to select from
    568  * among those cylinder groups with above the average number of
    569  * free inodes, the one with the smallest number of directories.
    570  */
    571 static ino_t
    572 ffs_dirpref(fs)
    573 	register struct fs *fs;
    574 {
    575 	int cg, minndir, mincg, avgifree;
    576 
    577 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    578 	minndir = fs->fs_ipg;
    579 	mincg = 0;
    580 	for (cg = 0; cg < fs->fs_ncg; cg++)
    581 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    582 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    583 			mincg = cg;
    584 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    585 		}
    586 	return ((ino_t)(fs->fs_ipg * mincg));
    587 }
    588 
    589 /*
    590  * Select the desired position for the next block in a file.  The file is
    591  * logically divided into sections. The first section is composed of the
    592  * direct blocks. Each additional section contains fs_maxbpg blocks.
    593  *
    594  * If no blocks have been allocated in the first section, the policy is to
    595  * request a block in the same cylinder group as the inode that describes
    596  * the file. If no blocks have been allocated in any other section, the
    597  * policy is to place the section in a cylinder group with a greater than
    598  * average number of free blocks.  An appropriate cylinder group is found
    599  * by using a rotor that sweeps the cylinder groups. When a new group of
    600  * blocks is needed, the sweep begins in the cylinder group following the
    601  * cylinder group from which the previous allocation was made. The sweep
    602  * continues until a cylinder group with greater than the average number
    603  * of free blocks is found. If the allocation is for the first block in an
    604  * indirect block, the information on the previous allocation is unavailable;
    605  * here a best guess is made based upon the logical block number being
    606  * allocated.
    607  *
    608  * If a section is already partially allocated, the policy is to
    609  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    610  * contiguous blocks and the beginning of the next is physically separated
    611  * so that the disk head will be in transit between them for at least
    612  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    613  * schedule another I/O transfer.
    614  */
    615 daddr_t
    616 ffs_blkpref(ip, lbn, indx, bap)
    617 	struct inode *ip;
    618 	daddr_t lbn;
    619 	int indx;
    620 	daddr_t *bap;
    621 {
    622 	register struct fs *fs;
    623 	register int cg;
    624 	int avgbfree, startcg;
    625 	daddr_t nextblk;
    626 
    627 	fs = ip->i_fs;
    628 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    629 		if (lbn < NDADDR) {
    630 			cg = ino_to_cg(fs, ip->i_number);
    631 			return (fs->fs_fpg * cg + fs->fs_frag);
    632 		}
    633 		/*
    634 		 * Find a cylinder with greater than average number of
    635 		 * unused data blocks.
    636 		 */
    637 		if (indx == 0 || bap[indx - 1] == 0)
    638 			startcg =
    639 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    640 		else
    641 			startcg = dtog(fs, bap[indx - 1]) + 1;
    642 		startcg %= fs->fs_ncg;
    643 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    644 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    645 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    646 				fs->fs_cgrotor = cg;
    647 				return (fs->fs_fpg * cg + fs->fs_frag);
    648 			}
    649 		for (cg = 0; cg <= startcg; cg++)
    650 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    651 				fs->fs_cgrotor = cg;
    652 				return (fs->fs_fpg * cg + fs->fs_frag);
    653 			}
    654 		return (NULL);
    655 	}
    656 	/*
    657 	 * One or more previous blocks have been laid out. If less
    658 	 * than fs_maxcontig previous blocks are contiguous, the
    659 	 * next block is requested contiguously, otherwise it is
    660 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    661 	 */
    662 	nextblk = bap[indx - 1] + fs->fs_frag;
    663 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    664 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    665 		return (nextblk);
    666 	if (fs->fs_rotdelay != 0)
    667 		/*
    668 		 * Here we convert ms of delay to frags as:
    669 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    670 		 *	((sect/frag) * (ms/sec))
    671 		 * then round up to the next block.
    672 		 */
    673 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    674 		    (NSPF(fs) * 1000), fs->fs_frag);
    675 	return (nextblk);
    676 }
    677 
    678 /*
    679  * Implement the cylinder overflow algorithm.
    680  *
    681  * The policy implemented by this algorithm is:
    682  *   1) allocate the block in its requested cylinder group.
    683  *   2) quadradically rehash on the cylinder group number.
    684  *   3) brute force search for a free block.
    685  */
    686 /*VARARGS5*/
    687 static u_long
    688 ffs_hashalloc(ip, cg, pref, size, allocator)
    689 	struct inode *ip;
    690 	int cg;
    691 	long pref;
    692 	int size;	/* size for data blocks, mode for inodes */
    693 	u_int32_t (*allocator)();
    694 {
    695 	register struct fs *fs;
    696 	long result;
    697 	int i, icg = cg;
    698 
    699 	fs = ip->i_fs;
    700 	/*
    701 	 * 1: preferred cylinder group
    702 	 */
    703 	result = (*allocator)(ip, cg, pref, size);
    704 	if (result)
    705 		return (result);
    706 	/*
    707 	 * 2: quadratic rehash
    708 	 */
    709 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    710 		cg += i;
    711 		if (cg >= fs->fs_ncg)
    712 			cg -= fs->fs_ncg;
    713 		result = (*allocator)(ip, cg, 0, size);
    714 		if (result)
    715 			return (result);
    716 	}
    717 	/*
    718 	 * 3: brute force search
    719 	 * Note that we start at i == 2, since 0 was checked initially,
    720 	 * and 1 is always checked in the quadratic rehash.
    721 	 */
    722 	cg = (icg + 2) % fs->fs_ncg;
    723 	for (i = 2; i < fs->fs_ncg; i++) {
    724 		result = (*allocator)(ip, cg, 0, size);
    725 		if (result)
    726 			return (result);
    727 		cg++;
    728 		if (cg == fs->fs_ncg)
    729 			cg = 0;
    730 	}
    731 	return (NULL);
    732 }
    733 
    734 /*
    735  * Determine whether a fragment can be extended.
    736  *
    737  * Check to see if the necessary fragments are available, and
    738  * if they are, allocate them.
    739  */
    740 static daddr_t
    741 ffs_fragextend(ip, cg, bprev, osize, nsize)
    742 	struct inode *ip;
    743 	int cg;
    744 	long bprev;
    745 	int osize, nsize;
    746 {
    747 	register struct fs *fs;
    748 	register struct cg *cgp;
    749 	struct buf *bp;
    750 	long bno;
    751 	int frags, bbase;
    752 	int i, error;
    753 
    754 	fs = ip->i_fs;
    755 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    756 		return (NULL);
    757 	frags = numfrags(fs, nsize);
    758 	bbase = fragnum(fs, bprev);
    759 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    760 		/* cannot extend across a block boundary */
    761 		return (NULL);
    762 	}
    763 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    764 		(int)fs->fs_cgsize, NOCRED, &bp);
    765 	if (error) {
    766 		brelse(bp);
    767 		return (NULL);
    768 	}
    769 	cgp = (struct cg *)bp->b_data;
    770 	if (!cg_chkmagic(cgp)) {
    771 		brelse(bp);
    772 		return (NULL);
    773 	}
    774 	cgp->cg_time = time.tv_sec;
    775 	bno = dtogd(fs, bprev);
    776 	for (i = numfrags(fs, osize); i < frags; i++)
    777 		if (isclr(cg_blksfree(cgp), bno + i)) {
    778 			brelse(bp);
    779 			return (NULL);
    780 		}
    781 	/*
    782 	 * the current fragment can be extended
    783 	 * deduct the count on fragment being extended into
    784 	 * increase the count on the remaining fragment (if any)
    785 	 * allocate the extended piece
    786 	 */
    787 	for (i = frags; i < fs->fs_frag - bbase; i++)
    788 		if (isclr(cg_blksfree(cgp), bno + i))
    789 			break;
    790 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    791 	if (i != frags)
    792 		cgp->cg_frsum[i - frags]++;
    793 	for (i = numfrags(fs, osize); i < frags; i++) {
    794 		clrbit(cg_blksfree(cgp), bno + i);
    795 		cgp->cg_cs.cs_nffree--;
    796 		fs->fs_cstotal.cs_nffree--;
    797 		fs->fs_cs(fs, cg).cs_nffree--;
    798 	}
    799 	fs->fs_fmod = 1;
    800 	bdwrite(bp);
    801 	return (bprev);
    802 }
    803 
    804 /*
    805  * Determine whether a block can be allocated.
    806  *
    807  * Check to see if a block of the appropriate size is available,
    808  * and if it is, allocate it.
    809  */
    810 static daddr_t
    811 ffs_alloccg(ip, cg, bpref, size)
    812 	struct inode *ip;
    813 	int cg;
    814 	daddr_t bpref;
    815 	int size;
    816 {
    817 	register struct fs *fs;
    818 	register struct cg *cgp;
    819 	struct buf *bp;
    820 	register int i;
    821 	int error, bno, frags, allocsiz;
    822 
    823 	fs = ip->i_fs;
    824 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    825 		return (NULL);
    826 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    827 		(int)fs->fs_cgsize, NOCRED, &bp);
    828 	if (error) {
    829 		brelse(bp);
    830 		return (NULL);
    831 	}
    832 	cgp = (struct cg *)bp->b_data;
    833 	if (!cg_chkmagic(cgp) ||
    834 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    835 		brelse(bp);
    836 		return (NULL);
    837 	}
    838 	cgp->cg_time = time.tv_sec;
    839 	if (size == fs->fs_bsize) {
    840 		bno = ffs_alloccgblk(fs, cgp, bpref);
    841 		bdwrite(bp);
    842 		return (bno);
    843 	}
    844 	/*
    845 	 * check to see if any fragments are already available
    846 	 * allocsiz is the size which will be allocated, hacking
    847 	 * it down to a smaller size if necessary
    848 	 */
    849 	frags = numfrags(fs, size);
    850 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    851 		if (cgp->cg_frsum[allocsiz] != 0)
    852 			break;
    853 	if (allocsiz == fs->fs_frag) {
    854 		/*
    855 		 * no fragments were available, so a block will be
    856 		 * allocated, and hacked up
    857 		 */
    858 		if (cgp->cg_cs.cs_nbfree == 0) {
    859 			brelse(bp);
    860 			return (NULL);
    861 		}
    862 		bno = ffs_alloccgblk(fs, cgp, bpref);
    863 		bpref = dtogd(fs, bno);
    864 		for (i = frags; i < fs->fs_frag; i++)
    865 			setbit(cg_blksfree(cgp), bpref + i);
    866 		i = fs->fs_frag - frags;
    867 		cgp->cg_cs.cs_nffree += i;
    868 		fs->fs_cstotal.cs_nffree += i;
    869 		fs->fs_cs(fs, cg).cs_nffree += i;
    870 		fs->fs_fmod = 1;
    871 		cgp->cg_frsum[i]++;
    872 		bdwrite(bp);
    873 		return (bno);
    874 	}
    875 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    876 	if (bno < 0) {
    877 		brelse(bp);
    878 		return (NULL);
    879 	}
    880 	for (i = 0; i < frags; i++)
    881 		clrbit(cg_blksfree(cgp), bno + i);
    882 	cgp->cg_cs.cs_nffree -= frags;
    883 	fs->fs_cstotal.cs_nffree -= frags;
    884 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    885 	fs->fs_fmod = 1;
    886 	cgp->cg_frsum[allocsiz]--;
    887 	if (frags != allocsiz)
    888 		cgp->cg_frsum[allocsiz - frags]++;
    889 	bdwrite(bp);
    890 	return (cg * fs->fs_fpg + bno);
    891 }
    892 
    893 /*
    894  * Allocate a block in a cylinder group.
    895  *
    896  * This algorithm implements the following policy:
    897  *   1) allocate the requested block.
    898  *   2) allocate a rotationally optimal block in the same cylinder.
    899  *   3) allocate the next available block on the block rotor for the
    900  *      specified cylinder group.
    901  * Note that this routine only allocates fs_bsize blocks; these
    902  * blocks may be fragmented by the routine that allocates them.
    903  */
    904 static daddr_t
    905 ffs_alloccgblk(fs, cgp, bpref)
    906 	register struct fs *fs;
    907 	register struct cg *cgp;
    908 	daddr_t bpref;
    909 {
    910 	daddr_t bno, blkno;
    911 	int cylno, pos, delta;
    912 	short *cylbp;
    913 	register int i;
    914 
    915 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    916 		bpref = cgp->cg_rotor;
    917 		goto norot;
    918 	}
    919 	bpref = blknum(fs, bpref);
    920 	bpref = dtogd(fs, bpref);
    921 	/*
    922 	 * if the requested block is available, use it
    923 	 */
    924 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    925 		bno = bpref;
    926 		goto gotit;
    927 	}
    928 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
    929 		/*
    930 		 * Block layout information is not available.
    931 		 * Leaving bpref unchanged means we take the
    932 		 * next available free block following the one
    933 		 * we just allocated. Hopefully this will at
    934 		 * least hit a track cache on drives of unknown
    935 		 * geometry (e.g. SCSI).
    936 		 */
    937 		goto norot;
    938 	}
    939 	/*
    940 	 * check for a block available on the same cylinder
    941 	 */
    942 	cylno = cbtocylno(fs, bpref);
    943 	if (cg_blktot(cgp)[cylno] == 0)
    944 		goto norot;
    945 	/*
    946 	 * check the summary information to see if a block is
    947 	 * available in the requested cylinder starting at the
    948 	 * requested rotational position and proceeding around.
    949 	 */
    950 	cylbp = cg_blks(fs, cgp, cylno);
    951 	pos = cbtorpos(fs, bpref);
    952 	for (i = pos; i < fs->fs_nrpos; i++)
    953 		if (cylbp[i] > 0)
    954 			break;
    955 	if (i == fs->fs_nrpos)
    956 		for (i = 0; i < pos; i++)
    957 			if (cylbp[i] > 0)
    958 				break;
    959 	if (cylbp[i] > 0) {
    960 		/*
    961 		 * found a rotational position, now find the actual
    962 		 * block. A panic if none is actually there.
    963 		 */
    964 		pos = cylno % fs->fs_cpc;
    965 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    966 		if (fs_postbl(fs, pos)[i] == -1) {
    967 			printf("pos = %d, i = %d, fs = %s\n",
    968 			    pos, i, fs->fs_fsmnt);
    969 			panic("ffs_alloccgblk: cyl groups corrupted");
    970 		}
    971 		for (i = fs_postbl(fs, pos)[i];; ) {
    972 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    973 				bno = blkstofrags(fs, (bno + i));
    974 				goto gotit;
    975 			}
    976 			delta = fs_rotbl(fs)[i];
    977 			if (delta <= 0 ||
    978 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    979 				break;
    980 			i += delta;
    981 		}
    982 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    983 		panic("ffs_alloccgblk: can't find blk in cyl");
    984 	}
    985 norot:
    986 	/*
    987 	 * no blocks in the requested cylinder, so take next
    988 	 * available one in this cylinder group.
    989 	 */
    990 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    991 	if (bno < 0)
    992 		return (NULL);
    993 	cgp->cg_rotor = bno;
    994 gotit:
    995 	blkno = fragstoblks(fs, bno);
    996 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
    997 	ffs_clusteracct(fs, cgp, blkno, -1);
    998 	cgp->cg_cs.cs_nbfree--;
    999 	fs->fs_cstotal.cs_nbfree--;
   1000 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1001 	cylno = cbtocylno(fs, bno);
   1002 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1003 	cg_blktot(cgp)[cylno]--;
   1004 	fs->fs_fmod = 1;
   1005 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1006 }
   1007 
   1008 /*
   1009  * Determine whether a cluster can be allocated.
   1010  *
   1011  * We do not currently check for optimal rotational layout if there
   1012  * are multiple choices in the same cylinder group. Instead we just
   1013  * take the first one that we find following bpref.
   1014  */
   1015 static daddr_t
   1016 ffs_clusteralloc(ip, cg, bpref, len)
   1017 	struct inode *ip;
   1018 	int cg;
   1019 	daddr_t bpref;
   1020 	int len;
   1021 {
   1022 	register struct fs *fs;
   1023 	register struct cg *cgp;
   1024 	struct buf *bp;
   1025 	int i, run, bno, bit, map;
   1026 	u_char *mapp;
   1027 	int32_t *lp;
   1028 
   1029 	fs = ip->i_fs;
   1030 	if (fs->fs_maxcluster[cg] < len)
   1031 		return (NULL);
   1032 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1033 	    NOCRED, &bp))
   1034 		goto fail;
   1035 	cgp = (struct cg *)bp->b_data;
   1036 	if (!cg_chkmagic(cgp))
   1037 		goto fail;
   1038 	/*
   1039 	 * Check to see if a cluster of the needed size (or bigger) is
   1040 	 * available in this cylinder group.
   1041 	 */
   1042 	lp = &cg_clustersum(cgp)[len];
   1043 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1044 		if (*lp++ > 0)
   1045 			break;
   1046 	if (i > fs->fs_contigsumsize) {
   1047 		/*
   1048 		 * This is the first time looking for a cluster in this
   1049 		 * cylinder group. Update the cluster summary information
   1050 		 * to reflect the true maximum sized cluster so that
   1051 		 * future cluster allocation requests can avoid reading
   1052 		 * the cylinder group map only to find no clusters.
   1053 		 */
   1054 		lp = &cg_clustersum(cgp)[len - 1];
   1055 		for (i = len - 1; i > 0; i--)
   1056 			if (*lp-- > 0)
   1057 				break;
   1058 		fs->fs_maxcluster[cg] = i;
   1059 		goto fail;
   1060 	}
   1061 	/*
   1062 	 * Search the cluster map to find a big enough cluster.
   1063 	 * We take the first one that we find, even if it is larger
   1064 	 * than we need as we prefer to get one close to the previous
   1065 	 * block allocation. We do not search before the current
   1066 	 * preference point as we do not want to allocate a block
   1067 	 * that is allocated before the previous one (as we will
   1068 	 * then have to wait for another pass of the elevator
   1069 	 * algorithm before it will be read). We prefer to fail and
   1070 	 * be recalled to try an allocation in the next cylinder group.
   1071 	 */
   1072 	if (dtog(fs, bpref) != cg)
   1073 		bpref = 0;
   1074 	else
   1075 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1076 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1077 	map = *mapp++;
   1078 	bit = 1 << (bpref % NBBY);
   1079 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1080 		if ((map & bit) == 0) {
   1081 			run = 0;
   1082 		} else {
   1083 			run++;
   1084 			if (run == len)
   1085 				break;
   1086 		}
   1087 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1088 			bit <<= 1;
   1089 		} else {
   1090 			map = *mapp++;
   1091 			bit = 1;
   1092 		}
   1093 	}
   1094 	if (i == cgp->cg_nclusterblks)
   1095 		goto fail;
   1096 	/*
   1097 	 * Allocate the cluster that we have found.
   1098 	 */
   1099 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1100 	len = blkstofrags(fs, len);
   1101 	for (i = 0; i < len; i += fs->fs_frag)
   1102 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1103 			panic("ffs_clusteralloc: lost block");
   1104 	bdwrite(bp);
   1105 	return (bno);
   1106 
   1107 fail:
   1108 	brelse(bp);
   1109 	return (0);
   1110 }
   1111 
   1112 /*
   1113  * Determine whether an inode can be allocated.
   1114  *
   1115  * Check to see if an inode is available, and if it is,
   1116  * allocate it using the following policy:
   1117  *   1) allocate the requested inode.
   1118  *   2) allocate the next available inode after the requested
   1119  *      inode in the specified cylinder group.
   1120  */
   1121 static ino_t
   1122 ffs_nodealloccg(ip, cg, ipref, mode)
   1123 	struct inode *ip;
   1124 	int cg;
   1125 	daddr_t ipref;
   1126 	int mode;
   1127 {
   1128 	register struct fs *fs;
   1129 	register struct cg *cgp;
   1130 	struct buf *bp;
   1131 	int error, start, len, loc, map, i;
   1132 
   1133 	fs = ip->i_fs;
   1134 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1135 		return (NULL);
   1136 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1137 		(int)fs->fs_cgsize, NOCRED, &bp);
   1138 	if (error) {
   1139 		brelse(bp);
   1140 		return (NULL);
   1141 	}
   1142 	cgp = (struct cg *)bp->b_data;
   1143 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1144 		brelse(bp);
   1145 		return (NULL);
   1146 	}
   1147 	cgp->cg_time = time.tv_sec;
   1148 	if (ipref) {
   1149 		ipref %= fs->fs_ipg;
   1150 		if (isclr(cg_inosused(cgp), ipref))
   1151 			goto gotit;
   1152 	}
   1153 	start = cgp->cg_irotor / NBBY;
   1154 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1155 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1156 	if (loc == 0) {
   1157 		len = start + 1;
   1158 		start = 0;
   1159 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1160 		if (loc == 0) {
   1161 			printf("cg = %d, irotor = %d, fs = %s\n",
   1162 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1163 			panic("ffs_nodealloccg: map corrupted");
   1164 			/* NOTREACHED */
   1165 		}
   1166 	}
   1167 	i = start + len - loc;
   1168 	map = cg_inosused(cgp)[i];
   1169 	ipref = i * NBBY;
   1170 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1171 		if ((map & i) == 0) {
   1172 			cgp->cg_irotor = ipref;
   1173 			goto gotit;
   1174 		}
   1175 	}
   1176 	printf("fs = %s\n", fs->fs_fsmnt);
   1177 	panic("ffs_nodealloccg: block not in map");
   1178 	/* NOTREACHED */
   1179 gotit:
   1180 	setbit(cg_inosused(cgp), ipref);
   1181 	cgp->cg_cs.cs_nifree--;
   1182 	fs->fs_cstotal.cs_nifree--;
   1183 	fs->fs_cs(fs, cg).cs_nifree--;
   1184 	fs->fs_fmod = 1;
   1185 	if ((mode & IFMT) == IFDIR) {
   1186 		cgp->cg_cs.cs_ndir++;
   1187 		fs->fs_cstotal.cs_ndir++;
   1188 		fs->fs_cs(fs, cg).cs_ndir++;
   1189 	}
   1190 	bdwrite(bp);
   1191 	return (cg * fs->fs_ipg + ipref);
   1192 }
   1193 
   1194 /*
   1195  * Free a block or fragment.
   1196  *
   1197  * The specified block or fragment is placed back in the
   1198  * free map. If a fragment is deallocated, a possible
   1199  * block reassembly is checked.
   1200  */
   1201 ffs_blkfree(ip, bno, size)
   1202 	register struct inode *ip;
   1203 	daddr_t bno;
   1204 	long size;
   1205 {
   1206 	register struct fs *fs;
   1207 	register struct cg *cgp;
   1208 	struct buf *bp;
   1209 	daddr_t blkno;
   1210 	int i, error, cg, blk, frags, bbase;
   1211 
   1212 	fs = ip->i_fs;
   1213 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1214 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
   1215 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1216 		panic("blkfree: bad size");
   1217 	}
   1218 	cg = dtog(fs, bno);
   1219 	if ((u_int)bno >= fs->fs_size) {
   1220 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1221 		ffs_fserr(fs, ip->i_uid, "bad block");
   1222 		return;
   1223 	}
   1224 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1225 		(int)fs->fs_cgsize, NOCRED, &bp);
   1226 	if (error) {
   1227 		brelse(bp);
   1228 		return;
   1229 	}
   1230 	cgp = (struct cg *)bp->b_data;
   1231 	if (!cg_chkmagic(cgp)) {
   1232 		brelse(bp);
   1233 		return;
   1234 	}
   1235 	cgp->cg_time = time.tv_sec;
   1236 	bno = dtogd(fs, bno);
   1237 	if (size == fs->fs_bsize) {
   1238 		blkno = fragstoblks(fs, bno);
   1239 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1240 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1241 			    ip->i_dev, bno, fs->fs_fsmnt);
   1242 			panic("blkfree: freeing free block");
   1243 		}
   1244 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1245 		ffs_clusteracct(fs, cgp, blkno, 1);
   1246 		cgp->cg_cs.cs_nbfree++;
   1247 		fs->fs_cstotal.cs_nbfree++;
   1248 		fs->fs_cs(fs, cg).cs_nbfree++;
   1249 		i = cbtocylno(fs, bno);
   1250 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1251 		cg_blktot(cgp)[i]++;
   1252 	} else {
   1253 		bbase = bno - fragnum(fs, bno);
   1254 		/*
   1255 		 * decrement the counts associated with the old frags
   1256 		 */
   1257 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1258 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1259 		/*
   1260 		 * deallocate the fragment
   1261 		 */
   1262 		frags = numfrags(fs, size);
   1263 		for (i = 0; i < frags; i++) {
   1264 			if (isset(cg_blksfree(cgp), bno + i)) {
   1265 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1266 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1267 				panic("blkfree: freeing free frag");
   1268 			}
   1269 			setbit(cg_blksfree(cgp), bno + i);
   1270 		}
   1271 		cgp->cg_cs.cs_nffree += i;
   1272 		fs->fs_cstotal.cs_nffree += i;
   1273 		fs->fs_cs(fs, cg).cs_nffree += i;
   1274 		/*
   1275 		 * add back in counts associated with the new frags
   1276 		 */
   1277 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1278 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1279 		/*
   1280 		 * if a complete block has been reassembled, account for it
   1281 		 */
   1282 		blkno = fragstoblks(fs, bbase);
   1283 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1284 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1285 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1286 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1287 			ffs_clusteracct(fs, cgp, blkno, 1);
   1288 			cgp->cg_cs.cs_nbfree++;
   1289 			fs->fs_cstotal.cs_nbfree++;
   1290 			fs->fs_cs(fs, cg).cs_nbfree++;
   1291 			i = cbtocylno(fs, bbase);
   1292 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1293 			cg_blktot(cgp)[i]++;
   1294 		}
   1295 	}
   1296 	fs->fs_fmod = 1;
   1297 	bdwrite(bp);
   1298 }
   1299 
   1300 /*
   1301  * Free an inode.
   1302  *
   1303  * The specified inode is placed back in the free map.
   1304  */
   1305 int
   1306 ffs_vfree(ap)
   1307 	struct vop_vfree_args /* {
   1308 		struct vnode *a_pvp;
   1309 		ino_t a_ino;
   1310 		int a_mode;
   1311 	} */ *ap;
   1312 {
   1313 	register struct fs *fs;
   1314 	register struct cg *cgp;
   1315 	register struct inode *pip;
   1316 	ino_t ino = ap->a_ino;
   1317 	struct buf *bp;
   1318 	int error, cg;
   1319 
   1320 	pip = VTOI(ap->a_pvp);
   1321 	fs = pip->i_fs;
   1322 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1323 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1324 		    pip->i_dev, ino, fs->fs_fsmnt);
   1325 	cg = ino_to_cg(fs, ino);
   1326 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1327 		(int)fs->fs_cgsize, NOCRED, &bp);
   1328 	if (error) {
   1329 		brelse(bp);
   1330 		return (0);
   1331 	}
   1332 	cgp = (struct cg *)bp->b_data;
   1333 	if (!cg_chkmagic(cgp)) {
   1334 		brelse(bp);
   1335 		return (0);
   1336 	}
   1337 	cgp->cg_time = time.tv_sec;
   1338 	ino %= fs->fs_ipg;
   1339 	if (isclr(cg_inosused(cgp), ino)) {
   1340 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1341 		    pip->i_dev, ino, fs->fs_fsmnt);
   1342 		if (fs->fs_ronly == 0)
   1343 			panic("ifree: freeing free inode");
   1344 	}
   1345 	clrbit(cg_inosused(cgp), ino);
   1346 	if (ino < cgp->cg_irotor)
   1347 		cgp->cg_irotor = ino;
   1348 	cgp->cg_cs.cs_nifree++;
   1349 	fs->fs_cstotal.cs_nifree++;
   1350 	fs->fs_cs(fs, cg).cs_nifree++;
   1351 	if ((ap->a_mode & IFMT) == IFDIR) {
   1352 		cgp->cg_cs.cs_ndir--;
   1353 		fs->fs_cstotal.cs_ndir--;
   1354 		fs->fs_cs(fs, cg).cs_ndir--;
   1355 	}
   1356 	fs->fs_fmod = 1;
   1357 	bdwrite(bp);
   1358 	return (0);
   1359 }
   1360 
   1361 /*
   1362  * Find a block of the specified size in the specified cylinder group.
   1363  *
   1364  * It is a panic if a request is made to find a block if none are
   1365  * available.
   1366  */
   1367 static daddr_t
   1368 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1369 	register struct fs *fs;
   1370 	register struct cg *cgp;
   1371 	daddr_t bpref;
   1372 	int allocsiz;
   1373 {
   1374 	daddr_t bno;
   1375 	int start, len, loc, i;
   1376 	int blk, field, subfield, pos;
   1377 
   1378 	/*
   1379 	 * find the fragment by searching through the free block
   1380 	 * map for an appropriate bit pattern
   1381 	 */
   1382 	if (bpref)
   1383 		start = dtogd(fs, bpref) / NBBY;
   1384 	else
   1385 		start = cgp->cg_frotor / NBBY;
   1386 	len = howmany(fs->fs_fpg, NBBY) - start;
   1387 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1388 		(u_char *)fragtbl[fs->fs_frag],
   1389 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1390 	if (loc == 0) {
   1391 		len = start + 1;
   1392 		start = 0;
   1393 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1394 			(u_char *)fragtbl[fs->fs_frag],
   1395 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1396 		if (loc == 0) {
   1397 			printf("start = %d, len = %d, fs = %s\n",
   1398 			    start, len, fs->fs_fsmnt);
   1399 			panic("ffs_alloccg: map corrupted");
   1400 			/* NOTREACHED */
   1401 		}
   1402 	}
   1403 	bno = (start + len - loc) * NBBY;
   1404 	cgp->cg_frotor = bno;
   1405 	/*
   1406 	 * found the byte in the map
   1407 	 * sift through the bits to find the selected frag
   1408 	 */
   1409 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1410 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1411 		blk <<= 1;
   1412 		field = around[allocsiz];
   1413 		subfield = inside[allocsiz];
   1414 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1415 			if ((blk & field) == subfield)
   1416 				return (bno + pos);
   1417 			field <<= 1;
   1418 			subfield <<= 1;
   1419 		}
   1420 	}
   1421 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1422 	panic("ffs_alloccg: block not in map");
   1423 	return (-1);
   1424 }
   1425 
   1426 /*
   1427  * Update the cluster map because of an allocation or free.
   1428  *
   1429  * Cnt == 1 means free; cnt == -1 means allocating.
   1430  */
   1431 ffs_clusteracct(fs, cgp, blkno, cnt)
   1432 	struct fs *fs;
   1433 	struct cg *cgp;
   1434 	daddr_t blkno;
   1435 	int cnt;
   1436 {
   1437 	int32_t *sump;
   1438 	int32_t *lp;
   1439 	u_char *freemapp, *mapp;
   1440 	int i, start, end, forw, back, map, bit;
   1441 
   1442 	if (fs->fs_contigsumsize <= 0)
   1443 		return;
   1444 	freemapp = cg_clustersfree(cgp);
   1445 	sump = cg_clustersum(cgp);
   1446 	/*
   1447 	 * Allocate or clear the actual block.
   1448 	 */
   1449 	if (cnt > 0)
   1450 		setbit(freemapp, blkno);
   1451 	else
   1452 		clrbit(freemapp, blkno);
   1453 	/*
   1454 	 * Find the size of the cluster going forward.
   1455 	 */
   1456 	start = blkno + 1;
   1457 	end = start + fs->fs_contigsumsize;
   1458 	if (end >= cgp->cg_nclusterblks)
   1459 		end = cgp->cg_nclusterblks;
   1460 	mapp = &freemapp[start / NBBY];
   1461 	map = *mapp++;
   1462 	bit = 1 << (start % NBBY);
   1463 	for (i = start; i < end; i++) {
   1464 		if ((map & bit) == 0)
   1465 			break;
   1466 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1467 			bit <<= 1;
   1468 		} else {
   1469 			map = *mapp++;
   1470 			bit = 1;
   1471 		}
   1472 	}
   1473 	forw = i - start;
   1474 	/*
   1475 	 * Find the size of the cluster going backward.
   1476 	 */
   1477 	start = blkno - 1;
   1478 	end = start - fs->fs_contigsumsize;
   1479 	if (end < 0)
   1480 		end = -1;
   1481 	mapp = &freemapp[start / NBBY];
   1482 	map = *mapp--;
   1483 	bit = 1 << (start % NBBY);
   1484 	for (i = start; i > end; i--) {
   1485 		if ((map & bit) == 0)
   1486 			break;
   1487 		if ((i & (NBBY - 1)) != 0) {
   1488 			bit >>= 1;
   1489 		} else {
   1490 			map = *mapp--;
   1491 			bit = 1 << (NBBY - 1);
   1492 		}
   1493 	}
   1494 	back = start - i;
   1495 	/*
   1496 	 * Account for old cluster and the possibly new forward and
   1497 	 * back clusters.
   1498 	 */
   1499 	i = back + forw + 1;
   1500 	if (i > fs->fs_contigsumsize)
   1501 		i = fs->fs_contigsumsize;
   1502 	sump[i] += cnt;
   1503 	if (back > 0)
   1504 		sump[back] -= cnt;
   1505 	if (forw > 0)
   1506 		sump[forw] -= cnt;
   1507 	/*
   1508 	 * Update cluster summary information.
   1509 	 */
   1510 	lp = &sump[fs->fs_contigsumsize];
   1511 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1512 		if (*lp-- > 0)
   1513 			break;
   1514 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1515 }
   1516 
   1517 /*
   1518  * Fserr prints the name of a file system with an error diagnostic.
   1519  *
   1520  * The form of the error message is:
   1521  *	fs: error message
   1522  */
   1523 static void
   1524 ffs_fserr(fs, uid, cp)
   1525 	struct fs *fs;
   1526 	u_int uid;
   1527 	char *cp;
   1528 {
   1529 
   1530 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1531 }
   1532