ffs_alloc.c revision 1.84 1 /* $NetBSD: ffs_alloc.c,v 1.84 2005/06/06 17:10:25 dbj Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.84 2005/06/06 17:10:25 dbj Exp $");
45
46 #if defined(_KERNEL_OPT)
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59
60 #include <miscfs/specfs/specdev.h>
61 #include <ufs/ufs/quota.h>
62 #include <ufs/ufs/ufsmount.h>
63 #include <ufs/ufs/inode.h>
64 #include <ufs/ufs/ufs_extern.h>
65 #include <ufs/ufs/ufs_bswap.h>
66
67 #include <ufs/ffs/fs.h>
68 #include <ufs/ffs/ffs_extern.h>
69
70 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
71 static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
72 #ifdef XXXUBC
73 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
74 #endif
75 static ino_t ffs_dirpref __P((struct inode *));
76 static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
77 static void ffs_fserr __P((struct fs *, u_int, const char *));
78 static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
79 daddr_t (*)(struct inode *, int, daddr_t, int)));
80 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
81 static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
82 daddr_t, int));
83 #if defined(DIAGNOSTIC) || defined(DEBUG)
84 #ifdef XXXUBC
85 static int ffs_checkblk __P((struct inode *, daddr_t, long size));
86 #endif
87 #endif
88
89 /* if 1, changes in optimalization strategy are logged */
90 int ffs_log_changeopt = 0;
91
92 /* in ffs_tables.c */
93 extern const int inside[], around[];
94 extern const u_char * const fragtbl[];
95
96 /*
97 * Allocate a block in the file system.
98 *
99 * The size of the requested block is given, which must be some
100 * multiple of fs_fsize and <= fs_bsize.
101 * A preference may be optionally specified. If a preference is given
102 * the following hierarchy is used to allocate a block:
103 * 1) allocate the requested block.
104 * 2) allocate a rotationally optimal block in the same cylinder.
105 * 3) allocate a block in the same cylinder group.
106 * 4) quadradically rehash into other cylinder groups, until an
107 * available block is located.
108 * If no block preference is given the following hierarchy is used
109 * to allocate a block:
110 * 1) allocate a block in the cylinder group that contains the
111 * inode for the file.
112 * 2) quadradically rehash into other cylinder groups, until an
113 * available block is located.
114 */
115 int
116 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
117 struct inode *ip;
118 daddr_t lbn, bpref;
119 int size;
120 struct ucred *cred;
121 daddr_t *bnp;
122 {
123 struct fs *fs;
124 daddr_t bno;
125 int cg;
126 #ifdef QUOTA
127 int error;
128 #endif
129
130 fs = ip->i_fs;
131
132 #ifdef UVM_PAGE_TRKOWN
133 if (ITOV(ip)->v_type == VREG &&
134 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
135 struct vm_page *pg;
136 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
137 voff_t off = trunc_page(lblktosize(fs, lbn));
138 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
139
140 simple_lock(&uobj->vmobjlock);
141 while (off < endoff) {
142 pg = uvm_pagelookup(uobj, off);
143 KASSERT(pg != NULL);
144 KASSERT(pg->owner == curproc->p_pid);
145 KASSERT((pg->flags & PG_CLEAN) == 0);
146 off += PAGE_SIZE;
147 }
148 simple_unlock(&uobj->vmobjlock);
149 }
150 #endif
151
152 *bnp = 0;
153 #ifdef DIAGNOSTIC
154 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
155 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
156 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
157 panic("ffs_alloc: bad size");
158 }
159 if (cred == NOCRED)
160 panic("ffs_alloc: missing credential");
161 #endif /* DIAGNOSTIC */
162 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
163 goto nospace;
164 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
165 goto nospace;
166 #ifdef QUOTA
167 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
168 return (error);
169 #endif
170 if (bpref >= fs->fs_size)
171 bpref = 0;
172 if (bpref == 0)
173 cg = ino_to_cg(fs, ip->i_number);
174 else
175 cg = dtog(fs, bpref);
176 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
177 if (bno > 0) {
178 DIP_ADD(ip, blocks, btodb(size));
179 ip->i_flag |= IN_CHANGE | IN_UPDATE;
180 *bnp = bno;
181 return (0);
182 }
183 #ifdef QUOTA
184 /*
185 * Restore user's disk quota because allocation failed.
186 */
187 (void) chkdq(ip, -btodb(size), cred, FORCE);
188 #endif
189 nospace:
190 ffs_fserr(fs, cred->cr_uid, "file system full");
191 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
192 return (ENOSPC);
193 }
194
195 /*
196 * Reallocate a fragment to a bigger size
197 *
198 * The number and size of the old block is given, and a preference
199 * and new size is also specified. The allocator attempts to extend
200 * the original block. Failing that, the regular block allocator is
201 * invoked to get an appropriate block.
202 */
203 int
204 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
205 struct inode *ip;
206 daddr_t lbprev;
207 daddr_t bpref;
208 int osize, nsize;
209 struct ucred *cred;
210 struct buf **bpp;
211 daddr_t *blknop;
212 {
213 struct fs *fs;
214 struct buf *bp;
215 int cg, request, error;
216 daddr_t bprev, bno;
217
218 fs = ip->i_fs;
219 #ifdef UVM_PAGE_TRKOWN
220 if (ITOV(ip)->v_type == VREG) {
221 struct vm_page *pg;
222 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
223 voff_t off = trunc_page(lblktosize(fs, lbprev));
224 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
225
226 simple_lock(&uobj->vmobjlock);
227 while (off < endoff) {
228 pg = uvm_pagelookup(uobj, off);
229 KASSERT(pg != NULL);
230 KASSERT(pg->owner == curproc->p_pid);
231 KASSERT((pg->flags & PG_CLEAN) == 0);
232 off += PAGE_SIZE;
233 }
234 simple_unlock(&uobj->vmobjlock);
235 }
236 #endif
237
238 #ifdef DIAGNOSTIC
239 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
240 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
241 printf(
242 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
243 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
244 panic("ffs_realloccg: bad size");
245 }
246 if (cred == NOCRED)
247 panic("ffs_realloccg: missing credential");
248 #endif /* DIAGNOSTIC */
249 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
250 goto nospace;
251 if (fs->fs_magic == FS_UFS2_MAGIC)
252 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
253 else
254 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
255
256 if (bprev == 0) {
257 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
258 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
259 panic("ffs_realloccg: bad bprev");
260 }
261 /*
262 * Allocate the extra space in the buffer.
263 */
264 if (bpp != NULL &&
265 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
266 brelse(bp);
267 return (error);
268 }
269 #ifdef QUOTA
270 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
271 if (bpp != NULL) {
272 brelse(bp);
273 }
274 return (error);
275 }
276 #endif
277 /*
278 * Check for extension in the existing location.
279 */
280 cg = dtog(fs, bprev);
281 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
282 DIP_ADD(ip, blocks, btodb(nsize - osize));
283 ip->i_flag |= IN_CHANGE | IN_UPDATE;
284
285 if (bpp != NULL) {
286 if (bp->b_blkno != fsbtodb(fs, bno))
287 panic("bad blockno");
288 allocbuf(bp, nsize, 1);
289 bp->b_flags |= B_DONE;
290 memset(bp->b_data + osize, 0, nsize - osize);
291 *bpp = bp;
292 }
293 if (blknop != NULL) {
294 *blknop = bno;
295 }
296 return (0);
297 }
298 /*
299 * Allocate a new disk location.
300 */
301 if (bpref >= fs->fs_size)
302 bpref = 0;
303 switch ((int)fs->fs_optim) {
304 case FS_OPTSPACE:
305 /*
306 * Allocate an exact sized fragment. Although this makes
307 * best use of space, we will waste time relocating it if
308 * the file continues to grow. If the fragmentation is
309 * less than half of the minimum free reserve, we choose
310 * to begin optimizing for time.
311 */
312 request = nsize;
313 if (fs->fs_minfree < 5 ||
314 fs->fs_cstotal.cs_nffree >
315 fs->fs_dsize * fs->fs_minfree / (2 * 100))
316 break;
317
318 if (ffs_log_changeopt) {
319 log(LOG_NOTICE,
320 "%s: optimization changed from SPACE to TIME\n",
321 fs->fs_fsmnt);
322 }
323
324 fs->fs_optim = FS_OPTTIME;
325 break;
326 case FS_OPTTIME:
327 /*
328 * At this point we have discovered a file that is trying to
329 * grow a small fragment to a larger fragment. To save time,
330 * we allocate a full sized block, then free the unused portion.
331 * If the file continues to grow, the `ffs_fragextend' call
332 * above will be able to grow it in place without further
333 * copying. If aberrant programs cause disk fragmentation to
334 * grow within 2% of the free reserve, we choose to begin
335 * optimizing for space.
336 */
337 request = fs->fs_bsize;
338 if (fs->fs_cstotal.cs_nffree <
339 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
340 break;
341
342 if (ffs_log_changeopt) {
343 log(LOG_NOTICE,
344 "%s: optimization changed from TIME to SPACE\n",
345 fs->fs_fsmnt);
346 }
347
348 fs->fs_optim = FS_OPTSPACE;
349 break;
350 default:
351 printf("dev = 0x%x, optim = %d, fs = %s\n",
352 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
353 panic("ffs_realloccg: bad optim");
354 /* NOTREACHED */
355 }
356 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
357 if (bno > 0) {
358 if (!DOINGSOFTDEP(ITOV(ip)))
359 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
360 ip->i_number);
361 if (nsize < request)
362 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
363 (long)(request - nsize), ip->i_number);
364 DIP_ADD(ip, blocks, btodb(nsize - osize));
365 ip->i_flag |= IN_CHANGE | IN_UPDATE;
366 if (bpp != NULL) {
367 bp->b_blkno = fsbtodb(fs, bno);
368 allocbuf(bp, nsize, 1);
369 bp->b_flags |= B_DONE;
370 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
371 *bpp = bp;
372 }
373 if (blknop != NULL) {
374 *blknop = bno;
375 }
376 return (0);
377 }
378 #ifdef QUOTA
379 /*
380 * Restore user's disk quota because allocation failed.
381 */
382 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
383 #endif
384 if (bpp != NULL) {
385 brelse(bp);
386 }
387
388 nospace:
389 /*
390 * no space available
391 */
392 ffs_fserr(fs, cred->cr_uid, "file system full");
393 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
394 return (ENOSPC);
395 }
396
397 /*
398 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
399 *
400 * The vnode and an array of buffer pointers for a range of sequential
401 * logical blocks to be made contiguous is given. The allocator attempts
402 * to find a range of sequential blocks starting as close as possible
403 * from the end of the allocation for the logical block immediately
404 * preceding the current range. If successful, the physical block numbers
405 * in the buffer pointers and in the inode are changed to reflect the new
406 * allocation. If unsuccessful, the allocation is left unchanged. The
407 * success in doing the reallocation is returned. Note that the error
408 * return is not reflected back to the user. Rather the previous block
409 * allocation will be used.
410
411 */
412 #ifdef XXXUBC
413 #ifdef DEBUG
414 #include <sys/sysctl.h>
415 int prtrealloc = 0;
416 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
417 #endif
418 #endif
419
420 /*
421 * NOTE: when re-enabling this, it must be updated for UFS2.
422 */
423
424 int doasyncfree = 1;
425
426 int
427 ffs_reallocblks(v)
428 void *v;
429 {
430 #ifdef XXXUBC
431 struct vop_reallocblks_args /* {
432 struct vnode *a_vp;
433 struct cluster_save *a_buflist;
434 } */ *ap = v;
435 struct fs *fs;
436 struct inode *ip;
437 struct vnode *vp;
438 struct buf *sbp, *ebp;
439 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
440 struct cluster_save *buflist;
441 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
442 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
443 int i, len, start_lvl, end_lvl, pref, ssize;
444 #endif /* XXXUBC */
445
446 /* XXXUBC don't reallocblks for now */
447 return ENOSPC;
448
449 #ifdef XXXUBC
450 vp = ap->a_vp;
451 ip = VTOI(vp);
452 fs = ip->i_fs;
453 if (fs->fs_contigsumsize <= 0)
454 return (ENOSPC);
455 buflist = ap->a_buflist;
456 len = buflist->bs_nchildren;
457 start_lbn = buflist->bs_children[0]->b_lblkno;
458 end_lbn = start_lbn + len - 1;
459 #ifdef DIAGNOSTIC
460 for (i = 0; i < len; i++)
461 if (!ffs_checkblk(ip,
462 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
463 panic("ffs_reallocblks: unallocated block 1");
464 for (i = 1; i < len; i++)
465 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
466 panic("ffs_reallocblks: non-logical cluster");
467 blkno = buflist->bs_children[0]->b_blkno;
468 ssize = fsbtodb(fs, fs->fs_frag);
469 for (i = 1; i < len - 1; i++)
470 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
471 panic("ffs_reallocblks: non-physical cluster %d", i);
472 #endif
473 /*
474 * If the latest allocation is in a new cylinder group, assume that
475 * the filesystem has decided to move and do not force it back to
476 * the previous cylinder group.
477 */
478 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
479 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
480 return (ENOSPC);
481 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
482 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
483 return (ENOSPC);
484 /*
485 * Get the starting offset and block map for the first block.
486 */
487 if (start_lvl == 0) {
488 sbap = &ip->i_ffs1_db[0];
489 soff = start_lbn;
490 } else {
491 idp = &start_ap[start_lvl - 1];
492 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
493 brelse(sbp);
494 return (ENOSPC);
495 }
496 sbap = (int32_t *)sbp->b_data;
497 soff = idp->in_off;
498 }
499 /*
500 * Find the preferred location for the cluster.
501 */
502 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
503 /*
504 * If the block range spans two block maps, get the second map.
505 */
506 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
507 ssize = len;
508 } else {
509 #ifdef DIAGNOSTIC
510 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
511 panic("ffs_reallocblk: start == end");
512 #endif
513 ssize = len - (idp->in_off + 1);
514 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
515 goto fail;
516 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
517 }
518 /*
519 * Search the block map looking for an allocation of the desired size.
520 */
521 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
522 len, ffs_clusteralloc)) == 0)
523 goto fail;
524 /*
525 * We have found a new contiguous block.
526 *
527 * First we have to replace the old block pointers with the new
528 * block pointers in the inode and indirect blocks associated
529 * with the file.
530 */
531 #ifdef DEBUG
532 if (prtrealloc)
533 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
534 start_lbn, end_lbn);
535 #endif
536 blkno = newblk;
537 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
538 daddr_t ba;
539
540 if (i == ssize) {
541 bap = ebap;
542 soff = -i;
543 }
544 /* XXX ondisk32 */
545 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
546 #ifdef DIAGNOSTIC
547 if (!ffs_checkblk(ip,
548 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
549 panic("ffs_reallocblks: unallocated block 2");
550 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
551 panic("ffs_reallocblks: alloc mismatch");
552 #endif
553 #ifdef DEBUG
554 if (prtrealloc)
555 printf(" %d,", ba);
556 #endif
557 if (DOINGSOFTDEP(vp)) {
558 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
559 softdep_setup_allocdirect(ip, start_lbn + i,
560 blkno, ba, fs->fs_bsize, fs->fs_bsize,
561 buflist->bs_children[i]);
562 else
563 softdep_setup_allocindir_page(ip, start_lbn + i,
564 i < ssize ? sbp : ebp, soff + i, blkno,
565 ba, buflist->bs_children[i]);
566 }
567 /* XXX ondisk32 */
568 *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
569 }
570 /*
571 * Next we must write out the modified inode and indirect blocks.
572 * For strict correctness, the writes should be synchronous since
573 * the old block values may have been written to disk. In practise
574 * they are almost never written, but if we are concerned about
575 * strict correctness, the `doasyncfree' flag should be set to zero.
576 *
577 * The test on `doasyncfree' should be changed to test a flag
578 * that shows whether the associated buffers and inodes have
579 * been written. The flag should be set when the cluster is
580 * started and cleared whenever the buffer or inode is flushed.
581 * We can then check below to see if it is set, and do the
582 * synchronous write only when it has been cleared.
583 */
584 if (sbap != &ip->i_ffs1_db[0]) {
585 if (doasyncfree)
586 bdwrite(sbp);
587 else
588 bwrite(sbp);
589 } else {
590 ip->i_flag |= IN_CHANGE | IN_UPDATE;
591 if (!doasyncfree)
592 VOP_UPDATE(vp, NULL, NULL, 1);
593 }
594 if (ssize < len) {
595 if (doasyncfree)
596 bdwrite(ebp);
597 else
598 bwrite(ebp);
599 }
600 /*
601 * Last, free the old blocks and assign the new blocks to the buffers.
602 */
603 #ifdef DEBUG
604 if (prtrealloc)
605 printf("\n\tnew:");
606 #endif
607 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
608 if (!DOINGSOFTDEP(vp))
609 ffs_blkfree(fs, ip->i_devvp,
610 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
611 fs->fs_bsize, ip->i_number);
612 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
613 #ifdef DEBUG
614 if (!ffs_checkblk(ip,
615 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
616 panic("ffs_reallocblks: unallocated block 3");
617 if (prtrealloc)
618 printf(" %d,", blkno);
619 #endif
620 }
621 #ifdef DEBUG
622 if (prtrealloc) {
623 prtrealloc--;
624 printf("\n");
625 }
626 #endif
627 return (0);
628
629 fail:
630 if (ssize < len)
631 brelse(ebp);
632 if (sbap != &ip->i_ffs1_db[0])
633 brelse(sbp);
634 return (ENOSPC);
635 #endif /* XXXUBC */
636 }
637
638 /*
639 * Allocate an inode in the file system.
640 *
641 * If allocating a directory, use ffs_dirpref to select the inode.
642 * If allocating in a directory, the following hierarchy is followed:
643 * 1) allocate the preferred inode.
644 * 2) allocate an inode in the same cylinder group.
645 * 3) quadradically rehash into other cylinder groups, until an
646 * available inode is located.
647 * If no inode preference is given the following hierarchy is used
648 * to allocate an inode:
649 * 1) allocate an inode in cylinder group 0.
650 * 2) quadradically rehash into other cylinder groups, until an
651 * available inode is located.
652 */
653 int
654 ffs_valloc(v)
655 void *v;
656 {
657 struct vop_valloc_args /* {
658 struct vnode *a_pvp;
659 int a_mode;
660 struct ucred *a_cred;
661 struct vnode **a_vpp;
662 } */ *ap = v;
663 struct vnode *pvp = ap->a_pvp;
664 struct inode *pip;
665 struct fs *fs;
666 struct inode *ip;
667 struct timespec ts;
668 mode_t mode = ap->a_mode;
669 ino_t ino, ipref;
670 int cg, error;
671
672 *ap->a_vpp = NULL;
673 pip = VTOI(pvp);
674 fs = pip->i_fs;
675 if (fs->fs_cstotal.cs_nifree == 0)
676 goto noinodes;
677
678 if ((mode & IFMT) == IFDIR)
679 ipref = ffs_dirpref(pip);
680 else
681 ipref = pip->i_number;
682 if (ipref >= fs->fs_ncg * fs->fs_ipg)
683 ipref = 0;
684 cg = ino_to_cg(fs, ipref);
685 /*
686 * Track number of dirs created one after another
687 * in a same cg without intervening by files.
688 */
689 if ((mode & IFMT) == IFDIR) {
690 if (fs->fs_contigdirs[cg] < 255)
691 fs->fs_contigdirs[cg]++;
692 } else {
693 if (fs->fs_contigdirs[cg] > 0)
694 fs->fs_contigdirs[cg]--;
695 }
696 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
697 if (ino == 0)
698 goto noinodes;
699 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
700 if (error) {
701 VOP_VFREE(pvp, ino, mode);
702 return (error);
703 }
704 ip = VTOI(*ap->a_vpp);
705 if (ip->i_mode) {
706 #if 0
707 printf("mode = 0%o, inum = %d, fs = %s\n",
708 ip->i_mode, ip->i_number, fs->fs_fsmnt);
709 #else
710 printf("dmode %x mode %x dgen %x gen %x\n",
711 DIP(ip, mode), ip->i_mode,
712 DIP(ip, gen), ip->i_gen);
713 printf("size %llx blocks %llx\n",
714 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
715 printf("ino %u ipref %u\n", ino, ipref);
716 #if 0
717 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
718 (int)fs->fs_bsize, NOCRED, &bp);
719 #endif
720
721 #endif
722 panic("ffs_valloc: dup alloc");
723 }
724 if (DIP(ip, blocks)) { /* XXX */
725 printf("free inode %s/%d had %" PRId64 " blocks\n",
726 fs->fs_fsmnt, ino, DIP(ip, blocks));
727 DIP_ASSIGN(ip, blocks, 0);
728 }
729 ip->i_flag &= ~IN_SPACECOUNTED;
730 ip->i_flags = 0;
731 DIP_ASSIGN(ip, flags, 0);
732 /*
733 * Set up a new generation number for this inode.
734 */
735 ip->i_gen++;
736 DIP_ASSIGN(ip, gen, ip->i_gen);
737 if (fs->fs_magic == FS_UFS2_MAGIC) {
738 TIMEVAL_TO_TIMESPEC(&time, &ts);
739 ip->i_ffs2_birthtime = ts.tv_sec;
740 ip->i_ffs2_birthnsec = ts.tv_nsec;
741 }
742 return (0);
743 noinodes:
744 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
745 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
746 return (ENOSPC);
747 }
748
749 /*
750 * Find a cylinder group in which to place a directory.
751 *
752 * The policy implemented by this algorithm is to allocate a
753 * directory inode in the same cylinder group as its parent
754 * directory, but also to reserve space for its files inodes
755 * and data. Restrict the number of directories which may be
756 * allocated one after another in the same cylinder group
757 * without intervening allocation of files.
758 *
759 * If we allocate a first level directory then force allocation
760 * in another cylinder group.
761 */
762 static ino_t
763 ffs_dirpref(pip)
764 struct inode *pip;
765 {
766 register struct fs *fs;
767 int cg, prefcg;
768 int64_t dirsize, cgsize;
769 int avgifree, avgbfree, avgndir, curdirsize;
770 int minifree, minbfree, maxndir;
771 int mincg, minndir;
772 int maxcontigdirs;
773
774 fs = pip->i_fs;
775
776 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
777 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
778 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
779
780 /*
781 * Force allocation in another cg if creating a first level dir.
782 */
783 if (ITOV(pip)->v_flag & VROOT) {
784 prefcg = random() % fs->fs_ncg;
785 mincg = prefcg;
786 minndir = fs->fs_ipg;
787 for (cg = prefcg; cg < fs->fs_ncg; cg++)
788 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
789 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
790 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
791 mincg = cg;
792 minndir = fs->fs_cs(fs, cg).cs_ndir;
793 }
794 for (cg = 0; cg < prefcg; cg++)
795 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
796 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
797 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
798 mincg = cg;
799 minndir = fs->fs_cs(fs, cg).cs_ndir;
800 }
801 return ((ino_t)(fs->fs_ipg * mincg));
802 }
803
804 /*
805 * Count various limits which used for
806 * optimal allocation of a directory inode.
807 */
808 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
809 minifree = avgifree - fs->fs_ipg / 4;
810 if (minifree < 0)
811 minifree = 0;
812 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
813 if (minbfree < 0)
814 minbfree = 0;
815 cgsize = fs->fs_fsize * fs->fs_fpg;
816 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
817 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
818 if (dirsize < curdirsize)
819 dirsize = curdirsize;
820 maxcontigdirs = min(cgsize / dirsize, 255);
821 if (fs->fs_avgfpdir > 0)
822 maxcontigdirs = min(maxcontigdirs,
823 fs->fs_ipg / fs->fs_avgfpdir);
824 if (maxcontigdirs == 0)
825 maxcontigdirs = 1;
826
827 /*
828 * Limit number of dirs in one cg and reserve space for
829 * regular files, but only if we have no deficit in
830 * inodes or space.
831 */
832 prefcg = ino_to_cg(fs, pip->i_number);
833 for (cg = prefcg; cg < fs->fs_ncg; cg++)
834 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
835 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
836 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
837 if (fs->fs_contigdirs[cg] < maxcontigdirs)
838 return ((ino_t)(fs->fs_ipg * cg));
839 }
840 for (cg = 0; cg < prefcg; cg++)
841 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
842 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
843 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
844 if (fs->fs_contigdirs[cg] < maxcontigdirs)
845 return ((ino_t)(fs->fs_ipg * cg));
846 }
847 /*
848 * This is a backstop when we are deficient in space.
849 */
850 for (cg = prefcg; cg < fs->fs_ncg; cg++)
851 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
852 return ((ino_t)(fs->fs_ipg * cg));
853 for (cg = 0; cg < prefcg; cg++)
854 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
855 break;
856 return ((ino_t)(fs->fs_ipg * cg));
857 }
858
859 /*
860 * Select the desired position for the next block in a file. The file is
861 * logically divided into sections. The first section is composed of the
862 * direct blocks. Each additional section contains fs_maxbpg blocks.
863 *
864 * If no blocks have been allocated in the first section, the policy is to
865 * request a block in the same cylinder group as the inode that describes
866 * the file. If no blocks have been allocated in any other section, the
867 * policy is to place the section in a cylinder group with a greater than
868 * average number of free blocks. An appropriate cylinder group is found
869 * by using a rotor that sweeps the cylinder groups. When a new group of
870 * blocks is needed, the sweep begins in the cylinder group following the
871 * cylinder group from which the previous allocation was made. The sweep
872 * continues until a cylinder group with greater than the average number
873 * of free blocks is found. If the allocation is for the first block in an
874 * indirect block, the information on the previous allocation is unavailable;
875 * here a best guess is made based upon the logical block number being
876 * allocated.
877 *
878 * If a section is already partially allocated, the policy is to
879 * contiguously allocate fs_maxcontig blocks. The end of one of these
880 * contiguous blocks and the beginning of the next is laid out
881 * contigously if possible.
882 */
883 daddr_t
884 ffs_blkpref_ufs1(ip, lbn, indx, bap)
885 struct inode *ip;
886 daddr_t lbn;
887 int indx;
888 int32_t *bap; /* XXX ondisk32 */
889 {
890 struct fs *fs;
891 int cg;
892 int avgbfree, startcg;
893
894 fs = ip->i_fs;
895 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
896 if (lbn < NDADDR + NINDIR(fs)) {
897 cg = ino_to_cg(fs, ip->i_number);
898 return (fs->fs_fpg * cg + fs->fs_frag);
899 }
900 /*
901 * Find a cylinder with greater than average number of
902 * unused data blocks.
903 */
904 if (indx == 0 || bap[indx - 1] == 0)
905 startcg =
906 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
907 else
908 startcg = dtog(fs,
909 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
910 startcg %= fs->fs_ncg;
911 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
912 for (cg = startcg; cg < fs->fs_ncg; cg++)
913 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
914 return (fs->fs_fpg * cg + fs->fs_frag);
915 }
916 for (cg = 0; cg < startcg; cg++)
917 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
918 return (fs->fs_fpg * cg + fs->fs_frag);
919 }
920 return (0);
921 }
922 /*
923 * We just always try to lay things out contiguously.
924 */
925 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
926 }
927
928 daddr_t
929 ffs_blkpref_ufs2(ip, lbn, indx, bap)
930 struct inode *ip;
931 daddr_t lbn;
932 int indx;
933 int64_t *bap;
934 {
935 struct fs *fs;
936 int cg;
937 int avgbfree, startcg;
938
939 fs = ip->i_fs;
940 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
941 if (lbn < NDADDR + NINDIR(fs)) {
942 cg = ino_to_cg(fs, ip->i_number);
943 return (fs->fs_fpg * cg + fs->fs_frag);
944 }
945 /*
946 * Find a cylinder with greater than average number of
947 * unused data blocks.
948 */
949 if (indx == 0 || bap[indx - 1] == 0)
950 startcg =
951 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
952 else
953 startcg = dtog(fs,
954 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
955 startcg %= fs->fs_ncg;
956 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
957 for (cg = startcg; cg < fs->fs_ncg; cg++)
958 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
959 return (fs->fs_fpg * cg + fs->fs_frag);
960 }
961 for (cg = 0; cg < startcg; cg++)
962 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
963 return (fs->fs_fpg * cg + fs->fs_frag);
964 }
965 return (0);
966 }
967 /*
968 * We just always try to lay things out contiguously.
969 */
970 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
971 }
972
973
974 /*
975 * Implement the cylinder overflow algorithm.
976 *
977 * The policy implemented by this algorithm is:
978 * 1) allocate the block in its requested cylinder group.
979 * 2) quadradically rehash on the cylinder group number.
980 * 3) brute force search for a free block.
981 */
982 /*VARARGS5*/
983 static daddr_t
984 ffs_hashalloc(ip, cg, pref, size, allocator)
985 struct inode *ip;
986 int cg;
987 daddr_t pref;
988 int size; /* size for data blocks, mode for inodes */
989 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
990 {
991 struct fs *fs;
992 daddr_t result;
993 int i, icg = cg;
994
995 fs = ip->i_fs;
996 /*
997 * 1: preferred cylinder group
998 */
999 result = (*allocator)(ip, cg, pref, size);
1000 if (result)
1001 return (result);
1002 /*
1003 * 2: quadratic rehash
1004 */
1005 for (i = 1; i < fs->fs_ncg; i *= 2) {
1006 cg += i;
1007 if (cg >= fs->fs_ncg)
1008 cg -= fs->fs_ncg;
1009 result = (*allocator)(ip, cg, 0, size);
1010 if (result)
1011 return (result);
1012 }
1013 /*
1014 * 3: brute force search
1015 * Note that we start at i == 2, since 0 was checked initially,
1016 * and 1 is always checked in the quadratic rehash.
1017 */
1018 cg = (icg + 2) % fs->fs_ncg;
1019 for (i = 2; i < fs->fs_ncg; i++) {
1020 result = (*allocator)(ip, cg, 0, size);
1021 if (result)
1022 return (result);
1023 cg++;
1024 if (cg == fs->fs_ncg)
1025 cg = 0;
1026 }
1027 return (0);
1028 }
1029
1030 /*
1031 * Determine whether a fragment can be extended.
1032 *
1033 * Check to see if the necessary fragments are available, and
1034 * if they are, allocate them.
1035 */
1036 static daddr_t
1037 ffs_fragextend(ip, cg, bprev, osize, nsize)
1038 struct inode *ip;
1039 int cg;
1040 daddr_t bprev;
1041 int osize, nsize;
1042 {
1043 struct fs *fs;
1044 struct cg *cgp;
1045 struct buf *bp;
1046 daddr_t bno;
1047 int frags, bbase;
1048 int i, error;
1049 u_int8_t *blksfree;
1050
1051 fs = ip->i_fs;
1052 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1053 return (0);
1054 frags = numfrags(fs, nsize);
1055 bbase = fragnum(fs, bprev);
1056 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1057 /* cannot extend across a block boundary */
1058 return (0);
1059 }
1060 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1061 (int)fs->fs_cgsize, NOCRED, &bp);
1062 if (error) {
1063 brelse(bp);
1064 return (0);
1065 }
1066 cgp = (struct cg *)bp->b_data;
1067 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1068 brelse(bp);
1069 return (0);
1070 }
1071 cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1072 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1073 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1074 cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
1075 bno = dtogd(fs, bprev);
1076 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1077 for (i = numfrags(fs, osize); i < frags; i++)
1078 if (isclr(blksfree, bno + i)) {
1079 brelse(bp);
1080 return (0);
1081 }
1082 /*
1083 * the current fragment can be extended
1084 * deduct the count on fragment being extended into
1085 * increase the count on the remaining fragment (if any)
1086 * allocate the extended piece
1087 */
1088 for (i = frags; i < fs->fs_frag - bbase; i++)
1089 if (isclr(blksfree, bno + i))
1090 break;
1091 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1092 if (i != frags)
1093 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1094 for (i = numfrags(fs, osize); i < frags; i++) {
1095 clrbit(blksfree, bno + i);
1096 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1097 fs->fs_cstotal.cs_nffree--;
1098 fs->fs_cs(fs, cg).cs_nffree--;
1099 }
1100 fs->fs_fmod = 1;
1101 if (DOINGSOFTDEP(ITOV(ip)))
1102 softdep_setup_blkmapdep(bp, fs, bprev);
1103 ACTIVECG_CLR(fs, cg);
1104 bdwrite(bp);
1105 return (bprev);
1106 }
1107
1108 /*
1109 * Determine whether a block can be allocated.
1110 *
1111 * Check to see if a block of the appropriate size is available,
1112 * and if it is, allocate it.
1113 */
1114 static daddr_t
1115 ffs_alloccg(ip, cg, bpref, size)
1116 struct inode *ip;
1117 int cg;
1118 daddr_t bpref;
1119 int size;
1120 {
1121 struct fs *fs = ip->i_fs;
1122 struct cg *cgp;
1123 struct buf *bp;
1124 int32_t bno;
1125 daddr_t blkno;
1126 int error, frags, allocsiz, i;
1127 u_int8_t *blksfree;
1128 #ifdef FFS_EI
1129 const int needswap = UFS_FSNEEDSWAP(fs);
1130 #endif
1131
1132 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1133 return (0);
1134 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1135 (int)fs->fs_cgsize, NOCRED, &bp);
1136 if (error) {
1137 brelse(bp);
1138 return (0);
1139 }
1140 cgp = (struct cg *)bp->b_data;
1141 if (!cg_chkmagic(cgp, needswap) ||
1142 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1143 brelse(bp);
1144 return (0);
1145 }
1146 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1147 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1148 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1149 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1150 if (size == fs->fs_bsize) {
1151 blkno = ffs_alloccgblk(ip, bp, bpref);
1152 ACTIVECG_CLR(fs, cg);
1153 bdwrite(bp);
1154 return (blkno);
1155 }
1156 /*
1157 * check to see if any fragments are already available
1158 * allocsiz is the size which will be allocated, hacking
1159 * it down to a smaller size if necessary
1160 */
1161 blksfree = cg_blksfree(cgp, needswap);
1162 frags = numfrags(fs, size);
1163 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1164 if (cgp->cg_frsum[allocsiz] != 0)
1165 break;
1166 if (allocsiz == fs->fs_frag) {
1167 /*
1168 * no fragments were available, so a block will be
1169 * allocated, and hacked up
1170 */
1171 if (cgp->cg_cs.cs_nbfree == 0) {
1172 brelse(bp);
1173 return (0);
1174 }
1175 blkno = ffs_alloccgblk(ip, bp, bpref);
1176 bno = dtogd(fs, blkno);
1177 for (i = frags; i < fs->fs_frag; i++)
1178 setbit(blksfree, bno + i);
1179 i = fs->fs_frag - frags;
1180 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1181 fs->fs_cstotal.cs_nffree += i;
1182 fs->fs_cs(fs, cg).cs_nffree += i;
1183 fs->fs_fmod = 1;
1184 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1185 ACTIVECG_CLR(fs, cg);
1186 bdwrite(bp);
1187 return (blkno);
1188 }
1189 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1190 #if 0
1191 /*
1192 * XXX fvdl mapsearch will panic, and never return -1
1193 * also: returning NULL as daddr_t ?
1194 */
1195 if (bno < 0) {
1196 brelse(bp);
1197 return (0);
1198 }
1199 #endif
1200 for (i = 0; i < frags; i++)
1201 clrbit(blksfree, bno + i);
1202 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1203 fs->fs_cstotal.cs_nffree -= frags;
1204 fs->fs_cs(fs, cg).cs_nffree -= frags;
1205 fs->fs_fmod = 1;
1206 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1207 if (frags != allocsiz)
1208 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1209 blkno = cg * fs->fs_fpg + bno;
1210 if (DOINGSOFTDEP(ITOV(ip)))
1211 softdep_setup_blkmapdep(bp, fs, blkno);
1212 ACTIVECG_CLR(fs, cg);
1213 bdwrite(bp);
1214 return blkno;
1215 }
1216
1217 /*
1218 * Allocate a block in a cylinder group.
1219 *
1220 * This algorithm implements the following policy:
1221 * 1) allocate the requested block.
1222 * 2) allocate a rotationally optimal block in the same cylinder.
1223 * 3) allocate the next available block on the block rotor for the
1224 * specified cylinder group.
1225 * Note that this routine only allocates fs_bsize blocks; these
1226 * blocks may be fragmented by the routine that allocates them.
1227 */
1228 static daddr_t
1229 ffs_alloccgblk(ip, bp, bpref)
1230 struct inode *ip;
1231 struct buf *bp;
1232 daddr_t bpref;
1233 {
1234 struct fs *fs = ip->i_fs;
1235 struct cg *cgp;
1236 daddr_t blkno;
1237 int32_t bno;
1238 u_int8_t *blksfree;
1239 #ifdef FFS_EI
1240 const int needswap = UFS_FSNEEDSWAP(fs);
1241 #endif
1242
1243 cgp = (struct cg *)bp->b_data;
1244 blksfree = cg_blksfree(cgp, needswap);
1245 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1246 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1247 } else {
1248 bpref = blknum(fs, bpref);
1249 bno = dtogd(fs, bpref);
1250 /*
1251 * if the requested block is available, use it
1252 */
1253 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1254 goto gotit;
1255 }
1256 /*
1257 * Take the next available block in this cylinder group.
1258 */
1259 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1260 if (bno < 0)
1261 return (0);
1262 cgp->cg_rotor = ufs_rw32(bno, needswap);
1263 gotit:
1264 blkno = fragstoblks(fs, bno);
1265 ffs_clrblock(fs, blksfree, blkno);
1266 ffs_clusteracct(fs, cgp, blkno, -1);
1267 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1268 fs->fs_cstotal.cs_nbfree--;
1269 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1270 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1271 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1272 int cylno;
1273 cylno = old_cbtocylno(fs, bno);
1274 KASSERT(cylno >= 0);
1275 KASSERT(cylno < fs->fs_old_ncyl);
1276 KASSERT(old_cbtorpos(fs, bno) >= 0);
1277 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1278 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1279 needswap);
1280 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1281 }
1282 fs->fs_fmod = 1;
1283 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1284 if (DOINGSOFTDEP(ITOV(ip)))
1285 softdep_setup_blkmapdep(bp, fs, blkno);
1286 return (blkno);
1287 }
1288
1289 #ifdef XXXUBC
1290 /*
1291 * Determine whether a cluster can be allocated.
1292 *
1293 * We do not currently check for optimal rotational layout if there
1294 * are multiple choices in the same cylinder group. Instead we just
1295 * take the first one that we find following bpref.
1296 */
1297
1298 /*
1299 * This function must be fixed for UFS2 if re-enabled.
1300 */
1301 static daddr_t
1302 ffs_clusteralloc(ip, cg, bpref, len)
1303 struct inode *ip;
1304 int cg;
1305 daddr_t bpref;
1306 int len;
1307 {
1308 struct fs *fs;
1309 struct cg *cgp;
1310 struct buf *bp;
1311 int i, got, run, bno, bit, map;
1312 u_char *mapp;
1313 int32_t *lp;
1314
1315 fs = ip->i_fs;
1316 if (fs->fs_maxcluster[cg] < len)
1317 return (0);
1318 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1319 NOCRED, &bp))
1320 goto fail;
1321 cgp = (struct cg *)bp->b_data;
1322 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1323 goto fail;
1324 /*
1325 * Check to see if a cluster of the needed size (or bigger) is
1326 * available in this cylinder group.
1327 */
1328 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1329 for (i = len; i <= fs->fs_contigsumsize; i++)
1330 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1331 break;
1332 if (i > fs->fs_contigsumsize) {
1333 /*
1334 * This is the first time looking for a cluster in this
1335 * cylinder group. Update the cluster summary information
1336 * to reflect the true maximum sized cluster so that
1337 * future cluster allocation requests can avoid reading
1338 * the cylinder group map only to find no clusters.
1339 */
1340 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1341 for (i = len - 1; i > 0; i--)
1342 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1343 break;
1344 fs->fs_maxcluster[cg] = i;
1345 goto fail;
1346 }
1347 /*
1348 * Search the cluster map to find a big enough cluster.
1349 * We take the first one that we find, even if it is larger
1350 * than we need as we prefer to get one close to the previous
1351 * block allocation. We do not search before the current
1352 * preference point as we do not want to allocate a block
1353 * that is allocated before the previous one (as we will
1354 * then have to wait for another pass of the elevator
1355 * algorithm before it will be read). We prefer to fail and
1356 * be recalled to try an allocation in the next cylinder group.
1357 */
1358 if (dtog(fs, bpref) != cg)
1359 bpref = 0;
1360 else
1361 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1362 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1363 map = *mapp++;
1364 bit = 1 << (bpref % NBBY);
1365 for (run = 0, got = bpref;
1366 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1367 if ((map & bit) == 0) {
1368 run = 0;
1369 } else {
1370 run++;
1371 if (run == len)
1372 break;
1373 }
1374 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1375 bit <<= 1;
1376 } else {
1377 map = *mapp++;
1378 bit = 1;
1379 }
1380 }
1381 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1382 goto fail;
1383 /*
1384 * Allocate the cluster that we have found.
1385 */
1386 #ifdef DIAGNOSTIC
1387 for (i = 1; i <= len; i++)
1388 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1389 got - run + i))
1390 panic("ffs_clusteralloc: map mismatch");
1391 #endif
1392 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1393 if (dtog(fs, bno) != cg)
1394 panic("ffs_clusteralloc: allocated out of group");
1395 len = blkstofrags(fs, len);
1396 for (i = 0; i < len; i += fs->fs_frag)
1397 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1398 panic("ffs_clusteralloc: lost block");
1399 ACTIVECG_CLR(fs, cg);
1400 bdwrite(bp);
1401 return (bno);
1402
1403 fail:
1404 brelse(bp);
1405 return (0);
1406 }
1407 #endif /* XXXUBC */
1408
1409 /*
1410 * Determine whether an inode can be allocated.
1411 *
1412 * Check to see if an inode is available, and if it is,
1413 * allocate it using the following policy:
1414 * 1) allocate the requested inode.
1415 * 2) allocate the next available inode after the requested
1416 * inode in the specified cylinder group.
1417 */
1418 static daddr_t
1419 ffs_nodealloccg(ip, cg, ipref, mode)
1420 struct inode *ip;
1421 int cg;
1422 daddr_t ipref;
1423 int mode;
1424 {
1425 struct fs *fs = ip->i_fs;
1426 struct cg *cgp;
1427 struct buf *bp, *ibp;
1428 u_int8_t *inosused;
1429 int error, start, len, loc, map, i;
1430 int32_t initediblk;
1431 struct ufs2_dinode *dp2;
1432 #ifdef FFS_EI
1433 const int needswap = UFS_FSNEEDSWAP(fs);
1434 #endif
1435
1436 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1437 return (0);
1438 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1439 (int)fs->fs_cgsize, NOCRED, &bp);
1440 if (error) {
1441 brelse(bp);
1442 return (0);
1443 }
1444 cgp = (struct cg *)bp->b_data;
1445 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1446 brelse(bp);
1447 return (0);
1448 }
1449 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1450 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1451 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1452 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1453 inosused = cg_inosused(cgp, needswap);
1454 if (ipref) {
1455 ipref %= fs->fs_ipg;
1456 if (isclr(inosused, ipref))
1457 goto gotit;
1458 }
1459 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1460 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1461 NBBY);
1462 loc = skpc(0xff, len, &inosused[start]);
1463 if (loc == 0) {
1464 len = start + 1;
1465 start = 0;
1466 loc = skpc(0xff, len, &inosused[0]);
1467 if (loc == 0) {
1468 printf("cg = %d, irotor = %d, fs = %s\n",
1469 cg, ufs_rw32(cgp->cg_irotor, needswap),
1470 fs->fs_fsmnt);
1471 panic("ffs_nodealloccg: map corrupted");
1472 /* NOTREACHED */
1473 }
1474 }
1475 i = start + len - loc;
1476 map = inosused[i];
1477 ipref = i * NBBY;
1478 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1479 if ((map & i) == 0) {
1480 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1481 goto gotit;
1482 }
1483 }
1484 printf("fs = %s\n", fs->fs_fsmnt);
1485 panic("ffs_nodealloccg: block not in map");
1486 /* NOTREACHED */
1487 gotit:
1488 if (DOINGSOFTDEP(ITOV(ip)))
1489 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1490 setbit(inosused, ipref);
1491 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1492 fs->fs_cstotal.cs_nifree--;
1493 fs->fs_cs(fs, cg).cs_nifree--;
1494 fs->fs_fmod = 1;
1495 if ((mode & IFMT) == IFDIR) {
1496 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1497 fs->fs_cstotal.cs_ndir++;
1498 fs->fs_cs(fs, cg).cs_ndir++;
1499 }
1500 /*
1501 * Check to see if we need to initialize more inodes.
1502 */
1503 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1504 if (fs->fs_magic == FS_UFS2_MAGIC &&
1505 ipref + INOPB(fs) > initediblk &&
1506 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1507 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1508 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1509 (int)fs->fs_bsize, 0, 0);
1510 memset(ibp->b_data, 0, fs->fs_bsize);
1511 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1512 for (i = 0; i < INOPB(fs); i++) {
1513 /*
1514 * Don't bother to swap, it's supposed to be
1515 * random, after all.
1516 */
1517 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1518 dp2++;
1519 }
1520 bawrite(ibp);
1521 initediblk += INOPB(fs);
1522 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1523 }
1524
1525 ACTIVECG_CLR(fs, cg);
1526 bdwrite(bp);
1527 return (cg * fs->fs_ipg + ipref);
1528 }
1529
1530 /*
1531 * Free a block or fragment.
1532 *
1533 * The specified block or fragment is placed back in the
1534 * free map. If a fragment is deallocated, a possible
1535 * block reassembly is checked.
1536 */
1537 void
1538 ffs_blkfree(fs, devvp, bno, size, inum)
1539 struct fs *fs;
1540 struct vnode *devvp;
1541 daddr_t bno;
1542 long size;
1543 ino_t inum;
1544 {
1545 struct cg *cgp;
1546 struct buf *bp;
1547 struct ufsmount *ump;
1548 int32_t fragno, cgbno;
1549 daddr_t cgblkno;
1550 int i, error, cg, blk, frags, bbase;
1551 u_int8_t *blksfree;
1552 dev_t dev;
1553 const int needswap = UFS_FSNEEDSWAP(fs);
1554
1555 cg = dtog(fs, bno);
1556 if (devvp->v_type != VBLK) {
1557 /* devvp is a snapshot */
1558 dev = VTOI(devvp)->i_devvp->v_rdev;
1559 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1560 } else {
1561 dev = devvp->v_rdev;
1562 ump = VFSTOUFS(devvp->v_specmountpoint);
1563 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1564 if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
1565 ffs_snapblkfree(fs, devvp, bno, size, inum))
1566 return;
1567 }
1568 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1569 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1570 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1571 "size = %ld, fs = %s\n",
1572 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1573 panic("blkfree: bad size");
1574 }
1575
1576 if (bno >= fs->fs_size) {
1577 printf("bad block %" PRId64 ", ino %d\n", bno, inum);
1578 ffs_fserr(fs, inum, "bad block");
1579 return;
1580 }
1581 error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
1582 if (error) {
1583 brelse(bp);
1584 return;
1585 }
1586 cgp = (struct cg *)bp->b_data;
1587 if (!cg_chkmagic(cgp, needswap)) {
1588 brelse(bp);
1589 return;
1590 }
1591 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1592 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1593 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1594 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1595 cgbno = dtogd(fs, bno);
1596 blksfree = cg_blksfree(cgp, needswap);
1597 if (size == fs->fs_bsize) {
1598 fragno = fragstoblks(fs, cgbno);
1599 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1600 if (devvp->v_type != VBLK) {
1601 /* devvp is a snapshot */
1602 brelse(bp);
1603 return;
1604 }
1605 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1606 dev, bno, fs->fs_fsmnt);
1607 panic("blkfree: freeing free block");
1608 }
1609 ffs_setblock(fs, blksfree, fragno);
1610 ffs_clusteracct(fs, cgp, fragno, 1);
1611 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1612 fs->fs_cstotal.cs_nbfree++;
1613 fs->fs_cs(fs, cg).cs_nbfree++;
1614 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1615 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1616 i = old_cbtocylno(fs, cgbno);
1617 KASSERT(i >= 0);
1618 KASSERT(i < fs->fs_old_ncyl);
1619 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1620 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1621 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1622 needswap);
1623 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1624 }
1625 } else {
1626 bbase = cgbno - fragnum(fs, cgbno);
1627 /*
1628 * decrement the counts associated with the old frags
1629 */
1630 blk = blkmap(fs, blksfree, bbase);
1631 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1632 /*
1633 * deallocate the fragment
1634 */
1635 frags = numfrags(fs, size);
1636 for (i = 0; i < frags; i++) {
1637 if (isset(blksfree, cgbno + i)) {
1638 printf("dev = 0x%x, block = %" PRId64
1639 ", fs = %s\n",
1640 dev, bno + i, fs->fs_fsmnt);
1641 panic("blkfree: freeing free frag");
1642 }
1643 setbit(blksfree, cgbno + i);
1644 }
1645 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1646 fs->fs_cstotal.cs_nffree += i;
1647 fs->fs_cs(fs, cg).cs_nffree += i;
1648 /*
1649 * add back in counts associated with the new frags
1650 */
1651 blk = blkmap(fs, blksfree, bbase);
1652 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1653 /*
1654 * if a complete block has been reassembled, account for it
1655 */
1656 fragno = fragstoblks(fs, bbase);
1657 if (ffs_isblock(fs, blksfree, fragno)) {
1658 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1659 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1660 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1661 ffs_clusteracct(fs, cgp, fragno, 1);
1662 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1663 fs->fs_cstotal.cs_nbfree++;
1664 fs->fs_cs(fs, cg).cs_nbfree++;
1665 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1666 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1667 i = old_cbtocylno(fs, bbase);
1668 KASSERT(i >= 0);
1669 KASSERT(i < fs->fs_old_ncyl);
1670 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1671 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1672 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1673 bbase)], 1, needswap);
1674 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1675 }
1676 }
1677 }
1678 fs->fs_fmod = 1;
1679 ACTIVECG_CLR(fs, cg);
1680 bdwrite(bp);
1681 }
1682
1683 #if defined(DIAGNOSTIC) || defined(DEBUG)
1684 #ifdef XXXUBC
1685 /*
1686 * Verify allocation of a block or fragment. Returns true if block or
1687 * fragment is allocated, false if it is free.
1688 */
1689 static int
1690 ffs_checkblk(ip, bno, size)
1691 struct inode *ip;
1692 daddr_t bno;
1693 long size;
1694 {
1695 struct fs *fs;
1696 struct cg *cgp;
1697 struct buf *bp;
1698 int i, error, frags, free;
1699
1700 fs = ip->i_fs;
1701 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1702 printf("bsize = %d, size = %ld, fs = %s\n",
1703 fs->fs_bsize, size, fs->fs_fsmnt);
1704 panic("checkblk: bad size");
1705 }
1706 if (bno >= fs->fs_size)
1707 panic("checkblk: bad block %d", bno);
1708 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1709 (int)fs->fs_cgsize, NOCRED, &bp);
1710 if (error) {
1711 brelse(bp);
1712 return 0;
1713 }
1714 cgp = (struct cg *)bp->b_data;
1715 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1716 brelse(bp);
1717 return 0;
1718 }
1719 bno = dtogd(fs, bno);
1720 if (size == fs->fs_bsize) {
1721 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1722 fragstoblks(fs, bno));
1723 } else {
1724 frags = numfrags(fs, size);
1725 for (free = 0, i = 0; i < frags; i++)
1726 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1727 free++;
1728 if (free != 0 && free != frags)
1729 panic("checkblk: partially free fragment");
1730 }
1731 brelse(bp);
1732 return (!free);
1733 }
1734 #endif /* XXXUBC */
1735 #endif /* DIAGNOSTIC */
1736
1737 /*
1738 * Free an inode.
1739 */
1740 int
1741 ffs_vfree(v)
1742 void *v;
1743 {
1744 struct vop_vfree_args /* {
1745 struct vnode *a_pvp;
1746 ino_t a_ino;
1747 int a_mode;
1748 } */ *ap = v;
1749
1750 if (DOINGSOFTDEP(ap->a_pvp)) {
1751 softdep_freefile(ap);
1752 return (0);
1753 }
1754 return (ffs_freefile(VTOI(ap->a_pvp)->i_fs, VTOI(ap->a_pvp)->i_devvp,
1755 ap->a_ino, ap->a_mode));
1756 }
1757
1758 /*
1759 * Do the actual free operation.
1760 * The specified inode is placed back in the free map.
1761 */
1762 int
1763 ffs_freefile(fs, devvp, ino, mode)
1764 struct fs *fs;
1765 struct vnode *devvp;
1766 ino_t ino;
1767 int mode;
1768 {
1769 struct cg *cgp;
1770 struct buf *bp;
1771 int error, cg;
1772 daddr_t cgbno;
1773 u_int8_t *inosused;
1774 dev_t dev;
1775 #ifdef FFS_EI
1776 const int needswap = UFS_FSNEEDSWAP(fs);
1777 #endif
1778
1779 cg = ino_to_cg(fs, ino);
1780 if (devvp->v_type != VBLK) {
1781 /* devvp is a snapshot */
1782 dev = VTOI(devvp)->i_devvp->v_rdev;
1783 cgbno = fragstoblks(fs, cgtod(fs, cg));
1784 } else {
1785 dev = devvp->v_rdev;
1786 cgbno = fsbtodb(fs, cgtod(fs, cg));
1787 }
1788 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1789 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1790 dev, ino, fs->fs_fsmnt);
1791 error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
1792 if (error) {
1793 brelse(bp);
1794 return (error);
1795 }
1796 cgp = (struct cg *)bp->b_data;
1797 if (!cg_chkmagic(cgp, needswap)) {
1798 brelse(bp);
1799 return (0);
1800 }
1801 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1802 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1803 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1804 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1805 inosused = cg_inosused(cgp, needswap);
1806 ino %= fs->fs_ipg;
1807 if (isclr(inosused, ino)) {
1808 printf("ifree: dev = 0x%x, ino = %d, fs = %s\n",
1809 dev, ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1810 if (fs->fs_ronly == 0)
1811 panic("ifree: freeing free inode");
1812 }
1813 clrbit(inosused, ino);
1814 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1815 cgp->cg_irotor = ufs_rw32(ino, needswap);
1816 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1817 fs->fs_cstotal.cs_nifree++;
1818 fs->fs_cs(fs, cg).cs_nifree++;
1819 if ((mode & IFMT) == IFDIR) {
1820 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1821 fs->fs_cstotal.cs_ndir--;
1822 fs->fs_cs(fs, cg).cs_ndir--;
1823 }
1824 fs->fs_fmod = 1;
1825 ACTIVECG_CLR(fs, cg);
1826 bdwrite(bp);
1827 return (0);
1828 }
1829
1830 /*
1831 * Check to see if a file is free.
1832 */
1833 int
1834 ffs_checkfreefile(fs, devvp, ino)
1835 struct fs *fs;
1836 struct vnode *devvp;
1837 ino_t ino;
1838 {
1839 struct cg *cgp;
1840 struct buf *bp;
1841 daddr_t cgbno;
1842 int ret, cg;
1843 u_int8_t *inosused;
1844
1845 cg = ino_to_cg(fs, ino);
1846 if (devvp->v_type != VBLK) {
1847 /* devvp is a snapshot */
1848 cgbno = fragstoblks(fs, cgtod(fs, cg));
1849 } else
1850 cgbno = fsbtodb(fs, cgtod(fs, cg));
1851 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1852 return 1;
1853 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1854 brelse(bp);
1855 return 1;
1856 }
1857 cgp = (struct cg *)bp->b_data;
1858 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1859 brelse(bp);
1860 return 1;
1861 }
1862 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1863 ino %= fs->fs_ipg;
1864 ret = isclr(inosused, ino);
1865 brelse(bp);
1866 return ret;
1867 }
1868
1869 /*
1870 * Find a block of the specified size in the specified cylinder group.
1871 *
1872 * It is a panic if a request is made to find a block if none are
1873 * available.
1874 */
1875 static int32_t
1876 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1877 struct fs *fs;
1878 struct cg *cgp;
1879 daddr_t bpref;
1880 int allocsiz;
1881 {
1882 int32_t bno;
1883 int start, len, loc, i;
1884 int blk, field, subfield, pos;
1885 int ostart, olen;
1886 u_int8_t *blksfree;
1887 #ifdef FFS_EI
1888 const int needswap = UFS_FSNEEDSWAP(fs);
1889 #endif
1890
1891 /*
1892 * find the fragment by searching through the free block
1893 * map for an appropriate bit pattern
1894 */
1895 if (bpref)
1896 start = dtogd(fs, bpref) / NBBY;
1897 else
1898 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1899 blksfree = cg_blksfree(cgp, needswap);
1900 len = howmany(fs->fs_fpg, NBBY) - start;
1901 ostart = start;
1902 olen = len;
1903 loc = scanc((u_int)len,
1904 (const u_char *)&blksfree[start],
1905 (const u_char *)fragtbl[fs->fs_frag],
1906 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1907 if (loc == 0) {
1908 len = start + 1;
1909 start = 0;
1910 loc = scanc((u_int)len,
1911 (const u_char *)&blksfree[0],
1912 (const u_char *)fragtbl[fs->fs_frag],
1913 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1914 if (loc == 0) {
1915 printf("start = %d, len = %d, fs = %s\n",
1916 ostart, olen, fs->fs_fsmnt);
1917 printf("offset=%d %ld\n",
1918 ufs_rw32(cgp->cg_freeoff, needswap),
1919 (long)blksfree - (long)cgp);
1920 printf("cg %d\n", cgp->cg_cgx);
1921 panic("ffs_alloccg: map corrupted");
1922 /* NOTREACHED */
1923 }
1924 }
1925 bno = (start + len - loc) * NBBY;
1926 cgp->cg_frotor = ufs_rw32(bno, needswap);
1927 /*
1928 * found the byte in the map
1929 * sift through the bits to find the selected frag
1930 */
1931 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1932 blk = blkmap(fs, blksfree, bno);
1933 blk <<= 1;
1934 field = around[allocsiz];
1935 subfield = inside[allocsiz];
1936 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1937 if ((blk & field) == subfield)
1938 return (bno + pos);
1939 field <<= 1;
1940 subfield <<= 1;
1941 }
1942 }
1943 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1944 panic("ffs_alloccg: block not in map");
1945 /* return (-1); */
1946 }
1947
1948 /*
1949 * Update the cluster map because of an allocation or free.
1950 *
1951 * Cnt == 1 means free; cnt == -1 means allocating.
1952 */
1953 void
1954 ffs_clusteracct(fs, cgp, blkno, cnt)
1955 struct fs *fs;
1956 struct cg *cgp;
1957 int32_t blkno;
1958 int cnt;
1959 {
1960 int32_t *sump;
1961 int32_t *lp;
1962 u_char *freemapp, *mapp;
1963 int i, start, end, forw, back, map, bit;
1964 #ifdef FFS_EI
1965 const int needswap = UFS_FSNEEDSWAP(fs);
1966 #endif
1967
1968 if (fs->fs_contigsumsize <= 0)
1969 return;
1970 freemapp = cg_clustersfree(cgp, needswap);
1971 sump = cg_clustersum(cgp, needswap);
1972 /*
1973 * Allocate or clear the actual block.
1974 */
1975 if (cnt > 0)
1976 setbit(freemapp, blkno);
1977 else
1978 clrbit(freemapp, blkno);
1979 /*
1980 * Find the size of the cluster going forward.
1981 */
1982 start = blkno + 1;
1983 end = start + fs->fs_contigsumsize;
1984 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1985 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1986 mapp = &freemapp[start / NBBY];
1987 map = *mapp++;
1988 bit = 1 << (start % NBBY);
1989 for (i = start; i < end; i++) {
1990 if ((map & bit) == 0)
1991 break;
1992 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1993 bit <<= 1;
1994 } else {
1995 map = *mapp++;
1996 bit = 1;
1997 }
1998 }
1999 forw = i - start;
2000 /*
2001 * Find the size of the cluster going backward.
2002 */
2003 start = blkno - 1;
2004 end = start - fs->fs_contigsumsize;
2005 if (end < 0)
2006 end = -1;
2007 mapp = &freemapp[start / NBBY];
2008 map = *mapp--;
2009 bit = 1 << (start % NBBY);
2010 for (i = start; i > end; i--) {
2011 if ((map & bit) == 0)
2012 break;
2013 if ((i & (NBBY - 1)) != 0) {
2014 bit >>= 1;
2015 } else {
2016 map = *mapp--;
2017 bit = 1 << (NBBY - 1);
2018 }
2019 }
2020 back = start - i;
2021 /*
2022 * Account for old cluster and the possibly new forward and
2023 * back clusters.
2024 */
2025 i = back + forw + 1;
2026 if (i > fs->fs_contigsumsize)
2027 i = fs->fs_contigsumsize;
2028 ufs_add32(sump[i], cnt, needswap);
2029 if (back > 0)
2030 ufs_add32(sump[back], -cnt, needswap);
2031 if (forw > 0)
2032 ufs_add32(sump[forw], -cnt, needswap);
2033
2034 /*
2035 * Update cluster summary information.
2036 */
2037 lp = &sump[fs->fs_contigsumsize];
2038 for (i = fs->fs_contigsumsize; i > 0; i--)
2039 if (ufs_rw32(*lp--, needswap) > 0)
2040 break;
2041 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2042 }
2043
2044 /*
2045 * Fserr prints the name of a file system with an error diagnostic.
2046 *
2047 * The form of the error message is:
2048 * fs: error message
2049 */
2050 static void
2051 ffs_fserr(fs, uid, cp)
2052 struct fs *fs;
2053 u_int uid;
2054 const char *cp;
2055 {
2056
2057 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2058 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2059 }
2060