Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.85
      1 /*	$NetBSD: ffs_alloc.c,v 1.85 2005/07/15 05:01:16 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  * All rights reserved.
      6  *
      7  * This software was developed for the FreeBSD Project by Marshall
      8  * Kirk McKusick and Network Associates Laboratories, the Security
      9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  * research program
     12  *
     13  * Copyright (c) 1982, 1986, 1989, 1993
     14  *	The Regents of the University of California.  All rights reserved.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.85 2005/07/15 05:01:16 thorpej Exp $");
     45 
     46 #if defined(_KERNEL_OPT)
     47 #include "opt_ffs.h"
     48 #include "opt_quota.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/buf.h>
     54 #include <sys/proc.h>
     55 #include <sys/vnode.h>
     56 #include <sys/mount.h>
     57 #include <sys/kernel.h>
     58 #include <sys/syslog.h>
     59 
     60 #include <miscfs/specfs/specdev.h>
     61 #include <ufs/ufs/quota.h>
     62 #include <ufs/ufs/ufsmount.h>
     63 #include <ufs/ufs/inode.h>
     64 #include <ufs/ufs/ufs_extern.h>
     65 #include <ufs/ufs/ufs_bswap.h>
     66 
     67 #include <ufs/ffs/fs.h>
     68 #include <ufs/ffs/ffs_extern.h>
     69 
     70 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     71 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     72 #ifdef XXXUBC
     73 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     74 #endif
     75 static ino_t ffs_dirpref(struct inode *);
     76 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     77 static void ffs_fserr(struct fs *, u_int, const char *);
     78 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     79     daddr_t (*)(struct inode *, int, daddr_t, int));
     80 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     81 static int32_t ffs_mapsearch(struct fs *, struct cg *,
     82 				      daddr_t, int);
     83 #if defined(DIAGNOSTIC) || defined(DEBUG)
     84 #ifdef XXXUBC
     85 static int ffs_checkblk(struct inode *, daddr_t, long size);
     86 #endif
     87 #endif
     88 
     89 /* if 1, changes in optimalization strategy are logged */
     90 int ffs_log_changeopt = 0;
     91 
     92 /* in ffs_tables.c */
     93 extern const int inside[], around[];
     94 extern const u_char * const fragtbl[];
     95 
     96 /*
     97  * Allocate a block in the file system.
     98  *
     99  * The size of the requested block is given, which must be some
    100  * multiple of fs_fsize and <= fs_bsize.
    101  * A preference may be optionally specified. If a preference is given
    102  * the following hierarchy is used to allocate a block:
    103  *   1) allocate the requested block.
    104  *   2) allocate a rotationally optimal block in the same cylinder.
    105  *   3) allocate a block in the same cylinder group.
    106  *   4) quadradically rehash into other cylinder groups, until an
    107  *      available block is located.
    108  * If no block preference is given the following hierarchy is used
    109  * to allocate a block:
    110  *   1) allocate a block in the cylinder group that contains the
    111  *      inode for the file.
    112  *   2) quadradically rehash into other cylinder groups, until an
    113  *      available block is located.
    114  */
    115 int
    116 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    117     struct ucred *cred, daddr_t *bnp)
    118 {
    119 	struct fs *fs;
    120 	daddr_t bno;
    121 	int cg;
    122 #ifdef QUOTA
    123 	int error;
    124 #endif
    125 
    126 	fs = ip->i_fs;
    127 
    128 #ifdef UVM_PAGE_TRKOWN
    129 	if (ITOV(ip)->v_type == VREG &&
    130 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    131 		struct vm_page *pg;
    132 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    133 		voff_t off = trunc_page(lblktosize(fs, lbn));
    134 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    135 
    136 		simple_lock(&uobj->vmobjlock);
    137 		while (off < endoff) {
    138 			pg = uvm_pagelookup(uobj, off);
    139 			KASSERT(pg != NULL);
    140 			KASSERT(pg->owner == curproc->p_pid);
    141 			KASSERT((pg->flags & PG_CLEAN) == 0);
    142 			off += PAGE_SIZE;
    143 		}
    144 		simple_unlock(&uobj->vmobjlock);
    145 	}
    146 #endif
    147 
    148 	*bnp = 0;
    149 #ifdef DIAGNOSTIC
    150 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    151 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    152 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    153 		panic("ffs_alloc: bad size");
    154 	}
    155 	if (cred == NOCRED)
    156 		panic("ffs_alloc: missing credential");
    157 #endif /* DIAGNOSTIC */
    158 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    159 		goto nospace;
    160 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    161 		goto nospace;
    162 #ifdef QUOTA
    163 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    164 		return (error);
    165 #endif
    166 	if (bpref >= fs->fs_size)
    167 		bpref = 0;
    168 	if (bpref == 0)
    169 		cg = ino_to_cg(fs, ip->i_number);
    170 	else
    171 		cg = dtog(fs, bpref);
    172 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    173 	if (bno > 0) {
    174 		DIP_ADD(ip, blocks, btodb(size));
    175 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    176 		*bnp = bno;
    177 		return (0);
    178 	}
    179 #ifdef QUOTA
    180 	/*
    181 	 * Restore user's disk quota because allocation failed.
    182 	 */
    183 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    184 #endif
    185 nospace:
    186 	ffs_fserr(fs, cred->cr_uid, "file system full");
    187 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    188 	return (ENOSPC);
    189 }
    190 
    191 /*
    192  * Reallocate a fragment to a bigger size
    193  *
    194  * The number and size of the old block is given, and a preference
    195  * and new size is also specified. The allocator attempts to extend
    196  * the original block. Failing that, the regular block allocator is
    197  * invoked to get an appropriate block.
    198  */
    199 int
    200 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    201     int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
    202 {
    203 	struct fs *fs;
    204 	struct buf *bp;
    205 	int cg, request, error;
    206 	daddr_t bprev, bno;
    207 
    208 	fs = ip->i_fs;
    209 #ifdef UVM_PAGE_TRKOWN
    210 	if (ITOV(ip)->v_type == VREG) {
    211 		struct vm_page *pg;
    212 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    213 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    214 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    215 
    216 		simple_lock(&uobj->vmobjlock);
    217 		while (off < endoff) {
    218 			pg = uvm_pagelookup(uobj, off);
    219 			KASSERT(pg != NULL);
    220 			KASSERT(pg->owner == curproc->p_pid);
    221 			KASSERT((pg->flags & PG_CLEAN) == 0);
    222 			off += PAGE_SIZE;
    223 		}
    224 		simple_unlock(&uobj->vmobjlock);
    225 	}
    226 #endif
    227 
    228 #ifdef DIAGNOSTIC
    229 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    230 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    231 		printf(
    232 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    233 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    234 		panic("ffs_realloccg: bad size");
    235 	}
    236 	if (cred == NOCRED)
    237 		panic("ffs_realloccg: missing credential");
    238 #endif /* DIAGNOSTIC */
    239 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    240 		goto nospace;
    241 	if (fs->fs_magic == FS_UFS2_MAGIC)
    242 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    243 	else
    244 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    245 
    246 	if (bprev == 0) {
    247 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    248 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    249 		panic("ffs_realloccg: bad bprev");
    250 	}
    251 	/*
    252 	 * Allocate the extra space in the buffer.
    253 	 */
    254 	if (bpp != NULL &&
    255 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    256 		brelse(bp);
    257 		return (error);
    258 	}
    259 #ifdef QUOTA
    260 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    261 		if (bpp != NULL) {
    262 			brelse(bp);
    263 		}
    264 		return (error);
    265 	}
    266 #endif
    267 	/*
    268 	 * Check for extension in the existing location.
    269 	 */
    270 	cg = dtog(fs, bprev);
    271 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    272 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    273 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    274 
    275 		if (bpp != NULL) {
    276 			if (bp->b_blkno != fsbtodb(fs, bno))
    277 				panic("bad blockno");
    278 			allocbuf(bp, nsize, 1);
    279 			bp->b_flags |= B_DONE;
    280 			memset(bp->b_data + osize, 0, nsize - osize);
    281 			*bpp = bp;
    282 		}
    283 		if (blknop != NULL) {
    284 			*blknop = bno;
    285 		}
    286 		return (0);
    287 	}
    288 	/*
    289 	 * Allocate a new disk location.
    290 	 */
    291 	if (bpref >= fs->fs_size)
    292 		bpref = 0;
    293 	switch ((int)fs->fs_optim) {
    294 	case FS_OPTSPACE:
    295 		/*
    296 		 * Allocate an exact sized fragment. Although this makes
    297 		 * best use of space, we will waste time relocating it if
    298 		 * the file continues to grow. If the fragmentation is
    299 		 * less than half of the minimum free reserve, we choose
    300 		 * to begin optimizing for time.
    301 		 */
    302 		request = nsize;
    303 		if (fs->fs_minfree < 5 ||
    304 		    fs->fs_cstotal.cs_nffree >
    305 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    306 			break;
    307 
    308 		if (ffs_log_changeopt) {
    309 			log(LOG_NOTICE,
    310 				"%s: optimization changed from SPACE to TIME\n",
    311 				fs->fs_fsmnt);
    312 		}
    313 
    314 		fs->fs_optim = FS_OPTTIME;
    315 		break;
    316 	case FS_OPTTIME:
    317 		/*
    318 		 * At this point we have discovered a file that is trying to
    319 		 * grow a small fragment to a larger fragment. To save time,
    320 		 * we allocate a full sized block, then free the unused portion.
    321 		 * If the file continues to grow, the `ffs_fragextend' call
    322 		 * above will be able to grow it in place without further
    323 		 * copying. If aberrant programs cause disk fragmentation to
    324 		 * grow within 2% of the free reserve, we choose to begin
    325 		 * optimizing for space.
    326 		 */
    327 		request = fs->fs_bsize;
    328 		if (fs->fs_cstotal.cs_nffree <
    329 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    330 			break;
    331 
    332 		if (ffs_log_changeopt) {
    333 			log(LOG_NOTICE,
    334 				"%s: optimization changed from TIME to SPACE\n",
    335 				fs->fs_fsmnt);
    336 		}
    337 
    338 		fs->fs_optim = FS_OPTSPACE;
    339 		break;
    340 	default:
    341 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    342 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    343 		panic("ffs_realloccg: bad optim");
    344 		/* NOTREACHED */
    345 	}
    346 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    347 	if (bno > 0) {
    348 		if (!DOINGSOFTDEP(ITOV(ip)))
    349 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    350 			    ip->i_number);
    351 		if (nsize < request)
    352 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    353 			    (long)(request - nsize), ip->i_number);
    354 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    355 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    356 		if (bpp != NULL) {
    357 			bp->b_blkno = fsbtodb(fs, bno);
    358 			allocbuf(bp, nsize, 1);
    359 			bp->b_flags |= B_DONE;
    360 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    361 			*bpp = bp;
    362 		}
    363 		if (blknop != NULL) {
    364 			*blknop = bno;
    365 		}
    366 		return (0);
    367 	}
    368 #ifdef QUOTA
    369 	/*
    370 	 * Restore user's disk quota because allocation failed.
    371 	 */
    372 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    373 #endif
    374 	if (bpp != NULL) {
    375 		brelse(bp);
    376 	}
    377 
    378 nospace:
    379 	/*
    380 	 * no space available
    381 	 */
    382 	ffs_fserr(fs, cred->cr_uid, "file system full");
    383 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    384 	return (ENOSPC);
    385 }
    386 
    387 /*
    388  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    389  *
    390  * The vnode and an array of buffer pointers for a range of sequential
    391  * logical blocks to be made contiguous is given. The allocator attempts
    392  * to find a range of sequential blocks starting as close as possible
    393  * from the end of the allocation for the logical block immediately
    394  * preceding the current range. If successful, the physical block numbers
    395  * in the buffer pointers and in the inode are changed to reflect the new
    396  * allocation. If unsuccessful, the allocation is left unchanged. The
    397  * success in doing the reallocation is returned. Note that the error
    398  * return is not reflected back to the user. Rather the previous block
    399  * allocation will be used.
    400 
    401  */
    402 #ifdef XXXUBC
    403 #ifdef DEBUG
    404 #include <sys/sysctl.h>
    405 int prtrealloc = 0;
    406 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    407 #endif
    408 #endif
    409 
    410 /*
    411  * NOTE: when re-enabling this, it must be updated for UFS2.
    412  */
    413 
    414 int doasyncfree = 1;
    415 
    416 int
    417 ffs_reallocblks(void *v)
    418 {
    419 #ifdef XXXUBC
    420 	struct vop_reallocblks_args /* {
    421 		struct vnode *a_vp;
    422 		struct cluster_save *a_buflist;
    423 	} */ *ap = v;
    424 	struct fs *fs;
    425 	struct inode *ip;
    426 	struct vnode *vp;
    427 	struct buf *sbp, *ebp;
    428 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    429 	struct cluster_save *buflist;
    430 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    431 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    432 	int i, len, start_lvl, end_lvl, pref, ssize;
    433 #endif /* XXXUBC */
    434 
    435 	/* XXXUBC don't reallocblks for now */
    436 	return ENOSPC;
    437 
    438 #ifdef XXXUBC
    439 	vp = ap->a_vp;
    440 	ip = VTOI(vp);
    441 	fs = ip->i_fs;
    442 	if (fs->fs_contigsumsize <= 0)
    443 		return (ENOSPC);
    444 	buflist = ap->a_buflist;
    445 	len = buflist->bs_nchildren;
    446 	start_lbn = buflist->bs_children[0]->b_lblkno;
    447 	end_lbn = start_lbn + len - 1;
    448 #ifdef DIAGNOSTIC
    449 	for (i = 0; i < len; i++)
    450 		if (!ffs_checkblk(ip,
    451 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    452 			panic("ffs_reallocblks: unallocated block 1");
    453 	for (i = 1; i < len; i++)
    454 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    455 			panic("ffs_reallocblks: non-logical cluster");
    456 	blkno = buflist->bs_children[0]->b_blkno;
    457 	ssize = fsbtodb(fs, fs->fs_frag);
    458 	for (i = 1; i < len - 1; i++)
    459 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    460 			panic("ffs_reallocblks: non-physical cluster %d", i);
    461 #endif
    462 	/*
    463 	 * If the latest allocation is in a new cylinder group, assume that
    464 	 * the filesystem has decided to move and do not force it back to
    465 	 * the previous cylinder group.
    466 	 */
    467 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    468 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    469 		return (ENOSPC);
    470 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    471 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    472 		return (ENOSPC);
    473 	/*
    474 	 * Get the starting offset and block map for the first block.
    475 	 */
    476 	if (start_lvl == 0) {
    477 		sbap = &ip->i_ffs1_db[0];
    478 		soff = start_lbn;
    479 	} else {
    480 		idp = &start_ap[start_lvl - 1];
    481 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    482 			brelse(sbp);
    483 			return (ENOSPC);
    484 		}
    485 		sbap = (int32_t *)sbp->b_data;
    486 		soff = idp->in_off;
    487 	}
    488 	/*
    489 	 * Find the preferred location for the cluster.
    490 	 */
    491 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    492 	/*
    493 	 * If the block range spans two block maps, get the second map.
    494 	 */
    495 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    496 		ssize = len;
    497 	} else {
    498 #ifdef DIAGNOSTIC
    499 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    500 			panic("ffs_reallocblk: start == end");
    501 #endif
    502 		ssize = len - (idp->in_off + 1);
    503 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    504 			goto fail;
    505 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    506 	}
    507 	/*
    508 	 * Search the block map looking for an allocation of the desired size.
    509 	 */
    510 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    511 	    len, ffs_clusteralloc)) == 0)
    512 		goto fail;
    513 	/*
    514 	 * We have found a new contiguous block.
    515 	 *
    516 	 * First we have to replace the old block pointers with the new
    517 	 * block pointers in the inode and indirect blocks associated
    518 	 * with the file.
    519 	 */
    520 #ifdef DEBUG
    521 	if (prtrealloc)
    522 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    523 		    start_lbn, end_lbn);
    524 #endif
    525 	blkno = newblk;
    526 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    527 		daddr_t ba;
    528 
    529 		if (i == ssize) {
    530 			bap = ebap;
    531 			soff = -i;
    532 		}
    533 		/* XXX ondisk32 */
    534 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    535 #ifdef DIAGNOSTIC
    536 		if (!ffs_checkblk(ip,
    537 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    538 			panic("ffs_reallocblks: unallocated block 2");
    539 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    540 			panic("ffs_reallocblks: alloc mismatch");
    541 #endif
    542 #ifdef DEBUG
    543 		if (prtrealloc)
    544 			printf(" %d,", ba);
    545 #endif
    546  		if (DOINGSOFTDEP(vp)) {
    547  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    548  				softdep_setup_allocdirect(ip, start_lbn + i,
    549  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    550  				    buflist->bs_children[i]);
    551  			else
    552  				softdep_setup_allocindir_page(ip, start_lbn + i,
    553  				    i < ssize ? sbp : ebp, soff + i, blkno,
    554  				    ba, buflist->bs_children[i]);
    555  		}
    556 		/* XXX ondisk32 */
    557 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    558 	}
    559 	/*
    560 	 * Next we must write out the modified inode and indirect blocks.
    561 	 * For strict correctness, the writes should be synchronous since
    562 	 * the old block values may have been written to disk. In practise
    563 	 * they are almost never written, but if we are concerned about
    564 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    565 	 *
    566 	 * The test on `doasyncfree' should be changed to test a flag
    567 	 * that shows whether the associated buffers and inodes have
    568 	 * been written. The flag should be set when the cluster is
    569 	 * started and cleared whenever the buffer or inode is flushed.
    570 	 * We can then check below to see if it is set, and do the
    571 	 * synchronous write only when it has been cleared.
    572 	 */
    573 	if (sbap != &ip->i_ffs1_db[0]) {
    574 		if (doasyncfree)
    575 			bdwrite(sbp);
    576 		else
    577 			bwrite(sbp);
    578 	} else {
    579 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    580 		if (!doasyncfree)
    581 			VOP_UPDATE(vp, NULL, NULL, 1);
    582 	}
    583 	if (ssize < len) {
    584 		if (doasyncfree)
    585 			bdwrite(ebp);
    586 		else
    587 			bwrite(ebp);
    588 	}
    589 	/*
    590 	 * Last, free the old blocks and assign the new blocks to the buffers.
    591 	 */
    592 #ifdef DEBUG
    593 	if (prtrealloc)
    594 		printf("\n\tnew:");
    595 #endif
    596 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    597 		if (!DOINGSOFTDEP(vp))
    598 			ffs_blkfree(fs, ip->i_devvp,
    599 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    600 			    fs->fs_bsize, ip->i_number);
    601 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    602 #ifdef DEBUG
    603 		if (!ffs_checkblk(ip,
    604 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    605 			panic("ffs_reallocblks: unallocated block 3");
    606 		if (prtrealloc)
    607 			printf(" %d,", blkno);
    608 #endif
    609 	}
    610 #ifdef DEBUG
    611 	if (prtrealloc) {
    612 		prtrealloc--;
    613 		printf("\n");
    614 	}
    615 #endif
    616 	return (0);
    617 
    618 fail:
    619 	if (ssize < len)
    620 		brelse(ebp);
    621 	if (sbap != &ip->i_ffs1_db[0])
    622 		brelse(sbp);
    623 	return (ENOSPC);
    624 #endif /* XXXUBC */
    625 }
    626 
    627 /*
    628  * Allocate an inode in the file system.
    629  *
    630  * If allocating a directory, use ffs_dirpref to select the inode.
    631  * If allocating in a directory, the following hierarchy is followed:
    632  *   1) allocate the preferred inode.
    633  *   2) allocate an inode in the same cylinder group.
    634  *   3) quadradically rehash into other cylinder groups, until an
    635  *      available inode is located.
    636  * If no inode preference is given the following hierarchy is used
    637  * to allocate an inode:
    638  *   1) allocate an inode in cylinder group 0.
    639  *   2) quadradically rehash into other cylinder groups, until an
    640  *      available inode is located.
    641  */
    642 int
    643 ffs_valloc(void *v)
    644 {
    645 	struct vop_valloc_args /* {
    646 		struct vnode *a_pvp;
    647 		int a_mode;
    648 		struct ucred *a_cred;
    649 		struct vnode **a_vpp;
    650 	} */ *ap = v;
    651 	struct vnode *pvp = ap->a_pvp;
    652 	struct inode *pip;
    653 	struct fs *fs;
    654 	struct inode *ip;
    655 	struct timespec ts;
    656 	mode_t mode = ap->a_mode;
    657 	ino_t ino, ipref;
    658 	int cg, error;
    659 
    660 	*ap->a_vpp = NULL;
    661 	pip = VTOI(pvp);
    662 	fs = pip->i_fs;
    663 	if (fs->fs_cstotal.cs_nifree == 0)
    664 		goto noinodes;
    665 
    666 	if ((mode & IFMT) == IFDIR)
    667 		ipref = ffs_dirpref(pip);
    668 	else
    669 		ipref = pip->i_number;
    670 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    671 		ipref = 0;
    672 	cg = ino_to_cg(fs, ipref);
    673 	/*
    674 	 * Track number of dirs created one after another
    675 	 * in a same cg without intervening by files.
    676 	 */
    677 	if ((mode & IFMT) == IFDIR) {
    678 		if (fs->fs_contigdirs[cg] < 255)
    679 			fs->fs_contigdirs[cg]++;
    680 	} else {
    681 		if (fs->fs_contigdirs[cg] > 0)
    682 			fs->fs_contigdirs[cg]--;
    683 	}
    684 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    685 	if (ino == 0)
    686 		goto noinodes;
    687 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    688 	if (error) {
    689 		VOP_VFREE(pvp, ino, mode);
    690 		return (error);
    691 	}
    692 	ip = VTOI(*ap->a_vpp);
    693 	if (ip->i_mode) {
    694 #if 0
    695 		printf("mode = 0%o, inum = %d, fs = %s\n",
    696 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    697 #else
    698 		printf("dmode %x mode %x dgen %x gen %x\n",
    699 		    DIP(ip, mode), ip->i_mode,
    700 		    DIP(ip, gen), ip->i_gen);
    701 		printf("size %llx blocks %llx\n",
    702 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    703 		printf("ino %u ipref %u\n", ino, ipref);
    704 #if 0
    705 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    706 		    (int)fs->fs_bsize, NOCRED, &bp);
    707 #endif
    708 
    709 #endif
    710 		panic("ffs_valloc: dup alloc");
    711 	}
    712 	if (DIP(ip, blocks)) {				/* XXX */
    713 		printf("free inode %s/%d had %" PRId64 " blocks\n",
    714 		    fs->fs_fsmnt, ino, DIP(ip, blocks));
    715 		DIP_ASSIGN(ip, blocks, 0);
    716 	}
    717 	ip->i_flag &= ~IN_SPACECOUNTED;
    718 	ip->i_flags = 0;
    719 	DIP_ASSIGN(ip, flags, 0);
    720 	/*
    721 	 * Set up a new generation number for this inode.
    722 	 */
    723 	ip->i_gen++;
    724 	DIP_ASSIGN(ip, gen, ip->i_gen);
    725 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    726 		TIMEVAL_TO_TIMESPEC(&time, &ts);
    727 		ip->i_ffs2_birthtime = ts.tv_sec;
    728 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    729 	}
    730 	return (0);
    731 noinodes:
    732 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    733 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    734 	return (ENOSPC);
    735 }
    736 
    737 /*
    738  * Find a cylinder group in which to place a directory.
    739  *
    740  * The policy implemented by this algorithm is to allocate a
    741  * directory inode in the same cylinder group as its parent
    742  * directory, but also to reserve space for its files inodes
    743  * and data. Restrict the number of directories which may be
    744  * allocated one after another in the same cylinder group
    745  * without intervening allocation of files.
    746  *
    747  * If we allocate a first level directory then force allocation
    748  * in another cylinder group.
    749  */
    750 static ino_t
    751 ffs_dirpref(struct inode *pip)
    752 {
    753 	register struct fs *fs;
    754 	int cg, prefcg;
    755 	int64_t dirsize, cgsize;
    756 	int avgifree, avgbfree, avgndir, curdirsize;
    757 	int minifree, minbfree, maxndir;
    758 	int mincg, minndir;
    759 	int maxcontigdirs;
    760 
    761 	fs = pip->i_fs;
    762 
    763 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    764 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    765 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    766 
    767 	/*
    768 	 * Force allocation in another cg if creating a first level dir.
    769 	 */
    770 	if (ITOV(pip)->v_flag & VROOT) {
    771 		prefcg = random() % fs->fs_ncg;
    772 		mincg = prefcg;
    773 		minndir = fs->fs_ipg;
    774 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    775 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    776 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    777 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    778 				mincg = cg;
    779 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    780 			}
    781 		for (cg = 0; cg < prefcg; cg++)
    782 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    783 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    784 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    785 				mincg = cg;
    786 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    787 			}
    788 		return ((ino_t)(fs->fs_ipg * mincg));
    789 	}
    790 
    791 	/*
    792 	 * Count various limits which used for
    793 	 * optimal allocation of a directory inode.
    794 	 */
    795 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    796 	minifree = avgifree - fs->fs_ipg / 4;
    797 	if (minifree < 0)
    798 		minifree = 0;
    799 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    800 	if (minbfree < 0)
    801 		minbfree = 0;
    802 	cgsize = fs->fs_fsize * fs->fs_fpg;
    803 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    804 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    805 	if (dirsize < curdirsize)
    806 		dirsize = curdirsize;
    807 	maxcontigdirs = min(cgsize / dirsize, 255);
    808 	if (fs->fs_avgfpdir > 0)
    809 		maxcontigdirs = min(maxcontigdirs,
    810 				    fs->fs_ipg / fs->fs_avgfpdir);
    811 	if (maxcontigdirs == 0)
    812 		maxcontigdirs = 1;
    813 
    814 	/*
    815 	 * Limit number of dirs in one cg and reserve space for
    816 	 * regular files, but only if we have no deficit in
    817 	 * inodes or space.
    818 	 */
    819 	prefcg = ino_to_cg(fs, pip->i_number);
    820 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    821 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    822 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    823 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    824 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    825 				return ((ino_t)(fs->fs_ipg * cg));
    826 		}
    827 	for (cg = 0; cg < prefcg; cg++)
    828 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    829 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    830 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    831 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    832 				return ((ino_t)(fs->fs_ipg * cg));
    833 		}
    834 	/*
    835 	 * This is a backstop when we are deficient in space.
    836 	 */
    837 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    838 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    839 			return ((ino_t)(fs->fs_ipg * cg));
    840 	for (cg = 0; cg < prefcg; cg++)
    841 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    842 			break;
    843 	return ((ino_t)(fs->fs_ipg * cg));
    844 }
    845 
    846 /*
    847  * Select the desired position for the next block in a file.  The file is
    848  * logically divided into sections. The first section is composed of the
    849  * direct blocks. Each additional section contains fs_maxbpg blocks.
    850  *
    851  * If no blocks have been allocated in the first section, the policy is to
    852  * request a block in the same cylinder group as the inode that describes
    853  * the file. If no blocks have been allocated in any other section, the
    854  * policy is to place the section in a cylinder group with a greater than
    855  * average number of free blocks.  An appropriate cylinder group is found
    856  * by using a rotor that sweeps the cylinder groups. When a new group of
    857  * blocks is needed, the sweep begins in the cylinder group following the
    858  * cylinder group from which the previous allocation was made. The sweep
    859  * continues until a cylinder group with greater than the average number
    860  * of free blocks is found. If the allocation is for the first block in an
    861  * indirect block, the information on the previous allocation is unavailable;
    862  * here a best guess is made based upon the logical block number being
    863  * allocated.
    864  *
    865  * If a section is already partially allocated, the policy is to
    866  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    867  * contiguous blocks and the beginning of the next is laid out
    868  * contigously if possible.
    869  */
    870 daddr_t
    871 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    872     int32_t *bap /* XXX ondisk32 */)
    873 {
    874 	struct fs *fs;
    875 	int cg;
    876 	int avgbfree, startcg;
    877 
    878 	fs = ip->i_fs;
    879 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    880 		if (lbn < NDADDR + NINDIR(fs)) {
    881 			cg = ino_to_cg(fs, ip->i_number);
    882 			return (fs->fs_fpg * cg + fs->fs_frag);
    883 		}
    884 		/*
    885 		 * Find a cylinder with greater than average number of
    886 		 * unused data blocks.
    887 		 */
    888 		if (indx == 0 || bap[indx - 1] == 0)
    889 			startcg =
    890 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    891 		else
    892 			startcg = dtog(fs,
    893 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    894 		startcg %= fs->fs_ncg;
    895 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    896 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    897 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    898 				return (fs->fs_fpg * cg + fs->fs_frag);
    899 			}
    900 		for (cg = 0; cg < startcg; cg++)
    901 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    902 				return (fs->fs_fpg * cg + fs->fs_frag);
    903 			}
    904 		return (0);
    905 	}
    906 	/*
    907 	 * We just always try to lay things out contiguously.
    908 	 */
    909 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    910 }
    911 
    912 daddr_t
    913 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    914 {
    915 	struct fs *fs;
    916 	int cg;
    917 	int avgbfree, startcg;
    918 
    919 	fs = ip->i_fs;
    920 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    921 		if (lbn < NDADDR + NINDIR(fs)) {
    922 			cg = ino_to_cg(fs, ip->i_number);
    923 			return (fs->fs_fpg * cg + fs->fs_frag);
    924 		}
    925 		/*
    926 		 * Find a cylinder with greater than average number of
    927 		 * unused data blocks.
    928 		 */
    929 		if (indx == 0 || bap[indx - 1] == 0)
    930 			startcg =
    931 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    932 		else
    933 			startcg = dtog(fs,
    934 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    935 		startcg %= fs->fs_ncg;
    936 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    937 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    938 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    939 				return (fs->fs_fpg * cg + fs->fs_frag);
    940 			}
    941 		for (cg = 0; cg < startcg; cg++)
    942 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    943 				return (fs->fs_fpg * cg + fs->fs_frag);
    944 			}
    945 		return (0);
    946 	}
    947 	/*
    948 	 * We just always try to lay things out contiguously.
    949 	 */
    950 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    951 }
    952 
    953 
    954 /*
    955  * Implement the cylinder overflow algorithm.
    956  *
    957  * The policy implemented by this algorithm is:
    958  *   1) allocate the block in its requested cylinder group.
    959  *   2) quadradically rehash on the cylinder group number.
    960  *   3) brute force search for a free block.
    961  */
    962 /*VARARGS5*/
    963 static daddr_t
    964 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    965     int size /* size for data blocks, mode for inodes */,
    966     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    967 {
    968 	struct fs *fs;
    969 	daddr_t result;
    970 	int i, icg = cg;
    971 
    972 	fs = ip->i_fs;
    973 	/*
    974 	 * 1: preferred cylinder group
    975 	 */
    976 	result = (*allocator)(ip, cg, pref, size);
    977 	if (result)
    978 		return (result);
    979 	/*
    980 	 * 2: quadratic rehash
    981 	 */
    982 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    983 		cg += i;
    984 		if (cg >= fs->fs_ncg)
    985 			cg -= fs->fs_ncg;
    986 		result = (*allocator)(ip, cg, 0, size);
    987 		if (result)
    988 			return (result);
    989 	}
    990 	/*
    991 	 * 3: brute force search
    992 	 * Note that we start at i == 2, since 0 was checked initially,
    993 	 * and 1 is always checked in the quadratic rehash.
    994 	 */
    995 	cg = (icg + 2) % fs->fs_ncg;
    996 	for (i = 2; i < fs->fs_ncg; i++) {
    997 		result = (*allocator)(ip, cg, 0, size);
    998 		if (result)
    999 			return (result);
   1000 		cg++;
   1001 		if (cg == fs->fs_ncg)
   1002 			cg = 0;
   1003 	}
   1004 	return (0);
   1005 }
   1006 
   1007 /*
   1008  * Determine whether a fragment can be extended.
   1009  *
   1010  * Check to see if the necessary fragments are available, and
   1011  * if they are, allocate them.
   1012  */
   1013 static daddr_t
   1014 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1015 {
   1016 	struct fs *fs;
   1017 	struct cg *cgp;
   1018 	struct buf *bp;
   1019 	daddr_t bno;
   1020 	int frags, bbase;
   1021 	int i, error;
   1022 	u_int8_t *blksfree;
   1023 
   1024 	fs = ip->i_fs;
   1025 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1026 		return (0);
   1027 	frags = numfrags(fs, nsize);
   1028 	bbase = fragnum(fs, bprev);
   1029 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1030 		/* cannot extend across a block boundary */
   1031 		return (0);
   1032 	}
   1033 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1034 		(int)fs->fs_cgsize, NOCRED, &bp);
   1035 	if (error) {
   1036 		brelse(bp);
   1037 		return (0);
   1038 	}
   1039 	cgp = (struct cg *)bp->b_data;
   1040 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1041 		brelse(bp);
   1042 		return (0);
   1043 	}
   1044 	cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1045 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1046 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1047 		cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1048 	bno = dtogd(fs, bprev);
   1049 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1050 	for (i = numfrags(fs, osize); i < frags; i++)
   1051 		if (isclr(blksfree, bno + i)) {
   1052 			brelse(bp);
   1053 			return (0);
   1054 		}
   1055 	/*
   1056 	 * the current fragment can be extended
   1057 	 * deduct the count on fragment being extended into
   1058 	 * increase the count on the remaining fragment (if any)
   1059 	 * allocate the extended piece
   1060 	 */
   1061 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1062 		if (isclr(blksfree, bno + i))
   1063 			break;
   1064 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1065 	if (i != frags)
   1066 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1067 	for (i = numfrags(fs, osize); i < frags; i++) {
   1068 		clrbit(blksfree, bno + i);
   1069 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1070 		fs->fs_cstotal.cs_nffree--;
   1071 		fs->fs_cs(fs, cg).cs_nffree--;
   1072 	}
   1073 	fs->fs_fmod = 1;
   1074 	if (DOINGSOFTDEP(ITOV(ip)))
   1075 		softdep_setup_blkmapdep(bp, fs, bprev);
   1076 	ACTIVECG_CLR(fs, cg);
   1077 	bdwrite(bp);
   1078 	return (bprev);
   1079 }
   1080 
   1081 /*
   1082  * Determine whether a block can be allocated.
   1083  *
   1084  * Check to see if a block of the appropriate size is available,
   1085  * and if it is, allocate it.
   1086  */
   1087 static daddr_t
   1088 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1089 {
   1090 	struct fs *fs = ip->i_fs;
   1091 	struct cg *cgp;
   1092 	struct buf *bp;
   1093 	int32_t bno;
   1094 	daddr_t blkno;
   1095 	int error, frags, allocsiz, i;
   1096 	u_int8_t *blksfree;
   1097 #ifdef FFS_EI
   1098 	const int needswap = UFS_FSNEEDSWAP(fs);
   1099 #endif
   1100 
   1101 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1102 		return (0);
   1103 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1104 		(int)fs->fs_cgsize, NOCRED, &bp);
   1105 	if (error) {
   1106 		brelse(bp);
   1107 		return (0);
   1108 	}
   1109 	cgp = (struct cg *)bp->b_data;
   1110 	if (!cg_chkmagic(cgp, needswap) ||
   1111 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1112 		brelse(bp);
   1113 		return (0);
   1114 	}
   1115 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1116 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1117 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1118 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1119 	if (size == fs->fs_bsize) {
   1120 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1121 		ACTIVECG_CLR(fs, cg);
   1122 		bdwrite(bp);
   1123 		return (blkno);
   1124 	}
   1125 	/*
   1126 	 * check to see if any fragments are already available
   1127 	 * allocsiz is the size which will be allocated, hacking
   1128 	 * it down to a smaller size if necessary
   1129 	 */
   1130 	blksfree = cg_blksfree(cgp, needswap);
   1131 	frags = numfrags(fs, size);
   1132 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1133 		if (cgp->cg_frsum[allocsiz] != 0)
   1134 			break;
   1135 	if (allocsiz == fs->fs_frag) {
   1136 		/*
   1137 		 * no fragments were available, so a block will be
   1138 		 * allocated, and hacked up
   1139 		 */
   1140 		if (cgp->cg_cs.cs_nbfree == 0) {
   1141 			brelse(bp);
   1142 			return (0);
   1143 		}
   1144 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1145 		bno = dtogd(fs, blkno);
   1146 		for (i = frags; i < fs->fs_frag; i++)
   1147 			setbit(blksfree, bno + i);
   1148 		i = fs->fs_frag - frags;
   1149 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1150 		fs->fs_cstotal.cs_nffree += i;
   1151 		fs->fs_cs(fs, cg).cs_nffree += i;
   1152 		fs->fs_fmod = 1;
   1153 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1154 		ACTIVECG_CLR(fs, cg);
   1155 		bdwrite(bp);
   1156 		return (blkno);
   1157 	}
   1158 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1159 #if 0
   1160 	/*
   1161 	 * XXX fvdl mapsearch will panic, and never return -1
   1162 	 *          also: returning NULL as daddr_t ?
   1163 	 */
   1164 	if (bno < 0) {
   1165 		brelse(bp);
   1166 		return (0);
   1167 	}
   1168 #endif
   1169 	for (i = 0; i < frags; i++)
   1170 		clrbit(blksfree, bno + i);
   1171 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1172 	fs->fs_cstotal.cs_nffree -= frags;
   1173 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1174 	fs->fs_fmod = 1;
   1175 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1176 	if (frags != allocsiz)
   1177 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1178 	blkno = cg * fs->fs_fpg + bno;
   1179 	if (DOINGSOFTDEP(ITOV(ip)))
   1180 		softdep_setup_blkmapdep(bp, fs, blkno);
   1181 	ACTIVECG_CLR(fs, cg);
   1182 	bdwrite(bp);
   1183 	return blkno;
   1184 }
   1185 
   1186 /*
   1187  * Allocate a block in a cylinder group.
   1188  *
   1189  * This algorithm implements the following policy:
   1190  *   1) allocate the requested block.
   1191  *   2) allocate a rotationally optimal block in the same cylinder.
   1192  *   3) allocate the next available block on the block rotor for the
   1193  *      specified cylinder group.
   1194  * Note that this routine only allocates fs_bsize blocks; these
   1195  * blocks may be fragmented by the routine that allocates them.
   1196  */
   1197 static daddr_t
   1198 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1199 {
   1200 	struct fs *fs = ip->i_fs;
   1201 	struct cg *cgp;
   1202 	daddr_t blkno;
   1203 	int32_t bno;
   1204 	u_int8_t *blksfree;
   1205 #ifdef FFS_EI
   1206 	const int needswap = UFS_FSNEEDSWAP(fs);
   1207 #endif
   1208 
   1209 	cgp = (struct cg *)bp->b_data;
   1210 	blksfree = cg_blksfree(cgp, needswap);
   1211 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1212 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1213 	} else {
   1214 		bpref = blknum(fs, bpref);
   1215 		bno = dtogd(fs, bpref);
   1216 		/*
   1217 		 * if the requested block is available, use it
   1218 		 */
   1219 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1220 			goto gotit;
   1221 	}
   1222 	/*
   1223 	 * Take the next available block in this cylinder group.
   1224 	 */
   1225 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1226 	if (bno < 0)
   1227 		return (0);
   1228 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1229 gotit:
   1230 	blkno = fragstoblks(fs, bno);
   1231 	ffs_clrblock(fs, blksfree, blkno);
   1232 	ffs_clusteracct(fs, cgp, blkno, -1);
   1233 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1234 	fs->fs_cstotal.cs_nbfree--;
   1235 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1236 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1237 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1238 		int cylno;
   1239 		cylno = old_cbtocylno(fs, bno);
   1240 		KASSERT(cylno >= 0);
   1241 		KASSERT(cylno < fs->fs_old_ncyl);
   1242 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1243 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1244 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1245 		    needswap);
   1246 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1247 	}
   1248 	fs->fs_fmod = 1;
   1249 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1250 	if (DOINGSOFTDEP(ITOV(ip)))
   1251 		softdep_setup_blkmapdep(bp, fs, blkno);
   1252 	return (blkno);
   1253 }
   1254 
   1255 #ifdef XXXUBC
   1256 /*
   1257  * Determine whether a cluster can be allocated.
   1258  *
   1259  * We do not currently check for optimal rotational layout if there
   1260  * are multiple choices in the same cylinder group. Instead we just
   1261  * take the first one that we find following bpref.
   1262  */
   1263 
   1264 /*
   1265  * This function must be fixed for UFS2 if re-enabled.
   1266  */
   1267 static daddr_t
   1268 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1269 {
   1270 	struct fs *fs;
   1271 	struct cg *cgp;
   1272 	struct buf *bp;
   1273 	int i, got, run, bno, bit, map;
   1274 	u_char *mapp;
   1275 	int32_t *lp;
   1276 
   1277 	fs = ip->i_fs;
   1278 	if (fs->fs_maxcluster[cg] < len)
   1279 		return (0);
   1280 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1281 	    NOCRED, &bp))
   1282 		goto fail;
   1283 	cgp = (struct cg *)bp->b_data;
   1284 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1285 		goto fail;
   1286 	/*
   1287 	 * Check to see if a cluster of the needed size (or bigger) is
   1288 	 * available in this cylinder group.
   1289 	 */
   1290 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1291 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1292 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1293 			break;
   1294 	if (i > fs->fs_contigsumsize) {
   1295 		/*
   1296 		 * This is the first time looking for a cluster in this
   1297 		 * cylinder group. Update the cluster summary information
   1298 		 * to reflect the true maximum sized cluster so that
   1299 		 * future cluster allocation requests can avoid reading
   1300 		 * the cylinder group map only to find no clusters.
   1301 		 */
   1302 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1303 		for (i = len - 1; i > 0; i--)
   1304 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1305 				break;
   1306 		fs->fs_maxcluster[cg] = i;
   1307 		goto fail;
   1308 	}
   1309 	/*
   1310 	 * Search the cluster map to find a big enough cluster.
   1311 	 * We take the first one that we find, even if it is larger
   1312 	 * than we need as we prefer to get one close to the previous
   1313 	 * block allocation. We do not search before the current
   1314 	 * preference point as we do not want to allocate a block
   1315 	 * that is allocated before the previous one (as we will
   1316 	 * then have to wait for another pass of the elevator
   1317 	 * algorithm before it will be read). We prefer to fail and
   1318 	 * be recalled to try an allocation in the next cylinder group.
   1319 	 */
   1320 	if (dtog(fs, bpref) != cg)
   1321 		bpref = 0;
   1322 	else
   1323 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1324 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1325 	map = *mapp++;
   1326 	bit = 1 << (bpref % NBBY);
   1327 	for (run = 0, got = bpref;
   1328 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1329 		if ((map & bit) == 0) {
   1330 			run = 0;
   1331 		} else {
   1332 			run++;
   1333 			if (run == len)
   1334 				break;
   1335 		}
   1336 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1337 			bit <<= 1;
   1338 		} else {
   1339 			map = *mapp++;
   1340 			bit = 1;
   1341 		}
   1342 	}
   1343 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1344 		goto fail;
   1345 	/*
   1346 	 * Allocate the cluster that we have found.
   1347 	 */
   1348 #ifdef DIAGNOSTIC
   1349 	for (i = 1; i <= len; i++)
   1350 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1351 		    got - run + i))
   1352 			panic("ffs_clusteralloc: map mismatch");
   1353 #endif
   1354 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1355 	if (dtog(fs, bno) != cg)
   1356 		panic("ffs_clusteralloc: allocated out of group");
   1357 	len = blkstofrags(fs, len);
   1358 	for (i = 0; i < len; i += fs->fs_frag)
   1359 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1360 			panic("ffs_clusteralloc: lost block");
   1361 	ACTIVECG_CLR(fs, cg);
   1362 	bdwrite(bp);
   1363 	return (bno);
   1364 
   1365 fail:
   1366 	brelse(bp);
   1367 	return (0);
   1368 }
   1369 #endif /* XXXUBC */
   1370 
   1371 /*
   1372  * Determine whether an inode can be allocated.
   1373  *
   1374  * Check to see if an inode is available, and if it is,
   1375  * allocate it using the following policy:
   1376  *   1) allocate the requested inode.
   1377  *   2) allocate the next available inode after the requested
   1378  *      inode in the specified cylinder group.
   1379  */
   1380 static daddr_t
   1381 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1382 {
   1383 	struct fs *fs = ip->i_fs;
   1384 	struct cg *cgp;
   1385 	struct buf *bp, *ibp;
   1386 	u_int8_t *inosused;
   1387 	int error, start, len, loc, map, i;
   1388 	int32_t initediblk;
   1389 	struct ufs2_dinode *dp2;
   1390 #ifdef FFS_EI
   1391 	const int needswap = UFS_FSNEEDSWAP(fs);
   1392 #endif
   1393 
   1394 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1395 		return (0);
   1396 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1397 		(int)fs->fs_cgsize, NOCRED, &bp);
   1398 	if (error) {
   1399 		brelse(bp);
   1400 		return (0);
   1401 	}
   1402 	cgp = (struct cg *)bp->b_data;
   1403 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1404 		brelse(bp);
   1405 		return (0);
   1406 	}
   1407 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1408 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1409 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1410 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1411 	inosused = cg_inosused(cgp, needswap);
   1412 	if (ipref) {
   1413 		ipref %= fs->fs_ipg;
   1414 		if (isclr(inosused, ipref))
   1415 			goto gotit;
   1416 	}
   1417 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1418 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1419 		NBBY);
   1420 	loc = skpc(0xff, len, &inosused[start]);
   1421 	if (loc == 0) {
   1422 		len = start + 1;
   1423 		start = 0;
   1424 		loc = skpc(0xff, len, &inosused[0]);
   1425 		if (loc == 0) {
   1426 			printf("cg = %d, irotor = %d, fs = %s\n",
   1427 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1428 				fs->fs_fsmnt);
   1429 			panic("ffs_nodealloccg: map corrupted");
   1430 			/* NOTREACHED */
   1431 		}
   1432 	}
   1433 	i = start + len - loc;
   1434 	map = inosused[i];
   1435 	ipref = i * NBBY;
   1436 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1437 		if ((map & i) == 0) {
   1438 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1439 			goto gotit;
   1440 		}
   1441 	}
   1442 	printf("fs = %s\n", fs->fs_fsmnt);
   1443 	panic("ffs_nodealloccg: block not in map");
   1444 	/* NOTREACHED */
   1445 gotit:
   1446 	if (DOINGSOFTDEP(ITOV(ip)))
   1447 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1448 	setbit(inosused, ipref);
   1449 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1450 	fs->fs_cstotal.cs_nifree--;
   1451 	fs->fs_cs(fs, cg).cs_nifree--;
   1452 	fs->fs_fmod = 1;
   1453 	if ((mode & IFMT) == IFDIR) {
   1454 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1455 		fs->fs_cstotal.cs_ndir++;
   1456 		fs->fs_cs(fs, cg).cs_ndir++;
   1457 	}
   1458 	/*
   1459 	 * Check to see if we need to initialize more inodes.
   1460 	 */
   1461 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1462 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1463 	    ipref + INOPB(fs) > initediblk &&
   1464 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1465 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1466 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1467 		    (int)fs->fs_bsize, 0, 0);
   1468 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1469 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1470 		    for (i = 0; i < INOPB(fs); i++) {
   1471 			/*
   1472 			 * Don't bother to swap, it's supposed to be
   1473 			 * random, after all.
   1474 			 */
   1475 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1476 			dp2++;
   1477 		}
   1478 		bawrite(ibp);
   1479 		initediblk += INOPB(fs);
   1480 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1481 	}
   1482 
   1483 	ACTIVECG_CLR(fs, cg);
   1484 	bdwrite(bp);
   1485 	return (cg * fs->fs_ipg + ipref);
   1486 }
   1487 
   1488 /*
   1489  * Free a block or fragment.
   1490  *
   1491  * The specified block or fragment is placed back in the
   1492  * free map. If a fragment is deallocated, a possible
   1493  * block reassembly is checked.
   1494  */
   1495 void
   1496 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1497     ino_t inum)
   1498 {
   1499 	struct cg *cgp;
   1500 	struct buf *bp;
   1501 	struct ufsmount *ump;
   1502 	int32_t fragno, cgbno;
   1503 	daddr_t cgblkno;
   1504 	int i, error, cg, blk, frags, bbase;
   1505 	u_int8_t *blksfree;
   1506 	dev_t dev;
   1507 	const int needswap = UFS_FSNEEDSWAP(fs);
   1508 
   1509 	cg = dtog(fs, bno);
   1510 	if (devvp->v_type != VBLK) {
   1511 		/* devvp is a snapshot */
   1512 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1513 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1514 	} else {
   1515 		dev = devvp->v_rdev;
   1516 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1517 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1518 		if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
   1519 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
   1520 			return;
   1521 	}
   1522 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1523 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1524 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1525 		       "size = %ld, fs = %s\n",
   1526 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1527 		panic("blkfree: bad size");
   1528 	}
   1529 
   1530 	if (bno >= fs->fs_size) {
   1531 		printf("bad block %" PRId64 ", ino %d\n", bno, inum);
   1532 		ffs_fserr(fs, inum, "bad block");
   1533 		return;
   1534 	}
   1535 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1536 	if (error) {
   1537 		brelse(bp);
   1538 		return;
   1539 	}
   1540 	cgp = (struct cg *)bp->b_data;
   1541 	if (!cg_chkmagic(cgp, needswap)) {
   1542 		brelse(bp);
   1543 		return;
   1544 	}
   1545 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1546 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1547 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1548 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1549 	cgbno = dtogd(fs, bno);
   1550 	blksfree = cg_blksfree(cgp, needswap);
   1551 	if (size == fs->fs_bsize) {
   1552 		fragno = fragstoblks(fs, cgbno);
   1553 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1554 			if (devvp->v_type != VBLK) {
   1555 				/* devvp is a snapshot */
   1556 				brelse(bp);
   1557 				return;
   1558 			}
   1559 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1560 			    dev, bno, fs->fs_fsmnt);
   1561 			panic("blkfree: freeing free block");
   1562 		}
   1563 		ffs_setblock(fs, blksfree, fragno);
   1564 		ffs_clusteracct(fs, cgp, fragno, 1);
   1565 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1566 		fs->fs_cstotal.cs_nbfree++;
   1567 		fs->fs_cs(fs, cg).cs_nbfree++;
   1568 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1569 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1570 			i = old_cbtocylno(fs, cgbno);
   1571 			KASSERT(i >= 0);
   1572 			KASSERT(i < fs->fs_old_ncyl);
   1573 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1574 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1575 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1576 			    needswap);
   1577 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1578 		}
   1579 	} else {
   1580 		bbase = cgbno - fragnum(fs, cgbno);
   1581 		/*
   1582 		 * decrement the counts associated with the old frags
   1583 		 */
   1584 		blk = blkmap(fs, blksfree, bbase);
   1585 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1586 		/*
   1587 		 * deallocate the fragment
   1588 		 */
   1589 		frags = numfrags(fs, size);
   1590 		for (i = 0; i < frags; i++) {
   1591 			if (isset(blksfree, cgbno + i)) {
   1592 				printf("dev = 0x%x, block = %" PRId64
   1593 				       ", fs = %s\n",
   1594 				    dev, bno + i, fs->fs_fsmnt);
   1595 				panic("blkfree: freeing free frag");
   1596 			}
   1597 			setbit(blksfree, cgbno + i);
   1598 		}
   1599 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1600 		fs->fs_cstotal.cs_nffree += i;
   1601 		fs->fs_cs(fs, cg).cs_nffree += i;
   1602 		/*
   1603 		 * add back in counts associated with the new frags
   1604 		 */
   1605 		blk = blkmap(fs, blksfree, bbase);
   1606 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1607 		/*
   1608 		 * if a complete block has been reassembled, account for it
   1609 		 */
   1610 		fragno = fragstoblks(fs, bbase);
   1611 		if (ffs_isblock(fs, blksfree, fragno)) {
   1612 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1613 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1614 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1615 			ffs_clusteracct(fs, cgp, fragno, 1);
   1616 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1617 			fs->fs_cstotal.cs_nbfree++;
   1618 			fs->fs_cs(fs, cg).cs_nbfree++;
   1619 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1620 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1621 				i = old_cbtocylno(fs, bbase);
   1622 				KASSERT(i >= 0);
   1623 				KASSERT(i < fs->fs_old_ncyl);
   1624 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1625 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1626 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1627 				    bbase)], 1, needswap);
   1628 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1629 			}
   1630 		}
   1631 	}
   1632 	fs->fs_fmod = 1;
   1633 	ACTIVECG_CLR(fs, cg);
   1634 	bdwrite(bp);
   1635 }
   1636 
   1637 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1638 #ifdef XXXUBC
   1639 /*
   1640  * Verify allocation of a block or fragment. Returns true if block or
   1641  * fragment is allocated, false if it is free.
   1642  */
   1643 static int
   1644 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1645 {
   1646 	struct fs *fs;
   1647 	struct cg *cgp;
   1648 	struct buf *bp;
   1649 	int i, error, frags, free;
   1650 
   1651 	fs = ip->i_fs;
   1652 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1653 		printf("bsize = %d, size = %ld, fs = %s\n",
   1654 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1655 		panic("checkblk: bad size");
   1656 	}
   1657 	if (bno >= fs->fs_size)
   1658 		panic("checkblk: bad block %d", bno);
   1659 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1660 		(int)fs->fs_cgsize, NOCRED, &bp);
   1661 	if (error) {
   1662 		brelse(bp);
   1663 		return 0;
   1664 	}
   1665 	cgp = (struct cg *)bp->b_data;
   1666 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1667 		brelse(bp);
   1668 		return 0;
   1669 	}
   1670 	bno = dtogd(fs, bno);
   1671 	if (size == fs->fs_bsize) {
   1672 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1673 			fragstoblks(fs, bno));
   1674 	} else {
   1675 		frags = numfrags(fs, size);
   1676 		for (free = 0, i = 0; i < frags; i++)
   1677 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1678 				free++;
   1679 		if (free != 0 && free != frags)
   1680 			panic("checkblk: partially free fragment");
   1681 	}
   1682 	brelse(bp);
   1683 	return (!free);
   1684 }
   1685 #endif /* XXXUBC */
   1686 #endif /* DIAGNOSTIC */
   1687 
   1688 /*
   1689  * Free an inode.
   1690  */
   1691 int
   1692 ffs_vfree(void *v)
   1693 {
   1694 	struct vop_vfree_args /* {
   1695 		struct vnode *a_pvp;
   1696 		ino_t a_ino;
   1697 		int a_mode;
   1698 	} */ *ap = v;
   1699 
   1700 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1701 		softdep_freefile(ap);
   1702 		return (0);
   1703 	}
   1704 	return (ffs_freefile(VTOI(ap->a_pvp)->i_fs, VTOI(ap->a_pvp)->i_devvp,
   1705 	    ap->a_ino, ap->a_mode));
   1706 }
   1707 
   1708 /*
   1709  * Do the actual free operation.
   1710  * The specified inode is placed back in the free map.
   1711  */
   1712 int
   1713 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1714 {
   1715 	struct cg *cgp;
   1716 	struct buf *bp;
   1717 	int error, cg;
   1718 	daddr_t cgbno;
   1719 	u_int8_t *inosused;
   1720 	dev_t dev;
   1721 #ifdef FFS_EI
   1722 	const int needswap = UFS_FSNEEDSWAP(fs);
   1723 #endif
   1724 
   1725 	cg = ino_to_cg(fs, ino);
   1726 	if (devvp->v_type != VBLK) {
   1727 		/* devvp is a snapshot */
   1728 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1729 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1730 	} else {
   1731 		dev = devvp->v_rdev;
   1732 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1733 	}
   1734 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1735 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
   1736 		    dev, ino, fs->fs_fsmnt);
   1737 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1738 	if (error) {
   1739 		brelse(bp);
   1740 		return (error);
   1741 	}
   1742 	cgp = (struct cg *)bp->b_data;
   1743 	if (!cg_chkmagic(cgp, needswap)) {
   1744 		brelse(bp);
   1745 		return (0);
   1746 	}
   1747 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1748 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1749 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1750 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1751 	inosused = cg_inosused(cgp, needswap);
   1752 	ino %= fs->fs_ipg;
   1753 	if (isclr(inosused, ino)) {
   1754 		printf("ifree: dev = 0x%x, ino = %d, fs = %s\n",
   1755 		    dev, ino + cg * fs->fs_ipg, fs->fs_fsmnt);
   1756 		if (fs->fs_ronly == 0)
   1757 			panic("ifree: freeing free inode");
   1758 	}
   1759 	clrbit(inosused, ino);
   1760 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1761 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1762 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1763 	fs->fs_cstotal.cs_nifree++;
   1764 	fs->fs_cs(fs, cg).cs_nifree++;
   1765 	if ((mode & IFMT) == IFDIR) {
   1766 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1767 		fs->fs_cstotal.cs_ndir--;
   1768 		fs->fs_cs(fs, cg).cs_ndir--;
   1769 	}
   1770 	fs->fs_fmod = 1;
   1771 	ACTIVECG_CLR(fs, cg);
   1772 	bdwrite(bp);
   1773 	return (0);
   1774 }
   1775 
   1776 /*
   1777  * Check to see if a file is free.
   1778  */
   1779 int
   1780 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1781 {
   1782 	struct cg *cgp;
   1783 	struct buf *bp;
   1784 	daddr_t cgbno;
   1785 	int ret, cg;
   1786 	u_int8_t *inosused;
   1787 
   1788 	cg = ino_to_cg(fs, ino);
   1789 	if (devvp->v_type != VBLK) {
   1790 		/* devvp is a snapshot */
   1791 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1792 	} else
   1793 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1794 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1795 		return 1;
   1796 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1797 		brelse(bp);
   1798 		return 1;
   1799 	}
   1800 	cgp = (struct cg *)bp->b_data;
   1801 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1802 		brelse(bp);
   1803 		return 1;
   1804 	}
   1805 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1806 	ino %= fs->fs_ipg;
   1807 	ret = isclr(inosused, ino);
   1808 	brelse(bp);
   1809 	return ret;
   1810 }
   1811 
   1812 /*
   1813  * Find a block of the specified size in the specified cylinder group.
   1814  *
   1815  * It is a panic if a request is made to find a block if none are
   1816  * available.
   1817  */
   1818 static int32_t
   1819 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1820 {
   1821 	int32_t bno;
   1822 	int start, len, loc, i;
   1823 	int blk, field, subfield, pos;
   1824 	int ostart, olen;
   1825 	u_int8_t *blksfree;
   1826 #ifdef FFS_EI
   1827 	const int needswap = UFS_FSNEEDSWAP(fs);
   1828 #endif
   1829 
   1830 	/*
   1831 	 * find the fragment by searching through the free block
   1832 	 * map for an appropriate bit pattern
   1833 	 */
   1834 	if (bpref)
   1835 		start = dtogd(fs, bpref) / NBBY;
   1836 	else
   1837 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1838 	blksfree = cg_blksfree(cgp, needswap);
   1839 	len = howmany(fs->fs_fpg, NBBY) - start;
   1840 	ostart = start;
   1841 	olen = len;
   1842 	loc = scanc((u_int)len,
   1843 		(const u_char *)&blksfree[start],
   1844 		(const u_char *)fragtbl[fs->fs_frag],
   1845 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1846 	if (loc == 0) {
   1847 		len = start + 1;
   1848 		start = 0;
   1849 		loc = scanc((u_int)len,
   1850 			(const u_char *)&blksfree[0],
   1851 			(const u_char *)fragtbl[fs->fs_frag],
   1852 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1853 		if (loc == 0) {
   1854 			printf("start = %d, len = %d, fs = %s\n",
   1855 			    ostart, olen, fs->fs_fsmnt);
   1856 			printf("offset=%d %ld\n",
   1857 				ufs_rw32(cgp->cg_freeoff, needswap),
   1858 				(long)blksfree - (long)cgp);
   1859 			printf("cg %d\n", cgp->cg_cgx);
   1860 			panic("ffs_alloccg: map corrupted");
   1861 			/* NOTREACHED */
   1862 		}
   1863 	}
   1864 	bno = (start + len - loc) * NBBY;
   1865 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1866 	/*
   1867 	 * found the byte in the map
   1868 	 * sift through the bits to find the selected frag
   1869 	 */
   1870 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1871 		blk = blkmap(fs, blksfree, bno);
   1872 		blk <<= 1;
   1873 		field = around[allocsiz];
   1874 		subfield = inside[allocsiz];
   1875 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1876 			if ((blk & field) == subfield)
   1877 				return (bno + pos);
   1878 			field <<= 1;
   1879 			subfield <<= 1;
   1880 		}
   1881 	}
   1882 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1883 	panic("ffs_alloccg: block not in map");
   1884 	/* return (-1); */
   1885 }
   1886 
   1887 /*
   1888  * Update the cluster map because of an allocation or free.
   1889  *
   1890  * Cnt == 1 means free; cnt == -1 means allocating.
   1891  */
   1892 void
   1893 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1894 {
   1895 	int32_t *sump;
   1896 	int32_t *lp;
   1897 	u_char *freemapp, *mapp;
   1898 	int i, start, end, forw, back, map, bit;
   1899 #ifdef FFS_EI
   1900 	const int needswap = UFS_FSNEEDSWAP(fs);
   1901 #endif
   1902 
   1903 	if (fs->fs_contigsumsize <= 0)
   1904 		return;
   1905 	freemapp = cg_clustersfree(cgp, needswap);
   1906 	sump = cg_clustersum(cgp, needswap);
   1907 	/*
   1908 	 * Allocate or clear the actual block.
   1909 	 */
   1910 	if (cnt > 0)
   1911 		setbit(freemapp, blkno);
   1912 	else
   1913 		clrbit(freemapp, blkno);
   1914 	/*
   1915 	 * Find the size of the cluster going forward.
   1916 	 */
   1917 	start = blkno + 1;
   1918 	end = start + fs->fs_contigsumsize;
   1919 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1920 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1921 	mapp = &freemapp[start / NBBY];
   1922 	map = *mapp++;
   1923 	bit = 1 << (start % NBBY);
   1924 	for (i = start; i < end; i++) {
   1925 		if ((map & bit) == 0)
   1926 			break;
   1927 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1928 			bit <<= 1;
   1929 		} else {
   1930 			map = *mapp++;
   1931 			bit = 1;
   1932 		}
   1933 	}
   1934 	forw = i - start;
   1935 	/*
   1936 	 * Find the size of the cluster going backward.
   1937 	 */
   1938 	start = blkno - 1;
   1939 	end = start - fs->fs_contigsumsize;
   1940 	if (end < 0)
   1941 		end = -1;
   1942 	mapp = &freemapp[start / NBBY];
   1943 	map = *mapp--;
   1944 	bit = 1 << (start % NBBY);
   1945 	for (i = start; i > end; i--) {
   1946 		if ((map & bit) == 0)
   1947 			break;
   1948 		if ((i & (NBBY - 1)) != 0) {
   1949 			bit >>= 1;
   1950 		} else {
   1951 			map = *mapp--;
   1952 			bit = 1 << (NBBY - 1);
   1953 		}
   1954 	}
   1955 	back = start - i;
   1956 	/*
   1957 	 * Account for old cluster and the possibly new forward and
   1958 	 * back clusters.
   1959 	 */
   1960 	i = back + forw + 1;
   1961 	if (i > fs->fs_contigsumsize)
   1962 		i = fs->fs_contigsumsize;
   1963 	ufs_add32(sump[i], cnt, needswap);
   1964 	if (back > 0)
   1965 		ufs_add32(sump[back], -cnt, needswap);
   1966 	if (forw > 0)
   1967 		ufs_add32(sump[forw], -cnt, needswap);
   1968 
   1969 	/*
   1970 	 * Update cluster summary information.
   1971 	 */
   1972 	lp = &sump[fs->fs_contigsumsize];
   1973 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1974 		if (ufs_rw32(*lp--, needswap) > 0)
   1975 			break;
   1976 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1977 }
   1978 
   1979 /*
   1980  * Fserr prints the name of a file system with an error diagnostic.
   1981  *
   1982  * The form of the error message is:
   1983  *	fs: error message
   1984  */
   1985 static void
   1986 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   1987 {
   1988 
   1989 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1990 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1991 }
   1992