ffs_alloc.c revision 1.9 1 /* $NetBSD: ffs_alloc.c,v 1.9 1996/02/09 22:22:18 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46
47 #include <vm/vm.h>
48
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51 #include <ufs/ufs/ufs_extern.h>
52
53 #include <ufs/ffs/fs.h>
54 #include <ufs/ffs/ffs_extern.h>
55
56 extern u_long nextgennumber;
57
58 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
59 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
60 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
61 static ino_t ffs_dirpref __P((struct fs *));
62 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
63 static void ffs_fserr __P((struct fs *, u_int, char *));
64 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
65 daddr_t (*)(struct inode *, int, daddr_t,
66 int)));
67 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
68 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
69
70 /*
71 * Allocate a block in the file system.
72 *
73 * The size of the requested block is given, which must be some
74 * multiple of fs_fsize and <= fs_bsize.
75 * A preference may be optionally specified. If a preference is given
76 * the following hierarchy is used to allocate a block:
77 * 1) allocate the requested block.
78 * 2) allocate a rotationally optimal block in the same cylinder.
79 * 3) allocate a block in the same cylinder group.
80 * 4) quadradically rehash into other cylinder groups, until an
81 * available block is located.
82 * If no block preference is given the following heirarchy is used
83 * to allocate a block:
84 * 1) allocate a block in the cylinder group that contains the
85 * inode for the file.
86 * 2) quadradically rehash into other cylinder groups, until an
87 * available block is located.
88 */
89 int
90 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
91 register struct inode *ip;
92 daddr_t lbn, bpref;
93 int size;
94 struct ucred *cred;
95 daddr_t *bnp;
96 {
97 register struct fs *fs;
98 daddr_t bno;
99 int cg;
100 #ifdef QUOTA
101 int error;
102 #endif
103
104 *bnp = 0;
105 fs = ip->i_fs;
106 #ifdef DIAGNOSTIC
107 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
108 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
109 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
110 panic("ffs_alloc: bad size");
111 }
112 if (cred == NOCRED)
113 panic("ffs_alloc: missing credential\n");
114 #endif /* DIAGNOSTIC */
115 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
116 goto nospace;
117 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
118 goto nospace;
119 #ifdef QUOTA
120 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
121 return (error);
122 #endif
123 if (bpref >= fs->fs_size)
124 bpref = 0;
125 if (bpref == 0)
126 cg = ino_to_cg(fs, ip->i_number);
127 else
128 cg = dtog(fs, bpref);
129 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
130 ffs_alloccg);
131 if (bno > 0) {
132 ip->i_blocks += btodb(size);
133 ip->i_flag |= IN_CHANGE | IN_UPDATE;
134 *bnp = bno;
135 return (0);
136 }
137 #ifdef QUOTA
138 /*
139 * Restore user's disk quota because allocation failed.
140 */
141 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
142 #endif
143 nospace:
144 ffs_fserr(fs, cred->cr_uid, "file system full");
145 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
146 return (ENOSPC);
147 }
148
149 /*
150 * Reallocate a fragment to a bigger size
151 *
152 * The number and size of the old block is given, and a preference
153 * and new size is also specified. The allocator attempts to extend
154 * the original block. Failing that, the regular block allocator is
155 * invoked to get an appropriate block.
156 */
157 int
158 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
159 register struct inode *ip;
160 daddr_t lbprev;
161 daddr_t bpref;
162 int osize, nsize;
163 struct ucred *cred;
164 struct buf **bpp;
165 {
166 register struct fs *fs;
167 struct buf *bp;
168 int cg, request, error;
169 daddr_t bprev, bno;
170
171 *bpp = 0;
172 fs = ip->i_fs;
173 #ifdef DIAGNOSTIC
174 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
175 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
176 printf(
177 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
178 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
179 panic("ffs_realloccg: bad size");
180 }
181 if (cred == NOCRED)
182 panic("ffs_realloccg: missing credential\n");
183 #endif /* DIAGNOSTIC */
184 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
185 goto nospace;
186 if ((bprev = ip->i_db[lbprev]) == 0) {
187 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
188 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
189 panic("ffs_realloccg: bad bprev");
190 }
191 /*
192 * Allocate the extra space in the buffer.
193 */
194 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
195 brelse(bp);
196 return (error);
197 }
198 #ifdef QUOTA
199 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
200 brelse(bp);
201 return (error);
202 }
203 #endif
204 /*
205 * Check for extension in the existing location.
206 */
207 cg = dtog(fs, bprev);
208 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
209 if (bp->b_blkno != fsbtodb(fs, bno))
210 panic("bad blockno");
211 ip->i_blocks += btodb(nsize - osize);
212 ip->i_flag |= IN_CHANGE | IN_UPDATE;
213 allocbuf(bp, nsize);
214 bp->b_flags |= B_DONE;
215 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
216 *bpp = bp;
217 return (0);
218 }
219 /*
220 * Allocate a new disk location.
221 */
222 if (bpref >= fs->fs_size)
223 bpref = 0;
224 switch ((int)fs->fs_optim) {
225 case FS_OPTSPACE:
226 /*
227 * Allocate an exact sized fragment. Although this makes
228 * best use of space, we will waste time relocating it if
229 * the file continues to grow. If the fragmentation is
230 * less than half of the minimum free reserve, we choose
231 * to begin optimizing for time.
232 */
233 request = nsize;
234 if (fs->fs_minfree < 5 ||
235 fs->fs_cstotal.cs_nffree >
236 fs->fs_dsize * fs->fs_minfree / (2 * 100))
237 break;
238 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
239 fs->fs_fsmnt);
240 fs->fs_optim = FS_OPTTIME;
241 break;
242 case FS_OPTTIME:
243 /*
244 * At this point we have discovered a file that is trying to
245 * grow a small fragment to a larger fragment. To save time,
246 * we allocate a full sized block, then free the unused portion.
247 * If the file continues to grow, the `ffs_fragextend' call
248 * above will be able to grow it in place without further
249 * copying. If aberrant programs cause disk fragmentation to
250 * grow within 2% of the free reserve, we choose to begin
251 * optimizing for space.
252 */
253 request = fs->fs_bsize;
254 if (fs->fs_cstotal.cs_nffree <
255 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
256 break;
257 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
258 fs->fs_fsmnt);
259 fs->fs_optim = FS_OPTSPACE;
260 break;
261 default:
262 printf("dev = 0x%x, optim = %d, fs = %s\n",
263 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
264 panic("ffs_realloccg: bad optim");
265 /* NOTREACHED */
266 }
267 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
268 ffs_alloccg);
269 if (bno > 0) {
270 bp->b_blkno = fsbtodb(fs, bno);
271 (void) vnode_pager_uncache(ITOV(ip));
272 ffs_blkfree(ip, bprev, (long)osize);
273 if (nsize < request)
274 ffs_blkfree(ip, bno + numfrags(fs, nsize),
275 (long)(request - nsize));
276 ip->i_blocks += btodb(nsize - osize);
277 ip->i_flag |= IN_CHANGE | IN_UPDATE;
278 allocbuf(bp, nsize);
279 bp->b_flags |= B_DONE;
280 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
281 *bpp = bp;
282 return (0);
283 }
284 #ifdef QUOTA
285 /*
286 * Restore user's disk quota because allocation failed.
287 */
288 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
289 #endif
290 brelse(bp);
291 nospace:
292 /*
293 * no space available
294 */
295 ffs_fserr(fs, cred->cr_uid, "file system full");
296 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
297 return (ENOSPC);
298 }
299
300 /*
301 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
302 *
303 * The vnode and an array of buffer pointers for a range of sequential
304 * logical blocks to be made contiguous is given. The allocator attempts
305 * to find a range of sequential blocks starting as close as possible to
306 * an fs_rotdelay offset from the end of the allocation for the logical
307 * block immediately preceeding the current range. If successful, the
308 * physical block numbers in the buffer pointers and in the inode are
309 * changed to reflect the new allocation. If unsuccessful, the allocation
310 * is left unchanged. The success in doing the reallocation is returned.
311 * Note that the error return is not reflected back to the user. Rather
312 * the previous block allocation will be used.
313 */
314 #ifdef DEBUG
315 #include <sys/sysctl.h>
316 int doasyncfree = 1;
317 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
318 int prtrealloc = 0;
319 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
320 #else
321 #define doasyncfree 1
322 #endif
323
324 int
325 ffs_reallocblks(v)
326 void *v;
327 {
328 struct vop_reallocblks_args /* {
329 struct vnode *a_vp;
330 struct cluster_save *a_buflist;
331 } */ *ap = v;
332 struct fs *fs;
333 struct inode *ip;
334 struct vnode *vp;
335 struct buf *sbp, *ebp;
336 daddr_t *bap, *sbap, *ebap = NULL;
337 struct cluster_save *buflist;
338 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
339 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
340 int i, len, start_lvl, end_lvl, pref, ssize;
341
342 vp = ap->a_vp;
343 ip = VTOI(vp);
344 fs = ip->i_fs;
345 if (fs->fs_contigsumsize <= 0)
346 return (ENOSPC);
347 buflist = ap->a_buflist;
348 len = buflist->bs_nchildren;
349 start_lbn = buflist->bs_children[0]->b_lblkno;
350 end_lbn = start_lbn + len - 1;
351 #ifdef DIAGNOSTIC
352 for (i = 1; i < len; i++)
353 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
354 panic("ffs_reallocblks: non-cluster");
355 #endif
356 /*
357 * If the latest allocation is in a new cylinder group, assume that
358 * the filesystem has decided to move and do not force it back to
359 * the previous cylinder group.
360 */
361 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
362 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
363 return (ENOSPC);
364 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
365 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
366 return (ENOSPC);
367 /*
368 * Get the starting offset and block map for the first block.
369 */
370 if (start_lvl == 0) {
371 sbap = &ip->i_db[0];
372 soff = start_lbn;
373 } else {
374 idp = &start_ap[start_lvl - 1];
375 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
376 brelse(sbp);
377 return (ENOSPC);
378 }
379 sbap = (daddr_t *)sbp->b_data;
380 soff = idp->in_off;
381 }
382 /*
383 * Find the preferred location for the cluster.
384 */
385 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
386 /*
387 * If the block range spans two block maps, get the second map.
388 */
389 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
390 ssize = len;
391 } else {
392 #ifdef DIAGNOSTIC
393 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
394 panic("ffs_reallocblk: start == end");
395 #endif
396 ssize = len - (idp->in_off + 1);
397 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
398 goto fail;
399 ebap = (daddr_t *)ebp->b_data;
400 }
401 /*
402 * Search the block map looking for an allocation of the desired size.
403 */
404 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
405 len, ffs_clusteralloc)) == 0)
406 goto fail;
407 /*
408 * We have found a new contiguous block.
409 *
410 * First we have to replace the old block pointers with the new
411 * block pointers in the inode and indirect blocks associated
412 * with the file.
413 */
414 #ifdef DEBUG
415 if (prtrealloc)
416 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
417 start_lbn, end_lbn);
418 #endif
419 blkno = newblk;
420 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
421 if (i == ssize)
422 bap = ebap;
423 #ifdef DIAGNOSTIC
424 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
425 panic("ffs_reallocblks: alloc mismatch");
426 #endif
427 #ifdef DEBUG
428 if (prtrealloc)
429 printf(" %d,", *bap);
430 #endif
431 *bap++ = blkno;
432 }
433 /*
434 * Next we must write out the modified inode and indirect blocks.
435 * For strict correctness, the writes should be synchronous since
436 * the old block values may have been written to disk. In practise
437 * they are almost never written, but if we are concerned about
438 * strict correctness, the `doasyncfree' flag should be set to zero.
439 *
440 * The test on `doasyncfree' should be changed to test a flag
441 * that shows whether the associated buffers and inodes have
442 * been written. The flag should be set when the cluster is
443 * started and cleared whenever the buffer or inode is flushed.
444 * We can then check below to see if it is set, and do the
445 * synchronous write only when it has been cleared.
446 */
447 if (sbap != &ip->i_db[0]) {
448 if (doasyncfree)
449 bdwrite(sbp);
450 else
451 bwrite(sbp);
452 } else {
453 ip->i_flag |= IN_CHANGE | IN_UPDATE;
454 if (!doasyncfree)
455 VOP_UPDATE(vp, (struct timeval *)&time,
456 (struct timeval *)&time, MNT_WAIT);
457 }
458 if (ssize < len)
459 if (doasyncfree)
460 bdwrite(ebp);
461 else
462 bwrite(ebp);
463 /*
464 * Last, free the old blocks and assign the new blocks to the buffers.
465 */
466 #ifdef DEBUG
467 if (prtrealloc)
468 printf("\n\tnew:");
469 #endif
470 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
471 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
472 fs->fs_bsize);
473 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
474 #ifdef DEBUG
475 if (prtrealloc)
476 printf(" %d,", blkno);
477 #endif
478 }
479 #ifdef DEBUG
480 if (prtrealloc) {
481 prtrealloc--;
482 printf("\n");
483 }
484 #endif
485 return (0);
486
487 fail:
488 if (ssize < len)
489 brelse(ebp);
490 if (sbap != &ip->i_db[0])
491 brelse(sbp);
492 return (ENOSPC);
493 }
494
495 /*
496 * Allocate an inode in the file system.
497 *
498 * If allocating a directory, use ffs_dirpref to select the inode.
499 * If allocating in a directory, the following hierarchy is followed:
500 * 1) allocate the preferred inode.
501 * 2) allocate an inode in the same cylinder group.
502 * 3) quadradically rehash into other cylinder groups, until an
503 * available inode is located.
504 * If no inode preference is given the following heirarchy is used
505 * to allocate an inode:
506 * 1) allocate an inode in cylinder group 0.
507 * 2) quadradically rehash into other cylinder groups, until an
508 * available inode is located.
509 */
510 int
511 ffs_valloc(v)
512 void *v;
513 {
514 struct vop_valloc_args /* {
515 struct vnode *a_pvp;
516 int a_mode;
517 struct ucred *a_cred;
518 struct vnode **a_vpp;
519 } */ *ap = v;
520 register struct vnode *pvp = ap->a_pvp;
521 register struct inode *pip;
522 register struct fs *fs;
523 register struct inode *ip;
524 mode_t mode = ap->a_mode;
525 ino_t ino, ipref;
526 int cg, error;
527
528 *ap->a_vpp = NULL;
529 pip = VTOI(pvp);
530 fs = pip->i_fs;
531 if (fs->fs_cstotal.cs_nifree == 0)
532 goto noinodes;
533
534 if ((mode & IFMT) == IFDIR)
535 ipref = ffs_dirpref(fs);
536 else
537 ipref = pip->i_number;
538 if (ipref >= fs->fs_ncg * fs->fs_ipg)
539 ipref = 0;
540 cg = ino_to_cg(fs, ipref);
541 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
542 if (ino == 0)
543 goto noinodes;
544 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
545 if (error) {
546 VOP_VFREE(pvp, ino, mode);
547 return (error);
548 }
549 ip = VTOI(*ap->a_vpp);
550 if (ip->i_mode) {
551 printf("mode = 0%o, inum = %d, fs = %s\n",
552 ip->i_mode, ip->i_number, fs->fs_fsmnt);
553 panic("ffs_valloc: dup alloc");
554 }
555 if (ip->i_blocks) { /* XXX */
556 printf("free inode %s/%d had %d blocks\n",
557 fs->fs_fsmnt, ino, ip->i_blocks);
558 ip->i_blocks = 0;
559 }
560 ip->i_flags = 0;
561 /*
562 * Set up a new generation number for this inode.
563 */
564 if (++nextgennumber < (u_long)time.tv_sec)
565 nextgennumber = time.tv_sec;
566 ip->i_gen = nextgennumber;
567 return (0);
568 noinodes:
569 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
570 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
571 return (ENOSPC);
572 }
573
574 /*
575 * Find a cylinder to place a directory.
576 *
577 * The policy implemented by this algorithm is to select from
578 * among those cylinder groups with above the average number of
579 * free inodes, the one with the smallest number of directories.
580 */
581 static ino_t
582 ffs_dirpref(fs)
583 register struct fs *fs;
584 {
585 int cg, minndir, mincg, avgifree;
586
587 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
588 minndir = fs->fs_ipg;
589 mincg = 0;
590 for (cg = 0; cg < fs->fs_ncg; cg++)
591 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
592 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
593 mincg = cg;
594 minndir = fs->fs_cs(fs, cg).cs_ndir;
595 }
596 return ((ino_t)(fs->fs_ipg * mincg));
597 }
598
599 /*
600 * Select the desired position for the next block in a file. The file is
601 * logically divided into sections. The first section is composed of the
602 * direct blocks. Each additional section contains fs_maxbpg blocks.
603 *
604 * If no blocks have been allocated in the first section, the policy is to
605 * request a block in the same cylinder group as the inode that describes
606 * the file. If no blocks have been allocated in any other section, the
607 * policy is to place the section in a cylinder group with a greater than
608 * average number of free blocks. An appropriate cylinder group is found
609 * by using a rotor that sweeps the cylinder groups. When a new group of
610 * blocks is needed, the sweep begins in the cylinder group following the
611 * cylinder group from which the previous allocation was made. The sweep
612 * continues until a cylinder group with greater than the average number
613 * of free blocks is found. If the allocation is for the first block in an
614 * indirect block, the information on the previous allocation is unavailable;
615 * here a best guess is made based upon the logical block number being
616 * allocated.
617 *
618 * If a section is already partially allocated, the policy is to
619 * contiguously allocate fs_maxcontig blocks. The end of one of these
620 * contiguous blocks and the beginning of the next is physically separated
621 * so that the disk head will be in transit between them for at least
622 * fs_rotdelay milliseconds. This is to allow time for the processor to
623 * schedule another I/O transfer.
624 */
625 daddr_t
626 ffs_blkpref(ip, lbn, indx, bap)
627 struct inode *ip;
628 daddr_t lbn;
629 int indx;
630 daddr_t *bap;
631 {
632 register struct fs *fs;
633 register int cg;
634 int avgbfree, startcg;
635 daddr_t nextblk;
636
637 fs = ip->i_fs;
638 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
639 if (lbn < NDADDR) {
640 cg = ino_to_cg(fs, ip->i_number);
641 return (fs->fs_fpg * cg + fs->fs_frag);
642 }
643 /*
644 * Find a cylinder with greater than average number of
645 * unused data blocks.
646 */
647 if (indx == 0 || bap[indx - 1] == 0)
648 startcg =
649 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
650 else
651 startcg = dtog(fs, bap[indx - 1]) + 1;
652 startcg %= fs->fs_ncg;
653 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
654 for (cg = startcg; cg < fs->fs_ncg; cg++)
655 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
656 fs->fs_cgrotor = cg;
657 return (fs->fs_fpg * cg + fs->fs_frag);
658 }
659 for (cg = 0; cg <= startcg; cg++)
660 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
661 fs->fs_cgrotor = cg;
662 return (fs->fs_fpg * cg + fs->fs_frag);
663 }
664 return (NULL);
665 }
666 /*
667 * One or more previous blocks have been laid out. If less
668 * than fs_maxcontig previous blocks are contiguous, the
669 * next block is requested contiguously, otherwise it is
670 * requested rotationally delayed by fs_rotdelay milliseconds.
671 */
672 nextblk = bap[indx - 1] + fs->fs_frag;
673 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
674 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
675 return (nextblk);
676 if (fs->fs_rotdelay != 0)
677 /*
678 * Here we convert ms of delay to frags as:
679 * (frags) = (ms) * (rev/sec) * (sect/rev) /
680 * ((sect/frag) * (ms/sec))
681 * then round up to the next block.
682 */
683 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
684 (NSPF(fs) * 1000), fs->fs_frag);
685 return (nextblk);
686 }
687
688 /*
689 * Implement the cylinder overflow algorithm.
690 *
691 * The policy implemented by this algorithm is:
692 * 1) allocate the block in its requested cylinder group.
693 * 2) quadradically rehash on the cylinder group number.
694 * 3) brute force search for a free block.
695 */
696 /*VARARGS5*/
697 static u_long
698 ffs_hashalloc(ip, cg, pref, size, allocator)
699 struct inode *ip;
700 int cg;
701 long pref;
702 int size; /* size for data blocks, mode for inodes */
703 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
704 {
705 register struct fs *fs;
706 long result;
707 int i, icg = cg;
708
709 fs = ip->i_fs;
710 /*
711 * 1: preferred cylinder group
712 */
713 result = (*allocator)(ip, cg, pref, size);
714 if (result)
715 return (result);
716 /*
717 * 2: quadratic rehash
718 */
719 for (i = 1; i < fs->fs_ncg; i *= 2) {
720 cg += i;
721 if (cg >= fs->fs_ncg)
722 cg -= fs->fs_ncg;
723 result = (*allocator)(ip, cg, 0, size);
724 if (result)
725 return (result);
726 }
727 /*
728 * 3: brute force search
729 * Note that we start at i == 2, since 0 was checked initially,
730 * and 1 is always checked in the quadratic rehash.
731 */
732 cg = (icg + 2) % fs->fs_ncg;
733 for (i = 2; i < fs->fs_ncg; i++) {
734 result = (*allocator)(ip, cg, 0, size);
735 if (result)
736 return (result);
737 cg++;
738 if (cg == fs->fs_ncg)
739 cg = 0;
740 }
741 return (NULL);
742 }
743
744 /*
745 * Determine whether a fragment can be extended.
746 *
747 * Check to see if the necessary fragments are available, and
748 * if they are, allocate them.
749 */
750 static daddr_t
751 ffs_fragextend(ip, cg, bprev, osize, nsize)
752 struct inode *ip;
753 int cg;
754 long bprev;
755 int osize, nsize;
756 {
757 register struct fs *fs;
758 register struct cg *cgp;
759 struct buf *bp;
760 long bno;
761 int frags, bbase;
762 int i, error;
763
764 fs = ip->i_fs;
765 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
766 return (NULL);
767 frags = numfrags(fs, nsize);
768 bbase = fragnum(fs, bprev);
769 if (bbase > fragnum(fs, (bprev + frags - 1))) {
770 /* cannot extend across a block boundary */
771 return (NULL);
772 }
773 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
774 (int)fs->fs_cgsize, NOCRED, &bp);
775 if (error) {
776 brelse(bp);
777 return (NULL);
778 }
779 cgp = (struct cg *)bp->b_data;
780 if (!cg_chkmagic(cgp)) {
781 brelse(bp);
782 return (NULL);
783 }
784 cgp->cg_time = time.tv_sec;
785 bno = dtogd(fs, bprev);
786 for (i = numfrags(fs, osize); i < frags; i++)
787 if (isclr(cg_blksfree(cgp), bno + i)) {
788 brelse(bp);
789 return (NULL);
790 }
791 /*
792 * the current fragment can be extended
793 * deduct the count on fragment being extended into
794 * increase the count on the remaining fragment (if any)
795 * allocate the extended piece
796 */
797 for (i = frags; i < fs->fs_frag - bbase; i++)
798 if (isclr(cg_blksfree(cgp), bno + i))
799 break;
800 cgp->cg_frsum[i - numfrags(fs, osize)]--;
801 if (i != frags)
802 cgp->cg_frsum[i - frags]++;
803 for (i = numfrags(fs, osize); i < frags; i++) {
804 clrbit(cg_blksfree(cgp), bno + i);
805 cgp->cg_cs.cs_nffree--;
806 fs->fs_cstotal.cs_nffree--;
807 fs->fs_cs(fs, cg).cs_nffree--;
808 }
809 fs->fs_fmod = 1;
810 bdwrite(bp);
811 return (bprev);
812 }
813
814 /*
815 * Determine whether a block can be allocated.
816 *
817 * Check to see if a block of the appropriate size is available,
818 * and if it is, allocate it.
819 */
820 static daddr_t
821 ffs_alloccg(ip, cg, bpref, size)
822 struct inode *ip;
823 int cg;
824 daddr_t bpref;
825 int size;
826 {
827 register struct fs *fs;
828 register struct cg *cgp;
829 struct buf *bp;
830 register int i;
831 int error, bno, frags, allocsiz;
832
833 fs = ip->i_fs;
834 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
835 return (NULL);
836 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
837 (int)fs->fs_cgsize, NOCRED, &bp);
838 if (error) {
839 brelse(bp);
840 return (NULL);
841 }
842 cgp = (struct cg *)bp->b_data;
843 if (!cg_chkmagic(cgp) ||
844 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
845 brelse(bp);
846 return (NULL);
847 }
848 cgp->cg_time = time.tv_sec;
849 if (size == fs->fs_bsize) {
850 bno = ffs_alloccgblk(fs, cgp, bpref);
851 bdwrite(bp);
852 return (bno);
853 }
854 /*
855 * check to see if any fragments are already available
856 * allocsiz is the size which will be allocated, hacking
857 * it down to a smaller size if necessary
858 */
859 frags = numfrags(fs, size);
860 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
861 if (cgp->cg_frsum[allocsiz] != 0)
862 break;
863 if (allocsiz == fs->fs_frag) {
864 /*
865 * no fragments were available, so a block will be
866 * allocated, and hacked up
867 */
868 if (cgp->cg_cs.cs_nbfree == 0) {
869 brelse(bp);
870 return (NULL);
871 }
872 bno = ffs_alloccgblk(fs, cgp, bpref);
873 bpref = dtogd(fs, bno);
874 for (i = frags; i < fs->fs_frag; i++)
875 setbit(cg_blksfree(cgp), bpref + i);
876 i = fs->fs_frag - frags;
877 cgp->cg_cs.cs_nffree += i;
878 fs->fs_cstotal.cs_nffree += i;
879 fs->fs_cs(fs, cg).cs_nffree += i;
880 fs->fs_fmod = 1;
881 cgp->cg_frsum[i]++;
882 bdwrite(bp);
883 return (bno);
884 }
885 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
886 if (bno < 0) {
887 brelse(bp);
888 return (NULL);
889 }
890 for (i = 0; i < frags; i++)
891 clrbit(cg_blksfree(cgp), bno + i);
892 cgp->cg_cs.cs_nffree -= frags;
893 fs->fs_cstotal.cs_nffree -= frags;
894 fs->fs_cs(fs, cg).cs_nffree -= frags;
895 fs->fs_fmod = 1;
896 cgp->cg_frsum[allocsiz]--;
897 if (frags != allocsiz)
898 cgp->cg_frsum[allocsiz - frags]++;
899 bdwrite(bp);
900 return (cg * fs->fs_fpg + bno);
901 }
902
903 /*
904 * Allocate a block in a cylinder group.
905 *
906 * This algorithm implements the following policy:
907 * 1) allocate the requested block.
908 * 2) allocate a rotationally optimal block in the same cylinder.
909 * 3) allocate the next available block on the block rotor for the
910 * specified cylinder group.
911 * Note that this routine only allocates fs_bsize blocks; these
912 * blocks may be fragmented by the routine that allocates them.
913 */
914 static daddr_t
915 ffs_alloccgblk(fs, cgp, bpref)
916 register struct fs *fs;
917 register struct cg *cgp;
918 daddr_t bpref;
919 {
920 daddr_t bno, blkno;
921 int cylno, pos, delta;
922 short *cylbp;
923 register int i;
924
925 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
926 bpref = cgp->cg_rotor;
927 goto norot;
928 }
929 bpref = blknum(fs, bpref);
930 bpref = dtogd(fs, bpref);
931 /*
932 * if the requested block is available, use it
933 */
934 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
935 bno = bpref;
936 goto gotit;
937 }
938 if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
939 /*
940 * Block layout information is not available.
941 * Leaving bpref unchanged means we take the
942 * next available free block following the one
943 * we just allocated. Hopefully this will at
944 * least hit a track cache on drives of unknown
945 * geometry (e.g. SCSI).
946 */
947 goto norot;
948 }
949 /*
950 * check for a block available on the same cylinder
951 */
952 cylno = cbtocylno(fs, bpref);
953 if (cg_blktot(cgp)[cylno] == 0)
954 goto norot;
955 /*
956 * check the summary information to see if a block is
957 * available in the requested cylinder starting at the
958 * requested rotational position and proceeding around.
959 */
960 cylbp = cg_blks(fs, cgp, cylno);
961 pos = cbtorpos(fs, bpref);
962 for (i = pos; i < fs->fs_nrpos; i++)
963 if (cylbp[i] > 0)
964 break;
965 if (i == fs->fs_nrpos)
966 for (i = 0; i < pos; i++)
967 if (cylbp[i] > 0)
968 break;
969 if (cylbp[i] > 0) {
970 /*
971 * found a rotational position, now find the actual
972 * block. A panic if none is actually there.
973 */
974 pos = cylno % fs->fs_cpc;
975 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
976 if (fs_postbl(fs, pos)[i] == -1) {
977 printf("pos = %d, i = %d, fs = %s\n",
978 pos, i, fs->fs_fsmnt);
979 panic("ffs_alloccgblk: cyl groups corrupted");
980 }
981 for (i = fs_postbl(fs, pos)[i];; ) {
982 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
983 bno = blkstofrags(fs, (bno + i));
984 goto gotit;
985 }
986 delta = fs_rotbl(fs)[i];
987 if (delta <= 0 ||
988 delta + i > fragstoblks(fs, fs->fs_fpg))
989 break;
990 i += delta;
991 }
992 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
993 panic("ffs_alloccgblk: can't find blk in cyl");
994 }
995 norot:
996 /*
997 * no blocks in the requested cylinder, so take next
998 * available one in this cylinder group.
999 */
1000 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1001 if (bno < 0)
1002 return (NULL);
1003 cgp->cg_rotor = bno;
1004 gotit:
1005 blkno = fragstoblks(fs, bno);
1006 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1007 ffs_clusteracct(fs, cgp, blkno, -1);
1008 cgp->cg_cs.cs_nbfree--;
1009 fs->fs_cstotal.cs_nbfree--;
1010 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1011 cylno = cbtocylno(fs, bno);
1012 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1013 cg_blktot(cgp)[cylno]--;
1014 fs->fs_fmod = 1;
1015 return (cgp->cg_cgx * fs->fs_fpg + bno);
1016 }
1017
1018 /*
1019 * Determine whether a cluster can be allocated.
1020 *
1021 * We do not currently check for optimal rotational layout if there
1022 * are multiple choices in the same cylinder group. Instead we just
1023 * take the first one that we find following bpref.
1024 */
1025 static daddr_t
1026 ffs_clusteralloc(ip, cg, bpref, len)
1027 struct inode *ip;
1028 int cg;
1029 daddr_t bpref;
1030 int len;
1031 {
1032 register struct fs *fs;
1033 register struct cg *cgp;
1034 struct buf *bp;
1035 int i, run, bno, bit, map;
1036 u_char *mapp;
1037 int32_t *lp;
1038
1039 fs = ip->i_fs;
1040 if (fs->fs_maxcluster[cg] < len)
1041 return (NULL);
1042 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1043 NOCRED, &bp))
1044 goto fail;
1045 cgp = (struct cg *)bp->b_data;
1046 if (!cg_chkmagic(cgp))
1047 goto fail;
1048 /*
1049 * Check to see if a cluster of the needed size (or bigger) is
1050 * available in this cylinder group.
1051 */
1052 lp = &cg_clustersum(cgp)[len];
1053 for (i = len; i <= fs->fs_contigsumsize; i++)
1054 if (*lp++ > 0)
1055 break;
1056 if (i > fs->fs_contigsumsize) {
1057 /*
1058 * This is the first time looking for a cluster in this
1059 * cylinder group. Update the cluster summary information
1060 * to reflect the true maximum sized cluster so that
1061 * future cluster allocation requests can avoid reading
1062 * the cylinder group map only to find no clusters.
1063 */
1064 lp = &cg_clustersum(cgp)[len - 1];
1065 for (i = len - 1; i > 0; i--)
1066 if (*lp-- > 0)
1067 break;
1068 fs->fs_maxcluster[cg] = i;
1069 goto fail;
1070 }
1071 /*
1072 * Search the cluster map to find a big enough cluster.
1073 * We take the first one that we find, even if it is larger
1074 * than we need as we prefer to get one close to the previous
1075 * block allocation. We do not search before the current
1076 * preference point as we do not want to allocate a block
1077 * that is allocated before the previous one (as we will
1078 * then have to wait for another pass of the elevator
1079 * algorithm before it will be read). We prefer to fail and
1080 * be recalled to try an allocation in the next cylinder group.
1081 */
1082 if (dtog(fs, bpref) != cg)
1083 bpref = 0;
1084 else
1085 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1086 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1087 map = *mapp++;
1088 bit = 1 << (bpref % NBBY);
1089 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1090 if ((map & bit) == 0) {
1091 run = 0;
1092 } else {
1093 run++;
1094 if (run == len)
1095 break;
1096 }
1097 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1098 bit <<= 1;
1099 } else {
1100 map = *mapp++;
1101 bit = 1;
1102 }
1103 }
1104 if (i == cgp->cg_nclusterblks)
1105 goto fail;
1106 /*
1107 * Allocate the cluster that we have found.
1108 */
1109 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1110 len = blkstofrags(fs, len);
1111 for (i = 0; i < len; i += fs->fs_frag)
1112 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1113 panic("ffs_clusteralloc: lost block");
1114 bdwrite(bp);
1115 return (bno);
1116
1117 fail:
1118 brelse(bp);
1119 return (0);
1120 }
1121
1122 /*
1123 * Determine whether an inode can be allocated.
1124 *
1125 * Check to see if an inode is available, and if it is,
1126 * allocate it using the following policy:
1127 * 1) allocate the requested inode.
1128 * 2) allocate the next available inode after the requested
1129 * inode in the specified cylinder group.
1130 */
1131 static daddr_t
1132 ffs_nodealloccg(ip, cg, ipref, mode)
1133 struct inode *ip;
1134 int cg;
1135 daddr_t ipref;
1136 int mode;
1137 {
1138 register struct fs *fs;
1139 register struct cg *cgp;
1140 struct buf *bp;
1141 int error, start, len, loc, map, i;
1142
1143 fs = ip->i_fs;
1144 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1145 return (NULL);
1146 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1147 (int)fs->fs_cgsize, NOCRED, &bp);
1148 if (error) {
1149 brelse(bp);
1150 return (NULL);
1151 }
1152 cgp = (struct cg *)bp->b_data;
1153 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1154 brelse(bp);
1155 return (NULL);
1156 }
1157 cgp->cg_time = time.tv_sec;
1158 if (ipref) {
1159 ipref %= fs->fs_ipg;
1160 if (isclr(cg_inosused(cgp), ipref))
1161 goto gotit;
1162 }
1163 start = cgp->cg_irotor / NBBY;
1164 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1165 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1166 if (loc == 0) {
1167 len = start + 1;
1168 start = 0;
1169 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1170 if (loc == 0) {
1171 printf("cg = %d, irotor = %d, fs = %s\n",
1172 cg, cgp->cg_irotor, fs->fs_fsmnt);
1173 panic("ffs_nodealloccg: map corrupted");
1174 /* NOTREACHED */
1175 }
1176 }
1177 i = start + len - loc;
1178 map = cg_inosused(cgp)[i];
1179 ipref = i * NBBY;
1180 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1181 if ((map & i) == 0) {
1182 cgp->cg_irotor = ipref;
1183 goto gotit;
1184 }
1185 }
1186 printf("fs = %s\n", fs->fs_fsmnt);
1187 panic("ffs_nodealloccg: block not in map");
1188 /* NOTREACHED */
1189 gotit:
1190 setbit(cg_inosused(cgp), ipref);
1191 cgp->cg_cs.cs_nifree--;
1192 fs->fs_cstotal.cs_nifree--;
1193 fs->fs_cs(fs, cg).cs_nifree--;
1194 fs->fs_fmod = 1;
1195 if ((mode & IFMT) == IFDIR) {
1196 cgp->cg_cs.cs_ndir++;
1197 fs->fs_cstotal.cs_ndir++;
1198 fs->fs_cs(fs, cg).cs_ndir++;
1199 }
1200 bdwrite(bp);
1201 return (cg * fs->fs_ipg + ipref);
1202 }
1203
1204 /*
1205 * Free a block or fragment.
1206 *
1207 * The specified block or fragment is placed back in the
1208 * free map. If a fragment is deallocated, a possible
1209 * block reassembly is checked.
1210 */
1211 void
1212 ffs_blkfree(ip, bno, size)
1213 register struct inode *ip;
1214 daddr_t bno;
1215 long size;
1216 {
1217 register struct fs *fs;
1218 register struct cg *cgp;
1219 struct buf *bp;
1220 daddr_t blkno;
1221 int i, error, cg, blk, frags, bbase;
1222
1223 fs = ip->i_fs;
1224 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1225 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1226 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1227 panic("blkfree: bad size");
1228 }
1229 cg = dtog(fs, bno);
1230 if ((u_int)bno >= fs->fs_size) {
1231 printf("bad block %d, ino %d\n", bno, ip->i_number);
1232 ffs_fserr(fs, ip->i_uid, "bad block");
1233 return;
1234 }
1235 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1236 (int)fs->fs_cgsize, NOCRED, &bp);
1237 if (error) {
1238 brelse(bp);
1239 return;
1240 }
1241 cgp = (struct cg *)bp->b_data;
1242 if (!cg_chkmagic(cgp)) {
1243 brelse(bp);
1244 return;
1245 }
1246 cgp->cg_time = time.tv_sec;
1247 bno = dtogd(fs, bno);
1248 if (size == fs->fs_bsize) {
1249 blkno = fragstoblks(fs, bno);
1250 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1251 printf("dev = 0x%x, block = %d, fs = %s\n",
1252 ip->i_dev, bno, fs->fs_fsmnt);
1253 panic("blkfree: freeing free block");
1254 }
1255 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1256 ffs_clusteracct(fs, cgp, blkno, 1);
1257 cgp->cg_cs.cs_nbfree++;
1258 fs->fs_cstotal.cs_nbfree++;
1259 fs->fs_cs(fs, cg).cs_nbfree++;
1260 i = cbtocylno(fs, bno);
1261 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1262 cg_blktot(cgp)[i]++;
1263 } else {
1264 bbase = bno - fragnum(fs, bno);
1265 /*
1266 * decrement the counts associated with the old frags
1267 */
1268 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1269 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1270 /*
1271 * deallocate the fragment
1272 */
1273 frags = numfrags(fs, size);
1274 for (i = 0; i < frags; i++) {
1275 if (isset(cg_blksfree(cgp), bno + i)) {
1276 printf("dev = 0x%x, block = %d, fs = %s\n",
1277 ip->i_dev, bno + i, fs->fs_fsmnt);
1278 panic("blkfree: freeing free frag");
1279 }
1280 setbit(cg_blksfree(cgp), bno + i);
1281 }
1282 cgp->cg_cs.cs_nffree += i;
1283 fs->fs_cstotal.cs_nffree += i;
1284 fs->fs_cs(fs, cg).cs_nffree += i;
1285 /*
1286 * add back in counts associated with the new frags
1287 */
1288 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1289 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1290 /*
1291 * if a complete block has been reassembled, account for it
1292 */
1293 blkno = fragstoblks(fs, bbase);
1294 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1295 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1296 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1297 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1298 ffs_clusteracct(fs, cgp, blkno, 1);
1299 cgp->cg_cs.cs_nbfree++;
1300 fs->fs_cstotal.cs_nbfree++;
1301 fs->fs_cs(fs, cg).cs_nbfree++;
1302 i = cbtocylno(fs, bbase);
1303 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1304 cg_blktot(cgp)[i]++;
1305 }
1306 }
1307 fs->fs_fmod = 1;
1308 bdwrite(bp);
1309 }
1310
1311 /*
1312 * Free an inode.
1313 *
1314 * The specified inode is placed back in the free map.
1315 */
1316 int
1317 ffs_vfree(v)
1318 void *v;
1319 {
1320 struct vop_vfree_args /* {
1321 struct vnode *a_pvp;
1322 ino_t a_ino;
1323 int a_mode;
1324 } */ *ap = v;
1325 register struct fs *fs;
1326 register struct cg *cgp;
1327 register struct inode *pip;
1328 ino_t ino = ap->a_ino;
1329 struct buf *bp;
1330 int error, cg;
1331
1332 pip = VTOI(ap->a_pvp);
1333 fs = pip->i_fs;
1334 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1335 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1336 pip->i_dev, ino, fs->fs_fsmnt);
1337 cg = ino_to_cg(fs, ino);
1338 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1339 (int)fs->fs_cgsize, NOCRED, &bp);
1340 if (error) {
1341 brelse(bp);
1342 return (0);
1343 }
1344 cgp = (struct cg *)bp->b_data;
1345 if (!cg_chkmagic(cgp)) {
1346 brelse(bp);
1347 return (0);
1348 }
1349 cgp->cg_time = time.tv_sec;
1350 ino %= fs->fs_ipg;
1351 if (isclr(cg_inosused(cgp), ino)) {
1352 printf("dev = 0x%x, ino = %d, fs = %s\n",
1353 pip->i_dev, ino, fs->fs_fsmnt);
1354 if (fs->fs_ronly == 0)
1355 panic("ifree: freeing free inode");
1356 }
1357 clrbit(cg_inosused(cgp), ino);
1358 if (ino < cgp->cg_irotor)
1359 cgp->cg_irotor = ino;
1360 cgp->cg_cs.cs_nifree++;
1361 fs->fs_cstotal.cs_nifree++;
1362 fs->fs_cs(fs, cg).cs_nifree++;
1363 if ((ap->a_mode & IFMT) == IFDIR) {
1364 cgp->cg_cs.cs_ndir--;
1365 fs->fs_cstotal.cs_ndir--;
1366 fs->fs_cs(fs, cg).cs_ndir--;
1367 }
1368 fs->fs_fmod = 1;
1369 bdwrite(bp);
1370 return (0);
1371 }
1372
1373 /*
1374 * Find a block of the specified size in the specified cylinder group.
1375 *
1376 * It is a panic if a request is made to find a block if none are
1377 * available.
1378 */
1379 static daddr_t
1380 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1381 register struct fs *fs;
1382 register struct cg *cgp;
1383 daddr_t bpref;
1384 int allocsiz;
1385 {
1386 daddr_t bno;
1387 int start, len, loc, i;
1388 int blk, field, subfield, pos;
1389
1390 /*
1391 * find the fragment by searching through the free block
1392 * map for an appropriate bit pattern
1393 */
1394 if (bpref)
1395 start = dtogd(fs, bpref) / NBBY;
1396 else
1397 start = cgp->cg_frotor / NBBY;
1398 len = howmany(fs->fs_fpg, NBBY) - start;
1399 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1400 (u_char *)fragtbl[fs->fs_frag],
1401 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1402 if (loc == 0) {
1403 len = start + 1;
1404 start = 0;
1405 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1406 (u_char *)fragtbl[fs->fs_frag],
1407 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1408 if (loc == 0) {
1409 printf("start = %d, len = %d, fs = %s\n",
1410 start, len, fs->fs_fsmnt);
1411 panic("ffs_alloccg: map corrupted");
1412 /* NOTREACHED */
1413 }
1414 }
1415 bno = (start + len - loc) * NBBY;
1416 cgp->cg_frotor = bno;
1417 /*
1418 * found the byte in the map
1419 * sift through the bits to find the selected frag
1420 */
1421 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1422 blk = blkmap(fs, cg_blksfree(cgp), bno);
1423 blk <<= 1;
1424 field = around[allocsiz];
1425 subfield = inside[allocsiz];
1426 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1427 if ((blk & field) == subfield)
1428 return (bno + pos);
1429 field <<= 1;
1430 subfield <<= 1;
1431 }
1432 }
1433 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1434 panic("ffs_alloccg: block not in map");
1435 return (-1);
1436 }
1437
1438 /*
1439 * Update the cluster map because of an allocation or free.
1440 *
1441 * Cnt == 1 means free; cnt == -1 means allocating.
1442 */
1443 void
1444 ffs_clusteracct(fs, cgp, blkno, cnt)
1445 struct fs *fs;
1446 struct cg *cgp;
1447 daddr_t blkno;
1448 int cnt;
1449 {
1450 int32_t *sump;
1451 int32_t *lp;
1452 u_char *freemapp, *mapp;
1453 int i, start, end, forw, back, map, bit;
1454
1455 if (fs->fs_contigsumsize <= 0)
1456 return;
1457 freemapp = cg_clustersfree(cgp);
1458 sump = cg_clustersum(cgp);
1459 /*
1460 * Allocate or clear the actual block.
1461 */
1462 if (cnt > 0)
1463 setbit(freemapp, blkno);
1464 else
1465 clrbit(freemapp, blkno);
1466 /*
1467 * Find the size of the cluster going forward.
1468 */
1469 start = blkno + 1;
1470 end = start + fs->fs_contigsumsize;
1471 if (end >= cgp->cg_nclusterblks)
1472 end = cgp->cg_nclusterblks;
1473 mapp = &freemapp[start / NBBY];
1474 map = *mapp++;
1475 bit = 1 << (start % NBBY);
1476 for (i = start; i < end; i++) {
1477 if ((map & bit) == 0)
1478 break;
1479 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1480 bit <<= 1;
1481 } else {
1482 map = *mapp++;
1483 bit = 1;
1484 }
1485 }
1486 forw = i - start;
1487 /*
1488 * Find the size of the cluster going backward.
1489 */
1490 start = blkno - 1;
1491 end = start - fs->fs_contigsumsize;
1492 if (end < 0)
1493 end = -1;
1494 mapp = &freemapp[start / NBBY];
1495 map = *mapp--;
1496 bit = 1 << (start % NBBY);
1497 for (i = start; i > end; i--) {
1498 if ((map & bit) == 0)
1499 break;
1500 if ((i & (NBBY - 1)) != 0) {
1501 bit >>= 1;
1502 } else {
1503 map = *mapp--;
1504 bit = 1 << (NBBY - 1);
1505 }
1506 }
1507 back = start - i;
1508 /*
1509 * Account for old cluster and the possibly new forward and
1510 * back clusters.
1511 */
1512 i = back + forw + 1;
1513 if (i > fs->fs_contigsumsize)
1514 i = fs->fs_contigsumsize;
1515 sump[i] += cnt;
1516 if (back > 0)
1517 sump[back] -= cnt;
1518 if (forw > 0)
1519 sump[forw] -= cnt;
1520 /*
1521 * Update cluster summary information.
1522 */
1523 lp = &sump[fs->fs_contigsumsize];
1524 for (i = fs->fs_contigsumsize; i > 0; i--)
1525 if (*lp-- > 0)
1526 break;
1527 fs->fs_maxcluster[cgp->cg_cgx] = i;
1528 }
1529
1530 /*
1531 * Fserr prints the name of a file system with an error diagnostic.
1532 *
1533 * The form of the error message is:
1534 * fs: error message
1535 */
1536 static void
1537 ffs_fserr(fs, uid, cp)
1538 struct fs *fs;
1539 u_int uid;
1540 char *cp;
1541 {
1542
1543 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1544 }
1545