ffs_alloc.c revision 1.91 1 /* $NetBSD: ffs_alloc.c,v 1.91 2006/05/14 21:32:45 elad Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.91 2006/05/14 21:32:45 elad Exp $");
45
46 #if defined(_KERNEL_OPT)
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/kauth.h>
60
61 #include <miscfs/specfs/specdev.h>
62 #include <ufs/ufs/quota.h>
63 #include <ufs/ufs/ufsmount.h>
64 #include <ufs/ufs/inode.h>
65 #include <ufs/ufs/ufs_extern.h>
66 #include <ufs/ufs/ufs_bswap.h>
67
68 #include <ufs/ffs/fs.h>
69 #include <ufs/ffs/ffs_extern.h>
70
71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 #ifdef XXXUBC
74 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
75 #endif
76 static ino_t ffs_dirpref(struct inode *);
77 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
78 static void ffs_fserr(struct fs *, u_int, const char *);
79 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
80 daddr_t (*)(struct inode *, int, daddr_t, int));
81 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
82 static int32_t ffs_mapsearch(struct fs *, struct cg *,
83 daddr_t, int);
84 #if defined(DIAGNOSTIC) || defined(DEBUG)
85 #ifdef XXXUBC
86 static int ffs_checkblk(struct inode *, daddr_t, long size);
87 #endif
88 #endif
89
90 /* if 1, changes in optimalization strategy are logged */
91 int ffs_log_changeopt = 0;
92
93 /* in ffs_tables.c */
94 extern const int inside[], around[];
95 extern const u_char * const fragtbl[];
96
97 /*
98 * Allocate a block in the file system.
99 *
100 * The size of the requested block is given, which must be some
101 * multiple of fs_fsize and <= fs_bsize.
102 * A preference may be optionally specified. If a preference is given
103 * the following hierarchy is used to allocate a block:
104 * 1) allocate the requested block.
105 * 2) allocate a rotationally optimal block in the same cylinder.
106 * 3) allocate a block in the same cylinder group.
107 * 4) quadradically rehash into other cylinder groups, until an
108 * available block is located.
109 * If no block preference is given the following hierarchy is used
110 * to allocate a block:
111 * 1) allocate a block in the cylinder group that contains the
112 * inode for the file.
113 * 2) quadradically rehash into other cylinder groups, until an
114 * available block is located.
115 */
116 int
117 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
118 kauth_cred_t cred, daddr_t *bnp)
119 {
120 struct fs *fs;
121 daddr_t bno;
122 int cg;
123 #ifdef QUOTA
124 int error;
125 #endif
126
127 fs = ip->i_fs;
128
129 #ifdef UVM_PAGE_TRKOWN
130 if (ITOV(ip)->v_type == VREG &&
131 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
132 struct vm_page *pg;
133 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
134 voff_t off = trunc_page(lblktosize(fs, lbn));
135 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
136
137 simple_lock(&uobj->vmobjlock);
138 while (off < endoff) {
139 pg = uvm_pagelookup(uobj, off);
140 KASSERT(pg != NULL);
141 KASSERT(pg->owner == curproc->p_pid);
142 KASSERT((pg->flags & PG_CLEAN) == 0);
143 off += PAGE_SIZE;
144 }
145 simple_unlock(&uobj->vmobjlock);
146 }
147 #endif
148
149 *bnp = 0;
150 #ifdef DIAGNOSTIC
151 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
152 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
153 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
154 panic("ffs_alloc: bad size");
155 }
156 if (cred == NOCRED)
157 panic("ffs_alloc: missing credential");
158 #endif /* DIAGNOSTIC */
159 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
160 goto nospace;
161 if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
162 goto nospace;
163 #ifdef QUOTA
164 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
165 return (error);
166 #endif
167 if (bpref >= fs->fs_size)
168 bpref = 0;
169 if (bpref == 0)
170 cg = ino_to_cg(fs, ip->i_number);
171 else
172 cg = dtog(fs, bpref);
173 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
174 if (bno > 0) {
175 DIP_ADD(ip, blocks, btodb(size));
176 ip->i_flag |= IN_CHANGE | IN_UPDATE;
177 *bnp = bno;
178 return (0);
179 }
180 #ifdef QUOTA
181 /*
182 * Restore user's disk quota because allocation failed.
183 */
184 (void) chkdq(ip, -btodb(size), cred, FORCE);
185 #endif
186 nospace:
187 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
188 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
189 return (ENOSPC);
190 }
191
192 /*
193 * Reallocate a fragment to a bigger size
194 *
195 * The number and size of the old block is given, and a preference
196 * and new size is also specified. The allocator attempts to extend
197 * the original block. Failing that, the regular block allocator is
198 * invoked to get an appropriate block.
199 */
200 int
201 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
202 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
203 {
204 struct fs *fs;
205 struct buf *bp;
206 int cg, request, error;
207 daddr_t bprev, bno;
208
209 fs = ip->i_fs;
210 #ifdef UVM_PAGE_TRKOWN
211 if (ITOV(ip)->v_type == VREG) {
212 struct vm_page *pg;
213 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
214 voff_t off = trunc_page(lblktosize(fs, lbprev));
215 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
216
217 simple_lock(&uobj->vmobjlock);
218 while (off < endoff) {
219 pg = uvm_pagelookup(uobj, off);
220 KASSERT(pg != NULL);
221 KASSERT(pg->owner == curproc->p_pid);
222 KASSERT((pg->flags & PG_CLEAN) == 0);
223 off += PAGE_SIZE;
224 }
225 simple_unlock(&uobj->vmobjlock);
226 }
227 #endif
228
229 #ifdef DIAGNOSTIC
230 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
231 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
232 printf(
233 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
234 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
235 panic("ffs_realloccg: bad size");
236 }
237 if (cred == NOCRED)
238 panic("ffs_realloccg: missing credential");
239 #endif /* DIAGNOSTIC */
240 if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
241 goto nospace;
242 if (fs->fs_magic == FS_UFS2_MAGIC)
243 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
244 else
245 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
246
247 if (bprev == 0) {
248 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
249 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
250 panic("ffs_realloccg: bad bprev");
251 }
252 /*
253 * Allocate the extra space in the buffer.
254 */
255 if (bpp != NULL &&
256 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
257 brelse(bp);
258 return (error);
259 }
260 #ifdef QUOTA
261 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
262 if (bpp != NULL) {
263 brelse(bp);
264 }
265 return (error);
266 }
267 #endif
268 /*
269 * Check for extension in the existing location.
270 */
271 cg = dtog(fs, bprev);
272 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
273 DIP_ADD(ip, blocks, btodb(nsize - osize));
274 ip->i_flag |= IN_CHANGE | IN_UPDATE;
275
276 if (bpp != NULL) {
277 if (bp->b_blkno != fsbtodb(fs, bno))
278 panic("bad blockno");
279 allocbuf(bp, nsize, 1);
280 bp->b_flags |= B_DONE;
281 memset(bp->b_data + osize, 0, nsize - osize);
282 *bpp = bp;
283 }
284 if (blknop != NULL) {
285 *blknop = bno;
286 }
287 return (0);
288 }
289 /*
290 * Allocate a new disk location.
291 */
292 if (bpref >= fs->fs_size)
293 bpref = 0;
294 switch ((int)fs->fs_optim) {
295 case FS_OPTSPACE:
296 /*
297 * Allocate an exact sized fragment. Although this makes
298 * best use of space, we will waste time relocating it if
299 * the file continues to grow. If the fragmentation is
300 * less than half of the minimum free reserve, we choose
301 * to begin optimizing for time.
302 */
303 request = nsize;
304 if (fs->fs_minfree < 5 ||
305 fs->fs_cstotal.cs_nffree >
306 fs->fs_dsize * fs->fs_minfree / (2 * 100))
307 break;
308
309 if (ffs_log_changeopt) {
310 log(LOG_NOTICE,
311 "%s: optimization changed from SPACE to TIME\n",
312 fs->fs_fsmnt);
313 }
314
315 fs->fs_optim = FS_OPTTIME;
316 break;
317 case FS_OPTTIME:
318 /*
319 * At this point we have discovered a file that is trying to
320 * grow a small fragment to a larger fragment. To save time,
321 * we allocate a full sized block, then free the unused portion.
322 * If the file continues to grow, the `ffs_fragextend' call
323 * above will be able to grow it in place without further
324 * copying. If aberrant programs cause disk fragmentation to
325 * grow within 2% of the free reserve, we choose to begin
326 * optimizing for space.
327 */
328 request = fs->fs_bsize;
329 if (fs->fs_cstotal.cs_nffree <
330 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
331 break;
332
333 if (ffs_log_changeopt) {
334 log(LOG_NOTICE,
335 "%s: optimization changed from TIME to SPACE\n",
336 fs->fs_fsmnt);
337 }
338
339 fs->fs_optim = FS_OPTSPACE;
340 break;
341 default:
342 printf("dev = 0x%x, optim = %d, fs = %s\n",
343 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
344 panic("ffs_realloccg: bad optim");
345 /* NOTREACHED */
346 }
347 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
348 if (bno > 0) {
349 if (!DOINGSOFTDEP(ITOV(ip)))
350 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
351 ip->i_number);
352 if (nsize < request)
353 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
354 (long)(request - nsize), ip->i_number);
355 DIP_ADD(ip, blocks, btodb(nsize - osize));
356 ip->i_flag |= IN_CHANGE | IN_UPDATE;
357 if (bpp != NULL) {
358 bp->b_blkno = fsbtodb(fs, bno);
359 allocbuf(bp, nsize, 1);
360 bp->b_flags |= B_DONE;
361 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
362 *bpp = bp;
363 }
364 if (blknop != NULL) {
365 *blknop = bno;
366 }
367 return (0);
368 }
369 #ifdef QUOTA
370 /*
371 * Restore user's disk quota because allocation failed.
372 */
373 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
374 #endif
375 if (bpp != NULL) {
376 brelse(bp);
377 }
378
379 nospace:
380 /*
381 * no space available
382 */
383 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
384 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
385 return (ENOSPC);
386 }
387
388 #if 0
389 /*
390 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
391 *
392 * The vnode and an array of buffer pointers for a range of sequential
393 * logical blocks to be made contiguous is given. The allocator attempts
394 * to find a range of sequential blocks starting as close as possible
395 * from the end of the allocation for the logical block immediately
396 * preceding the current range. If successful, the physical block numbers
397 * in the buffer pointers and in the inode are changed to reflect the new
398 * allocation. If unsuccessful, the allocation is left unchanged. The
399 * success in doing the reallocation is returned. Note that the error
400 * return is not reflected back to the user. Rather the previous block
401 * allocation will be used.
402
403 */
404 #ifdef XXXUBC
405 #ifdef DEBUG
406 #include <sys/sysctl.h>
407 int prtrealloc = 0;
408 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
409 #endif
410 #endif
411
412 /*
413 * NOTE: when re-enabling this, it must be updated for UFS2.
414 */
415
416 int doasyncfree = 1;
417
418 int
419 ffs_reallocblks(void *v)
420 {
421 #ifdef XXXUBC
422 struct vop_reallocblks_args /* {
423 struct vnode *a_vp;
424 struct cluster_save *a_buflist;
425 } */ *ap = v;
426 struct fs *fs;
427 struct inode *ip;
428 struct vnode *vp;
429 struct buf *sbp, *ebp;
430 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
431 struct cluster_save *buflist;
432 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
433 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
434 int i, len, start_lvl, end_lvl, pref, ssize;
435 #endif /* XXXUBC */
436
437 /* XXXUBC don't reallocblks for now */
438 return ENOSPC;
439
440 #ifdef XXXUBC
441 vp = ap->a_vp;
442 ip = VTOI(vp);
443 fs = ip->i_fs;
444 if (fs->fs_contigsumsize <= 0)
445 return (ENOSPC);
446 buflist = ap->a_buflist;
447 len = buflist->bs_nchildren;
448 start_lbn = buflist->bs_children[0]->b_lblkno;
449 end_lbn = start_lbn + len - 1;
450 #ifdef DIAGNOSTIC
451 for (i = 0; i < len; i++)
452 if (!ffs_checkblk(ip,
453 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
454 panic("ffs_reallocblks: unallocated block 1");
455 for (i = 1; i < len; i++)
456 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
457 panic("ffs_reallocblks: non-logical cluster");
458 blkno = buflist->bs_children[0]->b_blkno;
459 ssize = fsbtodb(fs, fs->fs_frag);
460 for (i = 1; i < len - 1; i++)
461 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
462 panic("ffs_reallocblks: non-physical cluster %d", i);
463 #endif
464 /*
465 * If the latest allocation is in a new cylinder group, assume that
466 * the filesystem has decided to move and do not force it back to
467 * the previous cylinder group.
468 */
469 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
470 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
471 return (ENOSPC);
472 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
473 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
474 return (ENOSPC);
475 /*
476 * Get the starting offset and block map for the first block.
477 */
478 if (start_lvl == 0) {
479 sbap = &ip->i_ffs1_db[0];
480 soff = start_lbn;
481 } else {
482 idp = &start_ap[start_lvl - 1];
483 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
484 brelse(sbp);
485 return (ENOSPC);
486 }
487 sbap = (int32_t *)sbp->b_data;
488 soff = idp->in_off;
489 }
490 /*
491 * Find the preferred location for the cluster.
492 */
493 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
494 /*
495 * If the block range spans two block maps, get the second map.
496 */
497 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
498 ssize = len;
499 } else {
500 #ifdef DIAGNOSTIC
501 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
502 panic("ffs_reallocblk: start == end");
503 #endif
504 ssize = len - (idp->in_off + 1);
505 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
506 goto fail;
507 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
508 }
509 /*
510 * Search the block map looking for an allocation of the desired size.
511 */
512 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
513 len, ffs_clusteralloc)) == 0)
514 goto fail;
515 /*
516 * We have found a new contiguous block.
517 *
518 * First we have to replace the old block pointers with the new
519 * block pointers in the inode and indirect blocks associated
520 * with the file.
521 */
522 #ifdef DEBUG
523 if (prtrealloc)
524 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
525 start_lbn, end_lbn);
526 #endif
527 blkno = newblk;
528 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
529 daddr_t ba;
530
531 if (i == ssize) {
532 bap = ebap;
533 soff = -i;
534 }
535 /* XXX ondisk32 */
536 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
537 #ifdef DIAGNOSTIC
538 if (!ffs_checkblk(ip,
539 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
540 panic("ffs_reallocblks: unallocated block 2");
541 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
542 panic("ffs_reallocblks: alloc mismatch");
543 #endif
544 #ifdef DEBUG
545 if (prtrealloc)
546 printf(" %d,", ba);
547 #endif
548 if (DOINGSOFTDEP(vp)) {
549 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
550 softdep_setup_allocdirect(ip, start_lbn + i,
551 blkno, ba, fs->fs_bsize, fs->fs_bsize,
552 buflist->bs_children[i]);
553 else
554 softdep_setup_allocindir_page(ip, start_lbn + i,
555 i < ssize ? sbp : ebp, soff + i, blkno,
556 ba, buflist->bs_children[i]);
557 }
558 /* XXX ondisk32 */
559 *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
560 }
561 /*
562 * Next we must write out the modified inode and indirect blocks.
563 * For strict correctness, the writes should be synchronous since
564 * the old block values may have been written to disk. In practise
565 * they are almost never written, but if we are concerned about
566 * strict correctness, the `doasyncfree' flag should be set to zero.
567 *
568 * The test on `doasyncfree' should be changed to test a flag
569 * that shows whether the associated buffers and inodes have
570 * been written. The flag should be set when the cluster is
571 * started and cleared whenever the buffer or inode is flushed.
572 * We can then check below to see if it is set, and do the
573 * synchronous write only when it has been cleared.
574 */
575 if (sbap != &ip->i_ffs1_db[0]) {
576 if (doasyncfree)
577 bdwrite(sbp);
578 else
579 bwrite(sbp);
580 } else {
581 ip->i_flag |= IN_CHANGE | IN_UPDATE;
582 if (!doasyncfree)
583 ffs_update(vp, NULL, NULL, 1);
584 }
585 if (ssize < len) {
586 if (doasyncfree)
587 bdwrite(ebp);
588 else
589 bwrite(ebp);
590 }
591 /*
592 * Last, free the old blocks and assign the new blocks to the buffers.
593 */
594 #ifdef DEBUG
595 if (prtrealloc)
596 printf("\n\tnew:");
597 #endif
598 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
599 if (!DOINGSOFTDEP(vp))
600 ffs_blkfree(fs, ip->i_devvp,
601 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
602 fs->fs_bsize, ip->i_number);
603 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
604 #ifdef DEBUG
605 if (!ffs_checkblk(ip,
606 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
607 panic("ffs_reallocblks: unallocated block 3");
608 if (prtrealloc)
609 printf(" %d,", blkno);
610 #endif
611 }
612 #ifdef DEBUG
613 if (prtrealloc) {
614 prtrealloc--;
615 printf("\n");
616 }
617 #endif
618 return (0);
619
620 fail:
621 if (ssize < len)
622 brelse(ebp);
623 if (sbap != &ip->i_ffs1_db[0])
624 brelse(sbp);
625 return (ENOSPC);
626 #endif /* XXXUBC */
627 }
628 #endif /* 0 */
629
630 /*
631 * Allocate an inode in the file system.
632 *
633 * If allocating a directory, use ffs_dirpref to select the inode.
634 * If allocating in a directory, the following hierarchy is followed:
635 * 1) allocate the preferred inode.
636 * 2) allocate an inode in the same cylinder group.
637 * 3) quadradically rehash into other cylinder groups, until an
638 * available inode is located.
639 * If no inode preference is given the following hierarchy is used
640 * to allocate an inode:
641 * 1) allocate an inode in cylinder group 0.
642 * 2) quadradically rehash into other cylinder groups, until an
643 * available inode is located.
644 */
645 int
646 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
647 struct vnode **vpp)
648 {
649 struct inode *pip;
650 struct fs *fs;
651 struct inode *ip;
652 struct timespec ts;
653 ino_t ino, ipref;
654 int cg, error;
655
656 *vpp = NULL;
657 pip = VTOI(pvp);
658 fs = pip->i_fs;
659 if (fs->fs_cstotal.cs_nifree == 0)
660 goto noinodes;
661
662 if ((mode & IFMT) == IFDIR)
663 ipref = ffs_dirpref(pip);
664 else
665 ipref = pip->i_number;
666 if (ipref >= fs->fs_ncg * fs->fs_ipg)
667 ipref = 0;
668 cg = ino_to_cg(fs, ipref);
669 /*
670 * Track number of dirs created one after another
671 * in a same cg without intervening by files.
672 */
673 if ((mode & IFMT) == IFDIR) {
674 if (fs->fs_contigdirs[cg] < 255)
675 fs->fs_contigdirs[cg]++;
676 } else {
677 if (fs->fs_contigdirs[cg] > 0)
678 fs->fs_contigdirs[cg]--;
679 }
680 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
681 if (ino == 0)
682 goto noinodes;
683 error = VFS_VGET(pvp->v_mount, ino, vpp);
684 if (error) {
685 ffs_vfree(pvp, ino, mode);
686 return (error);
687 }
688 KASSERT((*vpp)->v_type == VNON);
689 ip = VTOI(*vpp);
690 if (ip->i_mode) {
691 #if 0
692 printf("mode = 0%o, inum = %d, fs = %s\n",
693 ip->i_mode, ip->i_number, fs->fs_fsmnt);
694 #else
695 printf("dmode %x mode %x dgen %x gen %x\n",
696 DIP(ip, mode), ip->i_mode,
697 DIP(ip, gen), ip->i_gen);
698 printf("size %llx blocks %llx\n",
699 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
700 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
701 (unsigned long long)ipref);
702 #if 0
703 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
704 (int)fs->fs_bsize, NOCRED, &bp);
705 #endif
706
707 #endif
708 panic("ffs_valloc: dup alloc");
709 }
710 if (DIP(ip, blocks)) { /* XXX */
711 printf("free inode %s/%llu had %" PRId64 " blocks\n",
712 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
713 DIP_ASSIGN(ip, blocks, 0);
714 }
715 ip->i_flag &= ~IN_SPACECOUNTED;
716 ip->i_flags = 0;
717 DIP_ASSIGN(ip, flags, 0);
718 /*
719 * Set up a new generation number for this inode.
720 */
721 ip->i_gen++;
722 DIP_ASSIGN(ip, gen, ip->i_gen);
723 if (fs->fs_magic == FS_UFS2_MAGIC) {
724 nanotime(&ts);
725 ip->i_ffs2_birthtime = ts.tv_sec;
726 ip->i_ffs2_birthnsec = ts.tv_nsec;
727 }
728 return (0);
729 noinodes:
730 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
731 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
732 return (ENOSPC);
733 }
734
735 /*
736 * Find a cylinder group in which to place a directory.
737 *
738 * The policy implemented by this algorithm is to allocate a
739 * directory inode in the same cylinder group as its parent
740 * directory, but also to reserve space for its files inodes
741 * and data. Restrict the number of directories which may be
742 * allocated one after another in the same cylinder group
743 * without intervening allocation of files.
744 *
745 * If we allocate a first level directory then force allocation
746 * in another cylinder group.
747 */
748 static ino_t
749 ffs_dirpref(struct inode *pip)
750 {
751 register struct fs *fs;
752 int cg, prefcg;
753 int64_t dirsize, cgsize, curdsz;
754 int avgifree, avgbfree, avgndir;
755 int minifree, minbfree, maxndir;
756 int mincg, minndir;
757 int maxcontigdirs;
758
759 fs = pip->i_fs;
760
761 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
762 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
763 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
764
765 /*
766 * Force allocation in another cg if creating a first level dir.
767 */
768 if (ITOV(pip)->v_flag & VROOT) {
769 prefcg = random() % fs->fs_ncg;
770 mincg = prefcg;
771 minndir = fs->fs_ipg;
772 for (cg = prefcg; cg < fs->fs_ncg; cg++)
773 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
774 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
775 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
776 mincg = cg;
777 minndir = fs->fs_cs(fs, cg).cs_ndir;
778 }
779 for (cg = 0; cg < prefcg; cg++)
780 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
781 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
782 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
783 mincg = cg;
784 minndir = fs->fs_cs(fs, cg).cs_ndir;
785 }
786 return ((ino_t)(fs->fs_ipg * mincg));
787 }
788
789 /*
790 * Count various limits which used for
791 * optimal allocation of a directory inode.
792 */
793 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
794 minifree = avgifree - fs->fs_ipg / 4;
795 if (minifree < 0)
796 minifree = 0;
797 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
798 if (minbfree < 0)
799 minbfree = 0;
800 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
801 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
802 if (avgndir != 0) {
803 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
804 if (dirsize < curdsz)
805 dirsize = curdsz;
806 }
807 if (cgsize < dirsize * 255)
808 maxcontigdirs = cgsize / dirsize;
809 else
810 maxcontigdirs = 255;
811 if (fs->fs_avgfpdir > 0)
812 maxcontigdirs = min(maxcontigdirs,
813 fs->fs_ipg / fs->fs_avgfpdir);
814 if (maxcontigdirs == 0)
815 maxcontigdirs = 1;
816
817 /*
818 * Limit number of dirs in one cg and reserve space for
819 * regular files, but only if we have no deficit in
820 * inodes or space.
821 */
822 prefcg = ino_to_cg(fs, pip->i_number);
823 for (cg = prefcg; cg < fs->fs_ncg; cg++)
824 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
825 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
826 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
827 if (fs->fs_contigdirs[cg] < maxcontigdirs)
828 return ((ino_t)(fs->fs_ipg * cg));
829 }
830 for (cg = 0; cg < prefcg; cg++)
831 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
832 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
833 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
834 if (fs->fs_contigdirs[cg] < maxcontigdirs)
835 return ((ino_t)(fs->fs_ipg * cg));
836 }
837 /*
838 * This is a backstop when we are deficient in space.
839 */
840 for (cg = prefcg; cg < fs->fs_ncg; cg++)
841 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
842 return ((ino_t)(fs->fs_ipg * cg));
843 for (cg = 0; cg < prefcg; cg++)
844 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
845 break;
846 return ((ino_t)(fs->fs_ipg * cg));
847 }
848
849 /*
850 * Select the desired position for the next block in a file. The file is
851 * logically divided into sections. The first section is composed of the
852 * direct blocks. Each additional section contains fs_maxbpg blocks.
853 *
854 * If no blocks have been allocated in the first section, the policy is to
855 * request a block in the same cylinder group as the inode that describes
856 * the file. If no blocks have been allocated in any other section, the
857 * policy is to place the section in a cylinder group with a greater than
858 * average number of free blocks. An appropriate cylinder group is found
859 * by using a rotor that sweeps the cylinder groups. When a new group of
860 * blocks is needed, the sweep begins in the cylinder group following the
861 * cylinder group from which the previous allocation was made. The sweep
862 * continues until a cylinder group with greater than the average number
863 * of free blocks is found. If the allocation is for the first block in an
864 * indirect block, the information on the previous allocation is unavailable;
865 * here a best guess is made based upon the logical block number being
866 * allocated.
867 *
868 * If a section is already partially allocated, the policy is to
869 * contiguously allocate fs_maxcontig blocks. The end of one of these
870 * contiguous blocks and the beginning of the next is laid out
871 * contigously if possible.
872 */
873 daddr_t
874 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
875 int32_t *bap /* XXX ondisk32 */)
876 {
877 struct fs *fs;
878 int cg;
879 int avgbfree, startcg;
880
881 fs = ip->i_fs;
882 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
883 if (lbn < NDADDR + NINDIR(fs)) {
884 cg = ino_to_cg(fs, ip->i_number);
885 return (fs->fs_fpg * cg + fs->fs_frag);
886 }
887 /*
888 * Find a cylinder with greater than average number of
889 * unused data blocks.
890 */
891 if (indx == 0 || bap[indx - 1] == 0)
892 startcg =
893 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
894 else
895 startcg = dtog(fs,
896 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
897 startcg %= fs->fs_ncg;
898 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
899 for (cg = startcg; cg < fs->fs_ncg; cg++)
900 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
901 return (fs->fs_fpg * cg + fs->fs_frag);
902 }
903 for (cg = 0; cg < startcg; cg++)
904 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
905 return (fs->fs_fpg * cg + fs->fs_frag);
906 }
907 return (0);
908 }
909 /*
910 * We just always try to lay things out contiguously.
911 */
912 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
913 }
914
915 daddr_t
916 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
917 {
918 struct fs *fs;
919 int cg;
920 int avgbfree, startcg;
921
922 fs = ip->i_fs;
923 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
924 if (lbn < NDADDR + NINDIR(fs)) {
925 cg = ino_to_cg(fs, ip->i_number);
926 return (fs->fs_fpg * cg + fs->fs_frag);
927 }
928 /*
929 * Find a cylinder with greater than average number of
930 * unused data blocks.
931 */
932 if (indx == 0 || bap[indx - 1] == 0)
933 startcg =
934 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
935 else
936 startcg = dtog(fs,
937 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
938 startcg %= fs->fs_ncg;
939 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
940 for (cg = startcg; cg < fs->fs_ncg; cg++)
941 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
942 return (fs->fs_fpg * cg + fs->fs_frag);
943 }
944 for (cg = 0; cg < startcg; cg++)
945 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
946 return (fs->fs_fpg * cg + fs->fs_frag);
947 }
948 return (0);
949 }
950 /*
951 * We just always try to lay things out contiguously.
952 */
953 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
954 }
955
956
957 /*
958 * Implement the cylinder overflow algorithm.
959 *
960 * The policy implemented by this algorithm is:
961 * 1) allocate the block in its requested cylinder group.
962 * 2) quadradically rehash on the cylinder group number.
963 * 3) brute force search for a free block.
964 */
965 /*VARARGS5*/
966 static daddr_t
967 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
968 int size /* size for data blocks, mode for inodes */,
969 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
970 {
971 struct fs *fs;
972 daddr_t result;
973 int i, icg = cg;
974
975 fs = ip->i_fs;
976 /*
977 * 1: preferred cylinder group
978 */
979 result = (*allocator)(ip, cg, pref, size);
980 if (result)
981 return (result);
982 /*
983 * 2: quadratic rehash
984 */
985 for (i = 1; i < fs->fs_ncg; i *= 2) {
986 cg += i;
987 if (cg >= fs->fs_ncg)
988 cg -= fs->fs_ncg;
989 result = (*allocator)(ip, cg, 0, size);
990 if (result)
991 return (result);
992 }
993 /*
994 * 3: brute force search
995 * Note that we start at i == 2, since 0 was checked initially,
996 * and 1 is always checked in the quadratic rehash.
997 */
998 cg = (icg + 2) % fs->fs_ncg;
999 for (i = 2; i < fs->fs_ncg; i++) {
1000 result = (*allocator)(ip, cg, 0, size);
1001 if (result)
1002 return (result);
1003 cg++;
1004 if (cg == fs->fs_ncg)
1005 cg = 0;
1006 }
1007 return (0);
1008 }
1009
1010 /*
1011 * Determine whether a fragment can be extended.
1012 *
1013 * Check to see if the necessary fragments are available, and
1014 * if they are, allocate them.
1015 */
1016 static daddr_t
1017 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1018 {
1019 struct fs *fs;
1020 struct cg *cgp;
1021 struct buf *bp;
1022 daddr_t bno;
1023 int frags, bbase;
1024 int i, error;
1025 u_int8_t *blksfree;
1026
1027 fs = ip->i_fs;
1028 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1029 return (0);
1030 frags = numfrags(fs, nsize);
1031 bbase = fragnum(fs, bprev);
1032 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1033 /* cannot extend across a block boundary */
1034 return (0);
1035 }
1036 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1037 (int)fs->fs_cgsize, NOCRED, &bp);
1038 if (error) {
1039 brelse(bp);
1040 return (0);
1041 }
1042 cgp = (struct cg *)bp->b_data;
1043 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1044 brelse(bp);
1045 return (0);
1046 }
1047 cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1048 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1049 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1050 cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
1051 bno = dtogd(fs, bprev);
1052 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1053 for (i = numfrags(fs, osize); i < frags; i++)
1054 if (isclr(blksfree, bno + i)) {
1055 brelse(bp);
1056 return (0);
1057 }
1058 /*
1059 * the current fragment can be extended
1060 * deduct the count on fragment being extended into
1061 * increase the count on the remaining fragment (if any)
1062 * allocate the extended piece
1063 */
1064 for (i = frags; i < fs->fs_frag - bbase; i++)
1065 if (isclr(blksfree, bno + i))
1066 break;
1067 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1068 if (i != frags)
1069 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1070 for (i = numfrags(fs, osize); i < frags; i++) {
1071 clrbit(blksfree, bno + i);
1072 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1073 fs->fs_cstotal.cs_nffree--;
1074 fs->fs_cs(fs, cg).cs_nffree--;
1075 }
1076 fs->fs_fmod = 1;
1077 if (DOINGSOFTDEP(ITOV(ip)))
1078 softdep_setup_blkmapdep(bp, fs, bprev);
1079 ACTIVECG_CLR(fs, cg);
1080 bdwrite(bp);
1081 return (bprev);
1082 }
1083
1084 /*
1085 * Determine whether a block can be allocated.
1086 *
1087 * Check to see if a block of the appropriate size is available,
1088 * and if it is, allocate it.
1089 */
1090 static daddr_t
1091 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1092 {
1093 struct fs *fs = ip->i_fs;
1094 struct cg *cgp;
1095 struct buf *bp;
1096 int32_t bno;
1097 daddr_t blkno;
1098 int error, frags, allocsiz, i;
1099 u_int8_t *blksfree;
1100 #ifdef FFS_EI
1101 const int needswap = UFS_FSNEEDSWAP(fs);
1102 #endif
1103
1104 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1105 return (0);
1106 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1107 (int)fs->fs_cgsize, NOCRED, &bp);
1108 if (error) {
1109 brelse(bp);
1110 return (0);
1111 }
1112 cgp = (struct cg *)bp->b_data;
1113 if (!cg_chkmagic(cgp, needswap) ||
1114 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1115 brelse(bp);
1116 return (0);
1117 }
1118 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1119 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1120 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1121 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1122 if (size == fs->fs_bsize) {
1123 blkno = ffs_alloccgblk(ip, bp, bpref);
1124 ACTIVECG_CLR(fs, cg);
1125 bdwrite(bp);
1126 return (blkno);
1127 }
1128 /*
1129 * check to see if any fragments are already available
1130 * allocsiz is the size which will be allocated, hacking
1131 * it down to a smaller size if necessary
1132 */
1133 blksfree = cg_blksfree(cgp, needswap);
1134 frags = numfrags(fs, size);
1135 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1136 if (cgp->cg_frsum[allocsiz] != 0)
1137 break;
1138 if (allocsiz == fs->fs_frag) {
1139 /*
1140 * no fragments were available, so a block will be
1141 * allocated, and hacked up
1142 */
1143 if (cgp->cg_cs.cs_nbfree == 0) {
1144 brelse(bp);
1145 return (0);
1146 }
1147 blkno = ffs_alloccgblk(ip, bp, bpref);
1148 bno = dtogd(fs, blkno);
1149 for (i = frags; i < fs->fs_frag; i++)
1150 setbit(blksfree, bno + i);
1151 i = fs->fs_frag - frags;
1152 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1153 fs->fs_cstotal.cs_nffree += i;
1154 fs->fs_cs(fs, cg).cs_nffree += i;
1155 fs->fs_fmod = 1;
1156 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1157 ACTIVECG_CLR(fs, cg);
1158 bdwrite(bp);
1159 return (blkno);
1160 }
1161 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1162 #if 0
1163 /*
1164 * XXX fvdl mapsearch will panic, and never return -1
1165 * also: returning NULL as daddr_t ?
1166 */
1167 if (bno < 0) {
1168 brelse(bp);
1169 return (0);
1170 }
1171 #endif
1172 for (i = 0; i < frags; i++)
1173 clrbit(blksfree, bno + i);
1174 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1175 fs->fs_cstotal.cs_nffree -= frags;
1176 fs->fs_cs(fs, cg).cs_nffree -= frags;
1177 fs->fs_fmod = 1;
1178 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1179 if (frags != allocsiz)
1180 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1181 blkno = cg * fs->fs_fpg + bno;
1182 if (DOINGSOFTDEP(ITOV(ip)))
1183 softdep_setup_blkmapdep(bp, fs, blkno);
1184 ACTIVECG_CLR(fs, cg);
1185 bdwrite(bp);
1186 return blkno;
1187 }
1188
1189 /*
1190 * Allocate a block in a cylinder group.
1191 *
1192 * This algorithm implements the following policy:
1193 * 1) allocate the requested block.
1194 * 2) allocate a rotationally optimal block in the same cylinder.
1195 * 3) allocate the next available block on the block rotor for the
1196 * specified cylinder group.
1197 * Note that this routine only allocates fs_bsize blocks; these
1198 * blocks may be fragmented by the routine that allocates them.
1199 */
1200 static daddr_t
1201 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1202 {
1203 struct fs *fs = ip->i_fs;
1204 struct cg *cgp;
1205 daddr_t blkno;
1206 int32_t bno;
1207 u_int8_t *blksfree;
1208 #ifdef FFS_EI
1209 const int needswap = UFS_FSNEEDSWAP(fs);
1210 #endif
1211
1212 cgp = (struct cg *)bp->b_data;
1213 blksfree = cg_blksfree(cgp, needswap);
1214 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1215 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1216 } else {
1217 bpref = blknum(fs, bpref);
1218 bno = dtogd(fs, bpref);
1219 /*
1220 * if the requested block is available, use it
1221 */
1222 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1223 goto gotit;
1224 }
1225 /*
1226 * Take the next available block in this cylinder group.
1227 */
1228 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1229 if (bno < 0)
1230 return (0);
1231 cgp->cg_rotor = ufs_rw32(bno, needswap);
1232 gotit:
1233 blkno = fragstoblks(fs, bno);
1234 ffs_clrblock(fs, blksfree, blkno);
1235 ffs_clusteracct(fs, cgp, blkno, -1);
1236 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1237 fs->fs_cstotal.cs_nbfree--;
1238 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1239 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1240 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1241 int cylno;
1242 cylno = old_cbtocylno(fs, bno);
1243 KASSERT(cylno >= 0);
1244 KASSERT(cylno < fs->fs_old_ncyl);
1245 KASSERT(old_cbtorpos(fs, bno) >= 0);
1246 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1247 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1248 needswap);
1249 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1250 }
1251 fs->fs_fmod = 1;
1252 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1253 if (DOINGSOFTDEP(ITOV(ip)))
1254 softdep_setup_blkmapdep(bp, fs, blkno);
1255 return (blkno);
1256 }
1257
1258 #ifdef XXXUBC
1259 /*
1260 * Determine whether a cluster can be allocated.
1261 *
1262 * We do not currently check for optimal rotational layout if there
1263 * are multiple choices in the same cylinder group. Instead we just
1264 * take the first one that we find following bpref.
1265 */
1266
1267 /*
1268 * This function must be fixed for UFS2 if re-enabled.
1269 */
1270 static daddr_t
1271 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1272 {
1273 struct fs *fs;
1274 struct cg *cgp;
1275 struct buf *bp;
1276 int i, got, run, bno, bit, map;
1277 u_char *mapp;
1278 int32_t *lp;
1279
1280 fs = ip->i_fs;
1281 if (fs->fs_maxcluster[cg] < len)
1282 return (0);
1283 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1284 NOCRED, &bp))
1285 goto fail;
1286 cgp = (struct cg *)bp->b_data;
1287 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1288 goto fail;
1289 /*
1290 * Check to see if a cluster of the needed size (or bigger) is
1291 * available in this cylinder group.
1292 */
1293 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1294 for (i = len; i <= fs->fs_contigsumsize; i++)
1295 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1296 break;
1297 if (i > fs->fs_contigsumsize) {
1298 /*
1299 * This is the first time looking for a cluster in this
1300 * cylinder group. Update the cluster summary information
1301 * to reflect the true maximum sized cluster so that
1302 * future cluster allocation requests can avoid reading
1303 * the cylinder group map only to find no clusters.
1304 */
1305 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1306 for (i = len - 1; i > 0; i--)
1307 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1308 break;
1309 fs->fs_maxcluster[cg] = i;
1310 goto fail;
1311 }
1312 /*
1313 * Search the cluster map to find a big enough cluster.
1314 * We take the first one that we find, even if it is larger
1315 * than we need as we prefer to get one close to the previous
1316 * block allocation. We do not search before the current
1317 * preference point as we do not want to allocate a block
1318 * that is allocated before the previous one (as we will
1319 * then have to wait for another pass of the elevator
1320 * algorithm before it will be read). We prefer to fail and
1321 * be recalled to try an allocation in the next cylinder group.
1322 */
1323 if (dtog(fs, bpref) != cg)
1324 bpref = 0;
1325 else
1326 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1327 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1328 map = *mapp++;
1329 bit = 1 << (bpref % NBBY);
1330 for (run = 0, got = bpref;
1331 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1332 if ((map & bit) == 0) {
1333 run = 0;
1334 } else {
1335 run++;
1336 if (run == len)
1337 break;
1338 }
1339 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1340 bit <<= 1;
1341 } else {
1342 map = *mapp++;
1343 bit = 1;
1344 }
1345 }
1346 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1347 goto fail;
1348 /*
1349 * Allocate the cluster that we have found.
1350 */
1351 #ifdef DIAGNOSTIC
1352 for (i = 1; i <= len; i++)
1353 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1354 got - run + i))
1355 panic("ffs_clusteralloc: map mismatch");
1356 #endif
1357 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1358 if (dtog(fs, bno) != cg)
1359 panic("ffs_clusteralloc: allocated out of group");
1360 len = blkstofrags(fs, len);
1361 for (i = 0; i < len; i += fs->fs_frag)
1362 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1363 panic("ffs_clusteralloc: lost block");
1364 ACTIVECG_CLR(fs, cg);
1365 bdwrite(bp);
1366 return (bno);
1367
1368 fail:
1369 brelse(bp);
1370 return (0);
1371 }
1372 #endif /* XXXUBC */
1373
1374 /*
1375 * Determine whether an inode can be allocated.
1376 *
1377 * Check to see if an inode is available, and if it is,
1378 * allocate it using the following policy:
1379 * 1) allocate the requested inode.
1380 * 2) allocate the next available inode after the requested
1381 * inode in the specified cylinder group.
1382 */
1383 static daddr_t
1384 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1385 {
1386 struct fs *fs = ip->i_fs;
1387 struct cg *cgp;
1388 struct buf *bp, *ibp;
1389 u_int8_t *inosused;
1390 int error, start, len, loc, map, i;
1391 int32_t initediblk;
1392 struct ufs2_dinode *dp2;
1393 #ifdef FFS_EI
1394 const int needswap = UFS_FSNEEDSWAP(fs);
1395 #endif
1396
1397 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1398 return (0);
1399 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1400 (int)fs->fs_cgsize, NOCRED, &bp);
1401 if (error) {
1402 brelse(bp);
1403 return (0);
1404 }
1405 cgp = (struct cg *)bp->b_data;
1406 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1407 brelse(bp);
1408 return (0);
1409 }
1410 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1411 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1412 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1413 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1414 inosused = cg_inosused(cgp, needswap);
1415 if (ipref) {
1416 ipref %= fs->fs_ipg;
1417 if (isclr(inosused, ipref))
1418 goto gotit;
1419 }
1420 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1421 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1422 NBBY);
1423 loc = skpc(0xff, len, &inosused[start]);
1424 if (loc == 0) {
1425 len = start + 1;
1426 start = 0;
1427 loc = skpc(0xff, len, &inosused[0]);
1428 if (loc == 0) {
1429 printf("cg = %d, irotor = %d, fs = %s\n",
1430 cg, ufs_rw32(cgp->cg_irotor, needswap),
1431 fs->fs_fsmnt);
1432 panic("ffs_nodealloccg: map corrupted");
1433 /* NOTREACHED */
1434 }
1435 }
1436 i = start + len - loc;
1437 map = inosused[i];
1438 ipref = i * NBBY;
1439 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1440 if ((map & i) == 0) {
1441 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1442 goto gotit;
1443 }
1444 }
1445 printf("fs = %s\n", fs->fs_fsmnt);
1446 panic("ffs_nodealloccg: block not in map");
1447 /* NOTREACHED */
1448 gotit:
1449 if (DOINGSOFTDEP(ITOV(ip)))
1450 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1451 setbit(inosused, ipref);
1452 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1453 fs->fs_cstotal.cs_nifree--;
1454 fs->fs_cs(fs, cg).cs_nifree--;
1455 fs->fs_fmod = 1;
1456 if ((mode & IFMT) == IFDIR) {
1457 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1458 fs->fs_cstotal.cs_ndir++;
1459 fs->fs_cs(fs, cg).cs_ndir++;
1460 }
1461 /*
1462 * Check to see if we need to initialize more inodes.
1463 */
1464 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1465 if (fs->fs_magic == FS_UFS2_MAGIC &&
1466 ipref + INOPB(fs) > initediblk &&
1467 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1468 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1469 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1470 (int)fs->fs_bsize, 0, 0);
1471 memset(ibp->b_data, 0, fs->fs_bsize);
1472 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1473 for (i = 0; i < INOPB(fs); i++) {
1474 /*
1475 * Don't bother to swap, it's supposed to be
1476 * random, after all.
1477 */
1478 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1479 dp2++;
1480 }
1481 bawrite(ibp);
1482 initediblk += INOPB(fs);
1483 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1484 }
1485
1486 ACTIVECG_CLR(fs, cg);
1487 bdwrite(bp);
1488 return (cg * fs->fs_ipg + ipref);
1489 }
1490
1491 /*
1492 * Free a block or fragment.
1493 *
1494 * The specified block or fragment is placed back in the
1495 * free map. If a fragment is deallocated, a possible
1496 * block reassembly is checked.
1497 */
1498 void
1499 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1500 ino_t inum)
1501 {
1502 struct cg *cgp;
1503 struct buf *bp;
1504 struct ufsmount *ump;
1505 int32_t fragno, cgbno;
1506 daddr_t cgblkno;
1507 int i, error, cg, blk, frags, bbase;
1508 u_int8_t *blksfree;
1509 dev_t dev;
1510 const int needswap = UFS_FSNEEDSWAP(fs);
1511
1512 cg = dtog(fs, bno);
1513 if (devvp->v_type != VBLK) {
1514 /* devvp is a snapshot */
1515 dev = VTOI(devvp)->i_devvp->v_rdev;
1516 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1517 } else {
1518 dev = devvp->v_rdev;
1519 ump = VFSTOUFS(devvp->v_specmountpoint);
1520 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1521 if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
1522 ffs_snapblkfree(fs, devvp, bno, size, inum))
1523 return;
1524 }
1525 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1526 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1527 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1528 "size = %ld, fs = %s\n",
1529 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1530 panic("blkfree: bad size");
1531 }
1532
1533 if (bno >= fs->fs_size) {
1534 printf("bad block %" PRId64 ", ino %llu\n", bno,
1535 (unsigned long long)inum);
1536 ffs_fserr(fs, inum, "bad block");
1537 return;
1538 }
1539 error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
1540 if (error) {
1541 brelse(bp);
1542 return;
1543 }
1544 cgp = (struct cg *)bp->b_data;
1545 if (!cg_chkmagic(cgp, needswap)) {
1546 brelse(bp);
1547 return;
1548 }
1549 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1550 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1551 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1552 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1553 cgbno = dtogd(fs, bno);
1554 blksfree = cg_blksfree(cgp, needswap);
1555 if (size == fs->fs_bsize) {
1556 fragno = fragstoblks(fs, cgbno);
1557 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1558 if (devvp->v_type != VBLK) {
1559 /* devvp is a snapshot */
1560 brelse(bp);
1561 return;
1562 }
1563 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1564 dev, bno, fs->fs_fsmnt);
1565 panic("blkfree: freeing free block");
1566 }
1567 ffs_setblock(fs, blksfree, fragno);
1568 ffs_clusteracct(fs, cgp, fragno, 1);
1569 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1570 fs->fs_cstotal.cs_nbfree++;
1571 fs->fs_cs(fs, cg).cs_nbfree++;
1572 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1573 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1574 i = old_cbtocylno(fs, cgbno);
1575 KASSERT(i >= 0);
1576 KASSERT(i < fs->fs_old_ncyl);
1577 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1578 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1579 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1580 needswap);
1581 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1582 }
1583 } else {
1584 bbase = cgbno - fragnum(fs, cgbno);
1585 /*
1586 * decrement the counts associated with the old frags
1587 */
1588 blk = blkmap(fs, blksfree, bbase);
1589 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1590 /*
1591 * deallocate the fragment
1592 */
1593 frags = numfrags(fs, size);
1594 for (i = 0; i < frags; i++) {
1595 if (isset(blksfree, cgbno + i)) {
1596 printf("dev = 0x%x, block = %" PRId64
1597 ", fs = %s\n",
1598 dev, bno + i, fs->fs_fsmnt);
1599 panic("blkfree: freeing free frag");
1600 }
1601 setbit(blksfree, cgbno + i);
1602 }
1603 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1604 fs->fs_cstotal.cs_nffree += i;
1605 fs->fs_cs(fs, cg).cs_nffree += i;
1606 /*
1607 * add back in counts associated with the new frags
1608 */
1609 blk = blkmap(fs, blksfree, bbase);
1610 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1611 /*
1612 * if a complete block has been reassembled, account for it
1613 */
1614 fragno = fragstoblks(fs, bbase);
1615 if (ffs_isblock(fs, blksfree, fragno)) {
1616 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1617 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1618 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1619 ffs_clusteracct(fs, cgp, fragno, 1);
1620 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1621 fs->fs_cstotal.cs_nbfree++;
1622 fs->fs_cs(fs, cg).cs_nbfree++;
1623 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1624 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1625 i = old_cbtocylno(fs, bbase);
1626 KASSERT(i >= 0);
1627 KASSERT(i < fs->fs_old_ncyl);
1628 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1629 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1630 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1631 bbase)], 1, needswap);
1632 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1633 }
1634 }
1635 }
1636 fs->fs_fmod = 1;
1637 ACTIVECG_CLR(fs, cg);
1638 bdwrite(bp);
1639 }
1640
1641 #if defined(DIAGNOSTIC) || defined(DEBUG)
1642 #ifdef XXXUBC
1643 /*
1644 * Verify allocation of a block or fragment. Returns true if block or
1645 * fragment is allocated, false if it is free.
1646 */
1647 static int
1648 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1649 {
1650 struct fs *fs;
1651 struct cg *cgp;
1652 struct buf *bp;
1653 int i, error, frags, free;
1654
1655 fs = ip->i_fs;
1656 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1657 printf("bsize = %d, size = %ld, fs = %s\n",
1658 fs->fs_bsize, size, fs->fs_fsmnt);
1659 panic("checkblk: bad size");
1660 }
1661 if (bno >= fs->fs_size)
1662 panic("checkblk: bad block %d", bno);
1663 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1664 (int)fs->fs_cgsize, NOCRED, &bp);
1665 if (error) {
1666 brelse(bp);
1667 return 0;
1668 }
1669 cgp = (struct cg *)bp->b_data;
1670 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1671 brelse(bp);
1672 return 0;
1673 }
1674 bno = dtogd(fs, bno);
1675 if (size == fs->fs_bsize) {
1676 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1677 fragstoblks(fs, bno));
1678 } else {
1679 frags = numfrags(fs, size);
1680 for (free = 0, i = 0; i < frags; i++)
1681 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1682 free++;
1683 if (free != 0 && free != frags)
1684 panic("checkblk: partially free fragment");
1685 }
1686 brelse(bp);
1687 return (!free);
1688 }
1689 #endif /* XXXUBC */
1690 #endif /* DIAGNOSTIC */
1691
1692 /*
1693 * Free an inode.
1694 */
1695 int
1696 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1697 {
1698
1699 if (DOINGSOFTDEP(vp)) {
1700 softdep_freefile(vp, ino, mode);
1701 return (0);
1702 }
1703 return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1704 }
1705
1706 /*
1707 * Do the actual free operation.
1708 * The specified inode is placed back in the free map.
1709 */
1710 int
1711 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1712 {
1713 struct cg *cgp;
1714 struct buf *bp;
1715 int error, cg;
1716 daddr_t cgbno;
1717 u_int8_t *inosused;
1718 dev_t dev;
1719 #ifdef FFS_EI
1720 const int needswap = UFS_FSNEEDSWAP(fs);
1721 #endif
1722
1723 cg = ino_to_cg(fs, ino);
1724 if (devvp->v_type != VBLK) {
1725 /* devvp is a snapshot */
1726 dev = VTOI(devvp)->i_devvp->v_rdev;
1727 cgbno = fragstoblks(fs, cgtod(fs, cg));
1728 } else {
1729 dev = devvp->v_rdev;
1730 cgbno = fsbtodb(fs, cgtod(fs, cg));
1731 }
1732 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1733 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1734 dev, (unsigned long long)ino, fs->fs_fsmnt);
1735 error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
1736 if (error) {
1737 brelse(bp);
1738 return (error);
1739 }
1740 cgp = (struct cg *)bp->b_data;
1741 if (!cg_chkmagic(cgp, needswap)) {
1742 brelse(bp);
1743 return (0);
1744 }
1745 cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1746 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1747 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1748 cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1749 inosused = cg_inosused(cgp, needswap);
1750 ino %= fs->fs_ipg;
1751 if (isclr(inosused, ino)) {
1752 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1753 dev, (unsigned long long)ino + cg * fs->fs_ipg,
1754 fs->fs_fsmnt);
1755 if (fs->fs_ronly == 0)
1756 panic("ifree: freeing free inode");
1757 }
1758 clrbit(inosused, ino);
1759 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1760 cgp->cg_irotor = ufs_rw32(ino, needswap);
1761 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1762 fs->fs_cstotal.cs_nifree++;
1763 fs->fs_cs(fs, cg).cs_nifree++;
1764 if ((mode & IFMT) == IFDIR) {
1765 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1766 fs->fs_cstotal.cs_ndir--;
1767 fs->fs_cs(fs, cg).cs_ndir--;
1768 }
1769 fs->fs_fmod = 1;
1770 ACTIVECG_CLR(fs, cg);
1771 bdwrite(bp);
1772 return (0);
1773 }
1774
1775 /*
1776 * Check to see if a file is free.
1777 */
1778 int
1779 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1780 {
1781 struct cg *cgp;
1782 struct buf *bp;
1783 daddr_t cgbno;
1784 int ret, cg;
1785 u_int8_t *inosused;
1786
1787 cg = ino_to_cg(fs, ino);
1788 if (devvp->v_type != VBLK) {
1789 /* devvp is a snapshot */
1790 cgbno = fragstoblks(fs, cgtod(fs, cg));
1791 } else
1792 cgbno = fsbtodb(fs, cgtod(fs, cg));
1793 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1794 return 1;
1795 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1796 brelse(bp);
1797 return 1;
1798 }
1799 cgp = (struct cg *)bp->b_data;
1800 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1801 brelse(bp);
1802 return 1;
1803 }
1804 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1805 ino %= fs->fs_ipg;
1806 ret = isclr(inosused, ino);
1807 brelse(bp);
1808 return ret;
1809 }
1810
1811 /*
1812 * Find a block of the specified size in the specified cylinder group.
1813 *
1814 * It is a panic if a request is made to find a block if none are
1815 * available.
1816 */
1817 static int32_t
1818 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1819 {
1820 int32_t bno;
1821 int start, len, loc, i;
1822 int blk, field, subfield, pos;
1823 int ostart, olen;
1824 u_int8_t *blksfree;
1825 #ifdef FFS_EI
1826 const int needswap = UFS_FSNEEDSWAP(fs);
1827 #endif
1828
1829 /*
1830 * find the fragment by searching through the free block
1831 * map for an appropriate bit pattern
1832 */
1833 if (bpref)
1834 start = dtogd(fs, bpref) / NBBY;
1835 else
1836 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1837 blksfree = cg_blksfree(cgp, needswap);
1838 len = howmany(fs->fs_fpg, NBBY) - start;
1839 ostart = start;
1840 olen = len;
1841 loc = scanc((u_int)len,
1842 (const u_char *)&blksfree[start],
1843 (const u_char *)fragtbl[fs->fs_frag],
1844 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1845 if (loc == 0) {
1846 len = start + 1;
1847 start = 0;
1848 loc = scanc((u_int)len,
1849 (const u_char *)&blksfree[0],
1850 (const u_char *)fragtbl[fs->fs_frag],
1851 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1852 if (loc == 0) {
1853 printf("start = %d, len = %d, fs = %s\n",
1854 ostart, olen, fs->fs_fsmnt);
1855 printf("offset=%d %ld\n",
1856 ufs_rw32(cgp->cg_freeoff, needswap),
1857 (long)blksfree - (long)cgp);
1858 printf("cg %d\n", cgp->cg_cgx);
1859 panic("ffs_alloccg: map corrupted");
1860 /* NOTREACHED */
1861 }
1862 }
1863 bno = (start + len - loc) * NBBY;
1864 cgp->cg_frotor = ufs_rw32(bno, needswap);
1865 /*
1866 * found the byte in the map
1867 * sift through the bits to find the selected frag
1868 */
1869 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1870 blk = blkmap(fs, blksfree, bno);
1871 blk <<= 1;
1872 field = around[allocsiz];
1873 subfield = inside[allocsiz];
1874 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1875 if ((blk & field) == subfield)
1876 return (bno + pos);
1877 field <<= 1;
1878 subfield <<= 1;
1879 }
1880 }
1881 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1882 panic("ffs_alloccg: block not in map");
1883 /* return (-1); */
1884 }
1885
1886 /*
1887 * Update the cluster map because of an allocation or free.
1888 *
1889 * Cnt == 1 means free; cnt == -1 means allocating.
1890 */
1891 void
1892 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1893 {
1894 int32_t *sump;
1895 int32_t *lp;
1896 u_char *freemapp, *mapp;
1897 int i, start, end, forw, back, map, bit;
1898 #ifdef FFS_EI
1899 const int needswap = UFS_FSNEEDSWAP(fs);
1900 #endif
1901
1902 if (fs->fs_contigsumsize <= 0)
1903 return;
1904 freemapp = cg_clustersfree(cgp, needswap);
1905 sump = cg_clustersum(cgp, needswap);
1906 /*
1907 * Allocate or clear the actual block.
1908 */
1909 if (cnt > 0)
1910 setbit(freemapp, blkno);
1911 else
1912 clrbit(freemapp, blkno);
1913 /*
1914 * Find the size of the cluster going forward.
1915 */
1916 start = blkno + 1;
1917 end = start + fs->fs_contigsumsize;
1918 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1919 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1920 mapp = &freemapp[start / NBBY];
1921 map = *mapp++;
1922 bit = 1 << (start % NBBY);
1923 for (i = start; i < end; i++) {
1924 if ((map & bit) == 0)
1925 break;
1926 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1927 bit <<= 1;
1928 } else {
1929 map = *mapp++;
1930 bit = 1;
1931 }
1932 }
1933 forw = i - start;
1934 /*
1935 * Find the size of the cluster going backward.
1936 */
1937 start = blkno - 1;
1938 end = start - fs->fs_contigsumsize;
1939 if (end < 0)
1940 end = -1;
1941 mapp = &freemapp[start / NBBY];
1942 map = *mapp--;
1943 bit = 1 << (start % NBBY);
1944 for (i = start; i > end; i--) {
1945 if ((map & bit) == 0)
1946 break;
1947 if ((i & (NBBY - 1)) != 0) {
1948 bit >>= 1;
1949 } else {
1950 map = *mapp--;
1951 bit = 1 << (NBBY - 1);
1952 }
1953 }
1954 back = start - i;
1955 /*
1956 * Account for old cluster and the possibly new forward and
1957 * back clusters.
1958 */
1959 i = back + forw + 1;
1960 if (i > fs->fs_contigsumsize)
1961 i = fs->fs_contigsumsize;
1962 ufs_add32(sump[i], cnt, needswap);
1963 if (back > 0)
1964 ufs_add32(sump[back], -cnt, needswap);
1965 if (forw > 0)
1966 ufs_add32(sump[forw], -cnt, needswap);
1967
1968 /*
1969 * Update cluster summary information.
1970 */
1971 lp = &sump[fs->fs_contigsumsize];
1972 for (i = fs->fs_contigsumsize; i > 0; i--)
1973 if (ufs_rw32(*lp--, needswap) > 0)
1974 break;
1975 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1976 }
1977
1978 /*
1979 * Fserr prints the name of a file system with an error diagnostic.
1980 *
1981 * The form of the error message is:
1982 * fs: error message
1983 */
1984 static void
1985 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
1986 {
1987
1988 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1989 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1990 }
1991