Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.98.6.1
      1 /*	$NetBSD: ffs_alloc.c,v 1.98.6.1 2007/03/19 23:55:48 reinoud Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  * All rights reserved.
      6  *
      7  * This software was developed for the FreeBSD Project by Marshall
      8  * Kirk McKusick and Network Associates Laboratories, the Security
      9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  * research program
     12  *
     13  * Copyright (c) 1982, 1986, 1989, 1993
     14  *	The Regents of the University of California.  All rights reserved.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.98.6.1 2007/03/19 23:55:48 reinoud Exp $");
     45 
     46 #if defined(_KERNEL_OPT)
     47 #include "opt_ffs.h"
     48 #include "opt_quota.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/buf.h>
     54 #include <sys/proc.h>
     55 #include <sys/vnode.h>
     56 #include <sys/mount.h>
     57 #include <sys/kernel.h>
     58 #include <sys/syslog.h>
     59 #include <sys/kauth.h>
     60 
     61 #include <miscfs/specfs/specdev.h>
     62 #include <ufs/ufs/quota.h>
     63 #include <ufs/ufs/ufsmount.h>
     64 #include <ufs/ufs/inode.h>
     65 #include <ufs/ufs/ufs_extern.h>
     66 #include <ufs/ufs/ufs_bswap.h>
     67 
     68 #include <ufs/ffs/fs.h>
     69 #include <ufs/ffs/ffs_extern.h>
     70 
     71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73 #ifdef XXXUBC
     74 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75 #endif
     76 static ino_t ffs_dirpref(struct inode *);
     77 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78 static void ffs_fserr(struct fs *, u_int, const char *);
     79 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80     daddr_t (*)(struct inode *, int, daddr_t, int));
     81 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82 static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83 				      daddr_t, int);
     84 #if defined(DIAGNOSTIC) || defined(DEBUG)
     85 #ifdef XXXUBC
     86 static int ffs_checkblk(struct inode *, daddr_t, long size);
     87 #endif
     88 #endif
     89 
     90 /* if 1, changes in optimalization strategy are logged */
     91 int ffs_log_changeopt = 0;
     92 
     93 /* in ffs_tables.c */
     94 extern const int inside[], around[];
     95 extern const u_char * const fragtbl[];
     96 
     97 /*
     98  * Allocate a block in the file system.
     99  *
    100  * The size of the requested block is given, which must be some
    101  * multiple of fs_fsize and <= fs_bsize.
    102  * A preference may be optionally specified. If a preference is given
    103  * the following hierarchy is used to allocate a block:
    104  *   1) allocate the requested block.
    105  *   2) allocate a rotationally optimal block in the same cylinder.
    106  *   3) allocate a block in the same cylinder group.
    107  *   4) quadradically rehash into other cylinder groups, until an
    108  *      available block is located.
    109  * If no block preference is given the following hierarchy is used
    110  * to allocate a block:
    111  *   1) allocate a block in the cylinder group that contains the
    112  *      inode for the file.
    113  *   2) quadradically rehash into other cylinder groups, until an
    114  *      available block is located.
    115  */
    116 int
    117 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    118     kauth_cred_t cred, daddr_t *bnp)
    119 {
    120 	struct fs *fs;
    121 	daddr_t bno;
    122 	int cg;
    123 #ifdef QUOTA
    124 	int error;
    125 #endif
    126 
    127 	fs = ip->i_fs;
    128 
    129 #ifdef UVM_PAGE_TRKOWN
    130 	if (ITOV(ip)->v_type == VREG &&
    131 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    132 		struct vm_page *pg;
    133 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    134 		voff_t off = trunc_page(lblktosize(fs, lbn));
    135 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    136 
    137 		simple_lock(&uobj->vmobjlock);
    138 		while (off < endoff) {
    139 			pg = uvm_pagelookup(uobj, off);
    140 			KASSERT(pg != NULL);
    141 			KASSERT(pg->owner == curproc->p_pid);
    142 			off += PAGE_SIZE;
    143 		}
    144 		simple_unlock(&uobj->vmobjlock);
    145 	}
    146 #endif
    147 
    148 	*bnp = 0;
    149 #ifdef DIAGNOSTIC
    150 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    151 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    152 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    153 		panic("ffs_alloc: bad size");
    154 	}
    155 	if (cred == NOCRED)
    156 		panic("ffs_alloc: missing credential");
    157 #endif /* DIAGNOSTIC */
    158 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    159 		goto nospace;
    160 	if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
    161 	    freespace(fs, fs->fs_minfree) <= 0)
    162 		goto nospace;
    163 #ifdef QUOTA
    164 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    165 		return (error);
    166 #endif
    167 	if (bpref >= fs->fs_size)
    168 		bpref = 0;
    169 	if (bpref == 0)
    170 		cg = ino_to_cg(fs, ip->i_number);
    171 	else
    172 		cg = dtog(fs, bpref);
    173 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    174 	if (bno > 0) {
    175 		DIP_ADD(ip, blocks, btodb(size));
    176 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    177 		*bnp = bno;
    178 		return (0);
    179 	}
    180 #ifdef QUOTA
    181 	/*
    182 	 * Restore user's disk quota because allocation failed.
    183 	 */
    184 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    185 #endif
    186 nospace:
    187 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    188 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    189 	return (ENOSPC);
    190 }
    191 
    192 /*
    193  * Reallocate a fragment to a bigger size
    194  *
    195  * The number and size of the old block is given, and a preference
    196  * and new size is also specified. The allocator attempts to extend
    197  * the original block. Failing that, the regular block allocator is
    198  * invoked to get an appropriate block.
    199  */
    200 int
    201 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    202     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    203 {
    204 	struct fs *fs;
    205 	struct buf *bp;
    206 	int cg, request, error;
    207 	daddr_t bprev, bno;
    208 
    209 	fs = ip->i_fs;
    210 #ifdef UVM_PAGE_TRKOWN
    211 	if (ITOV(ip)->v_type == VREG) {
    212 		struct vm_page *pg;
    213 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    214 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    215 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    216 
    217 		simple_lock(&uobj->vmobjlock);
    218 		while (off < endoff) {
    219 			pg = uvm_pagelookup(uobj, off);
    220 			KASSERT(pg != NULL);
    221 			KASSERT(pg->owner == curproc->p_pid);
    222 			KASSERT((pg->flags & PG_CLEAN) == 0);
    223 			off += PAGE_SIZE;
    224 		}
    225 		simple_unlock(&uobj->vmobjlock);
    226 	}
    227 #endif
    228 
    229 #ifdef DIAGNOSTIC
    230 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    231 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    232 		printf(
    233 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    234 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    235 		panic("ffs_realloccg: bad size");
    236 	}
    237 	if (cred == NOCRED)
    238 		panic("ffs_realloccg: missing credential");
    239 #endif /* DIAGNOSTIC */
    240 	if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
    241 	    freespace(fs, fs->fs_minfree) <= 0)
    242 		goto nospace;
    243 	if (fs->fs_magic == FS_UFS2_MAGIC)
    244 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    245 	else
    246 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    247 
    248 	if (bprev == 0) {
    249 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    250 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    251 		panic("ffs_realloccg: bad bprev");
    252 	}
    253 	/*
    254 	 * Allocate the extra space in the buffer.
    255 	 */
    256 	if (bpp != NULL &&
    257 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    258 		brelse(bp);
    259 		return (error);
    260 	}
    261 #ifdef QUOTA
    262 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    263 		if (bpp != NULL) {
    264 			brelse(bp);
    265 		}
    266 		return (error);
    267 	}
    268 #endif
    269 	/*
    270 	 * Check for extension in the existing location.
    271 	 */
    272 	cg = dtog(fs, bprev);
    273 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    274 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    275 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    276 
    277 		if (bpp != NULL) {
    278 			if (bp->b_blkno != fsbtodb(fs, bno))
    279 				panic("bad blockno");
    280 			allocbuf(bp, nsize, 1);
    281 			bp->b_flags |= B_DONE;
    282 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    283 			*bpp = bp;
    284 		}
    285 		if (blknop != NULL) {
    286 			*blknop = bno;
    287 		}
    288 		return (0);
    289 	}
    290 	/*
    291 	 * Allocate a new disk location.
    292 	 */
    293 	if (bpref >= fs->fs_size)
    294 		bpref = 0;
    295 	switch ((int)fs->fs_optim) {
    296 	case FS_OPTSPACE:
    297 		/*
    298 		 * Allocate an exact sized fragment. Although this makes
    299 		 * best use of space, we will waste time relocating it if
    300 		 * the file continues to grow. If the fragmentation is
    301 		 * less than half of the minimum free reserve, we choose
    302 		 * to begin optimizing for time.
    303 		 */
    304 		request = nsize;
    305 		if (fs->fs_minfree < 5 ||
    306 		    fs->fs_cstotal.cs_nffree >
    307 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    308 			break;
    309 
    310 		if (ffs_log_changeopt) {
    311 			log(LOG_NOTICE,
    312 				"%s: optimization changed from SPACE to TIME\n",
    313 				fs->fs_fsmnt);
    314 		}
    315 
    316 		fs->fs_optim = FS_OPTTIME;
    317 		break;
    318 	case FS_OPTTIME:
    319 		/*
    320 		 * At this point we have discovered a file that is trying to
    321 		 * grow a small fragment to a larger fragment. To save time,
    322 		 * we allocate a full sized block, then free the unused portion.
    323 		 * If the file continues to grow, the `ffs_fragextend' call
    324 		 * above will be able to grow it in place without further
    325 		 * copying. If aberrant programs cause disk fragmentation to
    326 		 * grow within 2% of the free reserve, we choose to begin
    327 		 * optimizing for space.
    328 		 */
    329 		request = fs->fs_bsize;
    330 		if (fs->fs_cstotal.cs_nffree <
    331 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    332 			break;
    333 
    334 		if (ffs_log_changeopt) {
    335 			log(LOG_NOTICE,
    336 				"%s: optimization changed from TIME to SPACE\n",
    337 				fs->fs_fsmnt);
    338 		}
    339 
    340 		fs->fs_optim = FS_OPTSPACE;
    341 		break;
    342 	default:
    343 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    344 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    345 		panic("ffs_realloccg: bad optim");
    346 		/* NOTREACHED */
    347 	}
    348 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    349 	if (bno > 0) {
    350 		if (!DOINGSOFTDEP(ITOV(ip)))
    351 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    352 			    ip->i_number);
    353 		if (nsize < request)
    354 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    355 			    (long)(request - nsize), ip->i_number);
    356 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    357 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    358 		if (bpp != NULL) {
    359 			bp->b_blkno = fsbtodb(fs, bno);
    360 			allocbuf(bp, nsize, 1);
    361 			bp->b_flags |= B_DONE;
    362 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    363 			*bpp = bp;
    364 		}
    365 		if (blknop != NULL) {
    366 			*blknop = bno;
    367 		}
    368 		return (0);
    369 	}
    370 #ifdef QUOTA
    371 	/*
    372 	 * Restore user's disk quota because allocation failed.
    373 	 */
    374 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    375 #endif
    376 	if (bpp != NULL) {
    377 		brelse(bp);
    378 	}
    379 
    380 nospace:
    381 	/*
    382 	 * no space available
    383 	 */
    384 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    385 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    386 	return (ENOSPC);
    387 }
    388 
    389 #if 0
    390 /*
    391  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    392  *
    393  * The vnode and an array of buffer pointers for a range of sequential
    394  * logical blocks to be made contiguous is given. The allocator attempts
    395  * to find a range of sequential blocks starting as close as possible
    396  * from the end of the allocation for the logical block immediately
    397  * preceding the current range. If successful, the physical block numbers
    398  * in the buffer pointers and in the inode are changed to reflect the new
    399  * allocation. If unsuccessful, the allocation is left unchanged. The
    400  * success in doing the reallocation is returned. Note that the error
    401  * return is not reflected back to the user. Rather the previous block
    402  * allocation will be used.
    403 
    404  */
    405 #ifdef XXXUBC
    406 #ifdef DEBUG
    407 #include <sys/sysctl.h>
    408 int prtrealloc = 0;
    409 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    410 #endif
    411 #endif
    412 
    413 /*
    414  * NOTE: when re-enabling this, it must be updated for UFS2.
    415  */
    416 
    417 /*
    418  * XXX from buf.h; preserved just in case this code is restored to life.
    419  *
    420  * This structure describes a clustered I/O.  It is stored in the b_saveaddr
    421  * field of the buffer on which I/O is done.  At I/O completion, cluster
    422  * callback uses the structure to parcel I/O's to individual buffers, and
    423  * then free's this structure.
    424  */
    425 struct cluster_save {
    426 	long	bs_bcount;		/* Saved b_bcount. */
    427 	long	bs_bufsize;		/* Saved b_bufsize. */
    428 	void	*bs_saveaddr;		/* Saved b_addr. */
    429 	int	bs_nchildren;		/* Number of associated buffers. */
    430 	struct buf **bs_children;	/* List of associated buffers. */
    431 };
    432 
    433 int doasyncfree = 1;
    434 
    435 int
    436 ffs_reallocblks(void *v)
    437 {
    438 #ifdef XXXUBC
    439 	struct vop_reallocblks_args /* {
    440 		struct vnode *a_vp;
    441 		struct cluster_save *a_buflist;
    442 	} */ *ap = v;
    443 	struct fs *fs;
    444 	struct inode *ip;
    445 	struct vnode *vp;
    446 	struct buf *sbp, *ebp;
    447 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    448 	struct cluster_save *buflist;
    449 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    450 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    451 	int i, len, start_lvl, end_lvl, pref, ssize;
    452 #endif /* XXXUBC */
    453 
    454 	/* XXXUBC don't reallocblks for now */
    455 	return ENOSPC;
    456 
    457 #ifdef XXXUBC
    458 	vp = ap->a_vp;
    459 	ip = VTOI(vp);
    460 	fs = ip->i_fs;
    461 	if (fs->fs_contigsumsize <= 0)
    462 		return (ENOSPC);
    463 	buflist = ap->a_buflist;
    464 	len = buflist->bs_nchildren;
    465 	start_lbn = buflist->bs_children[0]->b_lblkno;
    466 	end_lbn = start_lbn + len - 1;
    467 #ifdef DIAGNOSTIC
    468 	for (i = 0; i < len; i++)
    469 		if (!ffs_checkblk(ip,
    470 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    471 			panic("ffs_reallocblks: unallocated block 1");
    472 	for (i = 1; i < len; i++)
    473 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    474 			panic("ffs_reallocblks: non-logical cluster");
    475 	blkno = buflist->bs_children[0]->b_blkno;
    476 	ssize = fsbtodb(fs, fs->fs_frag);
    477 	for (i = 1; i < len - 1; i++)
    478 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    479 			panic("ffs_reallocblks: non-physical cluster %d", i);
    480 #endif
    481 	/*
    482 	 * If the latest allocation is in a new cylinder group, assume that
    483 	 * the filesystem has decided to move and do not force it back to
    484 	 * the previous cylinder group.
    485 	 */
    486 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    487 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    488 		return (ENOSPC);
    489 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    490 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    491 		return (ENOSPC);
    492 	/*
    493 	 * Get the starting offset and block map for the first block.
    494 	 */
    495 	if (start_lvl == 0) {
    496 		sbap = &ip->i_ffs1_db[0];
    497 		soff = start_lbn;
    498 	} else {
    499 		idp = &start_ap[start_lvl - 1];
    500 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    501 			brelse(sbp);
    502 			return (ENOSPC);
    503 		}
    504 		sbap = (int32_t *)sbp->b_data;
    505 		soff = idp->in_off;
    506 	}
    507 	/*
    508 	 * Find the preferred location for the cluster.
    509 	 */
    510 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    511 	/*
    512 	 * If the block range spans two block maps, get the second map.
    513 	 */
    514 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    515 		ssize = len;
    516 	} else {
    517 #ifdef DIAGNOSTIC
    518 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    519 			panic("ffs_reallocblk: start == end");
    520 #endif
    521 		ssize = len - (idp->in_off + 1);
    522 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    523 			goto fail;
    524 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    525 	}
    526 	/*
    527 	 * Search the block map looking for an allocation of the desired size.
    528 	 */
    529 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    530 	    len, ffs_clusteralloc)) == 0)
    531 		goto fail;
    532 	/*
    533 	 * We have found a new contiguous block.
    534 	 *
    535 	 * First we have to replace the old block pointers with the new
    536 	 * block pointers in the inode and indirect blocks associated
    537 	 * with the file.
    538 	 */
    539 #ifdef DEBUG
    540 	if (prtrealloc)
    541 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    542 		    start_lbn, end_lbn);
    543 #endif
    544 	blkno = newblk;
    545 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    546 		daddr_t ba;
    547 
    548 		if (i == ssize) {
    549 			bap = ebap;
    550 			soff = -i;
    551 		}
    552 		/* XXX ondisk32 */
    553 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    554 #ifdef DIAGNOSTIC
    555 		if (!ffs_checkblk(ip,
    556 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    557 			panic("ffs_reallocblks: unallocated block 2");
    558 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    559 			panic("ffs_reallocblks: alloc mismatch");
    560 #endif
    561 #ifdef DEBUG
    562 		if (prtrealloc)
    563 			printf(" %d,", ba);
    564 #endif
    565  		if (DOINGSOFTDEP(vp)) {
    566  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    567  				softdep_setup_allocdirect(ip, start_lbn + i,
    568  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    569  				    buflist->bs_children[i]);
    570  			else
    571  				softdep_setup_allocindir_page(ip, start_lbn + i,
    572  				    i < ssize ? sbp : ebp, soff + i, blkno,
    573  				    ba, buflist->bs_children[i]);
    574  		}
    575 		/* XXX ondisk32 */
    576 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    577 	}
    578 	/*
    579 	 * Next we must write out the modified inode and indirect blocks.
    580 	 * For strict correctness, the writes should be synchronous since
    581 	 * the old block values may have been written to disk. In practise
    582 	 * they are almost never written, but if we are concerned about
    583 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    584 	 *
    585 	 * The test on `doasyncfree' should be changed to test a flag
    586 	 * that shows whether the associated buffers and inodes have
    587 	 * been written. The flag should be set when the cluster is
    588 	 * started and cleared whenever the buffer or inode is flushed.
    589 	 * We can then check below to see if it is set, and do the
    590 	 * synchronous write only when it has been cleared.
    591 	 */
    592 	if (sbap != &ip->i_ffs1_db[0]) {
    593 		if (doasyncfree)
    594 			bdwrite(sbp);
    595 		else
    596 			bwrite(sbp);
    597 	} else {
    598 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    599 		if (!doasyncfree)
    600 			ffs_update(vp, NULL, NULL, 1);
    601 	}
    602 	if (ssize < len) {
    603 		if (doasyncfree)
    604 			bdwrite(ebp);
    605 		else
    606 			bwrite(ebp);
    607 	}
    608 	/*
    609 	 * Last, free the old blocks and assign the new blocks to the buffers.
    610 	 */
    611 #ifdef DEBUG
    612 	if (prtrealloc)
    613 		printf("\n\tnew:");
    614 #endif
    615 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    616 		if (!DOINGSOFTDEP(vp))
    617 			ffs_blkfree(fs, ip->i_devvp,
    618 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    619 			    fs->fs_bsize, ip->i_number);
    620 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    621 #ifdef DEBUG
    622 		if (!ffs_checkblk(ip,
    623 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    624 			panic("ffs_reallocblks: unallocated block 3");
    625 		if (prtrealloc)
    626 			printf(" %d,", blkno);
    627 #endif
    628 	}
    629 #ifdef DEBUG
    630 	if (prtrealloc) {
    631 		prtrealloc--;
    632 		printf("\n");
    633 	}
    634 #endif
    635 	return (0);
    636 
    637 fail:
    638 	if (ssize < len)
    639 		brelse(ebp);
    640 	if (sbap != &ip->i_ffs1_db[0])
    641 		brelse(sbp);
    642 	return (ENOSPC);
    643 #endif /* XXXUBC */
    644 }
    645 #endif /* 0 */
    646 
    647 /*
    648  * Allocate an inode in the file system.
    649  *
    650  * If allocating a directory, use ffs_dirpref to select the inode.
    651  * If allocating in a directory, the following hierarchy is followed:
    652  *   1) allocate the preferred inode.
    653  *   2) allocate an inode in the same cylinder group.
    654  *   3) quadradically rehash into other cylinder groups, until an
    655  *      available inode is located.
    656  * If no inode preference is given the following hierarchy is used
    657  * to allocate an inode:
    658  *   1) allocate an inode in cylinder group 0.
    659  *   2) quadradically rehash into other cylinder groups, until an
    660  *      available inode is located.
    661  */
    662 int
    663 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    664     struct vnode **vpp)
    665 {
    666 	struct inode *pip;
    667 	struct fs *fs;
    668 	struct inode *ip;
    669 	struct timespec ts;
    670 	ino_t ino, ipref;
    671 	int cg, error;
    672 
    673 	*vpp = NULL;
    674 	pip = VTOI(pvp);
    675 	fs = pip->i_fs;
    676 	if (fs->fs_cstotal.cs_nifree == 0)
    677 		goto noinodes;
    678 
    679 	if ((mode & IFMT) == IFDIR)
    680 		ipref = ffs_dirpref(pip);
    681 	else
    682 		ipref = pip->i_number;
    683 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    684 		ipref = 0;
    685 	cg = ino_to_cg(fs, ipref);
    686 	/*
    687 	 * Track number of dirs created one after another
    688 	 * in a same cg without intervening by files.
    689 	 */
    690 	if ((mode & IFMT) == IFDIR) {
    691 		if (fs->fs_contigdirs[cg] < 255)
    692 			fs->fs_contigdirs[cg]++;
    693 	} else {
    694 		if (fs->fs_contigdirs[cg] > 0)
    695 			fs->fs_contigdirs[cg]--;
    696 	}
    697 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    698 	if (ino == 0)
    699 		goto noinodes;
    700 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    701 	if (error) {
    702 		ffs_vfree(pvp, ino, mode);
    703 		return (error);
    704 	}
    705 	KASSERT((*vpp)->v_type == VNON);
    706 	ip = VTOI(*vpp);
    707 	if (ip->i_mode) {
    708 #if 0
    709 		printf("mode = 0%o, inum = %d, fs = %s\n",
    710 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    711 #else
    712 		printf("dmode %x mode %x dgen %x gen %x\n",
    713 		    DIP(ip, mode), ip->i_mode,
    714 		    DIP(ip, gen), ip->i_gen);
    715 		printf("size %llx blocks %llx\n",
    716 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    717 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    718 		    (unsigned long long)ipref);
    719 #if 0
    720 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    721 		    (int)fs->fs_bsize, NOCRED, &bp);
    722 #endif
    723 
    724 #endif
    725 		panic("ffs_valloc: dup alloc");
    726 	}
    727 	if (DIP(ip, blocks)) {				/* XXX */
    728 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    729 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    730 		DIP_ASSIGN(ip, blocks, 0);
    731 	}
    732 	ip->i_flag &= ~IN_SPACECOUNTED;
    733 	ip->i_flags = 0;
    734 	DIP_ASSIGN(ip, flags, 0);
    735 	/*
    736 	 * Set up a new generation number for this inode.
    737 	 */
    738 	ip->i_gen++;
    739 	DIP_ASSIGN(ip, gen, ip->i_gen);
    740 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    741 		vfs_timestamp(&ts);
    742 		ip->i_ffs2_birthtime = ts.tv_sec;
    743 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    744 	}
    745 	return (0);
    746 noinodes:
    747 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    748 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    749 	return (ENOSPC);
    750 }
    751 
    752 /*
    753  * Find a cylinder group in which to place a directory.
    754  *
    755  * The policy implemented by this algorithm is to allocate a
    756  * directory inode in the same cylinder group as its parent
    757  * directory, but also to reserve space for its files inodes
    758  * and data. Restrict the number of directories which may be
    759  * allocated one after another in the same cylinder group
    760  * without intervening allocation of files.
    761  *
    762  * If we allocate a first level directory then force allocation
    763  * in another cylinder group.
    764  */
    765 static ino_t
    766 ffs_dirpref(struct inode *pip)
    767 {
    768 	register struct fs *fs;
    769 	int cg, prefcg;
    770 	int64_t dirsize, cgsize, curdsz;
    771 	int avgifree, avgbfree, avgndir;
    772 	int minifree, minbfree, maxndir;
    773 	int mincg, minndir;
    774 	int maxcontigdirs;
    775 
    776 	fs = pip->i_fs;
    777 
    778 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    779 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    780 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    781 
    782 	/*
    783 	 * Force allocation in another cg if creating a first level dir.
    784 	 */
    785 	if (ITOV(pip)->v_flag & VROOT) {
    786 		prefcg = random() % fs->fs_ncg;
    787 		mincg = prefcg;
    788 		minndir = fs->fs_ipg;
    789 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    790 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    791 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    792 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    793 				mincg = cg;
    794 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    795 			}
    796 		for (cg = 0; cg < prefcg; cg++)
    797 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    798 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    799 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    800 				mincg = cg;
    801 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    802 			}
    803 		return ((ino_t)(fs->fs_ipg * mincg));
    804 	}
    805 
    806 	/*
    807 	 * Count various limits which used for
    808 	 * optimal allocation of a directory inode.
    809 	 */
    810 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    811 	minifree = avgifree - fs->fs_ipg / 4;
    812 	if (minifree < 0)
    813 		minifree = 0;
    814 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    815 	if (minbfree < 0)
    816 		minbfree = 0;
    817 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    818 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    819 	if (avgndir != 0) {
    820 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    821 		if (dirsize < curdsz)
    822 			dirsize = curdsz;
    823 	}
    824 	if (cgsize < dirsize * 255)
    825 		maxcontigdirs = cgsize / dirsize;
    826 	else
    827 		maxcontigdirs = 255;
    828 	if (fs->fs_avgfpdir > 0)
    829 		maxcontigdirs = min(maxcontigdirs,
    830 				    fs->fs_ipg / fs->fs_avgfpdir);
    831 	if (maxcontigdirs == 0)
    832 		maxcontigdirs = 1;
    833 
    834 	/*
    835 	 * Limit number of dirs in one cg and reserve space for
    836 	 * regular files, but only if we have no deficit in
    837 	 * inodes or space.
    838 	 */
    839 	prefcg = ino_to_cg(fs, pip->i_number);
    840 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    841 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    842 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    843 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    844 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    845 				return ((ino_t)(fs->fs_ipg * cg));
    846 		}
    847 	for (cg = 0; cg < prefcg; cg++)
    848 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    849 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    850 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    851 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    852 				return ((ino_t)(fs->fs_ipg * cg));
    853 		}
    854 	/*
    855 	 * This is a backstop when we are deficient in space.
    856 	 */
    857 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    858 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    859 			return ((ino_t)(fs->fs_ipg * cg));
    860 	for (cg = 0; cg < prefcg; cg++)
    861 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    862 			break;
    863 	return ((ino_t)(fs->fs_ipg * cg));
    864 }
    865 
    866 /*
    867  * Select the desired position for the next block in a file.  The file is
    868  * logically divided into sections. The first section is composed of the
    869  * direct blocks. Each additional section contains fs_maxbpg blocks.
    870  *
    871  * If no blocks have been allocated in the first section, the policy is to
    872  * request a block in the same cylinder group as the inode that describes
    873  * the file. If no blocks have been allocated in any other section, the
    874  * policy is to place the section in a cylinder group with a greater than
    875  * average number of free blocks.  An appropriate cylinder group is found
    876  * by using a rotor that sweeps the cylinder groups. When a new group of
    877  * blocks is needed, the sweep begins in the cylinder group following the
    878  * cylinder group from which the previous allocation was made. The sweep
    879  * continues until a cylinder group with greater than the average number
    880  * of free blocks is found. If the allocation is for the first block in an
    881  * indirect block, the information on the previous allocation is unavailable;
    882  * here a best guess is made based upon the logical block number being
    883  * allocated.
    884  *
    885  * If a section is already partially allocated, the policy is to
    886  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    887  * contiguous blocks and the beginning of the next is laid out
    888  * contigously if possible.
    889  */
    890 daddr_t
    891 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    892     int32_t *bap /* XXX ondisk32 */)
    893 {
    894 	struct fs *fs;
    895 	int cg;
    896 	int avgbfree, startcg;
    897 
    898 	fs = ip->i_fs;
    899 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    900 		if (lbn < NDADDR + NINDIR(fs)) {
    901 			cg = ino_to_cg(fs, ip->i_number);
    902 			return (fs->fs_fpg * cg + fs->fs_frag);
    903 		}
    904 		/*
    905 		 * Find a cylinder with greater than average number of
    906 		 * unused data blocks.
    907 		 */
    908 		if (indx == 0 || bap[indx - 1] == 0)
    909 			startcg =
    910 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    911 		else
    912 			startcg = dtog(fs,
    913 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    914 		startcg %= fs->fs_ncg;
    915 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    916 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    917 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    918 				return (fs->fs_fpg * cg + fs->fs_frag);
    919 			}
    920 		for (cg = 0; cg < startcg; cg++)
    921 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    922 				return (fs->fs_fpg * cg + fs->fs_frag);
    923 			}
    924 		return (0);
    925 	}
    926 	/*
    927 	 * We just always try to lay things out contiguously.
    928 	 */
    929 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    930 }
    931 
    932 daddr_t
    933 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    934 {
    935 	struct fs *fs;
    936 	int cg;
    937 	int avgbfree, startcg;
    938 
    939 	fs = ip->i_fs;
    940 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    941 		if (lbn < NDADDR + NINDIR(fs)) {
    942 			cg = ino_to_cg(fs, ip->i_number);
    943 			return (fs->fs_fpg * cg + fs->fs_frag);
    944 		}
    945 		/*
    946 		 * Find a cylinder with greater than average number of
    947 		 * unused data blocks.
    948 		 */
    949 		if (indx == 0 || bap[indx - 1] == 0)
    950 			startcg =
    951 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    952 		else
    953 			startcg = dtog(fs,
    954 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    955 		startcg %= fs->fs_ncg;
    956 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    957 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    958 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    959 				return (fs->fs_fpg * cg + fs->fs_frag);
    960 			}
    961 		for (cg = 0; cg < startcg; cg++)
    962 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    963 				return (fs->fs_fpg * cg + fs->fs_frag);
    964 			}
    965 		return (0);
    966 	}
    967 	/*
    968 	 * We just always try to lay things out contiguously.
    969 	 */
    970 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    971 }
    972 
    973 
    974 /*
    975  * Implement the cylinder overflow algorithm.
    976  *
    977  * The policy implemented by this algorithm is:
    978  *   1) allocate the block in its requested cylinder group.
    979  *   2) quadradically rehash on the cylinder group number.
    980  *   3) brute force search for a free block.
    981  */
    982 /*VARARGS5*/
    983 static daddr_t
    984 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    985     int size /* size for data blocks, mode for inodes */,
    986     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    987 {
    988 	struct fs *fs;
    989 	daddr_t result;
    990 	int i, icg = cg;
    991 
    992 	fs = ip->i_fs;
    993 	/*
    994 	 * 1: preferred cylinder group
    995 	 */
    996 	result = (*allocator)(ip, cg, pref, size);
    997 	if (result)
    998 		return (result);
    999 	/*
   1000 	 * 2: quadratic rehash
   1001 	 */
   1002 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1003 		cg += i;
   1004 		if (cg >= fs->fs_ncg)
   1005 			cg -= fs->fs_ncg;
   1006 		result = (*allocator)(ip, cg, 0, size);
   1007 		if (result)
   1008 			return (result);
   1009 	}
   1010 	/*
   1011 	 * 3: brute force search
   1012 	 * Note that we start at i == 2, since 0 was checked initially,
   1013 	 * and 1 is always checked in the quadratic rehash.
   1014 	 */
   1015 	cg = (icg + 2) % fs->fs_ncg;
   1016 	for (i = 2; i < fs->fs_ncg; i++) {
   1017 		result = (*allocator)(ip, cg, 0, size);
   1018 		if (result)
   1019 			return (result);
   1020 		cg++;
   1021 		if (cg == fs->fs_ncg)
   1022 			cg = 0;
   1023 	}
   1024 	return (0);
   1025 }
   1026 
   1027 /*
   1028  * Determine whether a fragment can be extended.
   1029  *
   1030  * Check to see if the necessary fragments are available, and
   1031  * if they are, allocate them.
   1032  */
   1033 static daddr_t
   1034 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1035 {
   1036 	struct fs *fs;
   1037 	struct cg *cgp;
   1038 	struct buf *bp;
   1039 	daddr_t bno;
   1040 	int frags, bbase;
   1041 	int i, error;
   1042 	u_int8_t *blksfree;
   1043 
   1044 	fs = ip->i_fs;
   1045 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1046 		return (0);
   1047 	frags = numfrags(fs, nsize);
   1048 	bbase = fragnum(fs, bprev);
   1049 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1050 		/* cannot extend across a block boundary */
   1051 		return (0);
   1052 	}
   1053 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1054 		(int)fs->fs_cgsize, NOCRED, &bp);
   1055 	if (error) {
   1056 		brelse(bp);
   1057 		return (0);
   1058 	}
   1059 	cgp = (struct cg *)bp->b_data;
   1060 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1061 		brelse(bp);
   1062 		return (0);
   1063 	}
   1064 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1065 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1066 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1067 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1068 	bno = dtogd(fs, bprev);
   1069 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1070 	for (i = numfrags(fs, osize); i < frags; i++)
   1071 		if (isclr(blksfree, bno + i)) {
   1072 			brelse(bp);
   1073 			return (0);
   1074 		}
   1075 	/*
   1076 	 * the current fragment can be extended
   1077 	 * deduct the count on fragment being extended into
   1078 	 * increase the count on the remaining fragment (if any)
   1079 	 * allocate the extended piece
   1080 	 */
   1081 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1082 		if (isclr(blksfree, bno + i))
   1083 			break;
   1084 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1085 	if (i != frags)
   1086 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1087 	for (i = numfrags(fs, osize); i < frags; i++) {
   1088 		clrbit(blksfree, bno + i);
   1089 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1090 		fs->fs_cstotal.cs_nffree--;
   1091 		fs->fs_cs(fs, cg).cs_nffree--;
   1092 	}
   1093 	fs->fs_fmod = 1;
   1094 	if (DOINGSOFTDEP(ITOV(ip)))
   1095 		softdep_setup_blkmapdep(bp, fs, bprev);
   1096 	ACTIVECG_CLR(fs, cg);
   1097 	bdwrite(bp);
   1098 	return (bprev);
   1099 }
   1100 
   1101 /*
   1102  * Determine whether a block can be allocated.
   1103  *
   1104  * Check to see if a block of the appropriate size is available,
   1105  * and if it is, allocate it.
   1106  */
   1107 static daddr_t
   1108 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1109 {
   1110 	struct fs *fs = ip->i_fs;
   1111 	struct cg *cgp;
   1112 	struct buf *bp;
   1113 	int32_t bno;
   1114 	daddr_t blkno;
   1115 	int error, frags, allocsiz, i;
   1116 	u_int8_t *blksfree;
   1117 #ifdef FFS_EI
   1118 	const int needswap = UFS_FSNEEDSWAP(fs);
   1119 #endif
   1120 
   1121 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1122 		return (0);
   1123 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1124 		(int)fs->fs_cgsize, NOCRED, &bp);
   1125 	if (error) {
   1126 		brelse(bp);
   1127 		return (0);
   1128 	}
   1129 	cgp = (struct cg *)bp->b_data;
   1130 	if (!cg_chkmagic(cgp, needswap) ||
   1131 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1132 		brelse(bp);
   1133 		return (0);
   1134 	}
   1135 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1136 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1137 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1138 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1139 	if (size == fs->fs_bsize) {
   1140 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1141 		ACTIVECG_CLR(fs, cg);
   1142 		bdwrite(bp);
   1143 		return (blkno);
   1144 	}
   1145 	/*
   1146 	 * check to see if any fragments are already available
   1147 	 * allocsiz is the size which will be allocated, hacking
   1148 	 * it down to a smaller size if necessary
   1149 	 */
   1150 	blksfree = cg_blksfree(cgp, needswap);
   1151 	frags = numfrags(fs, size);
   1152 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1153 		if (cgp->cg_frsum[allocsiz] != 0)
   1154 			break;
   1155 	if (allocsiz == fs->fs_frag) {
   1156 		/*
   1157 		 * no fragments were available, so a block will be
   1158 		 * allocated, and hacked up
   1159 		 */
   1160 		if (cgp->cg_cs.cs_nbfree == 0) {
   1161 			brelse(bp);
   1162 			return (0);
   1163 		}
   1164 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1165 		bno = dtogd(fs, blkno);
   1166 		for (i = frags; i < fs->fs_frag; i++)
   1167 			setbit(blksfree, bno + i);
   1168 		i = fs->fs_frag - frags;
   1169 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1170 		fs->fs_cstotal.cs_nffree += i;
   1171 		fs->fs_cs(fs, cg).cs_nffree += i;
   1172 		fs->fs_fmod = 1;
   1173 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1174 		ACTIVECG_CLR(fs, cg);
   1175 		bdwrite(bp);
   1176 		return (blkno);
   1177 	}
   1178 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1179 #if 0
   1180 	/*
   1181 	 * XXX fvdl mapsearch will panic, and never return -1
   1182 	 *          also: returning NULL as daddr_t ?
   1183 	 */
   1184 	if (bno < 0) {
   1185 		brelse(bp);
   1186 		return (0);
   1187 	}
   1188 #endif
   1189 	for (i = 0; i < frags; i++)
   1190 		clrbit(blksfree, bno + i);
   1191 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1192 	fs->fs_cstotal.cs_nffree -= frags;
   1193 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1194 	fs->fs_fmod = 1;
   1195 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1196 	if (frags != allocsiz)
   1197 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1198 	blkno = cg * fs->fs_fpg + bno;
   1199 	if (DOINGSOFTDEP(ITOV(ip)))
   1200 		softdep_setup_blkmapdep(bp, fs, blkno);
   1201 	ACTIVECG_CLR(fs, cg);
   1202 	bdwrite(bp);
   1203 	return blkno;
   1204 }
   1205 
   1206 /*
   1207  * Allocate a block in a cylinder group.
   1208  *
   1209  * This algorithm implements the following policy:
   1210  *   1) allocate the requested block.
   1211  *   2) allocate a rotationally optimal block in the same cylinder.
   1212  *   3) allocate the next available block on the block rotor for the
   1213  *      specified cylinder group.
   1214  * Note that this routine only allocates fs_bsize blocks; these
   1215  * blocks may be fragmented by the routine that allocates them.
   1216  */
   1217 static daddr_t
   1218 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1219 {
   1220 	struct fs *fs = ip->i_fs;
   1221 	struct cg *cgp;
   1222 	daddr_t blkno;
   1223 	int32_t bno;
   1224 	u_int8_t *blksfree;
   1225 #ifdef FFS_EI
   1226 	const int needswap = UFS_FSNEEDSWAP(fs);
   1227 #endif
   1228 
   1229 	cgp = (struct cg *)bp->b_data;
   1230 	blksfree = cg_blksfree(cgp, needswap);
   1231 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1232 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1233 	} else {
   1234 		bpref = blknum(fs, bpref);
   1235 		bno = dtogd(fs, bpref);
   1236 		/*
   1237 		 * if the requested block is available, use it
   1238 		 */
   1239 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1240 			goto gotit;
   1241 	}
   1242 	/*
   1243 	 * Take the next available block in this cylinder group.
   1244 	 */
   1245 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1246 	if (bno < 0)
   1247 		return (0);
   1248 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1249 gotit:
   1250 	blkno = fragstoblks(fs, bno);
   1251 	ffs_clrblock(fs, blksfree, blkno);
   1252 	ffs_clusteracct(fs, cgp, blkno, -1);
   1253 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1254 	fs->fs_cstotal.cs_nbfree--;
   1255 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1256 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1257 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1258 		int cylno;
   1259 		cylno = old_cbtocylno(fs, bno);
   1260 		KASSERT(cylno >= 0);
   1261 		KASSERT(cylno < fs->fs_old_ncyl);
   1262 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1263 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1264 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1265 		    needswap);
   1266 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1267 	}
   1268 	fs->fs_fmod = 1;
   1269 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1270 	if (DOINGSOFTDEP(ITOV(ip)))
   1271 		softdep_setup_blkmapdep(bp, fs, blkno);
   1272 	return (blkno);
   1273 }
   1274 
   1275 #ifdef XXXUBC
   1276 /*
   1277  * Determine whether a cluster can be allocated.
   1278  *
   1279  * We do not currently check for optimal rotational layout if there
   1280  * are multiple choices in the same cylinder group. Instead we just
   1281  * take the first one that we find following bpref.
   1282  */
   1283 
   1284 /*
   1285  * This function must be fixed for UFS2 if re-enabled.
   1286  */
   1287 static daddr_t
   1288 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1289 {
   1290 	struct fs *fs;
   1291 	struct cg *cgp;
   1292 	struct buf *bp;
   1293 	int i, got, run, bno, bit, map;
   1294 	u_char *mapp;
   1295 	int32_t *lp;
   1296 
   1297 	fs = ip->i_fs;
   1298 	if (fs->fs_maxcluster[cg] < len)
   1299 		return (0);
   1300 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1301 	    NOCRED, &bp))
   1302 		goto fail;
   1303 	cgp = (struct cg *)bp->b_data;
   1304 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1305 		goto fail;
   1306 	/*
   1307 	 * Check to see if a cluster of the needed size (or bigger) is
   1308 	 * available in this cylinder group.
   1309 	 */
   1310 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1311 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1312 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1313 			break;
   1314 	if (i > fs->fs_contigsumsize) {
   1315 		/*
   1316 		 * This is the first time looking for a cluster in this
   1317 		 * cylinder group. Update the cluster summary information
   1318 		 * to reflect the true maximum sized cluster so that
   1319 		 * future cluster allocation requests can avoid reading
   1320 		 * the cylinder group map only to find no clusters.
   1321 		 */
   1322 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1323 		for (i = len - 1; i > 0; i--)
   1324 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1325 				break;
   1326 		fs->fs_maxcluster[cg] = i;
   1327 		goto fail;
   1328 	}
   1329 	/*
   1330 	 * Search the cluster map to find a big enough cluster.
   1331 	 * We take the first one that we find, even if it is larger
   1332 	 * than we need as we prefer to get one close to the previous
   1333 	 * block allocation. We do not search before the current
   1334 	 * preference point as we do not want to allocate a block
   1335 	 * that is allocated before the previous one (as we will
   1336 	 * then have to wait for another pass of the elevator
   1337 	 * algorithm before it will be read). We prefer to fail and
   1338 	 * be recalled to try an allocation in the next cylinder group.
   1339 	 */
   1340 	if (dtog(fs, bpref) != cg)
   1341 		bpref = 0;
   1342 	else
   1343 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1344 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1345 	map = *mapp++;
   1346 	bit = 1 << (bpref % NBBY);
   1347 	for (run = 0, got = bpref;
   1348 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1349 		if ((map & bit) == 0) {
   1350 			run = 0;
   1351 		} else {
   1352 			run++;
   1353 			if (run == len)
   1354 				break;
   1355 		}
   1356 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1357 			bit <<= 1;
   1358 		} else {
   1359 			map = *mapp++;
   1360 			bit = 1;
   1361 		}
   1362 	}
   1363 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1364 		goto fail;
   1365 	/*
   1366 	 * Allocate the cluster that we have found.
   1367 	 */
   1368 #ifdef DIAGNOSTIC
   1369 	for (i = 1; i <= len; i++)
   1370 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1371 		    got - run + i))
   1372 			panic("ffs_clusteralloc: map mismatch");
   1373 #endif
   1374 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1375 	if (dtog(fs, bno) != cg)
   1376 		panic("ffs_clusteralloc: allocated out of group");
   1377 	len = blkstofrags(fs, len);
   1378 	for (i = 0; i < len; i += fs->fs_frag)
   1379 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1380 			panic("ffs_clusteralloc: lost block");
   1381 	ACTIVECG_CLR(fs, cg);
   1382 	bdwrite(bp);
   1383 	return (bno);
   1384 
   1385 fail:
   1386 	brelse(bp);
   1387 	return (0);
   1388 }
   1389 #endif /* XXXUBC */
   1390 
   1391 /*
   1392  * Determine whether an inode can be allocated.
   1393  *
   1394  * Check to see if an inode is available, and if it is,
   1395  * allocate it using the following policy:
   1396  *   1) allocate the requested inode.
   1397  *   2) allocate the next available inode after the requested
   1398  *      inode in the specified cylinder group.
   1399  */
   1400 static daddr_t
   1401 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1402 {
   1403 	struct fs *fs = ip->i_fs;
   1404 	struct cg *cgp;
   1405 	struct buf *bp, *ibp;
   1406 	u_int8_t *inosused;
   1407 	int error, start, len, loc, map, i;
   1408 	int32_t initediblk;
   1409 	struct ufs2_dinode *dp2;
   1410 #ifdef FFS_EI
   1411 	const int needswap = UFS_FSNEEDSWAP(fs);
   1412 #endif
   1413 
   1414 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1415 		return (0);
   1416 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1417 		(int)fs->fs_cgsize, NOCRED, &bp);
   1418 	if (error) {
   1419 		brelse(bp);
   1420 		return (0);
   1421 	}
   1422 	cgp = (struct cg *)bp->b_data;
   1423 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1424 		brelse(bp);
   1425 		return (0);
   1426 	}
   1427 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1428 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1429 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1430 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1431 	inosused = cg_inosused(cgp, needswap);
   1432 	if (ipref) {
   1433 		ipref %= fs->fs_ipg;
   1434 		if (isclr(inosused, ipref))
   1435 			goto gotit;
   1436 	}
   1437 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1438 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1439 		NBBY);
   1440 	loc = skpc(0xff, len, &inosused[start]);
   1441 	if (loc == 0) {
   1442 		len = start + 1;
   1443 		start = 0;
   1444 		loc = skpc(0xff, len, &inosused[0]);
   1445 		if (loc == 0) {
   1446 			printf("cg = %d, irotor = %d, fs = %s\n",
   1447 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1448 				fs->fs_fsmnt);
   1449 			panic("ffs_nodealloccg: map corrupted");
   1450 			/* NOTREACHED */
   1451 		}
   1452 	}
   1453 	i = start + len - loc;
   1454 	map = inosused[i];
   1455 	ipref = i * NBBY;
   1456 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1457 		if ((map & i) == 0) {
   1458 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1459 			goto gotit;
   1460 		}
   1461 	}
   1462 	printf("fs = %s\n", fs->fs_fsmnt);
   1463 	panic("ffs_nodealloccg: block not in map");
   1464 	/* NOTREACHED */
   1465 gotit:
   1466 	if (DOINGSOFTDEP(ITOV(ip)))
   1467 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1468 	setbit(inosused, ipref);
   1469 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1470 	fs->fs_cstotal.cs_nifree--;
   1471 	fs->fs_cs(fs, cg).cs_nifree--;
   1472 	fs->fs_fmod = 1;
   1473 	if ((mode & IFMT) == IFDIR) {
   1474 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1475 		fs->fs_cstotal.cs_ndir++;
   1476 		fs->fs_cs(fs, cg).cs_ndir++;
   1477 	}
   1478 	/*
   1479 	 * Check to see if we need to initialize more inodes.
   1480 	 */
   1481 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1482 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1483 	    ipref + INOPB(fs) > initediblk &&
   1484 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1485 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1486 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1487 		    (int)fs->fs_bsize, 0, 0);
   1488 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1489 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1490 		    for (i = 0; i < INOPB(fs); i++) {
   1491 			/*
   1492 			 * Don't bother to swap, it's supposed to be
   1493 			 * random, after all.
   1494 			 */
   1495 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1496 			dp2++;
   1497 		}
   1498 		bawrite(ibp);
   1499 		initediblk += INOPB(fs);
   1500 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1501 	}
   1502 
   1503 	ACTIVECG_CLR(fs, cg);
   1504 	bdwrite(bp);
   1505 	return (cg * fs->fs_ipg + ipref);
   1506 }
   1507 
   1508 /*
   1509  * Free a block or fragment.
   1510  *
   1511  * The specified block or fragment is placed back in the
   1512  * free map. If a fragment is deallocated, a possible
   1513  * block reassembly is checked.
   1514  */
   1515 void
   1516 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1517     ino_t inum)
   1518 {
   1519 	struct cg *cgp;
   1520 	struct buf *bp;
   1521 	struct ufsmount *ump;
   1522 	int32_t fragno, cgbno;
   1523 	daddr_t cgblkno;
   1524 	int i, error, cg, blk, frags, bbase;
   1525 	u_int8_t *blksfree;
   1526 	dev_t dev;
   1527 	const int needswap = UFS_FSNEEDSWAP(fs);
   1528 
   1529 	cg = dtog(fs, bno);
   1530 	if (devvp->v_type != VBLK) {
   1531 		/* devvp is a snapshot */
   1532 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1533 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1534 	} else {
   1535 		dev = devvp->v_rdev;
   1536 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1537 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1538 		if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
   1539 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
   1540 			return;
   1541 	}
   1542 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1543 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1544 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1545 		       "size = %ld, fs = %s\n",
   1546 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1547 		panic("blkfree: bad size");
   1548 	}
   1549 
   1550 	if (bno >= fs->fs_size) {
   1551 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1552 		    (unsigned long long)inum);
   1553 		ffs_fserr(fs, inum, "bad block");
   1554 		return;
   1555 	}
   1556 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1557 	if (error) {
   1558 		brelse(bp);
   1559 		return;
   1560 	}
   1561 	cgp = (struct cg *)bp->b_data;
   1562 	if (!cg_chkmagic(cgp, needswap)) {
   1563 		brelse(bp);
   1564 		return;
   1565 	}
   1566 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1567 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1568 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1569 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1570 	cgbno = dtogd(fs, bno);
   1571 	blksfree = cg_blksfree(cgp, needswap);
   1572 	if (size == fs->fs_bsize) {
   1573 		fragno = fragstoblks(fs, cgbno);
   1574 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1575 			if (devvp->v_type != VBLK) {
   1576 				/* devvp is a snapshot */
   1577 				brelse(bp);
   1578 				return;
   1579 			}
   1580 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1581 			    dev, bno, fs->fs_fsmnt);
   1582 			panic("blkfree: freeing free block");
   1583 		}
   1584 		ffs_setblock(fs, blksfree, fragno);
   1585 		ffs_clusteracct(fs, cgp, fragno, 1);
   1586 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1587 		fs->fs_cstotal.cs_nbfree++;
   1588 		fs->fs_cs(fs, cg).cs_nbfree++;
   1589 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1590 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1591 			i = old_cbtocylno(fs, cgbno);
   1592 			KASSERT(i >= 0);
   1593 			KASSERT(i < fs->fs_old_ncyl);
   1594 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1595 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1596 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1597 			    needswap);
   1598 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1599 		}
   1600 	} else {
   1601 		bbase = cgbno - fragnum(fs, cgbno);
   1602 		/*
   1603 		 * decrement the counts associated with the old frags
   1604 		 */
   1605 		blk = blkmap(fs, blksfree, bbase);
   1606 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1607 		/*
   1608 		 * deallocate the fragment
   1609 		 */
   1610 		frags = numfrags(fs, size);
   1611 		for (i = 0; i < frags; i++) {
   1612 			if (isset(blksfree, cgbno + i)) {
   1613 				printf("dev = 0x%x, block = %" PRId64
   1614 				       ", fs = %s\n",
   1615 				    dev, bno + i, fs->fs_fsmnt);
   1616 				panic("blkfree: freeing free frag");
   1617 			}
   1618 			setbit(blksfree, cgbno + i);
   1619 		}
   1620 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1621 		fs->fs_cstotal.cs_nffree += i;
   1622 		fs->fs_cs(fs, cg).cs_nffree += i;
   1623 		/*
   1624 		 * add back in counts associated with the new frags
   1625 		 */
   1626 		blk = blkmap(fs, blksfree, bbase);
   1627 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1628 		/*
   1629 		 * if a complete block has been reassembled, account for it
   1630 		 */
   1631 		fragno = fragstoblks(fs, bbase);
   1632 		if (ffs_isblock(fs, blksfree, fragno)) {
   1633 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1634 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1635 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1636 			ffs_clusteracct(fs, cgp, fragno, 1);
   1637 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1638 			fs->fs_cstotal.cs_nbfree++;
   1639 			fs->fs_cs(fs, cg).cs_nbfree++;
   1640 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1641 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1642 				i = old_cbtocylno(fs, bbase);
   1643 				KASSERT(i >= 0);
   1644 				KASSERT(i < fs->fs_old_ncyl);
   1645 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1646 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1647 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1648 				    bbase)], 1, needswap);
   1649 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1650 			}
   1651 		}
   1652 	}
   1653 	fs->fs_fmod = 1;
   1654 	ACTIVECG_CLR(fs, cg);
   1655 	bdwrite(bp);
   1656 }
   1657 
   1658 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1659 #ifdef XXXUBC
   1660 /*
   1661  * Verify allocation of a block or fragment. Returns true if block or
   1662  * fragment is allocated, false if it is free.
   1663  */
   1664 static int
   1665 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1666 {
   1667 	struct fs *fs;
   1668 	struct cg *cgp;
   1669 	struct buf *bp;
   1670 	int i, error, frags, free;
   1671 
   1672 	fs = ip->i_fs;
   1673 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1674 		printf("bsize = %d, size = %ld, fs = %s\n",
   1675 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1676 		panic("checkblk: bad size");
   1677 	}
   1678 	if (bno >= fs->fs_size)
   1679 		panic("checkblk: bad block %d", bno);
   1680 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1681 		(int)fs->fs_cgsize, NOCRED, &bp);
   1682 	if (error) {
   1683 		brelse(bp);
   1684 		return 0;
   1685 	}
   1686 	cgp = (struct cg *)bp->b_data;
   1687 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1688 		brelse(bp);
   1689 		return 0;
   1690 	}
   1691 	bno = dtogd(fs, bno);
   1692 	if (size == fs->fs_bsize) {
   1693 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1694 			fragstoblks(fs, bno));
   1695 	} else {
   1696 		frags = numfrags(fs, size);
   1697 		for (free = 0, i = 0; i < frags; i++)
   1698 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1699 				free++;
   1700 		if (free != 0 && free != frags)
   1701 			panic("checkblk: partially free fragment");
   1702 	}
   1703 	brelse(bp);
   1704 	return (!free);
   1705 }
   1706 #endif /* XXXUBC */
   1707 #endif /* DIAGNOSTIC */
   1708 
   1709 /*
   1710  * Free an inode.
   1711  */
   1712 int
   1713 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1714 {
   1715 
   1716 	if (DOINGSOFTDEP(vp)) {
   1717 		softdep_freefile(vp, ino, mode);
   1718 		return (0);
   1719 	}
   1720 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1721 }
   1722 
   1723 /*
   1724  * Do the actual free operation.
   1725  * The specified inode is placed back in the free map.
   1726  */
   1727 int
   1728 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1729 {
   1730 	struct cg *cgp;
   1731 	struct buf *bp;
   1732 	int error, cg;
   1733 	daddr_t cgbno;
   1734 	u_int8_t *inosused;
   1735 	dev_t dev;
   1736 #ifdef FFS_EI
   1737 	const int needswap = UFS_FSNEEDSWAP(fs);
   1738 #endif
   1739 
   1740 	cg = ino_to_cg(fs, ino);
   1741 	if (devvp->v_type != VBLK) {
   1742 		/* devvp is a snapshot */
   1743 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1744 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1745 	} else {
   1746 		dev = devvp->v_rdev;
   1747 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1748 	}
   1749 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1750 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1751 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1752 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1753 	if (error) {
   1754 		brelse(bp);
   1755 		return (error);
   1756 	}
   1757 	cgp = (struct cg *)bp->b_data;
   1758 	if (!cg_chkmagic(cgp, needswap)) {
   1759 		brelse(bp);
   1760 		return (0);
   1761 	}
   1762 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1763 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1764 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1765 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1766 	inosused = cg_inosused(cgp, needswap);
   1767 	ino %= fs->fs_ipg;
   1768 	if (isclr(inosused, ino)) {
   1769 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1770 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1771 		    fs->fs_fsmnt);
   1772 		if (fs->fs_ronly == 0)
   1773 			panic("ifree: freeing free inode");
   1774 	}
   1775 	clrbit(inosused, ino);
   1776 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1777 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1778 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1779 	fs->fs_cstotal.cs_nifree++;
   1780 	fs->fs_cs(fs, cg).cs_nifree++;
   1781 	if ((mode & IFMT) == IFDIR) {
   1782 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1783 		fs->fs_cstotal.cs_ndir--;
   1784 		fs->fs_cs(fs, cg).cs_ndir--;
   1785 	}
   1786 	fs->fs_fmod = 1;
   1787 	ACTIVECG_CLR(fs, cg);
   1788 	bdwrite(bp);
   1789 	return (0);
   1790 }
   1791 
   1792 /*
   1793  * Check to see if a file is free.
   1794  */
   1795 int
   1796 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1797 {
   1798 	struct cg *cgp;
   1799 	struct buf *bp;
   1800 	daddr_t cgbno;
   1801 	int ret, cg;
   1802 	u_int8_t *inosused;
   1803 
   1804 	cg = ino_to_cg(fs, ino);
   1805 	if (devvp->v_type != VBLK) {
   1806 		/* devvp is a snapshot */
   1807 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1808 	} else
   1809 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1810 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1811 		return 1;
   1812 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1813 		brelse(bp);
   1814 		return 1;
   1815 	}
   1816 	cgp = (struct cg *)bp->b_data;
   1817 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1818 		brelse(bp);
   1819 		return 1;
   1820 	}
   1821 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1822 	ino %= fs->fs_ipg;
   1823 	ret = isclr(inosused, ino);
   1824 	brelse(bp);
   1825 	return ret;
   1826 }
   1827 
   1828 /*
   1829  * Find a block of the specified size in the specified cylinder group.
   1830  *
   1831  * It is a panic if a request is made to find a block if none are
   1832  * available.
   1833  */
   1834 static int32_t
   1835 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1836 {
   1837 	int32_t bno;
   1838 	int start, len, loc, i;
   1839 	int blk, field, subfield, pos;
   1840 	int ostart, olen;
   1841 	u_int8_t *blksfree;
   1842 #ifdef FFS_EI
   1843 	const int needswap = UFS_FSNEEDSWAP(fs);
   1844 #endif
   1845 
   1846 	/*
   1847 	 * find the fragment by searching through the free block
   1848 	 * map for an appropriate bit pattern
   1849 	 */
   1850 	if (bpref)
   1851 		start = dtogd(fs, bpref) / NBBY;
   1852 	else
   1853 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1854 	blksfree = cg_blksfree(cgp, needswap);
   1855 	len = howmany(fs->fs_fpg, NBBY) - start;
   1856 	ostart = start;
   1857 	olen = len;
   1858 	loc = scanc((u_int)len,
   1859 		(const u_char *)&blksfree[start],
   1860 		(const u_char *)fragtbl[fs->fs_frag],
   1861 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1862 	if (loc == 0) {
   1863 		len = start + 1;
   1864 		start = 0;
   1865 		loc = scanc((u_int)len,
   1866 			(const u_char *)&blksfree[0],
   1867 			(const u_char *)fragtbl[fs->fs_frag],
   1868 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1869 		if (loc == 0) {
   1870 			printf("start = %d, len = %d, fs = %s\n",
   1871 			    ostart, olen, fs->fs_fsmnt);
   1872 			printf("offset=%d %ld\n",
   1873 				ufs_rw32(cgp->cg_freeoff, needswap),
   1874 				(long)blksfree - (long)cgp);
   1875 			printf("cg %d\n", cgp->cg_cgx);
   1876 			panic("ffs_alloccg: map corrupted");
   1877 			/* NOTREACHED */
   1878 		}
   1879 	}
   1880 	bno = (start + len - loc) * NBBY;
   1881 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1882 	/*
   1883 	 * found the byte in the map
   1884 	 * sift through the bits to find the selected frag
   1885 	 */
   1886 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1887 		blk = blkmap(fs, blksfree, bno);
   1888 		blk <<= 1;
   1889 		field = around[allocsiz];
   1890 		subfield = inside[allocsiz];
   1891 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1892 			if ((blk & field) == subfield)
   1893 				return (bno + pos);
   1894 			field <<= 1;
   1895 			subfield <<= 1;
   1896 		}
   1897 	}
   1898 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1899 	panic("ffs_alloccg: block not in map");
   1900 	/* return (-1); */
   1901 }
   1902 
   1903 /*
   1904  * Update the cluster map because of an allocation or free.
   1905  *
   1906  * Cnt == 1 means free; cnt == -1 means allocating.
   1907  */
   1908 void
   1909 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1910 {
   1911 	int32_t *sump;
   1912 	int32_t *lp;
   1913 	u_char *freemapp, *mapp;
   1914 	int i, start, end, forw, back, map, bit;
   1915 #ifdef FFS_EI
   1916 	const int needswap = UFS_FSNEEDSWAP(fs);
   1917 #endif
   1918 
   1919 	if (fs->fs_contigsumsize <= 0)
   1920 		return;
   1921 	freemapp = cg_clustersfree(cgp, needswap);
   1922 	sump = cg_clustersum(cgp, needswap);
   1923 	/*
   1924 	 * Allocate or clear the actual block.
   1925 	 */
   1926 	if (cnt > 0)
   1927 		setbit(freemapp, blkno);
   1928 	else
   1929 		clrbit(freemapp, blkno);
   1930 	/*
   1931 	 * Find the size of the cluster going forward.
   1932 	 */
   1933 	start = blkno + 1;
   1934 	end = start + fs->fs_contigsumsize;
   1935 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1936 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1937 	mapp = &freemapp[start / NBBY];
   1938 	map = *mapp++;
   1939 	bit = 1 << (start % NBBY);
   1940 	for (i = start; i < end; i++) {
   1941 		if ((map & bit) == 0)
   1942 			break;
   1943 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1944 			bit <<= 1;
   1945 		} else {
   1946 			map = *mapp++;
   1947 			bit = 1;
   1948 		}
   1949 	}
   1950 	forw = i - start;
   1951 	/*
   1952 	 * Find the size of the cluster going backward.
   1953 	 */
   1954 	start = blkno - 1;
   1955 	end = start - fs->fs_contigsumsize;
   1956 	if (end < 0)
   1957 		end = -1;
   1958 	mapp = &freemapp[start / NBBY];
   1959 	map = *mapp--;
   1960 	bit = 1 << (start % NBBY);
   1961 	for (i = start; i > end; i--) {
   1962 		if ((map & bit) == 0)
   1963 			break;
   1964 		if ((i & (NBBY - 1)) != 0) {
   1965 			bit >>= 1;
   1966 		} else {
   1967 			map = *mapp--;
   1968 			bit = 1 << (NBBY - 1);
   1969 		}
   1970 	}
   1971 	back = start - i;
   1972 	/*
   1973 	 * Account for old cluster and the possibly new forward and
   1974 	 * back clusters.
   1975 	 */
   1976 	i = back + forw + 1;
   1977 	if (i > fs->fs_contigsumsize)
   1978 		i = fs->fs_contigsumsize;
   1979 	ufs_add32(sump[i], cnt, needswap);
   1980 	if (back > 0)
   1981 		ufs_add32(sump[back], -cnt, needswap);
   1982 	if (forw > 0)
   1983 		ufs_add32(sump[forw], -cnt, needswap);
   1984 
   1985 	/*
   1986 	 * Update cluster summary information.
   1987 	 */
   1988 	lp = &sump[fs->fs_contigsumsize];
   1989 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1990 		if (ufs_rw32(*lp--, needswap) > 0)
   1991 			break;
   1992 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1993 }
   1994 
   1995 /*
   1996  * Fserr prints the name of a file system with an error diagnostic.
   1997  *
   1998  * The form of the error message is:
   1999  *	fs: error message
   2000  */
   2001 static void
   2002 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2003 {
   2004 
   2005 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2006 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2007 }
   2008