ffs_balloc.c revision 1.14.4.1 1 1.14.4.1 chs /* $NetBSD: ffs_balloc.c,v 1.14.4.1 1999/06/07 04:25:34 chs Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.8 fvdl * @(#)ffs_balloc.c 8.8 (Berkeley) 6/16/95
36 1.1 mycroft */
37 1.7 mrg
38 1.11 scottr #if defined(_KERNEL) && !defined(_LKM)
39 1.10 scottr #include "opt_quota.h"
40 1.11 scottr #endif
41 1.1 mycroft
42 1.1 mycroft #include <sys/param.h>
43 1.1 mycroft #include <sys/systm.h>
44 1.1 mycroft #include <sys/buf.h>
45 1.1 mycroft #include <sys/proc.h>
46 1.1 mycroft #include <sys/file.h>
47 1.1 mycroft #include <sys/vnode.h>
48 1.9 bouyer #include <sys/mount.h>
49 1.1 mycroft
50 1.1 mycroft #include <vm/vm.h>
51 1.6 mrg #include <uvm/uvm_extern.h>
52 1.14.4.1 chs #include <uvm/uvm.h>
53 1.6 mrg
54 1.1 mycroft #include <ufs/ufs/quota.h>
55 1.9 bouyer #include <ufs/ufs/ufsmount.h>
56 1.1 mycroft #include <ufs/ufs/inode.h>
57 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
58 1.9 bouyer #include <ufs/ufs/ufs_bswap.h>
59 1.1 mycroft
60 1.1 mycroft #include <ufs/ffs/fs.h>
61 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
62 1.1 mycroft
63 1.1 mycroft /*
64 1.1 mycroft * Balloc defines the structure of file system storage
65 1.1 mycroft * by allocating the physical blocks on a device given
66 1.1 mycroft * the inode and the logical block number in a file.
67 1.1 mycroft */
68 1.3 christos int
69 1.14.4.1 chs ffs_balloc(ip, lbn, size, cred, bpp, blknop, flags)
70 1.14.4.1 chs struct inode *ip;
71 1.14.4.1 chs ufs_daddr_t lbn;
72 1.1 mycroft int size;
73 1.1 mycroft struct ucred *cred;
74 1.1 mycroft struct buf **bpp;
75 1.14.4.1 chs daddr_t *blknop;
76 1.1 mycroft int flags;
77 1.1 mycroft {
78 1.14.4.1 chs struct fs *fs;
79 1.14.4.1 chs ufs_daddr_t nb;
80 1.1 mycroft struct buf *bp, *nbp;
81 1.1 mycroft struct vnode *vp = ITOV(ip);
82 1.1 mycroft struct indir indirs[NIADDR + 2];
83 1.8 fvdl ufs_daddr_t newb, *bap, pref;
84 1.8 fvdl int deallocated, osize, nsize, num, i, error;
85 1.8 fvdl ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1];
86 1.1 mycroft
87 1.14.4.1 chs if (bpp != NULL) {
88 1.14.4.1 chs *bpp = NULL;
89 1.14.4.1 chs }
90 1.14.4.1 chs if (blknop != NULL) {
91 1.14.4.1 chs *blknop = (daddr_t)-1;
92 1.14.4.1 chs }
93 1.14.4.1 chs
94 1.8 fvdl if (lbn < 0)
95 1.1 mycroft return (EFBIG);
96 1.1 mycroft fs = ip->i_fs;
97 1.1 mycroft
98 1.1 mycroft /*
99 1.14.4.1 chs * If the file currently ends with a fragment and
100 1.14.4.1 chs * the block we're allocating now is after the current EOF,
101 1.1 mycroft * this fragment has to be extended to be a full block.
102 1.1 mycroft */
103 1.4 bouyer nb = lblkno(fs, ip->i_ffs_size);
104 1.8 fvdl if (nb < NDADDR && nb < lbn) {
105 1.1 mycroft osize = blksize(fs, ip, nb);
106 1.1 mycroft if (osize < fs->fs_bsize && osize > 0) {
107 1.1 mycroft error = ffs_realloccg(ip, nb,
108 1.4 bouyer ffs_blkpref(ip, nb, (int)nb, &ip->i_ffs_db[0]),
109 1.14.4.1 chs osize, (int)fs->fs_bsize, cred, bpp, &newb);
110 1.1 mycroft if (error)
111 1.1 mycroft return (error);
112 1.14.4.1 chs ip->i_ffs_size = lblktosize(fs, nb + 1);
113 1.6 mrg uvm_vnp_setsize(vp, ip->i_ffs_size);
114 1.14.4.1 chs ip->i_ffs_db[nb] = ufs_rw32(newb,
115 1.12 kleink UFS_MPNEEDSWAP(vp->v_mount));
116 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
117 1.14.4.1 chs
118 1.14.4.1 chs if (bpp) {
119 1.14.4.1 chs if (flags & B_SYNC)
120 1.14.4.1 chs bwrite(*bpp);
121 1.14.4.1 chs else
122 1.14.4.1 chs bawrite(*bpp);
123 1.14.4.1 chs }
124 1.14.4.1 chs else {
125 1.14.4.1 chs /*
126 1.14.4.1 chs * XXX the data in the frag might be
127 1.14.4.1 chs * moving to a new disk location.
128 1.14.4.1 chs * we need to flush pages to the
129 1.14.4.1 chs * new disk locations.
130 1.14.4.1 chs * XXX we could do this in realloccg
131 1.14.4.1 chs * except for the sync flag.
132 1.14.4.1 chs */
133 1.14.4.1 chs (vp->v_uvm.u_obj.pgops->pgo_flush)
134 1.14.4.1 chs (&vp->v_uvm.u_obj, lblktosize(fs, nb),
135 1.14.4.1 chs lblktosize(fs, nb + 1),
136 1.14.4.1 chs flags & B_SYNC ? PGO_SYNCIO : 0);
137 1.14.4.1 chs }
138 1.1 mycroft }
139 1.1 mycroft }
140 1.1 mycroft /*
141 1.1 mycroft * The first NDADDR blocks are direct blocks
142 1.1 mycroft */
143 1.8 fvdl if (lbn < NDADDR) {
144 1.14.4.1 chs
145 1.9 bouyer nb = ufs_rw32(ip->i_ffs_db[lbn], UFS_MPNEEDSWAP(vp->v_mount));
146 1.14.4.1 chs if (nb != 0 && ip->i_ffs_size >= lblktosize(fs, lbn + 1)) {
147 1.14.4.1 chs
148 1.14.4.1 chs /*
149 1.14.4.1 chs * the block is an already-allocated direct block
150 1.14.4.1 chs * and the file already extends past this block,
151 1.14.4.1 chs * thus this must be a whole block.
152 1.14.4.1 chs * just read the block (if requested).
153 1.14.4.1 chs */
154 1.14.4.1 chs
155 1.14.4.1 chs if (bpp != NULL) {
156 1.14.4.1 chs error = bread(vp, lbn, fs->fs_bsize, NOCRED,
157 1.14.4.1 chs &bp);
158 1.14.4.1 chs if (error) {
159 1.14.4.1 chs brelse(bp);
160 1.14.4.1 chs return (error);
161 1.14.4.1 chs }
162 1.14.4.1 chs *bpp = bp;
163 1.14.4.1 chs }
164 1.14.4.1 chs if (blknop) {
165 1.14.4.1 chs *blknop = fsbtodb(fs, nb);
166 1.1 mycroft }
167 1.1 mycroft return (0);
168 1.1 mycroft }
169 1.1 mycroft if (nb != 0) {
170 1.1 mycroft /*
171 1.1 mycroft * Consider need to reallocate a fragment.
172 1.1 mycroft */
173 1.4 bouyer osize = fragroundup(fs, blkoff(fs, ip->i_ffs_size));
174 1.1 mycroft nsize = fragroundup(fs, size);
175 1.1 mycroft if (nsize <= osize) {
176 1.14.4.1 chs
177 1.14.4.1 chs /*
178 1.14.4.1 chs * the existing block is already
179 1.14.4.1 chs * at least as big as we want.
180 1.14.4.1 chs * just read the block (if requested).
181 1.14.4.1 chs */
182 1.14.4.1 chs
183 1.14.4.1 chs if (bpp != NULL) {
184 1.14.4.1 chs error = bread(vp, lbn, osize, NOCRED,
185 1.14.4.1 chs &bp);
186 1.14.4.1 chs if (error) {
187 1.14.4.1 chs brelse(bp);
188 1.14.4.1 chs return (error);
189 1.14.4.1 chs }
190 1.14.4.1 chs *bpp = bp;
191 1.1 mycroft }
192 1.14.4.1 chs if (blknop) {
193 1.14.4.1 chs *blknop = fsbtodb(fs, nb);
194 1.14.4.1 chs }
195 1.14.4.1 chs return 0;
196 1.1 mycroft } else {
197 1.14.4.1 chs
198 1.14.4.1 chs /*
199 1.14.4.1 chs * the existing block is smaller than we want,
200 1.14.4.1 chs * grow it.
201 1.14.4.1 chs */
202 1.14.4.1 chs
203 1.8 fvdl error = ffs_realloccg(ip, lbn,
204 1.8 fvdl ffs_blkpref(ip, lbn, (int)lbn,
205 1.8 fvdl &ip->i_ffs_db[0]), osize, nsize, cred,
206 1.14.4.1 chs bpp, &newb);
207 1.1 mycroft if (error)
208 1.1 mycroft return (error);
209 1.1 mycroft }
210 1.1 mycroft } else {
211 1.14.4.1 chs
212 1.14.4.1 chs /*
213 1.14.4.1 chs * the block was not previously allocated,
214 1.14.4.1 chs * allocate a new block or fragment.
215 1.14.4.1 chs */
216 1.14.4.1 chs
217 1.14.4.1 chs if (ip->i_ffs_size < lblktosize(fs, lbn + 1))
218 1.1 mycroft nsize = fragroundup(fs, size);
219 1.1 mycroft else
220 1.1 mycroft nsize = fs->fs_bsize;
221 1.8 fvdl error = ffs_alloc(ip, lbn,
222 1.8 fvdl ffs_blkpref(ip, lbn, (int)lbn, &ip->i_ffs_db[0]),
223 1.8 fvdl nsize, cred, &newb);
224 1.1 mycroft if (error)
225 1.1 mycroft return (error);
226 1.14.4.1 chs if (bpp != NULL) {
227 1.14.4.1 chs bp = getblk(vp, lbn, nsize, 0, 0);
228 1.14.4.1 chs bp->b_blkno = fsbtodb(fs, newb);
229 1.14.4.1 chs if (flags & B_CLRBUF)
230 1.14.4.1 chs clrbuf(bp);
231 1.14.4.1 chs *bpp = bp;
232 1.14.4.1 chs }
233 1.1 mycroft }
234 1.14.4.1 chs ip->i_ffs_db[lbn] = ufs_rw32(newb, UFS_MPNEEDSWAP(vp->v_mount));
235 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
236 1.14.4.1 chs
237 1.14.4.1 chs if (blknop != NULL) {
238 1.14.4.1 chs *blknop = fsbtodb(fs, newb);
239 1.14.4.1 chs }
240 1.1 mycroft return (0);
241 1.1 mycroft }
242 1.14.4.1 chs
243 1.1 mycroft /*
244 1.1 mycroft * Determine the number of levels of indirection.
245 1.1 mycroft */
246 1.14.4.1 chs
247 1.1 mycroft pref = 0;
248 1.8 fvdl if ((error = ufs_getlbns(vp, lbn, indirs, &num)) != 0)
249 1.1 mycroft return(error);
250 1.1 mycroft #ifdef DIAGNOSTIC
251 1.1 mycroft if (num < 1)
252 1.1 mycroft panic ("ffs_balloc: ufs_bmaparray returned indirect block\n");
253 1.1 mycroft #endif
254 1.1 mycroft /*
255 1.1 mycroft * Fetch the first indirect block allocating if necessary.
256 1.1 mycroft */
257 1.1 mycroft --num;
258 1.9 bouyer nb = ufs_rw32(ip->i_ffs_ib[indirs[0].in_off],
259 1.12 kleink UFS_MPNEEDSWAP(vp->v_mount));
260 1.8 fvdl allocib = NULL;
261 1.8 fvdl allocblk = allociblk;
262 1.1 mycroft if (nb == 0) {
263 1.8 fvdl pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0);
264 1.9 bouyer error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
265 1.9 bouyer cred, &newb);
266 1.3 christos if (error)
267 1.1 mycroft return (error);
268 1.1 mycroft nb = newb;
269 1.8 fvdl *allocblk++ = nb;
270 1.1 mycroft bp = getblk(vp, indirs[1].in_lbn, fs->fs_bsize, 0, 0);
271 1.8 fvdl bp->b_blkno = fsbtodb(fs, nb);
272 1.1 mycroft clrbuf(bp);
273 1.1 mycroft /*
274 1.1 mycroft * Write synchronously so that indirect blocks
275 1.1 mycroft * never point at garbage.
276 1.1 mycroft */
277 1.8 fvdl if ((error = bwrite(bp)) != 0)
278 1.8 fvdl goto fail;
279 1.8 fvdl allocib = &ip->i_ffs_ib[indirs[0].in_off];
280 1.9 bouyer *allocib = ufs_rw32(nb, UFS_MPNEEDSWAP(vp->v_mount));
281 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
282 1.1 mycroft }
283 1.1 mycroft /*
284 1.1 mycroft * Fetch through the indirect blocks, allocating as necessary.
285 1.1 mycroft */
286 1.1 mycroft for (i = 1;;) {
287 1.1 mycroft error = bread(vp,
288 1.1 mycroft indirs[i].in_lbn, (int)fs->fs_bsize, NOCRED, &bp);
289 1.1 mycroft if (error) {
290 1.1 mycroft brelse(bp);
291 1.8 fvdl goto fail;
292 1.1 mycroft }
293 1.8 fvdl bap = (ufs_daddr_t *)bp->b_data;
294 1.12 kleink nb = ufs_rw32(bap[indirs[i].in_off],
295 1.12 kleink UFS_MPNEEDSWAP(vp->v_mount));
296 1.1 mycroft if (i == num)
297 1.1 mycroft break;
298 1.1 mycroft i += 1;
299 1.1 mycroft if (nb != 0) {
300 1.1 mycroft brelse(bp);
301 1.1 mycroft continue;
302 1.1 mycroft }
303 1.1 mycroft if (pref == 0)
304 1.8 fvdl pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0);
305 1.3 christos error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred,
306 1.3 christos &newb);
307 1.3 christos if (error) {
308 1.1 mycroft brelse(bp);
309 1.8 fvdl goto fail;
310 1.1 mycroft }
311 1.1 mycroft nb = newb;
312 1.8 fvdl *allocblk++ = nb;
313 1.1 mycroft nbp = getblk(vp, indirs[i].in_lbn, fs->fs_bsize, 0, 0);
314 1.1 mycroft nbp->b_blkno = fsbtodb(fs, nb);
315 1.1 mycroft clrbuf(nbp);
316 1.1 mycroft /*
317 1.1 mycroft * Write synchronously so that indirect blocks
318 1.1 mycroft * never point at garbage.
319 1.1 mycroft */
320 1.3 christos if ((error = bwrite(nbp)) != 0) {
321 1.1 mycroft brelse(bp);
322 1.8 fvdl goto fail;
323 1.1 mycroft }
324 1.9 bouyer bap[indirs[i - 1].in_off] = ufs_rw32(nb,
325 1.12 kleink UFS_MPNEEDSWAP(vp->v_mount));
326 1.1 mycroft /*
327 1.1 mycroft * If required, write synchronously, otherwise use
328 1.1 mycroft * delayed write.
329 1.1 mycroft */
330 1.1 mycroft if (flags & B_SYNC) {
331 1.1 mycroft bwrite(bp);
332 1.1 mycroft } else {
333 1.1 mycroft bdwrite(bp);
334 1.1 mycroft }
335 1.1 mycroft }
336 1.1 mycroft /*
337 1.1 mycroft * Get the data block, allocating if necessary.
338 1.1 mycroft */
339 1.1 mycroft if (nb == 0) {
340 1.1 mycroft pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]);
341 1.3 christos error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred,
342 1.3 christos &newb);
343 1.3 christos if (error) {
344 1.1 mycroft brelse(bp);
345 1.8 fvdl goto fail;
346 1.1 mycroft }
347 1.1 mycroft nb = newb;
348 1.8 fvdl *allocblk++ = nb;
349 1.12 kleink bap[indirs[i].in_off] = ufs_rw32(nb,
350 1.12 kleink UFS_MPNEEDSWAP(vp->v_mount));
351 1.1 mycroft /*
352 1.1 mycroft * If required, write synchronously, otherwise use
353 1.1 mycroft * delayed write.
354 1.1 mycroft */
355 1.1 mycroft if (flags & B_SYNC) {
356 1.1 mycroft bwrite(bp);
357 1.1 mycroft } else {
358 1.1 mycroft bdwrite(bp);
359 1.1 mycroft }
360 1.14.4.1 chs if (bpp != NULL) {
361 1.14.4.1 chs nbp = getblk(vp, lbn, fs->fs_bsize, 0, 0);
362 1.14.4.1 chs nbp->b_blkno = fsbtodb(fs, nb);
363 1.14.4.1 chs if (flags & B_CLRBUF)
364 1.14.4.1 chs clrbuf(nbp);
365 1.14.4.1 chs *bpp = nbp;
366 1.14.4.1 chs }
367 1.14.4.1 chs if (blknop != NULL) {
368 1.14.4.1 chs *blknop = fsbtodb(fs, nb);
369 1.14.4.1 chs }
370 1.1 mycroft return (0);
371 1.1 mycroft }
372 1.14.4.1 chs
373 1.1 mycroft brelse(bp);
374 1.14.4.1 chs
375 1.14.4.1 chs if (bpp != NULL) {
376 1.14.4.1 chs if (flags & B_CLRBUF) {
377 1.14.4.1 chs error = bread(vp, lbn, (int)fs->fs_bsize, NOCRED, &nbp);
378 1.14.4.1 chs if (error) {
379 1.14.4.1 chs brelse(nbp);
380 1.14.4.1 chs goto fail;
381 1.14.4.1 chs }
382 1.14.4.1 chs } else {
383 1.14.4.1 chs nbp = getblk(vp, lbn, fs->fs_bsize, 0, 0);
384 1.14.4.1 chs nbp->b_blkno = fsbtodb(fs, nb);
385 1.14.4.1 chs clrbuf(nbp);
386 1.1 mycroft }
387 1.14.4.1 chs *bpp = nbp;
388 1.14.4.1 chs }
389 1.14.4.1 chs if (blknop != NULL) {
390 1.14.4.1 chs *blknop = fsbtodb(fs, nb);
391 1.1 mycroft }
392 1.1 mycroft return (0);
393 1.8 fvdl fail:
394 1.8 fvdl /*
395 1.8 fvdl * If we have failed part way through block allocation, we
396 1.8 fvdl * have to deallocate any indirect blocks that we have allocated.
397 1.8 fvdl */
398 1.8 fvdl for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) {
399 1.8 fvdl ffs_blkfree(ip, *blkp, fs->fs_bsize);
400 1.8 fvdl deallocated += fs->fs_bsize;
401 1.8 fvdl }
402 1.8 fvdl if (allocib != NULL)
403 1.8 fvdl *allocib = 0;
404 1.8 fvdl if (deallocated) {
405 1.8 fvdl #ifdef QUOTA
406 1.8 fvdl /*
407 1.8 fvdl * Restore user's disk quota because allocation failed.
408 1.8 fvdl */
409 1.8 fvdl (void)chkdq(ip, (long)-btodb(deallocated), cred, FORCE);
410 1.8 fvdl #endif
411 1.8 fvdl ip->i_ffs_blocks -= btodb(deallocated);
412 1.13 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
413 1.8 fvdl }
414 1.8 fvdl return (error);
415 1.14.4.1 chs }
416 1.14.4.1 chs
417 1.14.4.1 chs int
418 1.14.4.1 chs ffs_balloc_range(ip, off, len, cred, flags)
419 1.14.4.1 chs struct inode *ip;
420 1.14.4.1 chs off_t off, len;
421 1.14.4.1 chs struct ucred *cred;
422 1.14.4.1 chs int flags;
423 1.14.4.1 chs {
424 1.14.4.1 chs struct fs *fs = ip->i_fs;
425 1.14.4.1 chs int lbn, bsize, delta, error;
426 1.14.4.1 chs off_t pagestart, pageend;
427 1.14.4.1 chs
428 1.14.4.1 chs /*
429 1.14.4.1 chs * pagestart and pageend describe the range of pages that are
430 1.14.4.1 chs * completely covered by the range of blocks being allocated.
431 1.14.4.1 chs */
432 1.14.4.1 chs
433 1.14.4.1 chs pagestart = round_page(off);
434 1.14.4.1 chs pageend = trunc_page(off + len);
435 1.14.4.1 chs
436 1.14.4.1 chs /*
437 1.14.4.1 chs * adjust off to be block-aligned.
438 1.14.4.1 chs */
439 1.14.4.1 chs
440 1.14.4.1 chs delta = off - lblktosize(fs, lblkno(fs, off));
441 1.14.4.1 chs off -= delta;
442 1.14.4.1 chs len += delta;
443 1.14.4.1 chs
444 1.14.4.1 chs while (len > 0) {
445 1.14.4.1 chs lbn = lblkno(fs, off);
446 1.14.4.1 chs bsize = min(fs->fs_bsize, len);
447 1.14.4.1 chs
448 1.14.4.1 chs if ((error = ffs_balloc(ip, lbn, bsize, cred, NULL, NULL,
449 1.14.4.1 chs flags))) {
450 1.14.4.1 chs return error;
451 1.14.4.1 chs }
452 1.14.4.1 chs
453 1.14.4.1 chs /*
454 1.14.4.1 chs * bump file size now.
455 1.14.4.1 chs * ffs_balloc() needs to know in the case where we loop here.
456 1.14.4.1 chs */
457 1.14.4.1 chs
458 1.14.4.1 chs if (ip->i_ffs_size < lblktosize(fs, lbn) + bsize) {
459 1.14.4.1 chs ip->i_ffs_size = lblktosize(fs, lbn) + bsize;
460 1.14.4.1 chs uvm_vnp_setsize(ip->i_vnode, ip->i_ffs_size);
461 1.14.4.1 chs }
462 1.14.4.1 chs
463 1.14.4.1 chs len -= bsize;
464 1.14.4.1 chs off += bsize;
465 1.14.4.1 chs }
466 1.14.4.1 chs return 0;
467 1.1 mycroft }
468