ffs_inode.c revision 1.41 1 /* $NetBSD: ffs_inode.c,v 1.41 2001/05/30 11:57:18 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
36 */
37
38 #if defined(_KERNEL_OPT)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/file.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/trace.h>
53 #include <sys/resourcevar.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63
64 static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t,
65 ufs_daddr_t, int, long *));
66
67 /*
68 * Update the access, modified, and inode change times as specified
69 * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
70 * The IN_MODIFIED flag is used to specify that the inode needs to be
71 * updated but that the times have already been set. The access
72 * and modified times are taken from the second and third parameters;
73 * the inode change time is always taken from the current time. If
74 * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
75 * softupdates, then wait for the disk write of the inode to complete.
76 */
77
78 int
79 ffs_update(v)
80 void *v;
81 {
82 struct vop_update_args /* {
83 struct vnode *a_vp;
84 struct timespec *a_access;
85 struct timespec *a_modify;
86 int a_flags;
87 } */ *ap = v;
88 struct fs *fs;
89 struct buf *bp;
90 struct inode *ip;
91 int error;
92 struct timespec ts;
93 caddr_t cp;
94 int waitfor, flags;
95
96 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
97 return (0);
98 ip = VTOI(ap->a_vp);
99 TIMEVAL_TO_TIMESPEC(&time, &ts);
100 FFS_ITIMES(ip,
101 ap->a_access ? ap->a_access : &ts,
102 ap->a_modify ? ap->a_modify : &ts, &ts);
103 flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
104 if (flags == 0)
105 return (0);
106 fs = ip->i_fs;
107
108 if ((flags & IN_MODIFIED) != 0 &&
109 (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
110 waitfor = ap->a_flags & UPDATE_WAIT;
111 if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp))
112 waitfor |= UPDATE_WAIT;
113 } else
114 waitfor = 0;
115
116 /*
117 * Ensure that uid and gid are correct. This is a temporary
118 * fix until fsck has been changed to do the update.
119 */
120 if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
121 ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */
122 ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */
123 } /* XXX */
124 error = bread(ip->i_devvp,
125 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
126 (int)fs->fs_bsize, NOCRED, &bp);
127 if (error) {
128 brelse(bp);
129 return (error);
130 }
131 ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
132 if (DOINGSOFTDEP(ap->a_vp))
133 softdep_update_inodeblock(ip, bp, waitfor);
134 else if (ip->i_ffs_effnlink != ip->i_ffs_nlink)
135 panic("ffs_update: bad link cnt");
136 cp = (caddr_t)bp->b_data +
137 (ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE);
138 #ifdef FFS_EI
139 if (UFS_FSNEEDSWAP(fs))
140 ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp);
141 else
142 #endif
143 memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE);
144 if (waitfor) {
145 return (bwrite(bp));
146 } else {
147 bdwrite(bp);
148 return (0);
149 }
150 }
151
152 #define SINGLE 0 /* index of single indirect block */
153 #define DOUBLE 1 /* index of double indirect block */
154 #define TRIPLE 2 /* index of triple indirect block */
155 /*
156 * Truncate the inode oip to at most length size, freeing the
157 * disk blocks.
158 */
159 int
160 ffs_truncate(v)
161 void *v;
162 {
163 struct vop_truncate_args /* {
164 struct vnode *a_vp;
165 off_t a_length;
166 int a_flags;
167 struct ucred *a_cred;
168 struct proc *a_p;
169 } */ *ap = v;
170 struct vnode *ovp = ap->a_vp;
171 ufs_daddr_t lastblock;
172 struct inode *oip;
173 ufs_daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR];
174 ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
175 off_t length = ap->a_length;
176 struct fs *fs;
177 int offset, size, level;
178 long count, nblocks, blocksreleased = 0;
179 int i;
180 int error, allerror = 0;
181 off_t osize;
182
183 if (length < 0)
184 return (EINVAL);
185 oip = VTOI(ovp);
186 if (ovp->v_type == VLNK &&
187 (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen ||
188 (ovp->v_mount->mnt_maxsymlinklen == 0 &&
189 oip->i_din.ffs_din.di_blocks == 0))) {
190 KDASSERT(length == 0);
191 memset(&oip->i_ffs_shortlink, 0, (size_t)oip->i_ffs_size);
192 oip->i_ffs_size = 0;
193 oip->i_flag |= IN_CHANGE | IN_UPDATE;
194 return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
195 }
196 if (oip->i_ffs_size == length) {
197 oip->i_flag |= IN_CHANGE | IN_UPDATE;
198 return (VOP_UPDATE(ovp, NULL, NULL, 0));
199 }
200 #ifdef QUOTA
201 if ((error = getinoquota(oip)) != 0)
202 return (error);
203 #endif
204 fs = oip->i_fs;
205 if (length > fs->fs_maxfilesize)
206 return (EFBIG);
207
208 osize = oip->i_ffs_size;
209 ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
210
211 /*
212 * Lengthen the size of the file. We must ensure that the
213 * last byte of the file is allocated. Since the smallest
214 * value of osize is 0, length will be at least 1.
215 */
216
217 if (osize < length) {
218 ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
219 ap->a_flags & IO_SYNC ? B_SYNC : 0);
220 oip->i_flag |= IN_CHANGE | IN_UPDATE;
221 return (VOP_UPDATE(ovp, NULL, NULL, 1));
222 }
223
224 /*
225 * When truncating a regular file down to a non-block-aligned size,
226 * we must zero the part of last block which is past the new EOF.
227 * We must synchronously flush the zeroed pages to disk
228 * since the new pages will be invalidated as soon as we
229 * inform the VM system of the new, smaller size.
230 * We must to this before acquiring the GLOCK, since fetching
231 * the pages will acquire the GLOCK internally.
232 * So there is a window where another thread could see a whole
233 * zeroed page past EOF, but that's life.
234 */
235
236 offset = blkoff(fs, length);
237 if (ovp->v_type == VREG && length < osize && offset != 0) {
238 struct uvm_object *uobj;
239 voff_t eoz;
240
241 size = blksize(fs, oip, lblkno(fs, length));
242 eoz = min(lblktosize(fs, lblkno(fs, length)) + size, osize);
243 uvm_vnp_zerorange(ovp, length, eoz - length);
244 uobj = &ovp->v_uvm.u_obj;
245 simple_lock(&uobj->vmobjlock);
246 uobj->pgops->pgo_flush(uobj, length, eoz,
247 PGO_CLEANIT|PGO_DEACTIVATE|PGO_SYNCIO);
248 simple_unlock(&ovp->v_uvm.u_obj.vmobjlock);
249 }
250
251 lockmgr(&ovp->v_glock, LK_EXCLUSIVE, NULL);
252
253 if (DOINGSOFTDEP(ovp)) {
254 if (length > 0) {
255 /*
256 * If a file is only partially truncated, then
257 * we have to clean up the data structures
258 * describing the allocation past the truncation
259 * point. Finding and deallocating those structures
260 * is a lot of work. Since partial truncation occurs
261 * rarely, we solve the problem by syncing the file
262 * so that it will have no data structures left.
263 */
264 if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT,
265 0, 0, ap->a_p)) != 0) {
266 lockmgr(&ovp->v_glock, LK_RELEASE, NULL);
267 return (error);
268 }
269 } else {
270 uvm_vnp_setsize(ovp, length);
271 #ifdef QUOTA
272 (void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0);
273 #endif
274 softdep_setup_freeblocks(oip, length);
275 (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0);
276 lockmgr(&ovp->v_glock, LK_RELEASE, NULL);
277 oip->i_flag |= IN_CHANGE | IN_UPDATE;
278 return (VOP_UPDATE(ovp, NULL, NULL, 0));
279 }
280 }
281
282 /*
283 * Reduce the size of the file.
284 */
285 oip->i_ffs_size = length;
286 uvm_vnp_setsize(ovp, length);
287 /*
288 * Calculate index into inode's block list of
289 * last direct and indirect blocks (if any)
290 * which we want to keep. Lastblock is -1 when
291 * the file is truncated to 0.
292 */
293 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
294 lastiblock[SINGLE] = lastblock - NDADDR;
295 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
296 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
297 nblocks = btodb(fs->fs_bsize);
298 /*
299 * Update file and block pointers on disk before we start freeing
300 * blocks. If we crash before free'ing blocks below, the blocks
301 * will be returned to the free list. lastiblock values are also
302 * normalized to -1 for calls to ffs_indirtrunc below.
303 */
304 memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks);
305 for (level = TRIPLE; level >= SINGLE; level--)
306 if (lastiblock[level] < 0) {
307 oip->i_ffs_ib[level] = 0;
308 lastiblock[level] = -1;
309 }
310 for (i = NDADDR - 1; i > lastblock; i--)
311 oip->i_ffs_db[i] = 0;
312 oip->i_flag |= IN_CHANGE | IN_UPDATE;
313 error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT);
314 if (error && !allerror)
315 allerror = error;
316
317 /*
318 * Having written the new inode to disk, save its new configuration
319 * and put back the old block pointers long enough to process them.
320 * Note that we save the new block configuration so we can check it
321 * when we are done.
322 */
323 memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks);
324 memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks);
325 oip->i_ffs_size = osize;
326 error = vtruncbuf(ovp, lastblock + 1, 0, 0);
327 if (error && !allerror)
328 allerror = error;
329
330 /*
331 * Indirect blocks first.
332 */
333 indir_lbn[SINGLE] = -NDADDR;
334 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
335 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
336 for (level = TRIPLE; level >= SINGLE; level--) {
337 bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs));
338 if (bn != 0) {
339 error = ffs_indirtrunc(oip, indir_lbn[level],
340 fsbtodb(fs, bn), lastiblock[level], level, &count);
341 if (error)
342 allerror = error;
343 blocksreleased += count;
344 if (lastiblock[level] < 0) {
345 oip->i_ffs_ib[level] = 0;
346 ffs_blkfree(oip, bn, fs->fs_bsize);
347 blocksreleased += nblocks;
348 }
349 }
350 if (lastiblock[level] >= 0)
351 goto done;
352 }
353
354 /*
355 * All whole direct blocks or frags.
356 */
357 for (i = NDADDR - 1; i > lastblock; i--) {
358 long bsize;
359
360 bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs));
361 if (bn == 0)
362 continue;
363 oip->i_ffs_db[i] = 0;
364 bsize = blksize(fs, oip, i);
365 ffs_blkfree(oip, bn, bsize);
366 blocksreleased += btodb(bsize);
367 }
368 if (lastblock < 0)
369 goto done;
370
371 /*
372 * Finally, look for a change in size of the
373 * last direct block; release any frags.
374 */
375 bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs));
376 if (bn != 0) {
377 long oldspace, newspace;
378
379 /*
380 * Calculate amount of space we're giving
381 * back as old block size minus new block size.
382 */
383 oldspace = blksize(fs, oip, lastblock);
384 oip->i_ffs_size = length;
385 newspace = blksize(fs, oip, lastblock);
386 if (newspace == 0)
387 panic("itrunc: newspace");
388 if (oldspace - newspace > 0) {
389 /*
390 * Block number of space to be free'd is
391 * the old block # plus the number of frags
392 * required for the storage we're keeping.
393 */
394 bn += numfrags(fs, newspace);
395 ffs_blkfree(oip, bn, oldspace - newspace);
396 blocksreleased += btodb(oldspace - newspace);
397 }
398 }
399
400 done:
401 #ifdef DIAGNOSTIC
402 for (level = SINGLE; level <= TRIPLE; level++)
403 if (newblks[NDADDR + level] != oip->i_ffs_ib[level])
404 panic("itrunc1");
405 for (i = 0; i < NDADDR; i++)
406 if (newblks[i] != oip->i_ffs_db[i])
407 panic("itrunc2");
408 if (length == 0 &&
409 (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
410 panic("itrunc3");
411 #endif /* DIAGNOSTIC */
412 /*
413 * Put back the real size.
414 */
415 oip->i_ffs_size = length;
416 oip->i_ffs_blocks -= blocksreleased;
417 if (oip->i_ffs_blocks < 0) /* sanity */
418 oip->i_ffs_blocks = 0;
419 lockmgr(&ovp->v_glock, LK_RELEASE, NULL);
420 oip->i_flag |= IN_CHANGE;
421 #ifdef QUOTA
422 (void) chkdq(oip, -blocksreleased, NOCRED, 0);
423 #endif
424 return (allerror);
425 }
426
427 /*
428 * Release blocks associated with the inode ip and stored in the indirect
429 * block bn. Blocks are free'd in LIFO order up to (but not including)
430 * lastbn. If level is greater than SINGLE, the block is an indirect block
431 * and recursive calls to indirtrunc must be used to cleanse other indirect
432 * blocks.
433 *
434 * NB: triple indirect blocks are untested.
435 */
436 static int
437 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
438 struct inode *ip;
439 ufs_daddr_t lbn, lastbn;
440 ufs_daddr_t dbn;
441 int level;
442 long *countp;
443 {
444 int i;
445 struct buf *bp;
446 struct fs *fs = ip->i_fs;
447 ufs_daddr_t *bap;
448 struct vnode *vp;
449 ufs_daddr_t *copy = NULL, nb, nlbn, last;
450 long blkcount, factor;
451 int nblocks, blocksreleased = 0;
452 int error = 0, allerror = 0;
453
454 /*
455 * Calculate index in current block of last
456 * block to be kept. -1 indicates the entire
457 * block so we need not calculate the index.
458 */
459 factor = 1;
460 for (i = SINGLE; i < level; i++)
461 factor *= NINDIR(fs);
462 last = lastbn;
463 if (lastbn > 0)
464 last /= factor;
465 nblocks = btodb(fs->fs_bsize);
466 /*
467 * Get buffer of block pointers, zero those entries corresponding
468 * to blocks to be free'd, and update on disk copy first. Since
469 * double(triple) indirect before single(double) indirect, calls
470 * to bmap on these blocks will fail. However, we already have
471 * the on disk address, so we have to set the b_blkno field
472 * explicitly instead of letting bread do everything for us.
473 */
474 vp = ITOV(ip);
475 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
476 if (bp->b_flags & (B_DONE | B_DELWRI)) {
477 /* Braces must be here in case trace evaluates to nothing. */
478 trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
479 } else {
480 trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
481 curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
482 bp->b_flags |= B_READ;
483 if (bp->b_bcount > bp->b_bufsize)
484 panic("ffs_indirtrunc: bad buffer size");
485 bp->b_blkno = dbn;
486 VOP_STRATEGY(bp);
487 error = biowait(bp);
488 }
489 if (error) {
490 brelse(bp);
491 *countp = 0;
492 return (error);
493 }
494
495 bap = (ufs_daddr_t *)bp->b_data;
496 if (lastbn >= 0) {
497 copy = (ufs_daddr_t *) malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
498 memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize);
499 memset((caddr_t)&bap[last + 1], 0,
500 (u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
501 error = bwrite(bp);
502 if (error)
503 allerror = error;
504 bap = copy;
505 }
506
507 /*
508 * Recursively free totally unused blocks.
509 */
510 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
511 i--, nlbn += factor) {
512 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
513 if (nb == 0)
514 continue;
515 if (level > SINGLE) {
516 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
517 (ufs_daddr_t)-1, level - 1,
518 &blkcount);
519 if (error)
520 allerror = error;
521 blocksreleased += blkcount;
522 }
523 ffs_blkfree(ip, nb, fs->fs_bsize);
524 blocksreleased += nblocks;
525 }
526
527 /*
528 * Recursively free last partial block.
529 */
530 if (level > SINGLE && lastbn >= 0) {
531 last = lastbn % factor;
532 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
533 if (nb != 0) {
534 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
535 last, level - 1, &blkcount);
536 if (error)
537 allerror = error;
538 blocksreleased += blkcount;
539 }
540 }
541
542 if (copy != NULL) {
543 FREE(copy, M_TEMP);
544 } else {
545 bp->b_flags |= B_INVAL;
546 brelse(bp);
547 }
548
549 *countp = blocksreleased;
550 return (allerror);
551 }
552