ffs_inode.c revision 1.44 1 /* $NetBSD: ffs_inode.c,v 1.44 2001/09/20 08:25:59 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
36 */
37
38 #if defined(_KERNEL_OPT)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/file.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/trace.h>
53 #include <sys/resourcevar.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63
64 static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t,
65 ufs_daddr_t, int, long *));
66
67 /*
68 * Update the access, modified, and inode change times as specified
69 * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
70 * The IN_MODIFIED flag is used to specify that the inode needs to be
71 * updated but that the times have already been set. The access
72 * and modified times are taken from the second and third parameters;
73 * the inode change time is always taken from the current time. If
74 * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
75 * softupdates, then wait for the disk write of the inode to complete.
76 */
77
78 int
79 ffs_update(v)
80 void *v;
81 {
82 struct vop_update_args /* {
83 struct vnode *a_vp;
84 struct timespec *a_access;
85 struct timespec *a_modify;
86 int a_flags;
87 } */ *ap = v;
88 struct fs *fs;
89 struct buf *bp;
90 struct inode *ip;
91 int error;
92 struct timespec ts;
93 caddr_t cp;
94 int waitfor, flags;
95
96 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
97 return (0);
98 ip = VTOI(ap->a_vp);
99 TIMEVAL_TO_TIMESPEC(&time, &ts);
100 FFS_ITIMES(ip,
101 ap->a_access ? ap->a_access : &ts,
102 ap->a_modify ? ap->a_modify : &ts, &ts);
103 flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
104 if (flags == 0)
105 return (0);
106 fs = ip->i_fs;
107
108 if ((flags & IN_MODIFIED) != 0 &&
109 (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
110 waitfor = ap->a_flags & UPDATE_WAIT;
111 if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp))
112 waitfor |= UPDATE_WAIT;
113 } else
114 waitfor = 0;
115
116 /*
117 * Ensure that uid and gid are correct. This is a temporary
118 * fix until fsck has been changed to do the update.
119 */
120 if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
121 ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */
122 ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */
123 } /* XXX */
124 error = bread(ip->i_devvp,
125 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
126 (int)fs->fs_bsize, NOCRED, &bp);
127 if (error) {
128 brelse(bp);
129 return (error);
130 }
131 ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
132 if (DOINGSOFTDEP(ap->a_vp))
133 softdep_update_inodeblock(ip, bp, waitfor);
134 else if (ip->i_ffs_effnlink != ip->i_ffs_nlink)
135 panic("ffs_update: bad link cnt");
136 cp = (caddr_t)bp->b_data +
137 (ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE);
138 #ifdef FFS_EI
139 if (UFS_FSNEEDSWAP(fs))
140 ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp);
141 else
142 #endif
143 memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE);
144 if (waitfor) {
145 return (bwrite(bp));
146 } else {
147 bdwrite(bp);
148 return (0);
149 }
150 }
151
152 #define SINGLE 0 /* index of single indirect block */
153 #define DOUBLE 1 /* index of double indirect block */
154 #define TRIPLE 2 /* index of triple indirect block */
155 /*
156 * Truncate the inode oip to at most length size, freeing the
157 * disk blocks.
158 */
159 int
160 ffs_truncate(v)
161 void *v;
162 {
163 struct vop_truncate_args /* {
164 struct vnode *a_vp;
165 off_t a_length;
166 int a_flags;
167 struct ucred *a_cred;
168 struct proc *a_p;
169 } */ *ap = v;
170 struct vnode *ovp = ap->a_vp;
171 struct genfs_node *gp = VTOG(ovp);
172 ufs_daddr_t lastblock;
173 struct inode *oip;
174 ufs_daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR];
175 ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
176 off_t length = ap->a_length;
177 struct fs *fs;
178 int offset, size, level;
179 long count, nblocks, blocksreleased = 0;
180 int i;
181 int error, allerror = 0;
182 off_t osize;
183
184 if (length < 0)
185 return (EINVAL);
186 oip = VTOI(ovp);
187 if (ovp->v_type == VLNK &&
188 (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen ||
189 (ovp->v_mount->mnt_maxsymlinklen == 0 &&
190 oip->i_din.ffs_din.di_blocks == 0))) {
191 KDASSERT(length == 0);
192 memset(&oip->i_ffs_shortlink, 0, (size_t)oip->i_ffs_size);
193 oip->i_ffs_size = 0;
194 oip->i_flag |= IN_CHANGE | IN_UPDATE;
195 return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
196 }
197 if (oip->i_ffs_size == length) {
198 oip->i_flag |= IN_CHANGE | IN_UPDATE;
199 return (VOP_UPDATE(ovp, NULL, NULL, 0));
200 }
201 #ifdef QUOTA
202 if ((error = getinoquota(oip)) != 0)
203 return (error);
204 #endif
205 fs = oip->i_fs;
206 if (length > fs->fs_maxfilesize)
207 return (EFBIG);
208
209 osize = oip->i_ffs_size;
210
211 /*
212 * Lengthen the size of the file. We must ensure that the
213 * last byte of the file is allocated. Since the smallest
214 * value of osize is 0, length will be at least 1.
215 */
216
217 if (osize < length) {
218 ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
219 ap->a_flags & IO_SYNC ? B_SYNC : 0);
220 uvm_vnp_setsize(ovp, length);
221 oip->i_flag |= IN_CHANGE | IN_UPDATE;
222 KASSERT(ovp->v_size == oip->i_ffs_size);
223 return (VOP_UPDATE(ovp, NULL, NULL, 1));
224 }
225
226 /*
227 * When truncating a regular file down to a non-block-aligned size,
228 * we must zero the part of last block which is past the new EOF.
229 * We must synchronously flush the zeroed pages to disk
230 * since the new pages will be invalidated as soon as we
231 * inform the VM system of the new, smaller size.
232 * We must to this before acquiring the GLOCK, since fetching
233 * the pages will acquire the GLOCK internally.
234 * So there is a window where another thread could see a whole
235 * zeroed page past EOF, but that's life.
236 */
237
238 offset = blkoff(fs, length);
239 if (ovp->v_type == VREG && length < osize && offset != 0) {
240 struct uvm_object *uobj;
241 voff_t eoz;
242
243 size = blksize(fs, oip, lblkno(fs, length));
244 eoz = MIN(lblktosize(fs, lblkno(fs, length)) + size, osize);
245 uvm_vnp_zerorange(ovp, length, eoz - length);
246 uobj = &ovp->v_uobj;
247 simple_lock(&uobj->vmobjlock);
248 error = (uobj->pgops->pgo_put)(uobj, trunc_page(length),
249 round_page(eoz), PGO_CLEANIT|PGO_DEACTIVATE|PGO_SYNCIO);
250 if (error) {
251 return error;
252 }
253 }
254
255 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
256
257 if (DOINGSOFTDEP(ovp)) {
258 if (length > 0) {
259 /*
260 * If a file is only partially truncated, then
261 * we have to clean up the data structures
262 * describing the allocation past the truncation
263 * point. Finding and deallocating those structures
264 * is a lot of work. Since partial truncation occurs
265 * rarely, we solve the problem by syncing the file
266 * so that it will have no data structures left.
267 */
268 if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT,
269 0, 0, ap->a_p)) != 0) {
270 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
271 return (error);
272 }
273 } else {
274 uvm_vnp_setsize(ovp, length);
275 #ifdef QUOTA
276 (void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0);
277 #endif
278 softdep_setup_freeblocks(oip, length);
279 (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0);
280 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
281 oip->i_flag |= IN_CHANGE | IN_UPDATE;
282 return (VOP_UPDATE(ovp, NULL, NULL, 0));
283 }
284 }
285
286 /*
287 * Reduce the size of the file.
288 */
289 oip->i_ffs_size = length;
290 uvm_vnp_setsize(ovp, length);
291 /*
292 * Calculate index into inode's block list of
293 * last direct and indirect blocks (if any)
294 * which we want to keep. Lastblock is -1 when
295 * the file is truncated to 0.
296 */
297 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
298 lastiblock[SINGLE] = lastblock - NDADDR;
299 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
300 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
301 nblocks = btodb(fs->fs_bsize);
302 /*
303 * Update file and block pointers on disk before we start freeing
304 * blocks. If we crash before free'ing blocks below, the blocks
305 * will be returned to the free list. lastiblock values are also
306 * normalized to -1 for calls to ffs_indirtrunc below.
307 */
308 memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks);
309 for (level = TRIPLE; level >= SINGLE; level--)
310 if (lastiblock[level] < 0) {
311 oip->i_ffs_ib[level] = 0;
312 lastiblock[level] = -1;
313 }
314 for (i = NDADDR - 1; i > lastblock; i--)
315 oip->i_ffs_db[i] = 0;
316 oip->i_flag |= IN_CHANGE | IN_UPDATE;
317 error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT);
318 if (error && !allerror)
319 allerror = error;
320
321 /*
322 * Having written the new inode to disk, save its new configuration
323 * and put back the old block pointers long enough to process them.
324 * Note that we save the new block configuration so we can check it
325 * when we are done.
326 */
327 memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks);
328 memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks);
329 oip->i_ffs_size = osize;
330 error = vtruncbuf(ovp, lastblock + 1, 0, 0);
331 if (error && !allerror)
332 allerror = error;
333
334 /*
335 * Indirect blocks first.
336 */
337 indir_lbn[SINGLE] = -NDADDR;
338 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
339 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
340 for (level = TRIPLE; level >= SINGLE; level--) {
341 bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs));
342 if (bn != 0) {
343 error = ffs_indirtrunc(oip, indir_lbn[level],
344 fsbtodb(fs, bn), lastiblock[level], level, &count);
345 if (error)
346 allerror = error;
347 blocksreleased += count;
348 if (lastiblock[level] < 0) {
349 oip->i_ffs_ib[level] = 0;
350 ffs_blkfree(oip, bn, fs->fs_bsize);
351 blocksreleased += nblocks;
352 }
353 }
354 if (lastiblock[level] >= 0)
355 goto done;
356 }
357
358 /*
359 * All whole direct blocks or frags.
360 */
361 for (i = NDADDR - 1; i > lastblock; i--) {
362 long bsize;
363
364 bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs));
365 if (bn == 0)
366 continue;
367 oip->i_ffs_db[i] = 0;
368 bsize = blksize(fs, oip, i);
369 ffs_blkfree(oip, bn, bsize);
370 blocksreleased += btodb(bsize);
371 }
372 if (lastblock < 0)
373 goto done;
374
375 /*
376 * Finally, look for a change in size of the
377 * last direct block; release any frags.
378 */
379 bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs));
380 if (bn != 0) {
381 long oldspace, newspace;
382
383 /*
384 * Calculate amount of space we're giving
385 * back as old block size minus new block size.
386 */
387 oldspace = blksize(fs, oip, lastblock);
388 oip->i_ffs_size = length;
389 newspace = blksize(fs, oip, lastblock);
390 if (newspace == 0)
391 panic("itrunc: newspace");
392 if (oldspace - newspace > 0) {
393 /*
394 * Block number of space to be free'd is
395 * the old block # plus the number of frags
396 * required for the storage we're keeping.
397 */
398 bn += numfrags(fs, newspace);
399 ffs_blkfree(oip, bn, oldspace - newspace);
400 blocksreleased += btodb(oldspace - newspace);
401 }
402 }
403
404 done:
405 #ifdef DIAGNOSTIC
406 for (level = SINGLE; level <= TRIPLE; level++)
407 if (newblks[NDADDR + level] != oip->i_ffs_ib[level])
408 panic("itrunc1");
409 for (i = 0; i < NDADDR; i++)
410 if (newblks[i] != oip->i_ffs_db[i])
411 panic("itrunc2");
412 if (length == 0 &&
413 (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
414 panic("itrunc3");
415 #endif /* DIAGNOSTIC */
416 /*
417 * Put back the real size.
418 */
419 oip->i_ffs_size = length;
420 oip->i_ffs_blocks -= blocksreleased;
421 if (oip->i_ffs_blocks < 0) /* sanity */
422 oip->i_ffs_blocks = 0;
423 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
424 oip->i_flag |= IN_CHANGE;
425 #ifdef QUOTA
426 (void) chkdq(oip, -blocksreleased, NOCRED, 0);
427 #endif
428 KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_ffs_size);
429 return (allerror);
430 }
431
432 /*
433 * Release blocks associated with the inode ip and stored in the indirect
434 * block bn. Blocks are free'd in LIFO order up to (but not including)
435 * lastbn. If level is greater than SINGLE, the block is an indirect block
436 * and recursive calls to indirtrunc must be used to cleanse other indirect
437 * blocks.
438 *
439 * NB: triple indirect blocks are untested.
440 */
441 static int
442 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
443 struct inode *ip;
444 ufs_daddr_t lbn, lastbn;
445 ufs_daddr_t dbn;
446 int level;
447 long *countp;
448 {
449 int i;
450 struct buf *bp;
451 struct fs *fs = ip->i_fs;
452 ufs_daddr_t *bap;
453 struct vnode *vp;
454 ufs_daddr_t *copy = NULL, nb, nlbn, last;
455 long blkcount, factor;
456 int nblocks, blocksreleased = 0;
457 int error = 0, allerror = 0;
458
459 /*
460 * Calculate index in current block of last
461 * block to be kept. -1 indicates the entire
462 * block so we need not calculate the index.
463 */
464 factor = 1;
465 for (i = SINGLE; i < level; i++)
466 factor *= NINDIR(fs);
467 last = lastbn;
468 if (lastbn > 0)
469 last /= factor;
470 nblocks = btodb(fs->fs_bsize);
471 /*
472 * Get buffer of block pointers, zero those entries corresponding
473 * to blocks to be free'd, and update on disk copy first. Since
474 * double(triple) indirect before single(double) indirect, calls
475 * to bmap on these blocks will fail. However, we already have
476 * the on disk address, so we have to set the b_blkno field
477 * explicitly instead of letting bread do everything for us.
478 */
479 vp = ITOV(ip);
480 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
481 if (bp->b_flags & (B_DONE | B_DELWRI)) {
482 /* Braces must be here in case trace evaluates to nothing. */
483 trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
484 } else {
485 trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
486 curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
487 bp->b_flags |= B_READ;
488 if (bp->b_bcount > bp->b_bufsize)
489 panic("ffs_indirtrunc: bad buffer size");
490 bp->b_blkno = dbn;
491 VOP_STRATEGY(bp);
492 error = biowait(bp);
493 }
494 if (error) {
495 brelse(bp);
496 *countp = 0;
497 return (error);
498 }
499
500 bap = (ufs_daddr_t *)bp->b_data;
501 if (lastbn >= 0) {
502 copy = (ufs_daddr_t *) malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
503 memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize);
504 memset((caddr_t)&bap[last + 1], 0,
505 (u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
506 error = bwrite(bp);
507 if (error)
508 allerror = error;
509 bap = copy;
510 }
511
512 /*
513 * Recursively free totally unused blocks.
514 */
515 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
516 i--, nlbn += factor) {
517 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
518 if (nb == 0)
519 continue;
520 if (level > SINGLE) {
521 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
522 (ufs_daddr_t)-1, level - 1,
523 &blkcount);
524 if (error)
525 allerror = error;
526 blocksreleased += blkcount;
527 }
528 ffs_blkfree(ip, nb, fs->fs_bsize);
529 blocksreleased += nblocks;
530 }
531
532 /*
533 * Recursively free last partial block.
534 */
535 if (level > SINGLE && lastbn >= 0) {
536 last = lastbn % factor;
537 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
538 if (nb != 0) {
539 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
540 last, level - 1, &blkcount);
541 if (error)
542 allerror = error;
543 blocksreleased += blkcount;
544 }
545 }
546
547 if (copy != NULL) {
548 FREE(copy, M_TEMP);
549 } else {
550 bp->b_flags |= B_INVAL;
551 brelse(bp);
552 }
553
554 *countp = blocksreleased;
555 return (allerror);
556 }
557