ffs_inode.c revision 1.55 1 /* $NetBSD: ffs_inode.c,v 1.55 2003/04/02 10:39:37 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.55 2003/04/02 10:39:37 fvdl Exp $");
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_ffs.h"
43 #include "opt_quota.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mount.h>
49 #include <sys/proc.h>
50 #include <sys/file.h>
51 #include <sys/buf.h>
52 #include <sys/vnode.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/trace.h>
56 #include <sys/resourcevar.h>
57
58 #include <ufs/ufs/quota.h>
59 #include <ufs/ufs/inode.h>
60 #include <ufs/ufs/ufsmount.h>
61 #include <ufs/ufs/ufs_extern.h>
62 #include <ufs/ufs/ufs_bswap.h>
63
64 #include <ufs/ffs/fs.h>
65 #include <ufs/ffs/ffs_extern.h>
66
67 static int ffs_indirtrunc __P((struct inode *, daddr_t, daddr_t,
68 daddr_t, int, int64_t *));
69
70 /*
71 * Update the access, modified, and inode change times as specified
72 * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
73 * The IN_MODIFIED flag is used to specify that the inode needs to be
74 * updated but that the times have already been set. The access
75 * and modified times are taken from the second and third parameters;
76 * the inode change time is always taken from the current time. If
77 * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
78 * softupdates, then wait for the disk write of the inode to complete.
79 */
80
81 int
82 ffs_update(v)
83 void *v;
84 {
85 struct vop_update_args /* {
86 struct vnode *a_vp;
87 struct timespec *a_access;
88 struct timespec *a_modify;
89 int a_flags;
90 } */ *ap = v;
91 struct fs *fs;
92 struct buf *bp;
93 struct inode *ip;
94 int error;
95 struct timespec ts;
96 caddr_t cp;
97 int waitfor, flags;
98
99 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
100 return (0);
101 ip = VTOI(ap->a_vp);
102 TIMEVAL_TO_TIMESPEC(&time, &ts);
103 FFS_ITIMES(ip,
104 ap->a_access ? ap->a_access : &ts,
105 ap->a_modify ? ap->a_modify : &ts, &ts);
106 flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
107 if (flags == 0)
108 return (0);
109 fs = ip->i_fs;
110
111 if ((flags & IN_MODIFIED) != 0 &&
112 (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
113 waitfor = ap->a_flags & UPDATE_WAIT;
114 if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp))
115 waitfor |= UPDATE_WAIT;
116 } else
117 waitfor = 0;
118
119 /*
120 * Ensure that uid and gid are correct. This is a temporary
121 * fix until fsck has been changed to do the update.
122 */
123 if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */
124 fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
125 ip->i_ffs1_ouid = ip->i_uid; /* XXX */
126 ip->i_ffs1_ogid = ip->i_gid; /* XXX */
127 } /* XXX */
128 error = bread(ip->i_devvp,
129 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
130 (int)fs->fs_bsize, NOCRED, &bp);
131 if (error) {
132 brelse(bp);
133 return (error);
134 }
135 ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
136 if (DOINGSOFTDEP(ap->a_vp))
137 softdep_update_inodeblock(ip, bp, waitfor);
138 else if (ip->i_ffs_effnlink != ip->i_nlink)
139 panic("ffs_update: bad link cnt");
140 if (fs->fs_magic == FS_UFS1_MAGIC) {
141 cp = (caddr_t)bp->b_data +
142 (ino_to_fsbo(fs, ip->i_number) * DINODE1_SIZE);
143 #ifdef FFS_EI
144 if (UFS_FSNEEDSWAP(fs))
145 ffs_dinode1_swap(ip->i_din.ffs1_din,
146 (struct ufs1_dinode *)cp);
147 else
148 #endif
149 memcpy(cp, ip->i_din.ffs1_din, DINODE1_SIZE);
150 } else {
151 cp = (caddr_t)bp->b_data +
152 (ino_to_fsbo(fs, ip->i_number) * DINODE2_SIZE);
153 #ifdef FFS_EI
154 if (UFS_FSNEEDSWAP(fs))
155 ffs_dinode2_swap(ip->i_din.ffs2_din,
156 (struct ufs2_dinode *)cp);
157 else
158 #endif
159 memcpy(cp, ip->i_din.ffs2_din, DINODE2_SIZE);
160 }
161 if (waitfor) {
162 return (bwrite(bp));
163 } else {
164 bdwrite(bp);
165 return (0);
166 }
167 }
168
169 #define SINGLE 0 /* index of single indirect block */
170 #define DOUBLE 1 /* index of double indirect block */
171 #define TRIPLE 2 /* index of triple indirect block */
172 /*
173 * Truncate the inode oip to at most length size, freeing the
174 * disk blocks.
175 */
176 int
177 ffs_truncate(v)
178 void *v;
179 {
180 struct vop_truncate_args /* {
181 struct vnode *a_vp;
182 off_t a_length;
183 int a_flags;
184 struct ucred *a_cred;
185 struct proc *a_p;
186 } */ *ap = v;
187 struct vnode *ovp = ap->a_vp;
188 struct genfs_node *gp = VTOG(ovp);
189 daddr_t lastblock;
190 struct inode *oip;
191 daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR];
192 daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
193 off_t length = ap->a_length;
194 struct fs *fs;
195 int offset, size, level;
196 int64_t count, blocksreleased = 0;
197 int i, ioflag, aflag, nblocks;
198 int error, allerror = 0;
199 off_t osize;
200
201 if (length < 0)
202 return (EINVAL);
203 oip = VTOI(ovp);
204 if (ovp->v_type == VLNK &&
205 (oip->i_size < ovp->v_mount->mnt_maxsymlinklen ||
206 (ovp->v_mount->mnt_maxsymlinklen == 0 &&
207 DIP(oip, blocks) == 0))) {
208 KDASSERT(length == 0);
209 memset(SHORTLINK(oip), 0, (size_t)oip->i_size);
210 oip->i_size = 0;
211 DIP(oip, size) = 0;
212 oip->i_flag |= IN_CHANGE | IN_UPDATE;
213 return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
214 }
215 if (oip->i_size == length) {
216 oip->i_flag |= IN_CHANGE | IN_UPDATE;
217 return (VOP_UPDATE(ovp, NULL, NULL, 0));
218 }
219 #ifdef QUOTA
220 if ((error = getinoquota(oip)) != 0)
221 return (error);
222 #endif
223 fs = oip->i_fs;
224 if (length > fs->fs_maxfilesize)
225 return (EFBIG);
226
227 osize = oip->i_size;
228 ioflag = ap->a_flags;
229 aflag = ioflag & IO_SYNC ? B_SYNC : 0;
230
231 /*
232 * Lengthen the size of the file. We must ensure that the
233 * last byte of the file is allocated. Since the smallest
234 * value of osize is 0, length will be at least 1.
235 */
236
237 if (osize < length) {
238 if (lblkno(fs, osize) < NDADDR &&
239 lblkno(fs, osize) != lblkno(fs, length) &&
240 blkroundup(fs, osize) != osize) {
241 error = ufs_balloc_range(ovp, osize,
242 blkroundup(fs, osize) - osize, ap->a_cred, aflag);
243 if (error) {
244 return error;
245 }
246 if (ioflag & IO_SYNC) {
247 ovp->v_size = blkroundup(fs, osize);
248 simple_lock(&ovp->v_interlock);
249 VOP_PUTPAGES(ovp,
250 trunc_page(osize & ~(fs->fs_bsize - 1)),
251 round_page(ovp->v_size),
252 PGO_CLEANIT | PGO_SYNCIO);
253 }
254 }
255 error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
256 aflag);
257 if (error) {
258 (void) VOP_TRUNCATE(ovp, osize, ioflag & IO_SYNC,
259 ap->a_cred, ap->a_p);
260 return error;
261 }
262 uvm_vnp_setsize(ovp, length);
263 oip->i_flag |= IN_CHANGE | IN_UPDATE;
264 KASSERT(ovp->v_size == oip->i_size);
265 return (VOP_UPDATE(ovp, NULL, NULL, 1));
266 }
267
268 /*
269 * When truncating a regular file down to a non-block-aligned size,
270 * we must zero the part of last block which is past the new EOF.
271 * We must synchronously flush the zeroed pages to disk
272 * since the new pages will be invalidated as soon as we
273 * inform the VM system of the new, smaller size.
274 * We must do this before acquiring the GLOCK, since fetching
275 * the pages will acquire the GLOCK internally.
276 * So there is a window where another thread could see a whole
277 * zeroed page past EOF, but that's life.
278 */
279
280 offset = blkoff(fs, length);
281 if (ovp->v_type == VREG && length < osize && offset != 0) {
282 voff_t eoz;
283
284 error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
285 aflag);
286 if (error) {
287 return error;
288 }
289 size = blksize(fs, oip, lblkno(fs, length));
290 eoz = MIN(lblktosize(fs, lblkno(fs, length)) + size, osize);
291 uvm_vnp_zerorange(ovp, length, eoz - length);
292 simple_lock(&ovp->v_interlock);
293 error = VOP_PUTPAGES(ovp, trunc_page(length), round_page(eoz),
294 PGO_CLEANIT | PGO_DEACTIVATE | PGO_SYNCIO);
295 if (error) {
296 return error;
297 }
298 }
299
300 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
301
302 if (DOINGSOFTDEP(ovp)) {
303 if (length > 0) {
304 /*
305 * If a file is only partially truncated, then
306 * we have to clean up the data structures
307 * describing the allocation past the truncation
308 * point. Finding and deallocating those structures
309 * is a lot of work. Since partial truncation occurs
310 * rarely, we solve the problem by syncing the file
311 * so that it will have no data structures left.
312 */
313 if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT,
314 0, 0, ap->a_p)) != 0) {
315 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
316 return (error);
317 }
318 if (oip->i_flag & IN_SPACECOUNTED)
319 fs->fs_pendingblocks -= DIP(oip, blocks);
320 } else {
321 uvm_vnp_setsize(ovp, length);
322 #ifdef QUOTA
323 (void) chkdq(oip, -DIP(oip, blocks), NOCRED, 0);
324 #endif
325 softdep_setup_freeblocks(oip, length, 0);
326 (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0);
327 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
328 oip->i_flag |= IN_CHANGE | IN_UPDATE;
329 return (VOP_UPDATE(ovp, NULL, NULL, 0));
330 }
331 }
332 if (oip->i_ump->um_fstype != UFS2 &&
333 oip->i_fs->fs_magic == FS_UFS2_MAGIC)
334 panic("fstype inconsistency (%ld)", oip->i_ump->um_fstype);
335 oip->i_size = length;
336 DIP(oip, size) = length;
337 uvm_vnp_setsize(ovp, length);
338 /*
339 * Calculate index into inode's block list of
340 * last direct and indirect blocks (if any)
341 * which we want to keep. Lastblock is -1 when
342 * the file is truncated to 0.
343 */
344 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
345 lastiblock[SINGLE] = lastblock - NDADDR;
346 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
347 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
348 nblocks = btodb(fs->fs_bsize);
349 /*
350 * Update file and block pointers on disk before we start freeing
351 * blocks. If we crash before free'ing blocks below, the blocks
352 * will be returned to the free list. lastiblock values are also
353 * normalized to -1 for calls to ffs_indirtrunc below.
354 */
355 for (level = TRIPLE; level >= SINGLE; level--) {
356 oldblks[NDADDR + level] = DIP(oip, ib[level]);
357 if (lastiblock[level] < 0) {
358 DIP(oip, ib[level]) = 0;
359 lastiblock[level] = -1;
360 }
361 }
362 for (i = 0; i < NDADDR; i++) {
363 oldblks[i] = DIP(oip, db[i]);
364 if (i > lastblock)
365 DIP(oip, db[i]) = 0;
366 }
367 oip->i_flag |= IN_CHANGE | IN_UPDATE;
368 error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT);
369 if (error && !allerror)
370 allerror = error;
371
372 /*
373 * Having written the new inode to disk, save its new configuration
374 * and put back the old block pointers long enough to process them.
375 * Note that we save the new block configuration so we can check it
376 * when we are done.
377 */
378 for (i = 0; i < NDADDR; i++) {
379 newblks[i] = DIP(oip, db[i]);
380 DIP(oip, db[i]) = oldblks[i];
381 }
382 for (i = 0; i < NIADDR; i++) {
383 newblks[NDADDR + i] = DIP(oip, ib[i]);
384 DIP(oip, ib[i]) = oldblks[NDADDR + i];
385 }
386
387 if (oip->i_ump->um_fstype != UFS2 &&
388 oip->i_fs->fs_magic == FS_UFS2_MAGIC)
389 panic("fstype inconsistency (%ld)", oip->i_ump->um_fstype);
390 oip->i_size = osize;
391 DIP(oip, size) = osize;
392 error = vtruncbuf(ovp, lastblock + 1, 0, 0);
393 if (error && !allerror)
394 allerror = error;
395
396 /*
397 * Indirect blocks first.
398 */
399 indir_lbn[SINGLE] = -NDADDR;
400 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
401 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
402 for (level = TRIPLE; level >= SINGLE; level--) {
403 if (oip->i_ump->um_fstype == UFS1)
404 bn = ufs_rw32(oip->i_ffs1_ib[level],UFS_FSNEEDSWAP(fs));
405 else
406 bn = ufs_rw64(oip->i_ffs2_ib[level],UFS_FSNEEDSWAP(fs));
407 if (bn != 0) {
408 error = ffs_indirtrunc(oip, indir_lbn[level],
409 fsbtodb(fs, bn), lastiblock[level], level, &count);
410 if (error)
411 allerror = error;
412 blocksreleased += count;
413 if (lastiblock[level] < 0) {
414 DIP(oip, ib[level]) = 0;
415 ffs_blkfree(oip, bn, fs->fs_bsize);
416 blocksreleased += nblocks;
417 }
418 }
419 if (lastiblock[level] >= 0)
420 goto done;
421 }
422
423 /*
424 * All whole direct blocks or frags.
425 */
426 for (i = NDADDR - 1; i > lastblock; i--) {
427 long bsize;
428
429 if (oip->i_ump->um_fstype == UFS1)
430 bn = ufs_rw32(oip->i_ffs1_db[i], UFS_FSNEEDSWAP(fs));
431 else
432 bn = ufs_rw64(oip->i_ffs2_db[i], UFS_FSNEEDSWAP(fs));
433 if (bn == 0)
434 continue;
435 DIP(oip, db[i]) = 0;
436 bsize = blksize(fs, oip, i);
437 ffs_blkfree(oip, bn, bsize);
438 blocksreleased += btodb(bsize);
439 }
440 if (lastblock < 0)
441 goto done;
442
443 /*
444 * Finally, look for a change in size of the
445 * last direct block; release any frags.
446 */
447 if (oip->i_ump->um_fstype == UFS1)
448 bn = ufs_rw32(oip->i_ffs1_db[lastblock], UFS_FSNEEDSWAP(fs));
449 else
450 bn = ufs_rw64(oip->i_ffs2_db[lastblock], UFS_FSNEEDSWAP(fs));
451 if (bn != 0) {
452 long oldspace, newspace;
453
454 /*
455 * Calculate amount of space we're giving
456 * back as old block size minus new block size.
457 */
458 oldspace = blksize(fs, oip, lastblock);
459 if (oip->i_ump->um_fstype != UFS2 &&
460 oip->i_fs->fs_magic == FS_UFS2_MAGIC)
461 panic("fstype inconsistency (%ld)", oip->i_ump->um_fstype);
462 oip->i_size = length;
463 DIP(oip, size) = length;
464 newspace = blksize(fs, oip, lastblock);
465 if (newspace == 0)
466 panic("itrunc: newspace");
467 if (oldspace - newspace > 0) {
468 /*
469 * Block number of space to be free'd is
470 * the old block # plus the number of frags
471 * required for the storage we're keeping.
472 */
473 bn += numfrags(fs, newspace);
474 ffs_blkfree(oip, bn, oldspace - newspace);
475 blocksreleased += btodb(oldspace - newspace);
476 }
477 }
478
479 done:
480 #ifdef DIAGNOSTIC
481 for (level = SINGLE; level <= TRIPLE; level++)
482 if (newblks[NDADDR + level] != DIP(oip, ib[level]))
483 panic("itrunc1");
484 for (i = 0; i < NDADDR; i++)
485 if (newblks[i] != DIP(oip, db[i]))
486 panic("itrunc2");
487 if (length == 0 &&
488 (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
489 panic("itrunc3");
490 #endif /* DIAGNOSTIC */
491 /*
492 * Put back the real size.
493 */
494 if (oip->i_ump->um_fstype != UFS2 &&
495 oip->i_fs->fs_magic == FS_UFS2_MAGIC)
496 panic("fstype inconsistency (%ld)", oip->i_ump->um_fstype);
497 oip->i_size = length;
498 DIP(oip, size) = length;
499 DIP(oip, blocks) -= blocksreleased;
500 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
501 oip->i_flag |= IN_CHANGE;
502 #ifdef QUOTA
503 (void) chkdq(oip, -blocksreleased, NOCRED, 0);
504 #endif
505 KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_size);
506 return (allerror);
507 }
508
509 /*
510 * Release blocks associated with the inode ip and stored in the indirect
511 * block bn. Blocks are free'd in LIFO order up to (but not including)
512 * lastbn. If level is greater than SINGLE, the block is an indirect block
513 * and recursive calls to indirtrunc must be used to cleanse other indirect
514 * blocks.
515 *
516 * NB: triple indirect blocks are untested.
517 */
518 static int
519 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
520 struct inode *ip;
521 daddr_t lbn, lastbn;
522 daddr_t dbn;
523 int level;
524 int64_t *countp;
525 {
526 int i;
527 struct buf *bp;
528 struct fs *fs = ip->i_fs;
529 int32_t *bap1 = NULL;
530 int64_t *bap2 = NULL;
531 struct vnode *vp;
532 daddr_t nb, nlbn, last;
533 char *copy = NULL;
534 int64_t blkcount, factor, blocksreleased = 0;
535 int nblocks;
536 int error = 0, allerror = 0;
537 #ifdef FFS_EI
538 const int needswap = UFS_FSNEEDSWAP(fs);
539 #endif
540 #define RBAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? \
541 ufs_rw32(bap1[i], needswap) : ufs_rw64(bap2[i], needswap))
542 #define BAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? bap1[i] : bap2[i])
543
544 /*
545 * Calculate index in current block of last
546 * block to be kept. -1 indicates the entire
547 * block so we need not calculate the index.
548 */
549 factor = 1;
550 for (i = SINGLE; i < level; i++)
551 factor *= NINDIR(fs);
552 last = lastbn;
553 if (lastbn > 0)
554 last /= factor;
555 nblocks = btodb(fs->fs_bsize);
556 /*
557 * Get buffer of block pointers, zero those entries corresponding
558 * to blocks to be free'd, and update on disk copy first. Since
559 * double(triple) indirect before single(double) indirect, calls
560 * to bmap on these blocks will fail. However, we already have
561 * the on disk address, so we have to set the b_blkno field
562 * explicitly instead of letting bread do everything for us.
563 */
564 vp = ITOV(ip);
565 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
566 if (bp->b_flags & (B_DONE | B_DELWRI)) {
567 /* Braces must be here in case trace evaluates to nothing. */
568 trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
569 } else {
570 trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
571 curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
572 bp->b_flags |= B_READ;
573 if (bp->b_bcount > bp->b_bufsize)
574 panic("ffs_indirtrunc: bad buffer size");
575 bp->b_blkno = dbn;
576 VOP_STRATEGY(bp);
577 error = biowait(bp);
578 }
579 if (error) {
580 brelse(bp);
581 *countp = 0;
582 return (error);
583 }
584
585 if (ip->i_ump->um_fstype == UFS1)
586 bap1 = (int32_t *)bp->b_data;
587 else
588 bap2 = (int64_t *)bp->b_data;
589 if (lastbn >= 0) {
590 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
591 memcpy((caddr_t)copy, bp->b_data, (u_int)fs->fs_bsize);
592 for (i = last + 1; i < NINDIR(fs); i++)
593 BAP(ip, i) = 0;
594 error = bwrite(bp);
595 if (error)
596 allerror = error;
597 if (ip->i_ump->um_fstype == UFS1)
598 bap1 = (int32_t *)copy;
599 else
600 bap2 = (int64_t *)copy;
601 }
602
603 /*
604 * Recursively free totally unused blocks.
605 */
606 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
607 i--, nlbn += factor) {
608 nb = RBAP(ip, i);
609 if (nb == 0)
610 continue;
611 if (level > SINGLE) {
612 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
613 (daddr_t)-1, level - 1,
614 &blkcount);
615 if (error)
616 allerror = error;
617 blocksreleased += blkcount;
618 }
619 ffs_blkfree(ip, nb, fs->fs_bsize);
620 blocksreleased += nblocks;
621 }
622
623 /*
624 * Recursively free last partial block.
625 */
626 if (level > SINGLE && lastbn >= 0) {
627 last = lastbn % factor;
628 nb = RBAP(ip, i);
629 if (nb != 0) {
630 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
631 last, level - 1, &blkcount);
632 if (error)
633 allerror = error;
634 blocksreleased += blkcount;
635 }
636 }
637
638 if (copy != NULL) {
639 FREE(copy, M_TEMP);
640 } else {
641 bp->b_flags |= B_INVAL;
642 brelse(bp);
643 }
644
645 *countp = blocksreleased;
646 return (allerror);
647 }
648