ffs_inode.c revision 1.86.2.4 1 /* $NetBSD: ffs_inode.c,v 1.86.2.4 2007/06/09 23:58:19 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.86.2.4 2007/06/09 23:58:19 ad Exp $");
36
37 #if defined(_KERNEL_OPT)
38 #include "opt_ffs.h"
39 #include "opt_quota.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mount.h>
45 #include <sys/proc.h>
46 #include <sys/file.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/trace.h>
52 #include <sys/resourcevar.h>
53 #include <sys/kauth.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63
64 static int ffs_indirtrunc(struct inode *, daddr_t, daddr_t, daddr_t, int,
65 int64_t *);
66
67 /*
68 * Update the access, modified, and inode change times as specified
69 * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
70 * The IN_MODIFIED flag is used to specify that the inode needs to be
71 * updated but that the times have already been set. The access
72 * and modified times are taken from the second and third parameters;
73 * the inode change time is always taken from the current time. If
74 * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
75 * softupdates, then wait for the disk write of the inode to complete.
76 */
77
78 int
79 ffs_update(struct vnode *vp, const struct timespec *acc,
80 const struct timespec *mod, int updflags)
81 {
82 struct fs *fs;
83 struct buf *bp;
84 struct inode *ip;
85 int error;
86 void *cp;
87 int waitfor, flags;
88
89 if (vp->v_mount->mnt_flag & MNT_RDONLY)
90 return (0);
91 ip = VTOI(vp);
92 FFS_ITIMES(ip, acc, mod, NULL);
93 if (updflags & UPDATE_CLOSE)
94 flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
95 else
96 flags = ip->i_flag & IN_MODIFIED;
97 if (flags == 0)
98 return (0);
99 fs = ip->i_fs;
100
101 if ((flags & IN_MODIFIED) != 0 &&
102 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
103 waitfor = updflags & UPDATE_WAIT;
104 if ((updflags & UPDATE_DIROP) && !DOINGSOFTDEP(vp))
105 waitfor |= UPDATE_WAIT;
106 } else
107 waitfor = 0;
108
109 /*
110 * Ensure that uid and gid are correct. This is a temporary
111 * fix until fsck has been changed to do the update.
112 */
113 if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */
114 fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
115 ip->i_ffs1_ouid = ip->i_uid; /* XXX */
116 ip->i_ffs1_ogid = ip->i_gid; /* XXX */
117 } /* XXX */
118 error = bread(ip->i_devvp,
119 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
120 (int)fs->fs_bsize, NOCRED, &bp);
121 if (error) {
122 brelse(bp, 0);
123 return (error);
124 }
125 ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
126 if (DOINGSOFTDEP(vp))
127 softdep_update_inodeblock(ip, bp, waitfor);
128 else if (ip->i_ffs_effnlink != ip->i_nlink)
129 panic("ffs_update: bad link cnt");
130 if (fs->fs_magic == FS_UFS1_MAGIC) {
131 cp = (char *)bp->b_data +
132 (ino_to_fsbo(fs, ip->i_number) * DINODE1_SIZE);
133 #ifdef FFS_EI
134 if (UFS_FSNEEDSWAP(fs))
135 ffs_dinode1_swap(ip->i_din.ffs1_din,
136 (struct ufs1_dinode *)cp);
137 else
138 #endif
139 memcpy(cp, ip->i_din.ffs1_din, DINODE1_SIZE);
140 } else {
141 cp = (char *)bp->b_data +
142 (ino_to_fsbo(fs, ip->i_number) * DINODE2_SIZE);
143 #ifdef FFS_EI
144 if (UFS_FSNEEDSWAP(fs))
145 ffs_dinode2_swap(ip->i_din.ffs2_din,
146 (struct ufs2_dinode *)cp);
147 else
148 #endif
149 memcpy(cp, ip->i_din.ffs2_din, DINODE2_SIZE);
150 }
151 if (waitfor) {
152 return (bwrite(bp));
153 } else {
154 bdwrite(bp);
155 return (0);
156 }
157 }
158
159 #define SINGLE 0 /* index of single indirect block */
160 #define DOUBLE 1 /* index of double indirect block */
161 #define TRIPLE 2 /* index of triple indirect block */
162 /*
163 * Truncate the inode oip to at most length size, freeing the
164 * disk blocks.
165 */
166 int
167 ffs_truncate(struct vnode *ovp, off_t length, int ioflag, kauth_cred_t cred,
168 struct lwp *l)
169 {
170 daddr_t lastblock;
171 struct inode *oip = VTOI(ovp);
172 daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR];
173 daddr_t blks[NDADDR + NIADDR];
174 struct fs *fs;
175 int offset, pgoffset, level;
176 int64_t count, blocksreleased = 0;
177 int i, aflag, nblocks;
178 int error, allerror = 0;
179 off_t osize;
180 int sync;
181 struct ufsmount *ump = oip->i_ump;
182
183 if (ovp->v_type == VCHR || ovp->v_type == VBLK ||
184 ovp->v_type == VFIFO || ovp->v_type == VSOCK) {
185 KASSERT(oip->i_size == 0);
186 return 0;
187 }
188
189 if (length < 0)
190 return (EINVAL);
191
192 if (ovp->v_type == VLNK &&
193 (oip->i_size < ump->um_maxsymlinklen ||
194 (ump->um_maxsymlinklen == 0 && DIP(oip, blocks) == 0))) {
195 KDASSERT(length == 0);
196 memset(SHORTLINK(oip), 0, (size_t)oip->i_size);
197 oip->i_size = 0;
198 DIP_ASSIGN(oip, size, 0);
199 oip->i_flag |= IN_CHANGE | IN_UPDATE;
200 return (ffs_update(ovp, NULL, NULL, 0));
201 }
202 if (oip->i_size == length) {
203 oip->i_flag |= IN_CHANGE | IN_UPDATE;
204 return (ffs_update(ovp, NULL, NULL, 0));
205 }
206 #ifdef QUOTA
207 if ((error = getinoquota(oip)) != 0)
208 return (error);
209 #endif
210 fs = oip->i_fs;
211 if (length > ump->um_maxfilesize)
212 return (EFBIG);
213
214 if ((oip->i_flags & SF_SNAPSHOT) != 0)
215 ffs_snapremove(ovp);
216
217 osize = oip->i_size;
218 aflag = ioflag & IO_SYNC ? B_SYNC : 0;
219
220 /*
221 * Lengthen the size of the file. We must ensure that the
222 * last byte of the file is allocated. Since the smallest
223 * value of osize is 0, length will be at least 1.
224 */
225
226 if (osize < length) {
227 if (lblkno(fs, osize) < NDADDR &&
228 lblkno(fs, osize) != lblkno(fs, length) &&
229 blkroundup(fs, osize) != osize) {
230 off_t eob;
231
232 eob = blkroundup(fs, osize);
233 uvm_vnp_setwritesize(ovp, eob);
234 error = ufs_balloc_range(ovp, osize, eob - osize,
235 cred, aflag);
236 if (error)
237 return error;
238 if (ioflag & IO_SYNC) {
239 mutex_enter(&ovp->v_interlock);
240 VOP_PUTPAGES(ovp,
241 trunc_page(osize & fs->fs_bmask),
242 round_page(eob), PGO_CLEANIT | PGO_SYNCIO);
243 }
244 }
245 uvm_vnp_setwritesize(ovp, length);
246 error = ufs_balloc_range(ovp, length - 1, 1, cred, aflag);
247 if (error) {
248 (void) ffs_truncate(ovp, osize, ioflag & IO_SYNC,
249 cred, l);
250 return (error);
251 }
252 uvm_vnp_setsize(ovp, length);
253 oip->i_flag |= IN_CHANGE | IN_UPDATE;
254 KASSERT(ovp->v_size == oip->i_size);
255 return (ffs_update(ovp, NULL, NULL, 0));
256 }
257
258 /*
259 * When truncating a regular file down to a non-block-aligned size,
260 * we must zero the part of last block which is past the new EOF.
261 * We must synchronously flush the zeroed pages to disk
262 * since the new pages will be invalidated as soon as we
263 * inform the VM system of the new, smaller size.
264 * We must do this before acquiring the GLOCK, since fetching
265 * the pages will acquire the GLOCK internally.
266 * So there is a window where another thread could see a whole
267 * zeroed page past EOF, but that's life.
268 */
269
270 offset = blkoff(fs, length);
271 pgoffset = length & PAGE_MASK;
272 if (ovp->v_type == VREG && (pgoffset != 0 || offset != 0) &&
273 osize > length) {
274 daddr_t lbn;
275 voff_t eoz;
276 int size;
277
278 if (offset != 0) {
279 error = ufs_balloc_range(ovp, length - 1, 1, cred,
280 aflag);
281 if (error)
282 return error;
283 }
284 lbn = lblkno(fs, length);
285 size = blksize(fs, oip, lbn);
286 eoz = MIN(MAX(lblktosize(fs, lbn) + size, round_page(pgoffset)),
287 osize);
288 uvm_vnp_zerorange(ovp, length, eoz - length);
289 if (round_page(eoz) > round_page(length)) {
290 mutex_enter(&ovp->v_interlock);
291 error = VOP_PUTPAGES(ovp, round_page(length),
292 round_page(eoz),
293 PGO_CLEANIT | PGO_DEACTIVATE |
294 ((ioflag & IO_SYNC) ? PGO_SYNCIO : 0));
295 if (error)
296 return error;
297 }
298 }
299
300 genfs_node_wrlock(ovp);
301
302 if (DOINGSOFTDEP(ovp)) {
303 if (length > 0) {
304 /*
305 * If a file is only partially truncated, then
306 * we have to clean up the data structures
307 * describing the allocation past the truncation
308 * point. Finding and deallocating those structures
309 * is a lot of work. Since partial truncation occurs
310 * rarely, we solve the problem by syncing the file
311 * so that it will have no data structures left.
312 */
313 if ((error = VOP_FSYNC(ovp, cred, FSYNC_WAIT,
314 0, 0, l)) != 0) {
315 genfs_node_unlock(ovp);
316 return (error);
317 }
318 mutex_enter(&ump->um_lock);
319 if (oip->i_flag & IN_SPACECOUNTED)
320 fs->fs_pendingblocks -= DIP(oip, blocks);
321 mutex_exit(&ump->um_lock);
322 } else {
323 uvm_vnp_setsize(ovp, length);
324 #ifdef QUOTA
325 (void) chkdq(oip, -DIP(oip, blocks), NOCRED, 0);
326 #endif
327 softdep_setup_freeblocks(oip, length, 0);
328 (void) vinvalbuf(ovp, 0, cred, l, 0, 0);
329 genfs_node_unlock(ovp);
330 oip->i_flag |= IN_CHANGE | IN_UPDATE;
331 return (ffs_update(ovp, NULL, NULL, 0));
332 }
333 }
334 oip->i_size = length;
335 DIP_ASSIGN(oip, size, length);
336 uvm_vnp_setsize(ovp, length);
337 /*
338 * Calculate index into inode's block list of
339 * last direct and indirect blocks (if any)
340 * which we want to keep. Lastblock is -1 when
341 * the file is truncated to 0.
342 */
343 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
344 lastiblock[SINGLE] = lastblock - NDADDR;
345 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
346 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
347 nblocks = btodb(fs->fs_bsize);
348 /*
349 * Update file and block pointers on disk before we start freeing
350 * blocks. If we crash before free'ing blocks below, the blocks
351 * will be returned to the free list. lastiblock values are also
352 * normalized to -1 for calls to ffs_indirtrunc below.
353 */
354 sync = 0;
355 for (level = TRIPLE; level >= SINGLE; level--) {
356 blks[NDADDR + level] = DIP(oip, ib[level]);
357 if (lastiblock[level] < 0 && blks[NDADDR + level] != 0) {
358 sync = 1;
359 DIP_ASSIGN(oip, ib[level], 0);
360 lastiblock[level] = -1;
361 }
362 }
363 for (i = 0; i < NDADDR; i++) {
364 blks[i] = DIP(oip, db[i]);
365 if (i > lastblock && blks[i] != 0) {
366 sync = 1;
367 DIP_ASSIGN(oip, db[i], 0);
368 }
369 }
370 oip->i_flag |= IN_CHANGE | IN_UPDATE;
371 if (sync) {
372 error = ffs_update(ovp, NULL, NULL, UPDATE_WAIT);
373 if (error && !allerror)
374 allerror = error;
375 }
376
377 /*
378 * Having written the new inode to disk, save its new configuration
379 * and put back the old block pointers long enough to process them.
380 * Note that we save the new block configuration so we can check it
381 * when we are done.
382 */
383 for (i = 0; i < NDADDR; i++) {
384 bn = DIP(oip, db[i]);
385 DIP_ASSIGN(oip, db[i], blks[i]);
386 blks[i] = bn;
387 }
388 for (i = 0; i < NIADDR; i++) {
389 bn = DIP(oip, ib[i]);
390 DIP_ASSIGN(oip, ib[i], blks[NDADDR + i]);
391 blks[NDADDR + i] = bn;
392 }
393
394 oip->i_size = osize;
395 DIP_ASSIGN(oip, size, osize);
396 error = vtruncbuf(ovp, lastblock + 1, 0, 0);
397 if (error && !allerror)
398 allerror = error;
399
400 /*
401 * Indirect blocks first.
402 */
403 indir_lbn[SINGLE] = -NDADDR;
404 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
405 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
406 for (level = TRIPLE; level >= SINGLE; level--) {
407 if (oip->i_ump->um_fstype == UFS1)
408 bn = ufs_rw32(oip->i_ffs1_ib[level],UFS_FSNEEDSWAP(fs));
409 else
410 bn = ufs_rw64(oip->i_ffs2_ib[level],UFS_FSNEEDSWAP(fs));
411 if (bn != 0) {
412 error = ffs_indirtrunc(oip, indir_lbn[level],
413 fsbtodb(fs, bn), lastiblock[level], level, &count);
414 if (error)
415 allerror = error;
416 blocksreleased += count;
417 if (lastiblock[level] < 0) {
418 DIP_ASSIGN(oip, ib[level], 0);
419 ffs_blkfree(fs, oip->i_devvp, bn, fs->fs_bsize,
420 oip->i_number);
421 blocksreleased += nblocks;
422 }
423 }
424 if (lastiblock[level] >= 0)
425 goto done;
426 }
427
428 /*
429 * All whole direct blocks or frags.
430 */
431 for (i = NDADDR - 1; i > lastblock; i--) {
432 long bsize;
433
434 if (oip->i_ump->um_fstype == UFS1)
435 bn = ufs_rw32(oip->i_ffs1_db[i], UFS_FSNEEDSWAP(fs));
436 else
437 bn = ufs_rw64(oip->i_ffs2_db[i], UFS_FSNEEDSWAP(fs));
438 if (bn == 0)
439 continue;
440 DIP_ASSIGN(oip, db[i], 0);
441 bsize = blksize(fs, oip, i);
442 ffs_blkfree(fs, oip->i_devvp, bn, bsize, oip->i_number);
443 blocksreleased += btodb(bsize);
444 }
445 if (lastblock < 0)
446 goto done;
447
448 /*
449 * Finally, look for a change in size of the
450 * last direct block; release any frags.
451 */
452 if (oip->i_ump->um_fstype == UFS1)
453 bn = ufs_rw32(oip->i_ffs1_db[lastblock], UFS_FSNEEDSWAP(fs));
454 else
455 bn = ufs_rw64(oip->i_ffs2_db[lastblock], UFS_FSNEEDSWAP(fs));
456 if (bn != 0) {
457 long oldspace, newspace;
458
459 /*
460 * Calculate amount of space we're giving
461 * back as old block size minus new block size.
462 */
463 oldspace = blksize(fs, oip, lastblock);
464 oip->i_size = length;
465 DIP_ASSIGN(oip, size, length);
466 newspace = blksize(fs, oip, lastblock);
467 if (newspace == 0)
468 panic("itrunc: newspace");
469 if (oldspace - newspace > 0) {
470 /*
471 * Block number of space to be free'd is
472 * the old block # plus the number of frags
473 * required for the storage we're keeping.
474 */
475 bn += numfrags(fs, newspace);
476 ffs_blkfree(fs, oip->i_devvp, bn, oldspace - newspace,
477 oip->i_number);
478 blocksreleased += btodb(oldspace - newspace);
479 }
480 }
481
482 done:
483 #ifdef DIAGNOSTIC
484 for (level = SINGLE; level <= TRIPLE; level++)
485 if (blks[NDADDR + level] != DIP(oip, ib[level]))
486 panic("itrunc1");
487 for (i = 0; i < NDADDR; i++)
488 if (blks[i] != DIP(oip, db[i]))
489 panic("itrunc2");
490 if (length == 0 &&
491 (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
492 panic("itrunc3");
493 #endif /* DIAGNOSTIC */
494 /*
495 * Put back the real size.
496 */
497 oip->i_size = length;
498 DIP_ASSIGN(oip, size, length);
499 DIP_ADD(oip, blocks, -blocksreleased);
500 genfs_node_unlock(ovp);
501 oip->i_flag |= IN_CHANGE;
502 #ifdef QUOTA
503 (void) chkdq(oip, -blocksreleased, NOCRED, 0);
504 #endif
505 KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_size);
506 return (allerror);
507 }
508
509 /*
510 * Release blocks associated with the inode ip and stored in the indirect
511 * block bn. Blocks are free'd in LIFO order up to (but not including)
512 * lastbn. If level is greater than SINGLE, the block is an indirect block
513 * and recursive calls to indirtrunc must be used to cleanse other indirect
514 * blocks.
515 *
516 * NB: triple indirect blocks are untested.
517 */
518 static int
519 ffs_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn, daddr_t lastbn,
520 int level, int64_t *countp)
521 {
522 int i;
523 struct buf *bp;
524 struct fs *fs = ip->i_fs;
525 int32_t *bap1 = NULL;
526 int64_t *bap2 = NULL;
527 struct vnode *vp;
528 daddr_t nb, nlbn, last;
529 char *copy = NULL;
530 int64_t blkcount, factor, blocksreleased = 0;
531 int nblocks;
532 int error = 0, allerror = 0;
533 #ifdef FFS_EI
534 const int needswap = UFS_FSNEEDSWAP(fs);
535 #endif
536 #define RBAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? \
537 ufs_rw32(bap1[i], needswap) : ufs_rw64(bap2[i], needswap))
538 #define BAP_ASSIGN(ip, i, value) \
539 do { \
540 if ((ip)->i_ump->um_fstype == UFS1) \
541 bap1[i] = (value); \
542 else \
543 bap2[i] = (value); \
544 } while(0)
545
546 /*
547 * Calculate index in current block of last
548 * block to be kept. -1 indicates the entire
549 * block so we need not calculate the index.
550 */
551 factor = 1;
552 for (i = SINGLE; i < level; i++)
553 factor *= NINDIR(fs);
554 last = lastbn;
555 if (lastbn > 0)
556 last /= factor;
557 nblocks = btodb(fs->fs_bsize);
558 /*
559 * Get buffer of block pointers, zero those entries corresponding
560 * to blocks to be free'd, and update on disk copy first. Since
561 * double(triple) indirect before single(double) indirect, calls
562 * to bmap on these blocks will fail. However, we already have
563 * the on disk address, so we have to set the b_blkno field
564 * explicitly instead of letting bread do everything for us.
565 */
566 vp = ITOV(ip);
567 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
568 mutex_enter(&bp->b_interlock);
569 if (bp->b_flags & (B_DONE | B_DELWRI)) {
570 /* Braces must be here in case trace evaluates to nothing. */
571 trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
572 mutex_exit(&bp->b_interlock);
573 } else {
574 trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
575 curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
576 bp->b_flags |= B_READ;
577 if (bp->b_bcount > bp->b_bufsize)
578 panic("ffs_indirtrunc: bad buffer size");
579 bp->b_blkno = dbn;
580 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
581 mutex_exit(&bp->b_interlock);
582 VOP_STRATEGY(vp, bp);
583 error = biowait(bp);
584 }
585 if (error) {
586 brelse(bp, 0);
587 *countp = 0;
588 return (error);
589 }
590
591 if (ip->i_ump->um_fstype == UFS1)
592 bap1 = (int32_t *)bp->b_data;
593 else
594 bap2 = (int64_t *)bp->b_data;
595 if (lastbn >= 0) {
596 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
597 memcpy((void *)copy, bp->b_data, (u_int)fs->fs_bsize);
598 for (i = last + 1; i < NINDIR(fs); i++)
599 BAP_ASSIGN(ip, i, 0);
600 error = bwrite(bp);
601 if (error)
602 allerror = error;
603 if (ip->i_ump->um_fstype == UFS1)
604 bap1 = (int32_t *)copy;
605 else
606 bap2 = (int64_t *)copy;
607 }
608
609 /*
610 * Recursively free totally unused blocks.
611 */
612 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
613 i--, nlbn += factor) {
614 nb = RBAP(ip, i);
615 if (nb == 0)
616 continue;
617 if (level > SINGLE) {
618 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
619 (daddr_t)-1, level - 1,
620 &blkcount);
621 if (error)
622 allerror = error;
623 blocksreleased += blkcount;
624 }
625 ffs_blkfree(fs, ip->i_devvp, nb, fs->fs_bsize, ip->i_number);
626 blocksreleased += nblocks;
627 }
628
629 /*
630 * Recursively free last partial block.
631 */
632 if (level > SINGLE && lastbn >= 0) {
633 last = lastbn % factor;
634 nb = RBAP(ip, i);
635 if (nb != 0) {
636 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
637 last, level - 1, &blkcount);
638 if (error)
639 allerror = error;
640 blocksreleased += blkcount;
641 }
642 }
643
644 if (copy != NULL) {
645 FREE(copy, M_TEMP);
646 } else {
647 brelse(bp, B_INVAL);
648 }
649
650 *countp = blocksreleased;
651 return (allerror);
652 }
653
654 void
655 ffs_itimes(struct inode *ip, const struct timespec *acc,
656 const struct timespec *mod, const struct timespec *cre)
657 {
658 struct timespec now;
659
660 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY))) {
661 return;
662 }
663
664 vfs_timestamp(&now);
665 if (ip->i_flag & IN_ACCESS) {
666 if (acc == NULL)
667 acc = &now;
668 DIP_ASSIGN(ip, atime, acc->tv_sec);
669 DIP_ASSIGN(ip, atimensec, acc->tv_nsec);
670 }
671 if (ip->i_flag & (IN_UPDATE | IN_MODIFY)) {
672 if ((ip->i_flags & SF_SNAPSHOT) == 0) {
673 if (mod == NULL)
674 mod = &now;
675 DIP_ASSIGN(ip, mtime, mod->tv_sec);
676 DIP_ASSIGN(ip, mtimensec, mod->tv_nsec);
677 }
678 ip->i_modrev++;
679 }
680 if (ip->i_flag & (IN_CHANGE | IN_MODIFY)) {
681 if (cre == NULL)
682 cre = &now;
683 DIP_ASSIGN(ip, ctime, cre->tv_sec);
684 DIP_ASSIGN(ip, ctimensec, cre->tv_nsec);
685 }
686 if (ip->i_flag & (IN_ACCESS | IN_MODIFY))
687 ip->i_flag |= IN_ACCESSED;
688 if (ip->i_flag & (IN_UPDATE | IN_CHANGE))
689 ip->i_flag |= IN_MODIFIED;
690 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
691 }
692