Home | History | Annotate | Line # | Download | only in ffs
ffs_vfsops.c revision 1.250
      1 /*	$NetBSD: ffs_vfsops.c,v 1.250 2009/07/31 20:58:50 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.250 2009/07/31 20:58:50 pooka Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_ffs.h"
     68 #include "opt_quota.h"
     69 #include "opt_wapbl.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/proc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/vnode.h>
     78 #include <sys/socket.h>
     79 #include <sys/mount.h>
     80 #include <sys/buf.h>
     81 #include <sys/device.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/file.h>
     84 #include <sys/disklabel.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/lock.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/conf.h>
     92 #include <sys/kauth.h>
     93 #include <sys/wapbl.h>
     94 #include <sys/fstrans.h>
     95 #include <sys/module.h>
     96 
     97 #include <miscfs/genfs/genfs.h>
     98 #include <miscfs/specfs/specdev.h>
     99 
    100 #include <ufs/ufs/quota.h>
    101 #include <ufs/ufs/ufsmount.h>
    102 #include <ufs/ufs/inode.h>
    103 #include <ufs/ufs/dir.h>
    104 #include <ufs/ufs/ufs_extern.h>
    105 #include <ufs/ufs/ufs_bswap.h>
    106 #include <ufs/ufs/ufs_wapbl.h>
    107 
    108 #include <ufs/ffs/fs.h>
    109 #include <ufs/ffs/ffs_extern.h>
    110 
    111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
    112 
    113 static int	ffs_vfs_fsync(vnode_t *, int);
    114 
    115 static struct sysctllog *ffs_sysctl_log;
    116 
    117 /* how many times ffs_init() was called */
    118 int ffs_initcount = 0;
    119 
    120 extern kmutex_t ufs_hashlock;
    121 
    122 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
    123 extern const struct vnodeopv_desc ffs_specop_opv_desc;
    124 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
    125 
    126 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
    127 	&ffs_vnodeop_opv_desc,
    128 	&ffs_specop_opv_desc,
    129 	&ffs_fifoop_opv_desc,
    130 	NULL,
    131 };
    132 
    133 struct vfsops ffs_vfsops = {
    134 	MOUNT_FFS,
    135 	sizeof (struct ufs_args),
    136 	ffs_mount,
    137 	ufs_start,
    138 	ffs_unmount,
    139 	ufs_root,
    140 	ufs_quotactl,
    141 	ffs_statvfs,
    142 	ffs_sync,
    143 	ffs_vget,
    144 	ffs_fhtovp,
    145 	ffs_vptofh,
    146 	ffs_init,
    147 	ffs_reinit,
    148 	ffs_done,
    149 	ffs_mountroot,
    150 	ffs_snapshot,
    151 	ffs_extattrctl,
    152 	ffs_suspendctl,
    153 	genfs_renamelock_enter,
    154 	genfs_renamelock_exit,
    155 	ffs_vfs_fsync,
    156 	ffs_vnodeopv_descs,
    157 	0,
    158 	{ NULL, NULL },
    159 };
    160 
    161 static const struct genfs_ops ffs_genfsops = {
    162 	.gop_size = ffs_gop_size,
    163 	.gop_alloc = ufs_gop_alloc,
    164 	.gop_write = genfs_gop_write,
    165 	.gop_markupdate = ufs_gop_markupdate,
    166 };
    167 
    168 static const struct ufs_ops ffs_ufsops = {
    169 	.uo_itimes = ffs_itimes,
    170 	.uo_update = ffs_update,
    171 	.uo_truncate = ffs_truncate,
    172 	.uo_valloc = ffs_valloc,
    173 	.uo_vfree = ffs_vfree,
    174 	.uo_balloc = ffs_balloc,
    175 	.uo_unmark_vnode = (void (*)(vnode_t *))nullop,
    176 };
    177 
    178 static int
    179 ffs_modcmd(modcmd_t cmd, void *arg)
    180 {
    181 	int error;
    182 
    183 #if 0
    184 	extern int doasyncfree;
    185 #endif
    186 	extern int ffs_log_changeopt;
    187 
    188 	switch (cmd) {
    189 	case MODULE_CMD_INIT:
    190 		error = vfs_attach(&ffs_vfsops);
    191 		if (error != 0)
    192 			break;
    193 
    194 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    195 			       CTLFLAG_PERMANENT,
    196 			       CTLTYPE_NODE, "vfs", NULL,
    197 			       NULL, 0, NULL, 0,
    198 			       CTL_VFS, CTL_EOL);
    199 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    200 			       CTLFLAG_PERMANENT,
    201 			       CTLTYPE_NODE, "ffs",
    202 			       SYSCTL_DESCR("Berkeley Fast File System"),
    203 			       NULL, 0, NULL, 0,
    204 			       CTL_VFS, 1, CTL_EOL);
    205 
    206 		/*
    207 		 * @@@ should we even bother with these first three?
    208 		 */
    209 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    210 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    211 			       CTLTYPE_INT, "doclusterread", NULL,
    212 			       sysctl_notavail, 0, NULL, 0,
    213 			       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
    214 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    215 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    216 			       CTLTYPE_INT, "doclusterwrite", NULL,
    217 			       sysctl_notavail, 0, NULL, 0,
    218 			       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
    219 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    220 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    221 			       CTLTYPE_INT, "doreallocblks", NULL,
    222 			       sysctl_notavail, 0, NULL, 0,
    223 			       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
    224 #if 0
    225 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    226 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    227 			       CTLTYPE_INT, "doasyncfree",
    228 			       SYSCTL_DESCR("Release dirty blocks asynchronously"),
    229 			       NULL, 0, &doasyncfree, 0,
    230 			       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
    231 #endif
    232 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    233 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    234 			       CTLTYPE_INT, "log_changeopt",
    235 			       SYSCTL_DESCR("Log changes in optimization strategy"),
    236 			       NULL, 0, &ffs_log_changeopt, 0,
    237 			       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
    238 		break;
    239 	case MODULE_CMD_FINI:
    240 		error = vfs_detach(&ffs_vfsops);
    241 		if (error != 0)
    242 			break;
    243 		sysctl_teardown(&ffs_sysctl_log);
    244 		break;
    245 	default:
    246 		error = ENOTTY;
    247 		break;
    248 	}
    249 
    250 	return (error);
    251 }
    252 
    253 pool_cache_t ffs_inode_cache;
    254 pool_cache_t ffs_dinode1_cache;
    255 pool_cache_t ffs_dinode2_cache;
    256 
    257 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
    258 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
    259 
    260 /*
    261  * Called by main() when ffs is going to be mounted as root.
    262  */
    263 
    264 int
    265 ffs_mountroot(void)
    266 {
    267 	struct fs *fs;
    268 	struct mount *mp;
    269 	struct lwp *l = curlwp;			/* XXX */
    270 	struct ufsmount *ump;
    271 	int error;
    272 
    273 	if (device_class(root_device) != DV_DISK)
    274 		return (ENODEV);
    275 
    276 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
    277 		vrele(rootvp);
    278 		return (error);
    279 	}
    280 
    281 	/*
    282 	 * We always need to be able to mount the root file system.
    283 	 */
    284 	mp->mnt_flag |= MNT_FORCE;
    285 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
    286 		vfs_unbusy(mp, false, NULL);
    287 		vfs_destroy(mp);
    288 		return (error);
    289 	}
    290 	mp->mnt_flag &= ~MNT_FORCE;
    291 	mutex_enter(&mountlist_lock);
    292 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    293 	mutex_exit(&mountlist_lock);
    294 	ump = VFSTOUFS(mp);
    295 	fs = ump->um_fs;
    296 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
    297 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
    298 	(void)ffs_statvfs(mp, &mp->mnt_stat);
    299 	vfs_unbusy(mp, false, NULL);
    300 	setrootfstime((time_t)fs->fs_time);
    301 	return (0);
    302 }
    303 
    304 /*
    305  * VFS Operations.
    306  *
    307  * mount system call
    308  */
    309 int
    310 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    311 {
    312 	struct lwp *l = curlwp;
    313 	struct vnode *devvp = NULL;
    314 	struct ufs_args *args = data;
    315 	struct ufsmount *ump = NULL;
    316 	struct fs *fs;
    317 	int error = 0, flags, update;
    318 	mode_t accessmode;
    319 
    320 	if (*data_len < sizeof *args)
    321 		return EINVAL;
    322 
    323 	if (mp->mnt_flag & MNT_GETARGS) {
    324 		ump = VFSTOUFS(mp);
    325 		if (ump == NULL)
    326 			return EIO;
    327 		args->fspec = NULL;
    328 		*data_len = sizeof *args;
    329 		return 0;
    330 	}
    331 
    332 	update = mp->mnt_flag & MNT_UPDATE;
    333 
    334 	/* Check arguments */
    335 	if (args->fspec != NULL) {
    336 		/*
    337 		 * Look up the name and verify that it's sane.
    338 		 */
    339 		error = namei_simple_user(args->fspec,
    340 					NSM_FOLLOW_NOEMULROOT, &devvp);
    341 		if (error != 0)
    342 			return (error);
    343 
    344 		if (!update) {
    345 			/*
    346 			 * Be sure this is a valid block device
    347 			 */
    348 			if (devvp->v_type != VBLK)
    349 				error = ENOTBLK;
    350 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    351 				error = ENXIO;
    352 		} else {
    353 			/*
    354 			 * Be sure we're still naming the same device
    355 			 * used for our initial mount
    356 			 */
    357 			ump = VFSTOUFS(mp);
    358 			if (devvp != ump->um_devvp) {
    359 				if (devvp->v_rdev != ump->um_devvp->v_rdev)
    360 					error = EINVAL;
    361 				else {
    362 					vrele(devvp);
    363 					devvp = ump->um_devvp;
    364 					vref(devvp);
    365 				}
    366 			}
    367 		}
    368 	} else {
    369 		if (!update) {
    370 			/* New mounts must have a filename for the device */
    371 			return (EINVAL);
    372 		} else {
    373 			/* Use the extant mount */
    374 			ump = VFSTOUFS(mp);
    375 			devvp = ump->um_devvp;
    376 			vref(devvp);
    377 		}
    378 	}
    379 
    380 	/*
    381 	 * If mount by non-root, then verify that user has necessary
    382 	 * permissions on the device.
    383 	 *
    384 	 * Permission to update a mount is checked higher, so here we presume
    385 	 * updating the mount is okay (for example, as far as securelevel goes)
    386 	 * which leaves us with the normal check.
    387 	 */
    388 	if (error == 0) {
    389 		accessmode = VREAD;
    390 		if (update ?
    391 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    392 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    393 			accessmode |= VWRITE;
    394 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    395 		error = genfs_can_mount(devvp, accessmode, l->l_cred);
    396 		VOP_UNLOCK(devvp, 0);
    397 	}
    398 
    399 	if (error) {
    400 		vrele(devvp);
    401 		return (error);
    402 	}
    403 
    404 #ifdef WAPBL
    405 	/* WAPBL can only be enabled on a r/w mount. */
    406 	if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
    407 		mp->mnt_flag &= ~MNT_LOG;
    408 	}
    409 #else /* !WAPBL */
    410 	mp->mnt_flag &= ~MNT_LOG;
    411 #endif /* !WAPBL */
    412 
    413 	if (!update) {
    414 		int xflags;
    415 
    416 		if (mp->mnt_flag & MNT_RDONLY)
    417 			xflags = FREAD;
    418 		else
    419 			xflags = FREAD | FWRITE;
    420 		error = VOP_OPEN(devvp, xflags, FSCRED);
    421 		if (error)
    422 			goto fail;
    423 		error = ffs_mountfs(devvp, mp, l);
    424 		if (error) {
    425 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    426 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
    427 			VOP_UNLOCK(devvp, 0);
    428 			goto fail;
    429 		}
    430 
    431 		ump = VFSTOUFS(mp);
    432 		fs = ump->um_fs;
    433 	} else {
    434 		/*
    435 		 * Update the mount.
    436 		 */
    437 
    438 		/*
    439 		 * The initial mount got a reference on this
    440 		 * device, so drop the one obtained via
    441 		 * namei(), above.
    442 		 */
    443 		vrele(devvp);
    444 
    445 		ump = VFSTOUFS(mp);
    446 		fs = ump->um_fs;
    447 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    448 			/*
    449 			 * Changing from r/w to r/o
    450 			 */
    451 			flags = WRITECLOSE;
    452 			if (mp->mnt_flag & MNT_FORCE)
    453 				flags |= FORCECLOSE;
    454 			error = ffs_flushfiles(mp, flags, l);
    455 			if (error == 0)
    456 				error = UFS_WAPBL_BEGIN(mp);
    457 			if (error == 0 &&
    458 			    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
    459 			    fs->fs_clean & FS_WASCLEAN) {
    460 				if (mp->mnt_flag & MNT_SOFTDEP)
    461 					fs->fs_flags &= ~FS_DOSOFTDEP;
    462 				fs->fs_clean = FS_ISCLEAN;
    463 				(void) ffs_sbupdate(ump, MNT_WAIT);
    464 			}
    465 			if (error == 0)
    466 				UFS_WAPBL_END(mp);
    467 			if (error)
    468 				return (error);
    469 		}
    470 
    471 #ifdef WAPBL
    472 		if ((mp->mnt_flag & MNT_LOG) == 0) {
    473 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
    474 			if (error)
    475 				return error;
    476 		}
    477 #endif /* WAPBL */
    478 
    479 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    480 			/*
    481 			 * Finish change from r/w to r/o
    482 			 */
    483 			fs->fs_ronly = 1;
    484 			fs->fs_fmod = 0;
    485 		}
    486 
    487 		if (mp->mnt_flag & MNT_RELOAD) {
    488 			error = ffs_reload(mp, l->l_cred, l);
    489 			if (error)
    490 				return (error);
    491 		}
    492 
    493 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    494 			/*
    495 			 * Changing from read-only to read/write
    496 			 */
    497 			fs->fs_ronly = 0;
    498 			fs->fs_clean <<= 1;
    499 			fs->fs_fmod = 1;
    500 #ifdef WAPBL
    501 			if (fs->fs_flags & FS_DOWAPBL) {
    502 				printf("%s: replaying log to disk\n",
    503 				    fs->fs_fsmnt);
    504 				KDASSERT(mp->mnt_wapbl_replay);
    505 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    506 							   devvp);
    507 				if (error) {
    508 					return error;
    509 				}
    510 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    511 				fs->fs_clean = FS_WASCLEAN;
    512 			}
    513 #endif /* WAPBL */
    514 			if (fs->fs_snapinum[0] != 0)
    515 				ffs_snapshot_mount(mp);
    516 		}
    517 
    518 #ifdef WAPBL
    519 		error = ffs_wapbl_start(mp);
    520 		if (error)
    521 			return error;
    522 #endif /* WAPBL */
    523 
    524 		if (args->fspec == NULL)
    525 			return 0;
    526 	}
    527 
    528 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    529 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    530 	if (error == 0)
    531 		(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
    532 		    sizeof(fs->fs_fsmnt));
    533 	fs->fs_flags &= ~FS_DOSOFTDEP;
    534 	if (fs->fs_fmod != 0) {	/* XXX */
    535 		int err;
    536 
    537 		fs->fs_fmod = 0;
    538 		if (fs->fs_clean & FS_WASCLEAN)
    539 			fs->fs_time = time_second;
    540 		else {
    541 			printf("%s: file system not clean (fs_clean=%#x); "
    542 			    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
    543 			    fs->fs_clean);
    544 			printf("%s: lost blocks %" PRId64 " files %d\n",
    545 			    mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
    546 			    fs->fs_pendinginodes);
    547 		}
    548 		err = UFS_WAPBL_BEGIN(mp);
    549 		if (err == 0) {
    550 			(void) ffs_cgupdate(ump, MNT_WAIT);
    551 			UFS_WAPBL_END(mp);
    552 		}
    553 	}
    554 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
    555 		printf("%s: `-o softdep' is no longer supported, "
    556 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
    557 		mp->mnt_flag &= ~MNT_SOFTDEP;
    558 	}
    559 
    560 	return (error);
    561 
    562 fail:
    563 	vrele(devvp);
    564 	return (error);
    565 }
    566 
    567 /*
    568  * Reload all incore data for a filesystem (used after running fsck on
    569  * the root filesystem and finding things to fix). The filesystem must
    570  * be mounted read-only.
    571  *
    572  * Things to do to update the mount:
    573  *	1) invalidate all cached meta-data.
    574  *	2) re-read superblock from disk.
    575  *	3) re-read summary information from disk.
    576  *	4) invalidate all inactive vnodes.
    577  *	5) invalidate all cached file data.
    578  *	6) re-read inode data for all active vnodes.
    579  */
    580 int
    581 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
    582 {
    583 	struct vnode *vp, *mvp, *devvp;
    584 	struct inode *ip;
    585 	void *space;
    586 	struct buf *bp;
    587 	struct fs *fs, *newfs;
    588 	struct partinfo dpart;
    589 	int i, blks, size, error;
    590 	int32_t *lp;
    591 	struct ufsmount *ump;
    592 	daddr_t sblockloc;
    593 
    594 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
    595 		return (EINVAL);
    596 
    597 	ump = VFSTOUFS(mp);
    598 	/*
    599 	 * Step 1: invalidate all cached meta-data.
    600 	 */
    601 	devvp = ump->um_devvp;
    602 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    603 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
    604 	VOP_UNLOCK(devvp, 0);
    605 	if (error)
    606 		panic("ffs_reload: dirty1");
    607 	/*
    608 	 * Step 2: re-read superblock from disk.
    609 	 */
    610 	fs = ump->um_fs;
    611 	if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED) != 0)
    612 		size = DEV_BSIZE;
    613 	else
    614 		size = dpart.disklab->d_secsize;
    615 	/* XXX we don't handle possibility that superblock moved. */
    616 	error = bread(devvp, fs->fs_sblockloc / size, fs->fs_sbsize,
    617 		      NOCRED, 0, &bp);
    618 	if (error) {
    619 		brelse(bp, 0);
    620 		return (error);
    621 	}
    622 	newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
    623 	memcpy(newfs, bp->b_data, fs->fs_sbsize);
    624 #ifdef FFS_EI
    625 	if (ump->um_flags & UFS_NEEDSWAP) {
    626 		ffs_sb_swap((struct fs*)bp->b_data, newfs);
    627 		fs->fs_flags |= FS_SWAPPED;
    628 	} else
    629 #endif
    630 		fs->fs_flags &= ~FS_SWAPPED;
    631 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
    632 	     newfs->fs_magic != FS_UFS2_MAGIC)||
    633 	     newfs->fs_bsize > MAXBSIZE ||
    634 	     newfs->fs_bsize < sizeof(struct fs)) {
    635 		brelse(bp, 0);
    636 		free(newfs, M_UFSMNT);
    637 		return (EIO);		/* XXX needs translation */
    638 	}
    639 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
    640 	sblockloc = fs->fs_sblockloc;
    641 	/*
    642 	 * Copy pointer fields back into superblock before copying in	XXX
    643 	 * new superblock. These should really be in the ufsmount.	XXX
    644 	 * Note that important parameters (eg fs_ncg) are unchanged.
    645 	 */
    646 	newfs->fs_csp = fs->fs_csp;
    647 	newfs->fs_maxcluster = fs->fs_maxcluster;
    648 	newfs->fs_contigdirs = fs->fs_contigdirs;
    649 	newfs->fs_ronly = fs->fs_ronly;
    650 	newfs->fs_active = fs->fs_active;
    651 	memcpy(fs, newfs, (u_int)fs->fs_sbsize);
    652 	brelse(bp, 0);
    653 	free(newfs, M_UFSMNT);
    654 
    655 	/* Recheck for apple UFS filesystem */
    656 	ump->um_flags &= ~UFS_ISAPPLEUFS;
    657 	/* First check to see if this is tagged as an Apple UFS filesystem
    658 	 * in the disklabel
    659 	 */
    660 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
    661 		(dpart.part->p_fstype == FS_APPLEUFS)) {
    662 		ump->um_flags |= UFS_ISAPPLEUFS;
    663 	}
    664 #ifdef APPLE_UFS
    665 	else {
    666 		/* Manually look for an apple ufs label, and if a valid one
    667 		 * is found, then treat it like an Apple UFS filesystem anyway
    668 		 */
    669 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size),
    670 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
    671 		if (error) {
    672 			brelse(bp, 0);
    673 			return (error);
    674 		}
    675 		error = ffs_appleufs_validate(fs->fs_fsmnt,
    676 			(struct appleufslabel *)bp->b_data, NULL);
    677 		if (error == 0)
    678 			ump->um_flags |= UFS_ISAPPLEUFS;
    679 		brelse(bp, 0);
    680 		bp = NULL;
    681 	}
    682 #else
    683 	if (ump->um_flags & UFS_ISAPPLEUFS)
    684 		return (EIO);
    685 #endif
    686 
    687 	if (UFS_MPISAPPLEUFS(ump)) {
    688 		/* see comment about NeXT below */
    689 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
    690 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
    691 		mp->mnt_iflag |= IMNT_DTYPE;
    692 	} else {
    693 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
    694 		ump->um_dirblksiz = DIRBLKSIZ;
    695 		if (ump->um_maxsymlinklen > 0)
    696 			mp->mnt_iflag |= IMNT_DTYPE;
    697 		else
    698 			mp->mnt_iflag &= ~IMNT_DTYPE;
    699 	}
    700 	ffs_oldfscompat_read(fs, ump, sblockloc);
    701 
    702 	mutex_enter(&ump->um_lock);
    703 	ump->um_maxfilesize = fs->fs_maxfilesize;
    704 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    705 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    706 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    707 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    708 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    709 			mutex_exit(&ump->um_lock);
    710 			return (EINVAL);
    711 		}
    712 	}
    713 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
    714 		fs->fs_pendingblocks = 0;
    715 		fs->fs_pendinginodes = 0;
    716 	}
    717 	mutex_exit(&ump->um_lock);
    718 
    719 	ffs_statvfs(mp, &mp->mnt_stat);
    720 	/*
    721 	 * Step 3: re-read summary information from disk.
    722 	 */
    723 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
    724 	space = fs->fs_csp;
    725 	for (i = 0; i < blks; i += fs->fs_frag) {
    726 		size = fs->fs_bsize;
    727 		if (i + fs->fs_frag > blks)
    728 			size = (blks - i) * fs->fs_fsize;
    729 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
    730 			      NOCRED, 0, &bp);
    731 		if (error) {
    732 			brelse(bp, 0);
    733 			return (error);
    734 		}
    735 #ifdef FFS_EI
    736 		if (UFS_FSNEEDSWAP(fs))
    737 			ffs_csum_swap((struct csum *)bp->b_data,
    738 			    (struct csum *)space, size);
    739 		else
    740 #endif
    741 			memcpy(space, bp->b_data, (size_t)size);
    742 		space = (char *)space + size;
    743 		brelse(bp, 0);
    744 	}
    745 	if (fs->fs_snapinum[0] != 0)
    746 		ffs_snapshot_mount(mp);
    747 	/*
    748 	 * We no longer know anything about clusters per cylinder group.
    749 	 */
    750 	if (fs->fs_contigsumsize > 0) {
    751 		lp = fs->fs_maxcluster;
    752 		for (i = 0; i < fs->fs_ncg; i++)
    753 			*lp++ = fs->fs_contigsumsize;
    754 	}
    755 
    756 	/* Allocate a marker vnode. */
    757 	if ((mvp = vnalloc(mp)) == NULL)
    758 		return ENOMEM;
    759 	/*
    760 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
    761 	 * and vclean() can be called indirectly
    762 	 */
    763 	mutex_enter(&mntvnode_lock);
    764  loop:
    765 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
    766 		vmark(mvp, vp);
    767 		if (vp->v_mount != mp || vismarker(vp))
    768 			continue;
    769 		/*
    770 		 * Step 4: invalidate all inactive vnodes.
    771 		 */
    772 		if (vrecycle(vp, &mntvnode_lock, l)) {
    773 			mutex_enter(&mntvnode_lock);
    774 			(void)vunmark(mvp);
    775 			goto loop;
    776 		}
    777 		/*
    778 		 * Step 5: invalidate all cached file data.
    779 		 */
    780 		mutex_enter(&vp->v_interlock);
    781 		mutex_exit(&mntvnode_lock);
    782 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
    783 			(void)vunmark(mvp);
    784 			goto loop;
    785 		}
    786 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
    787 			panic("ffs_reload: dirty2");
    788 		/*
    789 		 * Step 6: re-read inode data for all active vnodes.
    790 		 */
    791 		ip = VTOI(vp);
    792 		error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
    793 			      (int)fs->fs_bsize, NOCRED, 0, &bp);
    794 		if (error) {
    795 			brelse(bp, 0);
    796 			vput(vp);
    797 			(void)vunmark(mvp);
    798 			break;
    799 		}
    800 		ffs_load_inode(bp, ip, fs, ip->i_number);
    801 		brelse(bp, 0);
    802 		vput(vp);
    803 		mutex_enter(&mntvnode_lock);
    804 	}
    805 	mutex_exit(&mntvnode_lock);
    806 	vnfree(mvp);
    807 	return (error);
    808 }
    809 
    810 /*
    811  * Possible superblock locations ordered from most to least likely.
    812  */
    813 static const int sblock_try[] = SBLOCKSEARCH;
    814 
    815 /*
    816  * Common code for mount and mountroot
    817  */
    818 int
    819 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    820 {
    821 	struct ufsmount *ump;
    822 	struct buf *bp;
    823 	struct fs *fs;
    824 	dev_t dev;
    825 	struct partinfo dpart;
    826 	void *space;
    827 	daddr_t sblockloc, fsblockloc;
    828 	int blks, fstype;
    829 	int error, i, size, ronly, bset = 0;
    830 #ifdef FFS_EI
    831 	int needswap = 0;		/* keep gcc happy */
    832 #endif
    833 	int32_t *lp;
    834 	kauth_cred_t cred;
    835 	u_int32_t sbsize = 8192;	/* keep gcc happy*/
    836 
    837 	dev = devvp->v_rdev;
    838 	cred = l ? l->l_cred : NOCRED;
    839 
    840 	/* Flush out any old buffers remaining from a previous use. */
    841 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    842 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    843 	VOP_UNLOCK(devvp, 0);
    844 	if (error)
    845 		return (error);
    846 
    847 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    848 	if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
    849 		size = DEV_BSIZE;
    850 	else
    851 		size = dpart.disklab->d_secsize;
    852 
    853 	bp = NULL;
    854 	ump = NULL;
    855 	fs = NULL;
    856 	sblockloc = 0;
    857 	fstype = 0;
    858 
    859 	error = fstrans_mount(mp);
    860 	if (error)
    861 		return error;
    862 
    863 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
    864 	memset(ump, 0, sizeof *ump);
    865 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
    866 	error = ffs_snapshot_init(ump);
    867 	if (error)
    868 		goto out;
    869 	ump->um_ops = &ffs_ufsops;
    870 
    871 #ifdef WAPBL
    872  sbagain:
    873 #endif
    874 	/*
    875 	 * Try reading the superblock in each of its possible locations.
    876 	 */
    877 	for (i = 0; ; i++) {
    878 		if (bp != NULL) {
    879 			brelse(bp, BC_NOCACHE);
    880 			bp = NULL;
    881 		}
    882 		if (sblock_try[i] == -1) {
    883 			error = EINVAL;
    884 			fs = NULL;
    885 			goto out;
    886 		}
    887 		error = bread(devvp, sblock_try[i] / size, SBLOCKSIZE, cred,
    888 			      0, &bp);
    889 		if (error) {
    890 			fs = NULL;
    891 			goto out;
    892 		}
    893 		fs = (struct fs*)bp->b_data;
    894 		fsblockloc = sblockloc = sblock_try[i];
    895 		if (fs->fs_magic == FS_UFS1_MAGIC) {
    896 			sbsize = fs->fs_sbsize;
    897 			fstype = UFS1;
    898 #ifdef FFS_EI
    899 			needswap = 0;
    900 		} else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
    901 			sbsize = bswap32(fs->fs_sbsize);
    902 			fstype = UFS1;
    903 			needswap = 1;
    904 #endif
    905 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
    906 			sbsize = fs->fs_sbsize;
    907 			fstype = UFS2;
    908 #ifdef FFS_EI
    909 			needswap = 0;
    910 		} else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
    911 			sbsize = bswap32(fs->fs_sbsize);
    912 			fstype = UFS2;
    913 			needswap = 1;
    914 #endif
    915 		} else
    916 			continue;
    917 
    918 
    919 		/* fs->fs_sblockloc isn't defined for old filesystems */
    920 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
    921 			if (sblockloc == SBLOCK_UFS2)
    922 				/*
    923 				 * This is likely to be the first alternate
    924 				 * in a filesystem with 64k blocks.
    925 				 * Don't use it.
    926 				 */
    927 				continue;
    928 			fsblockloc = sblockloc;
    929 		} else {
    930 			fsblockloc = fs->fs_sblockloc;
    931 #ifdef FFS_EI
    932 			if (needswap)
    933 				fsblockloc = bswap64(fsblockloc);
    934 #endif
    935 		}
    936 
    937 		/* Check we haven't found an alternate superblock */
    938 		if (fsblockloc != sblockloc)
    939 			continue;
    940 
    941 		/* Validate size of superblock */
    942 		if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
    943 			continue;
    944 
    945 		/* Ok seems to be a good superblock */
    946 		break;
    947 	}
    948 
    949 	fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
    950 	memcpy(fs, bp->b_data, sbsize);
    951 	ump->um_fs = fs;
    952 
    953 #ifdef FFS_EI
    954 	if (needswap) {
    955 		ffs_sb_swap((struct fs*)bp->b_data, fs);
    956 		fs->fs_flags |= FS_SWAPPED;
    957 	} else
    958 #endif
    959 		fs->fs_flags &= ~FS_SWAPPED;
    960 
    961 #ifdef WAPBL
    962 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
    963 		error = ffs_wapbl_replay_start(mp, fs, devvp);
    964 		if (error)
    965 			goto out;
    966 
    967 		if (!ronly) {
    968 			/* XXX fsmnt may be stale. */
    969 			printf("%s: replaying log to disk\n", fs->fs_fsmnt);
    970 			error = wapbl_replay_write(mp->mnt_wapbl_replay, devvp);
    971 			if (error)
    972 				goto out;
    973 			wapbl_replay_stop(mp->mnt_wapbl_replay);
    974 			fs->fs_clean = FS_WASCLEAN;
    975 		} else {
    976 			/* XXX fsmnt may be stale */
    977 			printf("%s: replaying log to memory\n", fs->fs_fsmnt);
    978 		}
    979 
    980 		/* Force a re-read of the superblock */
    981 		brelse(bp, BC_INVAL);
    982 		bp = NULL;
    983 		free(fs, M_UFSMNT);
    984 		fs = NULL;
    985 		goto sbagain;
    986 	}
    987 #else /* !WAPBL */
    988 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
    989 		error = EPERM;
    990 		goto out;
    991 	}
    992 #endif /* !WAPBL */
    993 
    994 	ffs_oldfscompat_read(fs, ump, sblockloc);
    995 	ump->um_maxfilesize = fs->fs_maxfilesize;
    996 
    997 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    998 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    999 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
   1000 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1001 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1002 			error = EINVAL;
   1003 			goto out;
   1004 		}
   1005 	}
   1006 
   1007 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
   1008 		fs->fs_pendingblocks = 0;
   1009 		fs->fs_pendinginodes = 0;
   1010 	}
   1011 
   1012 	ump->um_fstype = fstype;
   1013 	if (fs->fs_sbsize < SBLOCKSIZE)
   1014 		brelse(bp, BC_INVAL);
   1015 	else
   1016 		brelse(bp, 0);
   1017 	bp = NULL;
   1018 
   1019 	/* First check to see if this is tagged as an Apple UFS filesystem
   1020 	 * in the disklabel
   1021 	 */
   1022 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
   1023 		(dpart.part->p_fstype == FS_APPLEUFS)) {
   1024 		ump->um_flags |= UFS_ISAPPLEUFS;
   1025 	}
   1026 #ifdef APPLE_UFS
   1027 	else {
   1028 		/* Manually look for an apple ufs label, and if a valid one
   1029 		 * is found, then treat it like an Apple UFS filesystem anyway
   1030 		 */
   1031 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size),
   1032 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
   1033 		if (error)
   1034 			goto out;
   1035 		error = ffs_appleufs_validate(fs->fs_fsmnt,
   1036 			(struct appleufslabel *)bp->b_data, NULL);
   1037 		if (error == 0) {
   1038 			ump->um_flags |= UFS_ISAPPLEUFS;
   1039 		}
   1040 		brelse(bp, 0);
   1041 		bp = NULL;
   1042 	}
   1043 #else
   1044 	if (ump->um_flags & UFS_ISAPPLEUFS) {
   1045 		error = EINVAL;
   1046 		goto out;
   1047 	}
   1048 #endif
   1049 
   1050 #if 0
   1051 /*
   1052  * XXX This code changes the behaviour of mounting dirty filesystems, to
   1053  * XXX require "mount -f ..." to mount them.  This doesn't match what
   1054  * XXX mount(8) describes and is disabled for now.
   1055  */
   1056 	/*
   1057 	 * If the file system is not clean, don't allow it to be mounted
   1058 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
   1059 	 * for the root file system.)
   1060 	 */
   1061 	if (fs->fs_flags & FS_DOWAPBL) {
   1062 		/*
   1063 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
   1064 		 * bit is set, although there's a window in unmount where it
   1065 		 * could be FS_ISCLEAN
   1066 		 */
   1067 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
   1068 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
   1069 			error = EPERM;
   1070 			goto out;
   1071 		}
   1072 	} else
   1073 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
   1074 		    (mp->mnt_flag & MNT_FORCE) == 0) {
   1075 			error = EPERM;
   1076 			goto out;
   1077 		}
   1078 #endif
   1079 
   1080 	/*
   1081 	 * verify that we can access the last block in the fs
   1082 	 * if we're mounting read/write.
   1083 	 */
   1084 
   1085 	if (!ronly) {
   1086 		error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
   1087 		    cred, 0, &bp);
   1088 		if (bp->b_bcount != fs->fs_fsize)
   1089 			error = EINVAL;
   1090 		if (error) {
   1091 			bset = BC_INVAL;
   1092 			goto out;
   1093 		}
   1094 		brelse(bp, BC_INVAL);
   1095 		bp = NULL;
   1096 	}
   1097 
   1098 	fs->fs_ronly = ronly;
   1099 	/* Don't bump fs_clean if we're replaying journal */
   1100 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
   1101 		if (ronly == 0) {
   1102 			fs->fs_clean <<= 1;
   1103 			fs->fs_fmod = 1;
   1104 		}
   1105 	size = fs->fs_cssize;
   1106 	blks = howmany(size, fs->fs_fsize);
   1107 	if (fs->fs_contigsumsize > 0)
   1108 		size += fs->fs_ncg * sizeof(int32_t);
   1109 	size += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1110 	space = malloc((u_long)size, M_UFSMNT, M_WAITOK);
   1111 	fs->fs_csp = space;
   1112 	for (i = 0; i < blks; i += fs->fs_frag) {
   1113 		size = fs->fs_bsize;
   1114 		if (i + fs->fs_frag > blks)
   1115 			size = (blks - i) * fs->fs_fsize;
   1116 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
   1117 			      cred, 0, &bp);
   1118 		if (error) {
   1119 			free(fs->fs_csp, M_UFSMNT);
   1120 			goto out;
   1121 		}
   1122 #ifdef FFS_EI
   1123 		if (needswap)
   1124 			ffs_csum_swap((struct csum *)bp->b_data,
   1125 				(struct csum *)space, size);
   1126 		else
   1127 #endif
   1128 			memcpy(space, bp->b_data, (u_int)size);
   1129 
   1130 		space = (char *)space + size;
   1131 		brelse(bp, 0);
   1132 		bp = NULL;
   1133 	}
   1134 	if (fs->fs_contigsumsize > 0) {
   1135 		fs->fs_maxcluster = lp = space;
   1136 		for (i = 0; i < fs->fs_ncg; i++)
   1137 			*lp++ = fs->fs_contigsumsize;
   1138 		space = lp;
   1139 	}
   1140 	size = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1141 	fs->fs_contigdirs = space;
   1142 	space = (char *)space + size;
   1143 	memset(fs->fs_contigdirs, 0, size);
   1144 		/* Compatibility for old filesystems - XXX */
   1145 	if (fs->fs_avgfilesize <= 0)
   1146 		fs->fs_avgfilesize = AVFILESIZ;
   1147 	if (fs->fs_avgfpdir <= 0)
   1148 		fs->fs_avgfpdir = AFPDIR;
   1149 	fs->fs_active = NULL;
   1150 	mp->mnt_data = ump;
   1151 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
   1152 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
   1153 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
   1154 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
   1155 	if (UFS_MPISAPPLEUFS(ump)) {
   1156 		/* NeXT used to keep short symlinks in the inode even
   1157 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
   1158 		 * is probably -1, but we still need to be able to identify
   1159 		 * short symlinks.
   1160 		 */
   1161 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
   1162 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
   1163 		mp->mnt_iflag |= IMNT_DTYPE;
   1164 	} else {
   1165 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
   1166 		ump->um_dirblksiz = DIRBLKSIZ;
   1167 		if (ump->um_maxsymlinklen > 0)
   1168 			mp->mnt_iflag |= IMNT_DTYPE;
   1169 		else
   1170 			mp->mnt_iflag &= ~IMNT_DTYPE;
   1171 	}
   1172 	mp->mnt_fs_bshift = fs->fs_bshift;
   1173 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
   1174 	mp->mnt_flag |= MNT_LOCAL;
   1175 	mp->mnt_iflag |= IMNT_MPSAFE;
   1176 #ifdef FFS_EI
   1177 	if (needswap)
   1178 		ump->um_flags |= UFS_NEEDSWAP;
   1179 #endif
   1180 	ump->um_mountp = mp;
   1181 	ump->um_dev = dev;
   1182 	ump->um_devvp = devvp;
   1183 	ump->um_nindir = fs->fs_nindir;
   1184 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
   1185 	ump->um_bptrtodb = fs->fs_fsbtodb;
   1186 	ump->um_seqinc = fs->fs_frag;
   1187 	for (i = 0; i < MAXQUOTAS; i++)
   1188 		ump->um_quotas[i] = NULLVP;
   1189 	devvp->v_specmountpoint = mp;
   1190 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
   1191 		ffs_snapshot_mount(mp);
   1192 
   1193 #ifdef WAPBL
   1194 	if (!ronly) {
   1195 		KDASSERT(fs->fs_ronly == 0);
   1196 		/*
   1197 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
   1198 		 * needs to create a new log file in-filesystem.
   1199 		 */
   1200 		ffs_statvfs(mp, &mp->mnt_stat);
   1201 
   1202 		error = ffs_wapbl_start(mp);
   1203 		if (error) {
   1204 			free(fs->fs_csp, M_UFSMNT);
   1205 			goto out;
   1206 		}
   1207 	}
   1208 #endif /* WAPBL */
   1209 #ifdef UFS_EXTATTR
   1210 	/*
   1211 	 * Initialize file-backed extended attributes on UFS1 file
   1212 	 * systems.
   1213 	 */
   1214 	if (ump->um_fstype == UFS1) {
   1215 		ufs_extattr_uepm_init(&ump->um_extattr);
   1216 #ifdef UFS_EXTATTR_AUTOSTART
   1217 		/*
   1218 		 * XXX Just ignore errors.  Not clear that we should
   1219 		 * XXX fail the mount in this case.
   1220 		 */
   1221 		(void) ufs_extattr_autostart(mp, l);
   1222 #endif
   1223 	}
   1224 #endif /* UFS_EXTATTR */
   1225 	return (0);
   1226 out:
   1227 #ifdef WAPBL
   1228 	if (mp->mnt_wapbl_replay) {
   1229 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1230 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1231 		mp->mnt_wapbl_replay = 0;
   1232 	}
   1233 #endif
   1234 
   1235 	fstrans_unmount(mp);
   1236 	if (fs)
   1237 		free(fs, M_UFSMNT);
   1238 	devvp->v_specmountpoint = NULL;
   1239 	if (bp)
   1240 		brelse(bp, bset);
   1241 	if (ump) {
   1242 		if (ump->um_oldfscompat)
   1243 			free(ump->um_oldfscompat, M_UFSMNT);
   1244 		mutex_destroy(&ump->um_lock);
   1245 		free(ump, M_UFSMNT);
   1246 		mp->mnt_data = NULL;
   1247 	}
   1248 	return (error);
   1249 }
   1250 
   1251 /*
   1252  * Sanity checks for loading old filesystem superblocks.
   1253  * See ffs_oldfscompat_write below for unwound actions.
   1254  *
   1255  * XXX - Parts get retired eventually.
   1256  * Unfortunately new bits get added.
   1257  */
   1258 static void
   1259 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
   1260 {
   1261 	off_t maxfilesize;
   1262 	int32_t *extrasave;
   1263 
   1264 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1265 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1266 		return;
   1267 
   1268 	if (!ump->um_oldfscompat)
   1269 		ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
   1270 		    M_UFSMNT, M_WAITOK);
   1271 
   1272 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
   1273 	extrasave = ump->um_oldfscompat;
   1274 	extrasave += 512/sizeof(int32_t);
   1275 	extrasave[0] = fs->fs_old_npsect;
   1276 	extrasave[1] = fs->fs_old_interleave;
   1277 	extrasave[2] = fs->fs_old_trackskew;
   1278 
   1279 	/* These fields will be overwritten by their
   1280 	 * original values in fs_oldfscompat_write, so it is harmless
   1281 	 * to modify them here.
   1282 	 */
   1283 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
   1284 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
   1285 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
   1286 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
   1287 
   1288 	fs->fs_maxbsize = fs->fs_bsize;
   1289 	fs->fs_time = fs->fs_old_time;
   1290 	fs->fs_size = fs->fs_old_size;
   1291 	fs->fs_dsize = fs->fs_old_dsize;
   1292 	fs->fs_csaddr = fs->fs_old_csaddr;
   1293 	fs->fs_sblockloc = sblockloc;
   1294 
   1295 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
   1296 
   1297 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
   1298 		fs->fs_old_nrpos = 8;
   1299 		fs->fs_old_npsect = fs->fs_old_nsect;
   1300 		fs->fs_old_interleave = 1;
   1301 		fs->fs_old_trackskew = 0;
   1302 	}
   1303 
   1304 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {
   1305 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
   1306 		fs->fs_qbmask = ~fs->fs_bmask;
   1307 		fs->fs_qfmask = ~fs->fs_fmask;
   1308 	}
   1309 
   1310 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
   1311 	if (fs->fs_maxfilesize > maxfilesize)
   1312 		fs->fs_maxfilesize = maxfilesize;
   1313 
   1314 	/* Compatibility for old filesystems */
   1315 	if (fs->fs_avgfilesize <= 0)
   1316 		fs->fs_avgfilesize = AVFILESIZ;
   1317 	if (fs->fs_avgfpdir <= 0)
   1318 		fs->fs_avgfpdir = AFPDIR;
   1319 
   1320 #if 0
   1321 	if (bigcgs) {
   1322 		fs->fs_save_cgsize = fs->fs_cgsize;
   1323 		fs->fs_cgsize = fs->fs_bsize;
   1324 	}
   1325 #endif
   1326 }
   1327 
   1328 /*
   1329  * Unwinding superblock updates for old filesystems.
   1330  * See ffs_oldfscompat_read above for details.
   1331  *
   1332  * XXX - Parts get retired eventually.
   1333  * Unfortunately new bits get added.
   1334  */
   1335 static void
   1336 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
   1337 {
   1338 	int32_t *extrasave;
   1339 
   1340 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1341 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1342 		return;
   1343 
   1344 	fs->fs_old_time = fs->fs_time;
   1345 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
   1346 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
   1347 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
   1348 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
   1349 	fs->fs_old_flags = fs->fs_flags;
   1350 
   1351 #if 0
   1352 	if (bigcgs) {
   1353 		fs->fs_cgsize = fs->fs_save_cgsize;
   1354 	}
   1355 #endif
   1356 
   1357 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
   1358 	extrasave = ump->um_oldfscompat;
   1359 	extrasave += 512/sizeof(int32_t);
   1360 	fs->fs_old_npsect = extrasave[0];
   1361 	fs->fs_old_interleave = extrasave[1];
   1362 	fs->fs_old_trackskew = extrasave[2];
   1363 
   1364 }
   1365 
   1366 /*
   1367  * unmount vfs operation
   1368  */
   1369 int
   1370 ffs_unmount(struct mount *mp, int mntflags)
   1371 {
   1372 	struct lwp *l = curlwp;
   1373 	struct ufsmount *ump = VFSTOUFS(mp);
   1374 	struct fs *fs = ump->um_fs;
   1375 	int error, flags;
   1376 #ifdef WAPBL
   1377 	extern int doforce;
   1378 #endif
   1379 
   1380 	flags = 0;
   1381 	if (mntflags & MNT_FORCE)
   1382 		flags |= FORCECLOSE;
   1383 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
   1384 		return (error);
   1385 	error = UFS_WAPBL_BEGIN(mp);
   1386 	if (error == 0)
   1387 		if (fs->fs_ronly == 0 &&
   1388 		    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
   1389 		    fs->fs_clean & FS_WASCLEAN) {
   1390 			fs->fs_clean = FS_ISCLEAN;
   1391 			fs->fs_fmod = 0;
   1392 			(void) ffs_sbupdate(ump, MNT_WAIT);
   1393 		}
   1394 	if (error == 0)
   1395 		UFS_WAPBL_END(mp);
   1396 #ifdef WAPBL
   1397 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
   1398 	if (mp->mnt_wapbl_replay) {
   1399 		KDASSERT(fs->fs_ronly);
   1400 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1401 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1402 		mp->mnt_wapbl_replay = 0;
   1403 	}
   1404 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
   1405 	if (error) {
   1406 		return error;
   1407 	}
   1408 #endif /* WAPBL */
   1409 #ifdef UFS_EXTATTR
   1410 	if (ump->um_fstype == UFS1) {
   1411 		ufs_extattr_stop(mp, l);
   1412 		ufs_extattr_uepm_destroy(&ump->um_extattr);
   1413 	}
   1414 #endif /* UFS_EXTATTR */
   1415 
   1416 	if (ump->um_devvp->v_type != VBAD)
   1417 		ump->um_devvp->v_specmountpoint = NULL;
   1418 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1419 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
   1420 		NOCRED);
   1421 	vput(ump->um_devvp);
   1422 	free(fs->fs_csp, M_UFSMNT);
   1423 	free(fs, M_UFSMNT);
   1424 	if (ump->um_oldfscompat != NULL)
   1425 		free(ump->um_oldfscompat, M_UFSMNT);
   1426 	mutex_destroy(&ump->um_lock);
   1427 	ffs_snapshot_fini(ump);
   1428 	free(ump, M_UFSMNT);
   1429 	mp->mnt_data = NULL;
   1430 	mp->mnt_flag &= ~MNT_LOCAL;
   1431 	fstrans_unmount(mp);
   1432 	return (0);
   1433 }
   1434 
   1435 /*
   1436  * Flush out all the files in a filesystem.
   1437  */
   1438 int
   1439 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
   1440 {
   1441 	extern int doforce;
   1442 	struct ufsmount *ump;
   1443 	int error;
   1444 
   1445 	if (!doforce)
   1446 		flags &= ~FORCECLOSE;
   1447 	ump = VFSTOUFS(mp);
   1448 #ifdef QUOTA
   1449 	if (mp->mnt_flag & MNT_QUOTA) {
   1450 		int i;
   1451 		if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
   1452 			return (error);
   1453 		for (i = 0; i < MAXQUOTAS; i++) {
   1454 			if (ump->um_quotas[i] == NULLVP)
   1455 				continue;
   1456 			quotaoff(l, mp, i);
   1457 		}
   1458 		/*
   1459 		 * Here we fall through to vflush again to ensure
   1460 		 * that we have gotten rid of all the system vnodes.
   1461 		 */
   1462 	}
   1463 #endif
   1464 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
   1465 		return (error);
   1466 	ffs_snapshot_unmount(mp);
   1467 	/*
   1468 	 * Flush all the files.
   1469 	 */
   1470 	error = vflush(mp, NULLVP, flags);
   1471 	if (error)
   1472 		return (error);
   1473 	/*
   1474 	 * Flush filesystem metadata.
   1475 	 */
   1476 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1477 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
   1478 	VOP_UNLOCK(ump->um_devvp, 0);
   1479 	if (flags & FORCECLOSE) /* XXXDBJ */
   1480 		error = 0;
   1481 
   1482 #ifdef WAPBL
   1483 	if (error)
   1484 		return error;
   1485 	if (mp->mnt_wapbl) {
   1486 		error = wapbl_flush(mp->mnt_wapbl, 1);
   1487 		if (flags & FORCECLOSE)
   1488 			error = 0;
   1489 	}
   1490 #endif
   1491 
   1492 	return (error);
   1493 }
   1494 
   1495 /*
   1496  * Get file system statistics.
   1497  */
   1498 int
   1499 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
   1500 {
   1501 	struct ufsmount *ump;
   1502 	struct fs *fs;
   1503 
   1504 	ump = VFSTOUFS(mp);
   1505 	fs = ump->um_fs;
   1506 	mutex_enter(&ump->um_lock);
   1507 	sbp->f_bsize = fs->fs_bsize;
   1508 	sbp->f_frsize = fs->fs_fsize;
   1509 	sbp->f_iosize = fs->fs_bsize;
   1510 	sbp->f_blocks = fs->fs_dsize;
   1511 	sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
   1512 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
   1513 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
   1514 	    fs->fs_minfree) / (u_int64_t) 100;
   1515 	if (sbp->f_bfree > sbp->f_bresvd)
   1516 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1517 	else
   1518 		sbp->f_bavail = 0;
   1519 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - ROOTINO;
   1520 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
   1521 	sbp->f_favail = sbp->f_ffree;
   1522 	sbp->f_fresvd = 0;
   1523 	mutex_exit(&ump->um_lock);
   1524 	copy_statvfs_info(sbp, mp);
   1525 
   1526 	return (0);
   1527 }
   1528 
   1529 /*
   1530  * Go through the disk queues to initiate sandbagged IO;
   1531  * go through the inodes to write those that have been modified;
   1532  * initiate the writing of the super block if it has been modified.
   1533  *
   1534  * Note: we are always called with the filesystem marked `MPBUSY'.
   1535  */
   1536 int
   1537 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1538 {
   1539 	struct vnode *vp, *mvp, *nvp;
   1540 	struct inode *ip;
   1541 	struct ufsmount *ump = VFSTOUFS(mp);
   1542 	struct fs *fs;
   1543 	int error, allerror = 0;
   1544 
   1545 	fs = ump->um_fs;
   1546 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
   1547 		printf("fs = %s\n", fs->fs_fsmnt);
   1548 		panic("update: rofs mod");
   1549 	}
   1550 
   1551 	/* Allocate a marker vnode. */
   1552 	if ((mvp = vnalloc(mp)) == NULL)
   1553 		return (ENOMEM);
   1554 
   1555 	fstrans_start(mp, FSTRANS_SHARED);
   1556 	/*
   1557 	 * Write back each (modified) inode.
   1558 	 */
   1559 	mutex_enter(&mntvnode_lock);
   1560 loop:
   1561 	/*
   1562 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
   1563 	 * and vclean() can be called indirectly
   1564 	 */
   1565 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
   1566 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
   1567 		/*
   1568 		 * If the vnode that we are about to sync is no longer
   1569 		 * associated with this mount point, start over.
   1570 		 */
   1571 		if (vp->v_mount != mp)
   1572 			goto loop;
   1573 		/*
   1574 		 * Don't interfere with concurrent scans of this FS.
   1575 		 */
   1576 		if (vismarker(vp))
   1577 			continue;
   1578 		mutex_enter(&vp->v_interlock);
   1579 		ip = VTOI(vp);
   1580 
   1581 		/*
   1582 		 * Skip the vnode/inode if inaccessible.
   1583 		 */
   1584 		if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
   1585 		    vp->v_type == VNON) {
   1586 			mutex_exit(&vp->v_interlock);
   1587 			continue;
   1588 		}
   1589 
   1590 		/*
   1591 		 * We deliberately update inode times here.  This will
   1592 		 * prevent a massive queue of updates accumulating, only
   1593 		 * to be handled by a call to unmount.
   1594 		 *
   1595 		 * XXX It would be better to have the syncer trickle these
   1596 		 * out.  Adjustment needed to allow registering vnodes for
   1597 		 * sync when the vnode is clean, but the inode dirty.  Or
   1598 		 * have ufs itself trickle out inode updates.
   1599 		 *
   1600 		 * If doing a lazy sync, we don't care about metadata or
   1601 		 * data updates, because they are handled by each vnode's
   1602 		 * synclist entry.  In this case we are only interested in
   1603 		 * writing back modified inodes.
   1604 		 */
   1605 		if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
   1606 		    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
   1607 		    (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
   1608 		    UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
   1609 			mutex_exit(&vp->v_interlock);
   1610 			continue;
   1611 		}
   1612 		if (vp->v_type == VBLK &&
   1613 		    fstrans_getstate(mp) == FSTRANS_SUSPENDING) {
   1614 			mutex_exit(&vp->v_interlock);
   1615 			continue;
   1616 		}
   1617 		vmark(mvp, vp);
   1618 		mutex_exit(&mntvnode_lock);
   1619 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   1620 		if (error) {
   1621 			mutex_enter(&mntvnode_lock);
   1622 			nvp = vunmark(mvp);
   1623 			if (error == ENOENT) {
   1624 				goto loop;
   1625 			}
   1626 			continue;
   1627 		}
   1628 		if (waitfor == MNT_LAZY) {
   1629 			error = UFS_WAPBL_BEGIN(vp->v_mount);
   1630 			if (!error) {
   1631 				error = ffs_update(vp, NULL, NULL,
   1632 				    UPDATE_CLOSE);
   1633 				UFS_WAPBL_END(vp->v_mount);
   1634 			}
   1635 		} else {
   1636 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
   1637 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
   1638 		}
   1639 		if (error)
   1640 			allerror = error;
   1641 		vput(vp);
   1642 		mutex_enter(&mntvnode_lock);
   1643 		nvp = vunmark(mvp);
   1644 	}
   1645 	mutex_exit(&mntvnode_lock);
   1646 	/*
   1647 	 * Force stale file system control information to be flushed.
   1648 	 */
   1649 	if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
   1650 	    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
   1651 		vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1652 		if ((error = VOP_FSYNC(ump->um_devvp, cred,
   1653 		    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
   1654 		    0, 0)) != 0)
   1655 			allerror = error;
   1656 		VOP_UNLOCK(ump->um_devvp, 0);
   1657 		if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
   1658 			mutex_enter(&mntvnode_lock);
   1659 			goto loop;
   1660 		}
   1661 	}
   1662 #ifdef QUOTA
   1663 	qsync(mp);
   1664 #endif
   1665 	/*
   1666 	 * Write back modified superblock.
   1667 	 */
   1668 	if (fs->fs_fmod != 0) {
   1669 		fs->fs_fmod = 0;
   1670 		fs->fs_time = time_second;
   1671 		error = UFS_WAPBL_BEGIN(mp);
   1672 		if (error)
   1673 			allerror = error;
   1674 		else {
   1675 			if ((error = ffs_cgupdate(ump, waitfor)))
   1676 				allerror = error;
   1677 			UFS_WAPBL_END(mp);
   1678 		}
   1679 	}
   1680 
   1681 #ifdef WAPBL
   1682 	if (mp->mnt_wapbl) {
   1683 		error = wapbl_flush(mp->mnt_wapbl, 0);
   1684 		if (error)
   1685 			allerror = error;
   1686 	}
   1687 #endif
   1688 
   1689 	fstrans_done(mp);
   1690 	vnfree(mvp);
   1691 	return (allerror);
   1692 }
   1693 
   1694 /*
   1695  * Look up a FFS dinode number to find its incore vnode, otherwise read it
   1696  * in from disk.  If it is in core, wait for the lock bit to clear, then
   1697  * return the inode locked.  Detection and handling of mount points must be
   1698  * done by the calling routine.
   1699  */
   1700 int
   1701 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1702 {
   1703 	struct fs *fs;
   1704 	struct inode *ip;
   1705 	struct ufsmount *ump;
   1706 	struct buf *bp;
   1707 	struct vnode *vp;
   1708 	dev_t dev;
   1709 	int error;
   1710 
   1711 	ump = VFSTOUFS(mp);
   1712 	dev = ump->um_dev;
   1713 
   1714  retry:
   1715 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1716 		return (0);
   1717 
   1718 	/* Allocate a new vnode/inode. */
   1719 	if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
   1720 		*vpp = NULL;
   1721 		return (error);
   1722 	}
   1723 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
   1724 
   1725 	/*
   1726 	 * If someone beat us to it, put back the freshly allocated
   1727 	 * vnode/inode pair and retry.
   1728 	 */
   1729 	mutex_enter(&ufs_hashlock);
   1730 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1731 		mutex_exit(&ufs_hashlock);
   1732 		ungetnewvnode(vp);
   1733 		pool_cache_put(ffs_inode_cache, ip);
   1734 		goto retry;
   1735 	}
   1736 
   1737 	vp->v_vflag |= VV_LOCKSWORK;
   1738 
   1739 	/*
   1740 	 * XXX MFS ends up here, too, to allocate an inode.  Should we
   1741 	 * XXX create another pool for MFS inodes?
   1742 	 */
   1743 
   1744 	memset(ip, 0, sizeof(struct inode));
   1745 	vp->v_data = ip;
   1746 	ip->i_vnode = vp;
   1747 	ip->i_ump = ump;
   1748 	ip->i_fs = fs = ump->um_fs;
   1749 	ip->i_dev = dev;
   1750 	ip->i_number = ino;
   1751 #ifdef QUOTA
   1752 	ufsquota_init(ip);
   1753 #endif
   1754 
   1755 	/*
   1756 	 * Initialize genfs node, we might proceed to destroy it in
   1757 	 * error branches.
   1758 	 */
   1759 	genfs_node_init(vp, &ffs_genfsops);
   1760 
   1761 	/*
   1762 	 * Put it onto its hash chain and lock it so that other requests for
   1763 	 * this inode will block if they arrive while we are sleeping waiting
   1764 	 * for old data structures to be purged or for the contents of the
   1765 	 * disk portion of this inode to be read.
   1766 	 */
   1767 
   1768 	ufs_ihashins(ip);
   1769 	mutex_exit(&ufs_hashlock);
   1770 
   1771 	/* Read in the disk contents for the inode, copy into the inode. */
   1772 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
   1773 		      (int)fs->fs_bsize, NOCRED, 0, &bp);
   1774 	if (error) {
   1775 
   1776 		/*
   1777 		 * The inode does not contain anything useful, so it would
   1778 		 * be misleading to leave it on its hash chain. With mode
   1779 		 * still zero, it will be unlinked and returned to the free
   1780 		 * list by vput().
   1781 		 */
   1782 
   1783 		vput(vp);
   1784 		brelse(bp, 0);
   1785 		*vpp = NULL;
   1786 		return (error);
   1787 	}
   1788 	if (ip->i_ump->um_fstype == UFS1)
   1789 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
   1790 		    PR_WAITOK);
   1791 	else
   1792 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
   1793 		    PR_WAITOK);
   1794 	ffs_load_inode(bp, ip, fs, ino);
   1795 	brelse(bp, 0);
   1796 
   1797 	/*
   1798 	 * Initialize the vnode from the inode, check for aliases.
   1799 	 * Note that the underlying vnode may have changed.
   1800 	 */
   1801 
   1802 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   1803 
   1804 	/*
   1805 	 * Finish inode initialization now that aliasing has been resolved.
   1806 	 */
   1807 
   1808 	ip->i_devvp = ump->um_devvp;
   1809 	VREF(ip->i_devvp);
   1810 
   1811 	/*
   1812 	 * Ensure that uid and gid are correct. This is a temporary
   1813 	 * fix until fsck has been changed to do the update.
   1814 	 */
   1815 
   1816 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
   1817 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
   1818 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
   1819 	}							/* XXX */
   1820 	uvm_vnp_setsize(vp, ip->i_size);
   1821 	*vpp = vp;
   1822 	return (0);
   1823 }
   1824 
   1825 /*
   1826  * File handle to vnode
   1827  *
   1828  * Have to be really careful about stale file handles:
   1829  * - check that the inode number is valid
   1830  * - call ffs_vget() to get the locked inode
   1831  * - check for an unallocated inode (i_mode == 0)
   1832  * - check that the given client host has export rights and return
   1833  *   those rights via. exflagsp and credanonp
   1834  */
   1835 int
   1836 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1837 {
   1838 	struct ufid ufh;
   1839 	struct fs *fs;
   1840 
   1841 	if (fhp->fid_len != sizeof(struct ufid))
   1842 		return EINVAL;
   1843 
   1844 	memcpy(&ufh, fhp, sizeof(ufh));
   1845 	fs = VFSTOUFS(mp)->um_fs;
   1846 	if (ufh.ufid_ino < ROOTINO ||
   1847 	    ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
   1848 		return (ESTALE);
   1849 	return (ufs_fhtovp(mp, &ufh, vpp));
   1850 }
   1851 
   1852 /*
   1853  * Vnode pointer to File handle
   1854  */
   1855 /* ARGSUSED */
   1856 int
   1857 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1858 {
   1859 	struct inode *ip;
   1860 	struct ufid ufh;
   1861 
   1862 	if (*fh_size < sizeof(struct ufid)) {
   1863 		*fh_size = sizeof(struct ufid);
   1864 		return E2BIG;
   1865 	}
   1866 	ip = VTOI(vp);
   1867 	*fh_size = sizeof(struct ufid);
   1868 	memset(&ufh, 0, sizeof(ufh));
   1869 	ufh.ufid_len = sizeof(struct ufid);
   1870 	ufh.ufid_ino = ip->i_number;
   1871 	ufh.ufid_gen = ip->i_gen;
   1872 	memcpy(fhp, &ufh, sizeof(ufh));
   1873 	return (0);
   1874 }
   1875 
   1876 void
   1877 ffs_init(void)
   1878 {
   1879 	if (ffs_initcount++ > 0)
   1880 		return;
   1881 
   1882 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
   1883 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
   1884 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
   1885 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
   1886 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
   1887 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
   1888 	ufs_init();
   1889 }
   1890 
   1891 void
   1892 ffs_reinit(void)
   1893 {
   1894 
   1895 	ufs_reinit();
   1896 }
   1897 
   1898 void
   1899 ffs_done(void)
   1900 {
   1901 	if (--ffs_initcount > 0)
   1902 		return;
   1903 
   1904 	ufs_done();
   1905 	pool_cache_destroy(ffs_dinode2_cache);
   1906 	pool_cache_destroy(ffs_dinode1_cache);
   1907 	pool_cache_destroy(ffs_inode_cache);
   1908 }
   1909 
   1910 /*
   1911  * Write a superblock and associated information back to disk.
   1912  */
   1913 int
   1914 ffs_sbupdate(struct ufsmount *mp, int waitfor)
   1915 {
   1916 	struct fs *fs = mp->um_fs;
   1917 	struct buf *bp;
   1918 	int error = 0;
   1919 	u_int32_t saveflag;
   1920 
   1921 	error = ffs_getblk(mp->um_devvp,
   1922 	    fs->fs_sblockloc >> (fs->fs_fshift - fs->fs_fsbtodb), FFS_NOBLK,
   1923 	    fs->fs_sbsize, false, &bp);
   1924 	if (error)
   1925 		return error;
   1926 	saveflag = fs->fs_flags & FS_INTERNAL;
   1927 	fs->fs_flags &= ~FS_INTERNAL;
   1928 
   1929 	memcpy(bp->b_data, fs, fs->fs_sbsize);
   1930 
   1931 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
   1932 #ifdef FFS_EI
   1933 	if (mp->um_flags & UFS_NEEDSWAP)
   1934 		ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
   1935 #endif
   1936 	fs->fs_flags |= saveflag;
   1937 
   1938 	if (waitfor == MNT_WAIT)
   1939 		error = bwrite(bp);
   1940 	else
   1941 		bawrite(bp);
   1942 	return (error);
   1943 }
   1944 
   1945 int
   1946 ffs_cgupdate(struct ufsmount *mp, int waitfor)
   1947 {
   1948 	struct fs *fs = mp->um_fs;
   1949 	struct buf *bp;
   1950 	int blks;
   1951 	void *space;
   1952 	int i, size, error = 0, allerror = 0;
   1953 
   1954 	allerror = ffs_sbupdate(mp, waitfor);
   1955 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
   1956 	space = fs->fs_csp;
   1957 	for (i = 0; i < blks; i += fs->fs_frag) {
   1958 		size = fs->fs_bsize;
   1959 		if (i + fs->fs_frag > blks)
   1960 			size = (blks - i) * fs->fs_fsize;
   1961 		error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
   1962 		    FFS_NOBLK, size, false, &bp);
   1963 		if (error)
   1964 			break;
   1965 #ifdef FFS_EI
   1966 		if (mp->um_flags & UFS_NEEDSWAP)
   1967 			ffs_csum_swap((struct csum*)space,
   1968 			    (struct csum*)bp->b_data, size);
   1969 		else
   1970 #endif
   1971 			memcpy(bp->b_data, space, (u_int)size);
   1972 		space = (char *)space + size;
   1973 		if (waitfor == MNT_WAIT)
   1974 			error = bwrite(bp);
   1975 		else
   1976 			bawrite(bp);
   1977 	}
   1978 	if (!allerror && error)
   1979 		allerror = error;
   1980 	return (allerror);
   1981 }
   1982 
   1983 int
   1984 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
   1985     int attrnamespace, const char *attrname)
   1986 {
   1987 #ifdef UFS_EXTATTR
   1988 	/*
   1989 	 * File-backed extended attributes are only supported on UFS1.
   1990 	 * UFS2 has native extended attributes.
   1991 	 */
   1992 	if (VFSTOUFS(mp)->um_fstype == UFS1)
   1993 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
   1994 #endif
   1995 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
   1996 }
   1997 
   1998 int
   1999 ffs_suspendctl(struct mount *mp, int cmd)
   2000 {
   2001 	int error;
   2002 	struct lwp *l = curlwp;
   2003 
   2004 	switch (cmd) {
   2005 	case SUSPEND_SUSPEND:
   2006 		if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
   2007 			return error;
   2008 		error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
   2009 		if (error == 0)
   2010 			error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
   2011 #ifdef WAPBL
   2012 		if (error == 0 && mp->mnt_wapbl)
   2013 			error = wapbl_flush(mp->mnt_wapbl, 1);
   2014 #endif
   2015 		if (error != 0) {
   2016 			(void) fstrans_setstate(mp, FSTRANS_NORMAL);
   2017 			return error;
   2018 		}
   2019 		return 0;
   2020 
   2021 	case SUSPEND_RESUME:
   2022 		return fstrans_setstate(mp, FSTRANS_NORMAL);
   2023 
   2024 	default:
   2025 		return EINVAL;
   2026 	}
   2027 }
   2028 
   2029 /*
   2030  * Synch vnode for a mounted file system.  This is called for foreign
   2031  * vnodes, i.e. non-ffs.
   2032  */
   2033 static int
   2034 ffs_vfs_fsync(vnode_t *vp, int flags)
   2035 {
   2036 	int error, passes, skipmeta, i, pflags;
   2037 	buf_t *bp, *nbp;
   2038 #ifdef WAPBL
   2039 	struct mount *mp;
   2040 #endif
   2041 
   2042 	KASSERT(vp->v_type == VBLK);
   2043 	KASSERT(vp->v_specmountpoint != NULL);
   2044 
   2045 	/*
   2046 	 * Flush all dirty data associated with the vnode.
   2047 	 */
   2048 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
   2049 	if ((flags & FSYNC_WAIT) != 0)
   2050 		pflags |= PGO_SYNCIO;
   2051 	mutex_enter(&vp->v_interlock);
   2052 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
   2053 	if (error)
   2054 		return error;
   2055 
   2056 #ifdef WAPBL
   2057 	mp = vp->v_specmountpoint;
   2058 	if (mp && mp->mnt_wapbl) {
   2059 		/*
   2060 		 * Don't bother writing out metadata if the syncer is
   2061 		 * making the request.  We will let the sync vnode
   2062 		 * write it out in a single burst through a call to
   2063 		 * VFS_SYNC().
   2064 		 */
   2065 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
   2066 			return 0;
   2067 
   2068 		/*
   2069 		 * Don't flush the log if the vnode being flushed
   2070 		 * contains no dirty buffers that could be in the log.
   2071 		 */
   2072 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2073 			error = wapbl_flush(mp->mnt_wapbl, 0);
   2074 			if (error)
   2075 				return error;
   2076 		}
   2077 
   2078 		if ((flags & FSYNC_WAIT) != 0) {
   2079 			mutex_enter(&vp->v_interlock);
   2080 			while (vp->v_numoutput)
   2081 				cv_wait(&vp->v_cv, &vp->v_interlock);
   2082 			mutex_exit(&vp->v_interlock);
   2083 		}
   2084 
   2085 		return 0;
   2086 	}
   2087 #endif /* WAPBL */
   2088 
   2089 	/*
   2090 	 * Write out metadata for non-logging file systems. XXX This block
   2091 	 * should be simplified now that softdep is gone.
   2092 	 */
   2093 	passes = NIADDR + 1;
   2094 	skipmeta = 0;
   2095 	if (flags & FSYNC_WAIT)
   2096 		skipmeta = 1;
   2097 
   2098 loop:
   2099 	mutex_enter(&bufcache_lock);
   2100 	LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
   2101 		bp->b_cflags &= ~BC_SCANNED;
   2102 	}
   2103 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   2104 		nbp = LIST_NEXT(bp, b_vnbufs);
   2105 		if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
   2106 			continue;
   2107 		if ((bp->b_oflags & BO_DELWRI) == 0)
   2108 			panic("ffs_fsync: not dirty");
   2109 		if (skipmeta && bp->b_lblkno < 0)
   2110 			continue;
   2111 		bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
   2112 		mutex_exit(&bufcache_lock);
   2113 		/*
   2114 		 * On our final pass through, do all I/O synchronously
   2115 		 * so that we can find out if our flush is failing
   2116 		 * because of write errors.
   2117 		 */
   2118 		if (passes > 0 || !(flags & FSYNC_WAIT))
   2119 			(void) bawrite(bp);
   2120 		else if ((error = bwrite(bp)) != 0)
   2121 			return (error);
   2122 		/*
   2123 		 * Since we unlocked during the I/O, we need
   2124 		 * to start from a known point.
   2125 		 */
   2126 		mutex_enter(&bufcache_lock);
   2127 		nbp = LIST_FIRST(&vp->v_dirtyblkhd);
   2128 	}
   2129 	mutex_exit(&bufcache_lock);
   2130 	if (skipmeta) {
   2131 		skipmeta = 0;
   2132 		goto loop;
   2133 	}
   2134 
   2135 	if ((flags & FSYNC_WAIT) != 0) {
   2136 		mutex_enter(&vp->v_interlock);
   2137 		while (vp->v_numoutput) {
   2138 			cv_wait(&vp->v_cv, &vp->v_interlock);
   2139 		}
   2140 		mutex_exit(&vp->v_interlock);
   2141 
   2142 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2143 			/*
   2144 			* Block devices associated with filesystems may
   2145 			* have new I/O requests posted for them even if
   2146 			* the vnode is locked, so no amount of trying will
   2147 			* get them clean. Thus we give block devices a
   2148 			* good effort, then just give up. For all other file
   2149 			* types, go around and try again until it is clean.
   2150 			*/
   2151 			if (passes > 0) {
   2152 				passes--;
   2153 				goto loop;
   2154 			}
   2155 #ifdef DIAGNOSTIC
   2156 			if (vp->v_type != VBLK)
   2157 				vprint("ffs_fsync: dirty", vp);
   2158 #endif
   2159 		}
   2160 	}
   2161 
   2162 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
   2163 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
   2164 		    kauth_cred_get());
   2165 	}
   2166 
   2167 	return error;
   2168 }
   2169