ffs_vfsops.c revision 1.252 1 /* $NetBSD: ffs_vfsops.c,v 1.252 2009/09/13 14:30:21 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.252 2009/09/13 14:30:21 bouyer Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/mbuf.h>
83 #include <sys/file.h>
84 #include <sys/disklabel.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/lock.h>
90 #include <sys/sysctl.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/wapbl.h>
94 #include <sys/fstrans.h>
95 #include <sys/module.h>
96
97 #include <miscfs/genfs/genfs.h>
98 #include <miscfs/specfs/specdev.h>
99
100 #include <ufs/ufs/quota.h>
101 #include <ufs/ufs/ufsmount.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/dir.h>
104 #include <ufs/ufs/ufs_extern.h>
105 #include <ufs/ufs/ufs_bswap.h>
106 #include <ufs/ufs/ufs_wapbl.h>
107
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110
111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
112
113 static int ffs_vfs_fsync(vnode_t *, int);
114
115 static struct sysctllog *ffs_sysctl_log;
116
117 /* how many times ffs_init() was called */
118 int ffs_initcount = 0;
119
120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
123
124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
125 &ffs_vnodeop_opv_desc,
126 &ffs_specop_opv_desc,
127 &ffs_fifoop_opv_desc,
128 NULL,
129 };
130
131 struct vfsops ffs_vfsops = {
132 MOUNT_FFS,
133 sizeof (struct ufs_args),
134 ffs_mount,
135 ufs_start,
136 ffs_unmount,
137 ufs_root,
138 ufs_quotactl,
139 ffs_statvfs,
140 ffs_sync,
141 ffs_vget,
142 ffs_fhtovp,
143 ffs_vptofh,
144 ffs_init,
145 ffs_reinit,
146 ffs_done,
147 ffs_mountroot,
148 ffs_snapshot,
149 ffs_extattrctl,
150 ffs_suspendctl,
151 genfs_renamelock_enter,
152 genfs_renamelock_exit,
153 ffs_vfs_fsync,
154 ffs_vnodeopv_descs,
155 0,
156 { NULL, NULL },
157 };
158
159 static const struct genfs_ops ffs_genfsops = {
160 .gop_size = ffs_gop_size,
161 .gop_alloc = ufs_gop_alloc,
162 .gop_write = genfs_gop_write,
163 .gop_markupdate = ufs_gop_markupdate,
164 };
165
166 static const struct ufs_ops ffs_ufsops = {
167 .uo_itimes = ffs_itimes,
168 .uo_update = ffs_update,
169 .uo_truncate = ffs_truncate,
170 .uo_valloc = ffs_valloc,
171 .uo_vfree = ffs_vfree,
172 .uo_balloc = ffs_balloc,
173 .uo_unmark_vnode = (void (*)(vnode_t *))nullop,
174 };
175
176 static int
177 ffs_modcmd(modcmd_t cmd, void *arg)
178 {
179 int error;
180
181 #if 0
182 extern int doasyncfree;
183 #endif
184 extern int ffs_log_changeopt;
185
186 switch (cmd) {
187 case MODULE_CMD_INIT:
188 error = vfs_attach(&ffs_vfsops);
189 if (error != 0)
190 break;
191
192 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
193 CTLFLAG_PERMANENT,
194 CTLTYPE_NODE, "vfs", NULL,
195 NULL, 0, NULL, 0,
196 CTL_VFS, CTL_EOL);
197 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
198 CTLFLAG_PERMANENT,
199 CTLTYPE_NODE, "ffs",
200 SYSCTL_DESCR("Berkeley Fast File System"),
201 NULL, 0, NULL, 0,
202 CTL_VFS, 1, CTL_EOL);
203
204 /*
205 * @@@ should we even bother with these first three?
206 */
207 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
209 CTLTYPE_INT, "doclusterread", NULL,
210 sysctl_notavail, 0, NULL, 0,
211 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
212 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
213 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
214 CTLTYPE_INT, "doclusterwrite", NULL,
215 sysctl_notavail, 0, NULL, 0,
216 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
217 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 CTLTYPE_INT, "doreallocblks", NULL,
220 sysctl_notavail, 0, NULL, 0,
221 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
222 #if 0
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
225 CTLTYPE_INT, "doasyncfree",
226 SYSCTL_DESCR("Release dirty blocks asynchronously"),
227 NULL, 0, &doasyncfree, 0,
228 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
229 #endif
230 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
232 CTLTYPE_INT, "log_changeopt",
233 SYSCTL_DESCR("Log changes in optimization strategy"),
234 NULL, 0, &ffs_log_changeopt, 0,
235 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
236 break;
237 case MODULE_CMD_FINI:
238 error = vfs_detach(&ffs_vfsops);
239 if (error != 0)
240 break;
241 sysctl_teardown(&ffs_sysctl_log);
242 break;
243 default:
244 error = ENOTTY;
245 break;
246 }
247
248 return (error);
249 }
250
251 pool_cache_t ffs_inode_cache;
252 pool_cache_t ffs_dinode1_cache;
253 pool_cache_t ffs_dinode2_cache;
254
255 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
256 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
257
258 /*
259 * Called by main() when ffs is going to be mounted as root.
260 */
261
262 int
263 ffs_mountroot(void)
264 {
265 struct fs *fs;
266 struct mount *mp;
267 struct lwp *l = curlwp; /* XXX */
268 struct ufsmount *ump;
269 int error;
270
271 if (device_class(root_device) != DV_DISK)
272 return (ENODEV);
273
274 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
275 vrele(rootvp);
276 return (error);
277 }
278
279 /*
280 * We always need to be able to mount the root file system.
281 */
282 mp->mnt_flag |= MNT_FORCE;
283 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
284 vfs_unbusy(mp, false, NULL);
285 vfs_destroy(mp);
286 return (error);
287 }
288 mp->mnt_flag &= ~MNT_FORCE;
289 mutex_enter(&mountlist_lock);
290 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
291 mutex_exit(&mountlist_lock);
292 ump = VFSTOUFS(mp);
293 fs = ump->um_fs;
294 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
295 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
296 (void)ffs_statvfs(mp, &mp->mnt_stat);
297 vfs_unbusy(mp, false, NULL);
298 setrootfstime((time_t)fs->fs_time);
299 return (0);
300 }
301
302 /*
303 * VFS Operations.
304 *
305 * mount system call
306 */
307 int
308 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
309 {
310 struct lwp *l = curlwp;
311 struct vnode *devvp = NULL;
312 struct ufs_args *args = data;
313 struct ufsmount *ump = NULL;
314 struct fs *fs;
315 int error = 0, flags, update;
316 mode_t accessmode;
317
318 if (*data_len < sizeof *args)
319 return EINVAL;
320
321 if (mp->mnt_flag & MNT_GETARGS) {
322 ump = VFSTOUFS(mp);
323 if (ump == NULL)
324 return EIO;
325 args->fspec = NULL;
326 *data_len = sizeof *args;
327 return 0;
328 }
329
330 update = mp->mnt_flag & MNT_UPDATE;
331
332 /* Check arguments */
333 if (args->fspec != NULL) {
334 /*
335 * Look up the name and verify that it's sane.
336 */
337 error = namei_simple_user(args->fspec,
338 NSM_FOLLOW_NOEMULROOT, &devvp);
339 if (error != 0)
340 return (error);
341
342 if (!update) {
343 /*
344 * Be sure this is a valid block device
345 */
346 if (devvp->v_type != VBLK)
347 error = ENOTBLK;
348 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
349 error = ENXIO;
350 } else {
351 /*
352 * Be sure we're still naming the same device
353 * used for our initial mount
354 */
355 ump = VFSTOUFS(mp);
356 if (devvp != ump->um_devvp) {
357 if (devvp->v_rdev != ump->um_devvp->v_rdev)
358 error = EINVAL;
359 else {
360 vrele(devvp);
361 devvp = ump->um_devvp;
362 vref(devvp);
363 }
364 }
365 }
366 } else {
367 if (!update) {
368 /* New mounts must have a filename for the device */
369 return (EINVAL);
370 } else {
371 /* Use the extant mount */
372 ump = VFSTOUFS(mp);
373 devvp = ump->um_devvp;
374 vref(devvp);
375 }
376 }
377
378 /*
379 * If mount by non-root, then verify that user has necessary
380 * permissions on the device.
381 *
382 * Permission to update a mount is checked higher, so here we presume
383 * updating the mount is okay (for example, as far as securelevel goes)
384 * which leaves us with the normal check.
385 */
386 if (error == 0) {
387 accessmode = VREAD;
388 if (update ?
389 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
390 (mp->mnt_flag & MNT_RDONLY) == 0)
391 accessmode |= VWRITE;
392 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
393 error = genfs_can_mount(devvp, accessmode, l->l_cred);
394 VOP_UNLOCK(devvp, 0);
395 }
396
397 if (error) {
398 vrele(devvp);
399 return (error);
400 }
401
402 #ifdef WAPBL
403 /* WAPBL can only be enabled on a r/w mount. */
404 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
405 mp->mnt_flag &= ~MNT_LOG;
406 }
407 #else /* !WAPBL */
408 mp->mnt_flag &= ~MNT_LOG;
409 #endif /* !WAPBL */
410
411 if (!update) {
412 int xflags;
413
414 if (mp->mnt_flag & MNT_RDONLY)
415 xflags = FREAD;
416 else
417 xflags = FREAD | FWRITE;
418 error = VOP_OPEN(devvp, xflags, FSCRED);
419 if (error)
420 goto fail;
421 error = ffs_mountfs(devvp, mp, l);
422 if (error) {
423 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
424 (void)VOP_CLOSE(devvp, xflags, NOCRED);
425 VOP_UNLOCK(devvp, 0);
426 goto fail;
427 }
428
429 ump = VFSTOUFS(mp);
430 fs = ump->um_fs;
431 } else {
432 /*
433 * Update the mount.
434 */
435
436 /*
437 * The initial mount got a reference on this
438 * device, so drop the one obtained via
439 * namei(), above.
440 */
441 vrele(devvp);
442
443 ump = VFSTOUFS(mp);
444 fs = ump->um_fs;
445 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
446 /*
447 * Changing from r/w to r/o
448 */
449 flags = WRITECLOSE;
450 if (mp->mnt_flag & MNT_FORCE)
451 flags |= FORCECLOSE;
452 error = ffs_flushfiles(mp, flags, l);
453 if (error == 0)
454 error = UFS_WAPBL_BEGIN(mp);
455 if (error == 0 &&
456 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
457 fs->fs_clean & FS_WASCLEAN) {
458 if (mp->mnt_flag & MNT_SOFTDEP)
459 fs->fs_flags &= ~FS_DOSOFTDEP;
460 fs->fs_clean = FS_ISCLEAN;
461 (void) ffs_sbupdate(ump, MNT_WAIT);
462 }
463 if (error == 0)
464 UFS_WAPBL_END(mp);
465 if (error)
466 return (error);
467 }
468
469 #ifdef WAPBL
470 if ((mp->mnt_flag & MNT_LOG) == 0) {
471 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
472 if (error)
473 return error;
474 }
475 #endif /* WAPBL */
476
477 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
478 /*
479 * Finish change from r/w to r/o
480 */
481 fs->fs_ronly = 1;
482 fs->fs_fmod = 0;
483 }
484
485 if (mp->mnt_flag & MNT_RELOAD) {
486 error = ffs_reload(mp, l->l_cred, l);
487 if (error)
488 return (error);
489 }
490
491 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
492 /*
493 * Changing from read-only to read/write
494 */
495 fs->fs_ronly = 0;
496 fs->fs_clean <<= 1;
497 fs->fs_fmod = 1;
498 #ifdef WAPBL
499 if (fs->fs_flags & FS_DOWAPBL) {
500 printf("%s: replaying log to disk\n",
501 fs->fs_fsmnt);
502 KDASSERT(mp->mnt_wapbl_replay);
503 error = wapbl_replay_write(mp->mnt_wapbl_replay,
504 devvp);
505 if (error) {
506 return error;
507 }
508 wapbl_replay_stop(mp->mnt_wapbl_replay);
509 fs->fs_clean = FS_WASCLEAN;
510 }
511 #endif /* WAPBL */
512 if (fs->fs_snapinum[0] != 0)
513 ffs_snapshot_mount(mp);
514 }
515
516 #ifdef WAPBL
517 error = ffs_wapbl_start(mp);
518 if (error)
519 return error;
520 #endif /* WAPBL */
521
522 if (args->fspec == NULL)
523 return 0;
524 }
525
526 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
527 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
528 if (error == 0)
529 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
530 sizeof(fs->fs_fsmnt));
531 fs->fs_flags &= ~FS_DOSOFTDEP;
532 if (fs->fs_fmod != 0) { /* XXX */
533 int err;
534
535 fs->fs_fmod = 0;
536 if (fs->fs_clean & FS_WASCLEAN)
537 fs->fs_time = time_second;
538 else {
539 printf("%s: file system not clean (fs_clean=%#x); "
540 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
541 fs->fs_clean);
542 printf("%s: lost blocks %" PRId64 " files %d\n",
543 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
544 fs->fs_pendinginodes);
545 }
546 err = UFS_WAPBL_BEGIN(mp);
547 if (err == 0) {
548 (void) ffs_cgupdate(ump, MNT_WAIT);
549 UFS_WAPBL_END(mp);
550 }
551 }
552 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
553 printf("%s: `-o softdep' is no longer supported, "
554 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
555 mp->mnt_flag &= ~MNT_SOFTDEP;
556 }
557
558 return (error);
559
560 fail:
561 vrele(devvp);
562 return (error);
563 }
564
565 /*
566 * Reload all incore data for a filesystem (used after running fsck on
567 * the root filesystem and finding things to fix). The filesystem must
568 * be mounted read-only.
569 *
570 * Things to do to update the mount:
571 * 1) invalidate all cached meta-data.
572 * 2) re-read superblock from disk.
573 * 3) re-read summary information from disk.
574 * 4) invalidate all inactive vnodes.
575 * 5) invalidate all cached file data.
576 * 6) re-read inode data for all active vnodes.
577 */
578 int
579 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
580 {
581 struct vnode *vp, *mvp, *devvp;
582 struct inode *ip;
583 void *space;
584 struct buf *bp;
585 struct fs *fs, *newfs;
586 struct partinfo dpart;
587 int i, blks, size, error;
588 int32_t *lp;
589 struct ufsmount *ump;
590 daddr_t sblockloc;
591
592 if ((mp->mnt_flag & MNT_RDONLY) == 0)
593 return (EINVAL);
594
595 ump = VFSTOUFS(mp);
596 /*
597 * Step 1: invalidate all cached meta-data.
598 */
599 devvp = ump->um_devvp;
600 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
601 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
602 VOP_UNLOCK(devvp, 0);
603 if (error)
604 panic("ffs_reload: dirty1");
605 /*
606 * Step 2: re-read superblock from disk.
607 */
608 fs = ump->um_fs;
609 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED) != 0)
610 size = DEV_BSIZE;
611 else
612 size = dpart.disklab->d_secsize;
613 /* XXX we don't handle possibility that superblock moved. */
614 error = bread(devvp, fs->fs_sblockloc / size, fs->fs_sbsize,
615 NOCRED, 0, &bp);
616 if (error) {
617 brelse(bp, 0);
618 return (error);
619 }
620 newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
621 memcpy(newfs, bp->b_data, fs->fs_sbsize);
622 #ifdef FFS_EI
623 if (ump->um_flags & UFS_NEEDSWAP) {
624 ffs_sb_swap((struct fs*)bp->b_data, newfs);
625 fs->fs_flags |= FS_SWAPPED;
626 } else
627 #endif
628 fs->fs_flags &= ~FS_SWAPPED;
629 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
630 newfs->fs_magic != FS_UFS2_MAGIC)||
631 newfs->fs_bsize > MAXBSIZE ||
632 newfs->fs_bsize < sizeof(struct fs)) {
633 brelse(bp, 0);
634 free(newfs, M_UFSMNT);
635 return (EIO); /* XXX needs translation */
636 }
637 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
638 sblockloc = fs->fs_sblockloc;
639 /*
640 * Copy pointer fields back into superblock before copying in XXX
641 * new superblock. These should really be in the ufsmount. XXX
642 * Note that important parameters (eg fs_ncg) are unchanged.
643 */
644 newfs->fs_csp = fs->fs_csp;
645 newfs->fs_maxcluster = fs->fs_maxcluster;
646 newfs->fs_contigdirs = fs->fs_contigdirs;
647 newfs->fs_ronly = fs->fs_ronly;
648 newfs->fs_active = fs->fs_active;
649 memcpy(fs, newfs, (u_int)fs->fs_sbsize);
650 brelse(bp, 0);
651 free(newfs, M_UFSMNT);
652
653 /* Recheck for apple UFS filesystem */
654 ump->um_flags &= ~UFS_ISAPPLEUFS;
655 /* First check to see if this is tagged as an Apple UFS filesystem
656 * in the disklabel
657 */
658 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
659 (dpart.part->p_fstype == FS_APPLEUFS)) {
660 ump->um_flags |= UFS_ISAPPLEUFS;
661 }
662 #ifdef APPLE_UFS
663 else {
664 /* Manually look for an apple ufs label, and if a valid one
665 * is found, then treat it like an Apple UFS filesystem anyway
666 */
667 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size),
668 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
669 if (error) {
670 brelse(bp, 0);
671 return (error);
672 }
673 error = ffs_appleufs_validate(fs->fs_fsmnt,
674 (struct appleufslabel *)bp->b_data, NULL);
675 if (error == 0)
676 ump->um_flags |= UFS_ISAPPLEUFS;
677 brelse(bp, 0);
678 bp = NULL;
679 }
680 #else
681 if (ump->um_flags & UFS_ISAPPLEUFS)
682 return (EIO);
683 #endif
684
685 if (UFS_MPISAPPLEUFS(ump)) {
686 /* see comment about NeXT below */
687 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
688 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
689 mp->mnt_iflag |= IMNT_DTYPE;
690 } else {
691 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
692 ump->um_dirblksiz = DIRBLKSIZ;
693 if (ump->um_maxsymlinklen > 0)
694 mp->mnt_iflag |= IMNT_DTYPE;
695 else
696 mp->mnt_iflag &= ~IMNT_DTYPE;
697 }
698 ffs_oldfscompat_read(fs, ump, sblockloc);
699
700 mutex_enter(&ump->um_lock);
701 ump->um_maxfilesize = fs->fs_maxfilesize;
702 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
703 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
704 mp->mnt_stat.f_mntonname, fs->fs_flags,
705 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
706 if ((mp->mnt_flag & MNT_FORCE) == 0) {
707 mutex_exit(&ump->um_lock);
708 return (EINVAL);
709 }
710 }
711 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
712 fs->fs_pendingblocks = 0;
713 fs->fs_pendinginodes = 0;
714 }
715 mutex_exit(&ump->um_lock);
716
717 ffs_statvfs(mp, &mp->mnt_stat);
718 /*
719 * Step 3: re-read summary information from disk.
720 */
721 blks = howmany(fs->fs_cssize, fs->fs_fsize);
722 space = fs->fs_csp;
723 for (i = 0; i < blks; i += fs->fs_frag) {
724 size = fs->fs_bsize;
725 if (i + fs->fs_frag > blks)
726 size = (blks - i) * fs->fs_fsize;
727 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
728 NOCRED, 0, &bp);
729 if (error) {
730 brelse(bp, 0);
731 return (error);
732 }
733 #ifdef FFS_EI
734 if (UFS_FSNEEDSWAP(fs))
735 ffs_csum_swap((struct csum *)bp->b_data,
736 (struct csum *)space, size);
737 else
738 #endif
739 memcpy(space, bp->b_data, (size_t)size);
740 space = (char *)space + size;
741 brelse(bp, 0);
742 }
743 if (fs->fs_snapinum[0] != 0)
744 ffs_snapshot_mount(mp);
745 /*
746 * We no longer know anything about clusters per cylinder group.
747 */
748 if (fs->fs_contigsumsize > 0) {
749 lp = fs->fs_maxcluster;
750 for (i = 0; i < fs->fs_ncg; i++)
751 *lp++ = fs->fs_contigsumsize;
752 }
753
754 /* Allocate a marker vnode. */
755 if ((mvp = vnalloc(mp)) == NULL)
756 return ENOMEM;
757 /*
758 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
759 * and vclean() can be called indirectly
760 */
761 mutex_enter(&mntvnode_lock);
762 loop:
763 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
764 vmark(mvp, vp);
765 if (vp->v_mount != mp || vismarker(vp))
766 continue;
767 /*
768 * Step 4: invalidate all inactive vnodes.
769 */
770 if (vrecycle(vp, &mntvnode_lock, l)) {
771 mutex_enter(&mntvnode_lock);
772 (void)vunmark(mvp);
773 goto loop;
774 }
775 /*
776 * Step 5: invalidate all cached file data.
777 */
778 mutex_enter(&vp->v_interlock);
779 mutex_exit(&mntvnode_lock);
780 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
781 (void)vunmark(mvp);
782 goto loop;
783 }
784 if (vinvalbuf(vp, 0, cred, l, 0, 0))
785 panic("ffs_reload: dirty2");
786 /*
787 * Step 6: re-read inode data for all active vnodes.
788 */
789 ip = VTOI(vp);
790 error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
791 (int)fs->fs_bsize, NOCRED, 0, &bp);
792 if (error) {
793 brelse(bp, 0);
794 vput(vp);
795 (void)vunmark(mvp);
796 break;
797 }
798 ffs_load_inode(bp, ip, fs, ip->i_number);
799 brelse(bp, 0);
800 vput(vp);
801 mutex_enter(&mntvnode_lock);
802 }
803 mutex_exit(&mntvnode_lock);
804 vnfree(mvp);
805 return (error);
806 }
807
808 /*
809 * Possible superblock locations ordered from most to least likely.
810 */
811 static const int sblock_try[] = SBLOCKSEARCH;
812
813 /*
814 * Common code for mount and mountroot
815 */
816 int
817 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
818 {
819 struct ufsmount *ump;
820 struct buf *bp;
821 struct fs *fs;
822 dev_t dev;
823 struct partinfo dpart;
824 void *space;
825 daddr_t sblockloc, fsblockloc;
826 int blks, fstype;
827 int error, i, size, ronly, bset = 0;
828 #ifdef FFS_EI
829 int needswap = 0; /* keep gcc happy */
830 #endif
831 int32_t *lp;
832 kauth_cred_t cred;
833 u_int32_t sbsize = 8192; /* keep gcc happy*/
834
835 dev = devvp->v_rdev;
836 cred = l ? l->l_cred : NOCRED;
837
838 /* Flush out any old buffers remaining from a previous use. */
839 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
840 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
841 VOP_UNLOCK(devvp, 0);
842 if (error)
843 return (error);
844
845 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
846 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
847 size = DEV_BSIZE;
848 else
849 size = dpart.disklab->d_secsize;
850
851 bp = NULL;
852 ump = NULL;
853 fs = NULL;
854 sblockloc = 0;
855 fstype = 0;
856
857 error = fstrans_mount(mp);
858 if (error)
859 return error;
860
861 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
862 memset(ump, 0, sizeof *ump);
863 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
864 error = ffs_snapshot_init(ump);
865 if (error)
866 goto out;
867 ump->um_ops = &ffs_ufsops;
868
869 #ifdef WAPBL
870 sbagain:
871 #endif
872 /*
873 * Try reading the superblock in each of its possible locations.
874 */
875 for (i = 0; ; i++) {
876 if (bp != NULL) {
877 brelse(bp, BC_NOCACHE);
878 bp = NULL;
879 }
880 if (sblock_try[i] == -1) {
881 error = EINVAL;
882 fs = NULL;
883 goto out;
884 }
885 error = bread(devvp, sblock_try[i] / size, SBLOCKSIZE, cred,
886 0, &bp);
887 if (error) {
888 fs = NULL;
889 goto out;
890 }
891 fs = (struct fs*)bp->b_data;
892 fsblockloc = sblockloc = sblock_try[i];
893 if (fs->fs_magic == FS_UFS1_MAGIC) {
894 sbsize = fs->fs_sbsize;
895 fstype = UFS1;
896 #ifdef FFS_EI
897 needswap = 0;
898 } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
899 sbsize = bswap32(fs->fs_sbsize);
900 fstype = UFS1;
901 needswap = 1;
902 #endif
903 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
904 sbsize = fs->fs_sbsize;
905 fstype = UFS2;
906 #ifdef FFS_EI
907 needswap = 0;
908 } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
909 sbsize = bswap32(fs->fs_sbsize);
910 fstype = UFS2;
911 needswap = 1;
912 #endif
913 } else
914 continue;
915
916
917 /* fs->fs_sblockloc isn't defined for old filesystems */
918 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
919 if (sblockloc == SBLOCK_UFS2)
920 /*
921 * This is likely to be the first alternate
922 * in a filesystem with 64k blocks.
923 * Don't use it.
924 */
925 continue;
926 fsblockloc = sblockloc;
927 } else {
928 fsblockloc = fs->fs_sblockloc;
929 #ifdef FFS_EI
930 if (needswap)
931 fsblockloc = bswap64(fsblockloc);
932 #endif
933 }
934
935 /* Check we haven't found an alternate superblock */
936 if (fsblockloc != sblockloc)
937 continue;
938
939 /* Validate size of superblock */
940 if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
941 continue;
942
943 /* Ok seems to be a good superblock */
944 break;
945 }
946
947 fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
948 memcpy(fs, bp->b_data, sbsize);
949 ump->um_fs = fs;
950
951 #ifdef FFS_EI
952 if (needswap) {
953 ffs_sb_swap((struct fs*)bp->b_data, fs);
954 fs->fs_flags |= FS_SWAPPED;
955 } else
956 #endif
957 fs->fs_flags &= ~FS_SWAPPED;
958
959 #ifdef WAPBL
960 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
961 error = ffs_wapbl_replay_start(mp, fs, devvp);
962 if (error && (mp->mnt_flag & MNT_FORCE) == 0)
963 goto out;
964 if (!error) {
965 if (!ronly) {
966 /* XXX fsmnt may be stale. */
967 printf("%s: replaying log to disk\n",
968 fs->fs_fsmnt);
969 error = wapbl_replay_write(mp->mnt_wapbl_replay,
970 devvp);
971 if (error)
972 goto out;
973 wapbl_replay_stop(mp->mnt_wapbl_replay);
974 fs->fs_clean = FS_WASCLEAN;
975 } else {
976 /* XXX fsmnt may be stale */
977 printf("%s: replaying log to memory\n",
978 fs->fs_fsmnt);
979 }
980
981 /* Force a re-read of the superblock */
982 brelse(bp, BC_INVAL);
983 bp = NULL;
984 free(fs, M_UFSMNT);
985 fs = NULL;
986 goto sbagain;
987 }
988 }
989 #else /* !WAPBL */
990 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
991 error = EPERM;
992 goto out;
993 }
994 #endif /* !WAPBL */
995
996 ffs_oldfscompat_read(fs, ump, sblockloc);
997 ump->um_maxfilesize = fs->fs_maxfilesize;
998
999 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1000 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1001 mp->mnt_stat.f_mntonname, fs->fs_flags,
1002 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1003 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1004 error = EINVAL;
1005 goto out;
1006 }
1007 }
1008
1009 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1010 fs->fs_pendingblocks = 0;
1011 fs->fs_pendinginodes = 0;
1012 }
1013
1014 ump->um_fstype = fstype;
1015 if (fs->fs_sbsize < SBLOCKSIZE)
1016 brelse(bp, BC_INVAL);
1017 else
1018 brelse(bp, 0);
1019 bp = NULL;
1020
1021 /* First check to see if this is tagged as an Apple UFS filesystem
1022 * in the disklabel
1023 */
1024 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
1025 (dpart.part->p_fstype == FS_APPLEUFS)) {
1026 ump->um_flags |= UFS_ISAPPLEUFS;
1027 }
1028 #ifdef APPLE_UFS
1029 else {
1030 /* Manually look for an apple ufs label, and if a valid one
1031 * is found, then treat it like an Apple UFS filesystem anyway
1032 */
1033 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size),
1034 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1035 if (error)
1036 goto out;
1037 error = ffs_appleufs_validate(fs->fs_fsmnt,
1038 (struct appleufslabel *)bp->b_data, NULL);
1039 if (error == 0) {
1040 ump->um_flags |= UFS_ISAPPLEUFS;
1041 }
1042 brelse(bp, 0);
1043 bp = NULL;
1044 }
1045 #else
1046 if (ump->um_flags & UFS_ISAPPLEUFS) {
1047 error = EINVAL;
1048 goto out;
1049 }
1050 #endif
1051
1052 #if 0
1053 /*
1054 * XXX This code changes the behaviour of mounting dirty filesystems, to
1055 * XXX require "mount -f ..." to mount them. This doesn't match what
1056 * XXX mount(8) describes and is disabled for now.
1057 */
1058 /*
1059 * If the file system is not clean, don't allow it to be mounted
1060 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1061 * for the root file system.)
1062 */
1063 if (fs->fs_flags & FS_DOWAPBL) {
1064 /*
1065 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1066 * bit is set, although there's a window in unmount where it
1067 * could be FS_ISCLEAN
1068 */
1069 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1070 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1071 error = EPERM;
1072 goto out;
1073 }
1074 } else
1075 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1076 (mp->mnt_flag & MNT_FORCE) == 0) {
1077 error = EPERM;
1078 goto out;
1079 }
1080 #endif
1081
1082 /*
1083 * verify that we can access the last block in the fs
1084 * if we're mounting read/write.
1085 */
1086
1087 if (!ronly) {
1088 error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
1089 cred, 0, &bp);
1090 if (bp->b_bcount != fs->fs_fsize)
1091 error = EINVAL;
1092 if (error) {
1093 bset = BC_INVAL;
1094 goto out;
1095 }
1096 brelse(bp, BC_INVAL);
1097 bp = NULL;
1098 }
1099
1100 fs->fs_ronly = ronly;
1101 /* Don't bump fs_clean if we're replaying journal */
1102 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
1103 if (ronly == 0) {
1104 fs->fs_clean <<= 1;
1105 fs->fs_fmod = 1;
1106 }
1107 size = fs->fs_cssize;
1108 blks = howmany(size, fs->fs_fsize);
1109 if (fs->fs_contigsumsize > 0)
1110 size += fs->fs_ncg * sizeof(int32_t);
1111 size += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1112 space = malloc((u_long)size, M_UFSMNT, M_WAITOK);
1113 fs->fs_csp = space;
1114 for (i = 0; i < blks; i += fs->fs_frag) {
1115 size = fs->fs_bsize;
1116 if (i + fs->fs_frag > blks)
1117 size = (blks - i) * fs->fs_fsize;
1118 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
1119 cred, 0, &bp);
1120 if (error) {
1121 free(fs->fs_csp, M_UFSMNT);
1122 goto out;
1123 }
1124 #ifdef FFS_EI
1125 if (needswap)
1126 ffs_csum_swap((struct csum *)bp->b_data,
1127 (struct csum *)space, size);
1128 else
1129 #endif
1130 memcpy(space, bp->b_data, (u_int)size);
1131
1132 space = (char *)space + size;
1133 brelse(bp, 0);
1134 bp = NULL;
1135 }
1136 if (fs->fs_contigsumsize > 0) {
1137 fs->fs_maxcluster = lp = space;
1138 for (i = 0; i < fs->fs_ncg; i++)
1139 *lp++ = fs->fs_contigsumsize;
1140 space = lp;
1141 }
1142 size = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1143 fs->fs_contigdirs = space;
1144 space = (char *)space + size;
1145 memset(fs->fs_contigdirs, 0, size);
1146 /* Compatibility for old filesystems - XXX */
1147 if (fs->fs_avgfilesize <= 0)
1148 fs->fs_avgfilesize = AVFILESIZ;
1149 if (fs->fs_avgfpdir <= 0)
1150 fs->fs_avgfpdir = AFPDIR;
1151 fs->fs_active = NULL;
1152 mp->mnt_data = ump;
1153 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1154 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1155 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1156 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1157 if (UFS_MPISAPPLEUFS(ump)) {
1158 /* NeXT used to keep short symlinks in the inode even
1159 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1160 * is probably -1, but we still need to be able to identify
1161 * short symlinks.
1162 */
1163 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1164 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1165 mp->mnt_iflag |= IMNT_DTYPE;
1166 } else {
1167 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1168 ump->um_dirblksiz = DIRBLKSIZ;
1169 if (ump->um_maxsymlinklen > 0)
1170 mp->mnt_iflag |= IMNT_DTYPE;
1171 else
1172 mp->mnt_iflag &= ~IMNT_DTYPE;
1173 }
1174 mp->mnt_fs_bshift = fs->fs_bshift;
1175 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1176 mp->mnt_flag |= MNT_LOCAL;
1177 mp->mnt_iflag |= IMNT_MPSAFE;
1178 #ifdef FFS_EI
1179 if (needswap)
1180 ump->um_flags |= UFS_NEEDSWAP;
1181 #endif
1182 ump->um_mountp = mp;
1183 ump->um_dev = dev;
1184 ump->um_devvp = devvp;
1185 ump->um_nindir = fs->fs_nindir;
1186 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1187 ump->um_bptrtodb = fs->fs_fsbtodb;
1188 ump->um_seqinc = fs->fs_frag;
1189 for (i = 0; i < MAXQUOTAS; i++)
1190 ump->um_quotas[i] = NULLVP;
1191 devvp->v_specmountpoint = mp;
1192 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1193 ffs_snapshot_mount(mp);
1194
1195 #ifdef WAPBL
1196 if (!ronly) {
1197 KDASSERT(fs->fs_ronly == 0);
1198 /*
1199 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1200 * needs to create a new log file in-filesystem.
1201 */
1202 ffs_statvfs(mp, &mp->mnt_stat);
1203
1204 error = ffs_wapbl_start(mp);
1205 if (error) {
1206 free(fs->fs_csp, M_UFSMNT);
1207 goto out;
1208 }
1209 }
1210 #endif /* WAPBL */
1211 #ifdef UFS_EXTATTR
1212 /*
1213 * Initialize file-backed extended attributes on UFS1 file
1214 * systems.
1215 */
1216 if (ump->um_fstype == UFS1) {
1217 ufs_extattr_uepm_init(&ump->um_extattr);
1218 #ifdef UFS_EXTATTR_AUTOSTART
1219 /*
1220 * XXX Just ignore errors. Not clear that we should
1221 * XXX fail the mount in this case.
1222 */
1223 (void) ufs_extattr_autostart(mp, l);
1224 #endif
1225 }
1226 #endif /* UFS_EXTATTR */
1227 return (0);
1228 out:
1229 #ifdef WAPBL
1230 if (mp->mnt_wapbl_replay) {
1231 wapbl_replay_stop(mp->mnt_wapbl_replay);
1232 wapbl_replay_free(mp->mnt_wapbl_replay);
1233 mp->mnt_wapbl_replay = 0;
1234 }
1235 #endif
1236
1237 fstrans_unmount(mp);
1238 if (fs)
1239 free(fs, M_UFSMNT);
1240 devvp->v_specmountpoint = NULL;
1241 if (bp)
1242 brelse(bp, bset);
1243 if (ump) {
1244 if (ump->um_oldfscompat)
1245 free(ump->um_oldfscompat, M_UFSMNT);
1246 mutex_destroy(&ump->um_lock);
1247 free(ump, M_UFSMNT);
1248 mp->mnt_data = NULL;
1249 }
1250 return (error);
1251 }
1252
1253 /*
1254 * Sanity checks for loading old filesystem superblocks.
1255 * See ffs_oldfscompat_write below for unwound actions.
1256 *
1257 * XXX - Parts get retired eventually.
1258 * Unfortunately new bits get added.
1259 */
1260 static void
1261 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1262 {
1263 off_t maxfilesize;
1264 int32_t *extrasave;
1265
1266 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1267 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1268 return;
1269
1270 if (!ump->um_oldfscompat)
1271 ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
1272 M_UFSMNT, M_WAITOK);
1273
1274 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1275 extrasave = ump->um_oldfscompat;
1276 extrasave += 512/sizeof(int32_t);
1277 extrasave[0] = fs->fs_old_npsect;
1278 extrasave[1] = fs->fs_old_interleave;
1279 extrasave[2] = fs->fs_old_trackskew;
1280
1281 /* These fields will be overwritten by their
1282 * original values in fs_oldfscompat_write, so it is harmless
1283 * to modify them here.
1284 */
1285 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1286 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1287 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1288 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1289
1290 fs->fs_maxbsize = fs->fs_bsize;
1291 fs->fs_time = fs->fs_old_time;
1292 fs->fs_size = fs->fs_old_size;
1293 fs->fs_dsize = fs->fs_old_dsize;
1294 fs->fs_csaddr = fs->fs_old_csaddr;
1295 fs->fs_sblockloc = sblockloc;
1296
1297 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1298
1299 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1300 fs->fs_old_nrpos = 8;
1301 fs->fs_old_npsect = fs->fs_old_nsect;
1302 fs->fs_old_interleave = 1;
1303 fs->fs_old_trackskew = 0;
1304 }
1305
1306 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1307 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1308 fs->fs_qbmask = ~fs->fs_bmask;
1309 fs->fs_qfmask = ~fs->fs_fmask;
1310 }
1311
1312 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1313 if (fs->fs_maxfilesize > maxfilesize)
1314 fs->fs_maxfilesize = maxfilesize;
1315
1316 /* Compatibility for old filesystems */
1317 if (fs->fs_avgfilesize <= 0)
1318 fs->fs_avgfilesize = AVFILESIZ;
1319 if (fs->fs_avgfpdir <= 0)
1320 fs->fs_avgfpdir = AFPDIR;
1321
1322 #if 0
1323 if (bigcgs) {
1324 fs->fs_save_cgsize = fs->fs_cgsize;
1325 fs->fs_cgsize = fs->fs_bsize;
1326 }
1327 #endif
1328 }
1329
1330 /*
1331 * Unwinding superblock updates for old filesystems.
1332 * See ffs_oldfscompat_read above for details.
1333 *
1334 * XXX - Parts get retired eventually.
1335 * Unfortunately new bits get added.
1336 */
1337 static void
1338 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1339 {
1340 int32_t *extrasave;
1341
1342 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1343 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1344 return;
1345
1346 fs->fs_old_time = fs->fs_time;
1347 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1348 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1349 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1350 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1351 fs->fs_old_flags = fs->fs_flags;
1352
1353 #if 0
1354 if (bigcgs) {
1355 fs->fs_cgsize = fs->fs_save_cgsize;
1356 }
1357 #endif
1358
1359 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1360 extrasave = ump->um_oldfscompat;
1361 extrasave += 512/sizeof(int32_t);
1362 fs->fs_old_npsect = extrasave[0];
1363 fs->fs_old_interleave = extrasave[1];
1364 fs->fs_old_trackskew = extrasave[2];
1365
1366 }
1367
1368 /*
1369 * unmount vfs operation
1370 */
1371 int
1372 ffs_unmount(struct mount *mp, int mntflags)
1373 {
1374 struct lwp *l = curlwp;
1375 struct ufsmount *ump = VFSTOUFS(mp);
1376 struct fs *fs = ump->um_fs;
1377 int error, flags;
1378 #ifdef WAPBL
1379 extern int doforce;
1380 #endif
1381
1382 flags = 0;
1383 if (mntflags & MNT_FORCE)
1384 flags |= FORCECLOSE;
1385 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1386 return (error);
1387 error = UFS_WAPBL_BEGIN(mp);
1388 if (error == 0)
1389 if (fs->fs_ronly == 0 &&
1390 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1391 fs->fs_clean & FS_WASCLEAN) {
1392 fs->fs_clean = FS_ISCLEAN;
1393 fs->fs_fmod = 0;
1394 (void) ffs_sbupdate(ump, MNT_WAIT);
1395 }
1396 if (error == 0)
1397 UFS_WAPBL_END(mp);
1398 #ifdef WAPBL
1399 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1400 if (mp->mnt_wapbl_replay) {
1401 KDASSERT(fs->fs_ronly);
1402 wapbl_replay_stop(mp->mnt_wapbl_replay);
1403 wapbl_replay_free(mp->mnt_wapbl_replay);
1404 mp->mnt_wapbl_replay = 0;
1405 }
1406 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1407 if (error) {
1408 return error;
1409 }
1410 #endif /* WAPBL */
1411 #ifdef UFS_EXTATTR
1412 if (ump->um_fstype == UFS1) {
1413 ufs_extattr_stop(mp, l);
1414 ufs_extattr_uepm_destroy(&ump->um_extattr);
1415 }
1416 #endif /* UFS_EXTATTR */
1417
1418 if (ump->um_devvp->v_type != VBAD)
1419 ump->um_devvp->v_specmountpoint = NULL;
1420 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1421 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1422 NOCRED);
1423 vput(ump->um_devvp);
1424 free(fs->fs_csp, M_UFSMNT);
1425 free(fs, M_UFSMNT);
1426 if (ump->um_oldfscompat != NULL)
1427 free(ump->um_oldfscompat, M_UFSMNT);
1428 mutex_destroy(&ump->um_lock);
1429 ffs_snapshot_fini(ump);
1430 free(ump, M_UFSMNT);
1431 mp->mnt_data = NULL;
1432 mp->mnt_flag &= ~MNT_LOCAL;
1433 fstrans_unmount(mp);
1434 return (0);
1435 }
1436
1437 /*
1438 * Flush out all the files in a filesystem.
1439 */
1440 int
1441 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1442 {
1443 extern int doforce;
1444 struct ufsmount *ump;
1445 int error;
1446
1447 if (!doforce)
1448 flags &= ~FORCECLOSE;
1449 ump = VFSTOUFS(mp);
1450 #ifdef QUOTA
1451 if (mp->mnt_flag & MNT_QUOTA) {
1452 int i;
1453 if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
1454 return (error);
1455 for (i = 0; i < MAXQUOTAS; i++) {
1456 if (ump->um_quotas[i] == NULLVP)
1457 continue;
1458 quotaoff(l, mp, i);
1459 }
1460 /*
1461 * Here we fall through to vflush again to ensure
1462 * that we have gotten rid of all the system vnodes.
1463 */
1464 }
1465 #endif
1466 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1467 return (error);
1468 ffs_snapshot_unmount(mp);
1469 /*
1470 * Flush all the files.
1471 */
1472 error = vflush(mp, NULLVP, flags);
1473 if (error)
1474 return (error);
1475 /*
1476 * Flush filesystem metadata.
1477 */
1478 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1479 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1480 VOP_UNLOCK(ump->um_devvp, 0);
1481 if (flags & FORCECLOSE) /* XXXDBJ */
1482 error = 0;
1483
1484 #ifdef WAPBL
1485 if (error)
1486 return error;
1487 if (mp->mnt_wapbl) {
1488 error = wapbl_flush(mp->mnt_wapbl, 1);
1489 if (flags & FORCECLOSE)
1490 error = 0;
1491 }
1492 #endif
1493
1494 return (error);
1495 }
1496
1497 /*
1498 * Get file system statistics.
1499 */
1500 int
1501 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1502 {
1503 struct ufsmount *ump;
1504 struct fs *fs;
1505
1506 ump = VFSTOUFS(mp);
1507 fs = ump->um_fs;
1508 mutex_enter(&ump->um_lock);
1509 sbp->f_bsize = fs->fs_bsize;
1510 sbp->f_frsize = fs->fs_fsize;
1511 sbp->f_iosize = fs->fs_bsize;
1512 sbp->f_blocks = fs->fs_dsize;
1513 sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1514 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1515 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1516 fs->fs_minfree) / (u_int64_t) 100;
1517 if (sbp->f_bfree > sbp->f_bresvd)
1518 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1519 else
1520 sbp->f_bavail = 0;
1521 sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
1522 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1523 sbp->f_favail = sbp->f_ffree;
1524 sbp->f_fresvd = 0;
1525 mutex_exit(&ump->um_lock);
1526 copy_statvfs_info(sbp, mp);
1527
1528 return (0);
1529 }
1530
1531 /*
1532 * Go through the disk queues to initiate sandbagged IO;
1533 * go through the inodes to write those that have been modified;
1534 * initiate the writing of the super block if it has been modified.
1535 *
1536 * Note: we are always called with the filesystem marked `MPBUSY'.
1537 */
1538 int
1539 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1540 {
1541 struct vnode *vp, *mvp, *nvp;
1542 struct inode *ip;
1543 struct ufsmount *ump = VFSTOUFS(mp);
1544 struct fs *fs;
1545 int error, allerror = 0;
1546
1547 fs = ump->um_fs;
1548 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1549 printf("fs = %s\n", fs->fs_fsmnt);
1550 panic("update: rofs mod");
1551 }
1552
1553 /* Allocate a marker vnode. */
1554 if ((mvp = vnalloc(mp)) == NULL)
1555 return (ENOMEM);
1556
1557 fstrans_start(mp, FSTRANS_SHARED);
1558 /*
1559 * Write back each (modified) inode.
1560 */
1561 mutex_enter(&mntvnode_lock);
1562 loop:
1563 /*
1564 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1565 * and vclean() can be called indirectly
1566 */
1567 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1568 nvp = TAILQ_NEXT(vp, v_mntvnodes);
1569 /*
1570 * If the vnode that we are about to sync is no longer
1571 * associated with this mount point, start over.
1572 */
1573 if (vp->v_mount != mp)
1574 goto loop;
1575 /*
1576 * Don't interfere with concurrent scans of this FS.
1577 */
1578 if (vismarker(vp))
1579 continue;
1580 mutex_enter(&vp->v_interlock);
1581 ip = VTOI(vp);
1582
1583 /*
1584 * Skip the vnode/inode if inaccessible.
1585 */
1586 if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
1587 vp->v_type == VNON) {
1588 mutex_exit(&vp->v_interlock);
1589 continue;
1590 }
1591
1592 /*
1593 * We deliberately update inode times here. This will
1594 * prevent a massive queue of updates accumulating, only
1595 * to be handled by a call to unmount.
1596 *
1597 * XXX It would be better to have the syncer trickle these
1598 * out. Adjustment needed to allow registering vnodes for
1599 * sync when the vnode is clean, but the inode dirty. Or
1600 * have ufs itself trickle out inode updates.
1601 *
1602 * If doing a lazy sync, we don't care about metadata or
1603 * data updates, because they are handled by each vnode's
1604 * synclist entry. In this case we are only interested in
1605 * writing back modified inodes.
1606 */
1607 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1608 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1609 (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1610 UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
1611 mutex_exit(&vp->v_interlock);
1612 continue;
1613 }
1614 if (vp->v_type == VBLK &&
1615 fstrans_getstate(mp) == FSTRANS_SUSPENDING) {
1616 mutex_exit(&vp->v_interlock);
1617 continue;
1618 }
1619 vmark(mvp, vp);
1620 mutex_exit(&mntvnode_lock);
1621 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
1622 if (error) {
1623 mutex_enter(&mntvnode_lock);
1624 nvp = vunmark(mvp);
1625 if (error == ENOENT) {
1626 goto loop;
1627 }
1628 continue;
1629 }
1630 if (waitfor == MNT_LAZY) {
1631 error = UFS_WAPBL_BEGIN(vp->v_mount);
1632 if (!error) {
1633 error = ffs_update(vp, NULL, NULL,
1634 UPDATE_CLOSE);
1635 UFS_WAPBL_END(vp->v_mount);
1636 }
1637 } else {
1638 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1639 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1640 }
1641 if (error)
1642 allerror = error;
1643 vput(vp);
1644 mutex_enter(&mntvnode_lock);
1645 nvp = vunmark(mvp);
1646 }
1647 mutex_exit(&mntvnode_lock);
1648 /*
1649 * Force stale file system control information to be flushed.
1650 */
1651 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1652 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1653 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1654 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1655 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1656 0, 0)) != 0)
1657 allerror = error;
1658 VOP_UNLOCK(ump->um_devvp, 0);
1659 if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
1660 mutex_enter(&mntvnode_lock);
1661 goto loop;
1662 }
1663 }
1664 #ifdef QUOTA
1665 qsync(mp);
1666 #endif
1667 /*
1668 * Write back modified superblock.
1669 */
1670 if (fs->fs_fmod != 0) {
1671 fs->fs_fmod = 0;
1672 fs->fs_time = time_second;
1673 error = UFS_WAPBL_BEGIN(mp);
1674 if (error)
1675 allerror = error;
1676 else {
1677 if ((error = ffs_cgupdate(ump, waitfor)))
1678 allerror = error;
1679 UFS_WAPBL_END(mp);
1680 }
1681 }
1682
1683 #ifdef WAPBL
1684 if (mp->mnt_wapbl) {
1685 error = wapbl_flush(mp->mnt_wapbl, 0);
1686 if (error)
1687 allerror = error;
1688 }
1689 #endif
1690
1691 fstrans_done(mp);
1692 vnfree(mvp);
1693 return (allerror);
1694 }
1695
1696 /*
1697 * Look up a FFS dinode number to find its incore vnode, otherwise read it
1698 * in from disk. If it is in core, wait for the lock bit to clear, then
1699 * return the inode locked. Detection and handling of mount points must be
1700 * done by the calling routine.
1701 */
1702 int
1703 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1704 {
1705 struct fs *fs;
1706 struct inode *ip;
1707 struct ufsmount *ump;
1708 struct buf *bp;
1709 struct vnode *vp;
1710 dev_t dev;
1711 int error;
1712
1713 ump = VFSTOUFS(mp);
1714 dev = ump->um_dev;
1715
1716 retry:
1717 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1718 return (0);
1719
1720 /* Allocate a new vnode/inode. */
1721 if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
1722 *vpp = NULL;
1723 return (error);
1724 }
1725 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1726
1727 /*
1728 * If someone beat us to it, put back the freshly allocated
1729 * vnode/inode pair and retry.
1730 */
1731 mutex_enter(&ufs_hashlock);
1732 if (ufs_ihashget(dev, ino, 0) != NULL) {
1733 mutex_exit(&ufs_hashlock);
1734 ungetnewvnode(vp);
1735 pool_cache_put(ffs_inode_cache, ip);
1736 goto retry;
1737 }
1738
1739 vp->v_vflag |= VV_LOCKSWORK;
1740
1741 /*
1742 * XXX MFS ends up here, too, to allocate an inode. Should we
1743 * XXX create another pool for MFS inodes?
1744 */
1745
1746 memset(ip, 0, sizeof(struct inode));
1747 vp->v_data = ip;
1748 ip->i_vnode = vp;
1749 ip->i_ump = ump;
1750 ip->i_fs = fs = ump->um_fs;
1751 ip->i_dev = dev;
1752 ip->i_number = ino;
1753 #ifdef QUOTA
1754 ufsquota_init(ip);
1755 #endif
1756
1757 /*
1758 * Initialize genfs node, we might proceed to destroy it in
1759 * error branches.
1760 */
1761 genfs_node_init(vp, &ffs_genfsops);
1762
1763 /*
1764 * Put it onto its hash chain and lock it so that other requests for
1765 * this inode will block if they arrive while we are sleeping waiting
1766 * for old data structures to be purged or for the contents of the
1767 * disk portion of this inode to be read.
1768 */
1769
1770 ufs_ihashins(ip);
1771 mutex_exit(&ufs_hashlock);
1772
1773 /* Read in the disk contents for the inode, copy into the inode. */
1774 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
1775 (int)fs->fs_bsize, NOCRED, 0, &bp);
1776 if (error) {
1777
1778 /*
1779 * The inode does not contain anything useful, so it would
1780 * be misleading to leave it on its hash chain. With mode
1781 * still zero, it will be unlinked and returned to the free
1782 * list by vput().
1783 */
1784
1785 vput(vp);
1786 brelse(bp, 0);
1787 *vpp = NULL;
1788 return (error);
1789 }
1790 if (ip->i_ump->um_fstype == UFS1)
1791 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1792 PR_WAITOK);
1793 else
1794 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1795 PR_WAITOK);
1796 ffs_load_inode(bp, ip, fs, ino);
1797 brelse(bp, 0);
1798
1799 /*
1800 * Initialize the vnode from the inode, check for aliases.
1801 * Note that the underlying vnode may have changed.
1802 */
1803
1804 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1805
1806 /*
1807 * Finish inode initialization now that aliasing has been resolved.
1808 */
1809
1810 ip->i_devvp = ump->um_devvp;
1811 VREF(ip->i_devvp);
1812
1813 /*
1814 * Ensure that uid and gid are correct. This is a temporary
1815 * fix until fsck has been changed to do the update.
1816 */
1817
1818 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1819 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1820 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1821 } /* XXX */
1822 uvm_vnp_setsize(vp, ip->i_size);
1823 *vpp = vp;
1824 return (0);
1825 }
1826
1827 /*
1828 * File handle to vnode
1829 *
1830 * Have to be really careful about stale file handles:
1831 * - check that the inode number is valid
1832 * - call ffs_vget() to get the locked inode
1833 * - check for an unallocated inode (i_mode == 0)
1834 * - check that the given client host has export rights and return
1835 * those rights via. exflagsp and credanonp
1836 */
1837 int
1838 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1839 {
1840 struct ufid ufh;
1841 struct fs *fs;
1842
1843 if (fhp->fid_len != sizeof(struct ufid))
1844 return EINVAL;
1845
1846 memcpy(&ufh, fhp, sizeof(ufh));
1847 fs = VFSTOUFS(mp)->um_fs;
1848 if (ufh.ufid_ino < ROOTINO ||
1849 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1850 return (ESTALE);
1851 return (ufs_fhtovp(mp, &ufh, vpp));
1852 }
1853
1854 /*
1855 * Vnode pointer to File handle
1856 */
1857 /* ARGSUSED */
1858 int
1859 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1860 {
1861 struct inode *ip;
1862 struct ufid ufh;
1863
1864 if (*fh_size < sizeof(struct ufid)) {
1865 *fh_size = sizeof(struct ufid);
1866 return E2BIG;
1867 }
1868 ip = VTOI(vp);
1869 *fh_size = sizeof(struct ufid);
1870 memset(&ufh, 0, sizeof(ufh));
1871 ufh.ufid_len = sizeof(struct ufid);
1872 ufh.ufid_ino = ip->i_number;
1873 ufh.ufid_gen = ip->i_gen;
1874 memcpy(fhp, &ufh, sizeof(ufh));
1875 return (0);
1876 }
1877
1878 void
1879 ffs_init(void)
1880 {
1881 if (ffs_initcount++ > 0)
1882 return;
1883
1884 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
1885 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
1886 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
1887 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
1888 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
1889 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
1890 ufs_init();
1891 }
1892
1893 void
1894 ffs_reinit(void)
1895 {
1896
1897 ufs_reinit();
1898 }
1899
1900 void
1901 ffs_done(void)
1902 {
1903 if (--ffs_initcount > 0)
1904 return;
1905
1906 ufs_done();
1907 pool_cache_destroy(ffs_dinode2_cache);
1908 pool_cache_destroy(ffs_dinode1_cache);
1909 pool_cache_destroy(ffs_inode_cache);
1910 }
1911
1912 /*
1913 * Write a superblock and associated information back to disk.
1914 */
1915 int
1916 ffs_sbupdate(struct ufsmount *mp, int waitfor)
1917 {
1918 struct fs *fs = mp->um_fs;
1919 struct buf *bp;
1920 int error = 0;
1921 u_int32_t saveflag;
1922
1923 error = ffs_getblk(mp->um_devvp,
1924 fs->fs_sblockloc >> (fs->fs_fshift - fs->fs_fsbtodb), FFS_NOBLK,
1925 fs->fs_sbsize, false, &bp);
1926 if (error)
1927 return error;
1928 saveflag = fs->fs_flags & FS_INTERNAL;
1929 fs->fs_flags &= ~FS_INTERNAL;
1930
1931 memcpy(bp->b_data, fs, fs->fs_sbsize);
1932
1933 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
1934 #ifdef FFS_EI
1935 if (mp->um_flags & UFS_NEEDSWAP)
1936 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
1937 #endif
1938 fs->fs_flags |= saveflag;
1939
1940 if (waitfor == MNT_WAIT)
1941 error = bwrite(bp);
1942 else
1943 bawrite(bp);
1944 return (error);
1945 }
1946
1947 int
1948 ffs_cgupdate(struct ufsmount *mp, int waitfor)
1949 {
1950 struct fs *fs = mp->um_fs;
1951 struct buf *bp;
1952 int blks;
1953 void *space;
1954 int i, size, error = 0, allerror = 0;
1955
1956 allerror = ffs_sbupdate(mp, waitfor);
1957 blks = howmany(fs->fs_cssize, fs->fs_fsize);
1958 space = fs->fs_csp;
1959 for (i = 0; i < blks; i += fs->fs_frag) {
1960 size = fs->fs_bsize;
1961 if (i + fs->fs_frag > blks)
1962 size = (blks - i) * fs->fs_fsize;
1963 error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
1964 FFS_NOBLK, size, false, &bp);
1965 if (error)
1966 break;
1967 #ifdef FFS_EI
1968 if (mp->um_flags & UFS_NEEDSWAP)
1969 ffs_csum_swap((struct csum*)space,
1970 (struct csum*)bp->b_data, size);
1971 else
1972 #endif
1973 memcpy(bp->b_data, space, (u_int)size);
1974 space = (char *)space + size;
1975 if (waitfor == MNT_WAIT)
1976 error = bwrite(bp);
1977 else
1978 bawrite(bp);
1979 }
1980 if (!allerror && error)
1981 allerror = error;
1982 return (allerror);
1983 }
1984
1985 int
1986 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
1987 int attrnamespace, const char *attrname)
1988 {
1989 #ifdef UFS_EXTATTR
1990 /*
1991 * File-backed extended attributes are only supported on UFS1.
1992 * UFS2 has native extended attributes.
1993 */
1994 if (VFSTOUFS(mp)->um_fstype == UFS1)
1995 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
1996 #endif
1997 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
1998 }
1999
2000 int
2001 ffs_suspendctl(struct mount *mp, int cmd)
2002 {
2003 int error;
2004 struct lwp *l = curlwp;
2005
2006 switch (cmd) {
2007 case SUSPEND_SUSPEND:
2008 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2009 return error;
2010 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2011 if (error == 0)
2012 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2013 #ifdef WAPBL
2014 if (error == 0 && mp->mnt_wapbl)
2015 error = wapbl_flush(mp->mnt_wapbl, 1);
2016 #endif
2017 if (error != 0) {
2018 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2019 return error;
2020 }
2021 return 0;
2022
2023 case SUSPEND_RESUME:
2024 return fstrans_setstate(mp, FSTRANS_NORMAL);
2025
2026 default:
2027 return EINVAL;
2028 }
2029 }
2030
2031 /*
2032 * Synch vnode for a mounted file system. This is called for foreign
2033 * vnodes, i.e. non-ffs.
2034 */
2035 static int
2036 ffs_vfs_fsync(vnode_t *vp, int flags)
2037 {
2038 int error, passes, skipmeta, i, pflags;
2039 buf_t *bp, *nbp;
2040 #ifdef WAPBL
2041 struct mount *mp;
2042 #endif
2043
2044 KASSERT(vp->v_type == VBLK);
2045 KASSERT(vp->v_specmountpoint != NULL);
2046
2047 /*
2048 * Flush all dirty data associated with the vnode.
2049 */
2050 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2051 if ((flags & FSYNC_WAIT) != 0)
2052 pflags |= PGO_SYNCIO;
2053 mutex_enter(&vp->v_interlock);
2054 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2055 if (error)
2056 return error;
2057
2058 #ifdef WAPBL
2059 mp = vp->v_specmountpoint;
2060 if (mp && mp->mnt_wapbl) {
2061 /*
2062 * Don't bother writing out metadata if the syncer is
2063 * making the request. We will let the sync vnode
2064 * write it out in a single burst through a call to
2065 * VFS_SYNC().
2066 */
2067 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2068 return 0;
2069
2070 /*
2071 * Don't flush the log if the vnode being flushed
2072 * contains no dirty buffers that could be in the log.
2073 */
2074 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2075 error = wapbl_flush(mp->mnt_wapbl, 0);
2076 if (error)
2077 return error;
2078 }
2079
2080 if ((flags & FSYNC_WAIT) != 0) {
2081 mutex_enter(&vp->v_interlock);
2082 while (vp->v_numoutput)
2083 cv_wait(&vp->v_cv, &vp->v_interlock);
2084 mutex_exit(&vp->v_interlock);
2085 }
2086
2087 return 0;
2088 }
2089 #endif /* WAPBL */
2090
2091 /*
2092 * Write out metadata for non-logging file systems. XXX This block
2093 * should be simplified now that softdep is gone.
2094 */
2095 passes = NIADDR + 1;
2096 skipmeta = 0;
2097 if (flags & FSYNC_WAIT)
2098 skipmeta = 1;
2099
2100 loop:
2101 mutex_enter(&bufcache_lock);
2102 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
2103 bp->b_cflags &= ~BC_SCANNED;
2104 }
2105 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2106 nbp = LIST_NEXT(bp, b_vnbufs);
2107 if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
2108 continue;
2109 if ((bp->b_oflags & BO_DELWRI) == 0)
2110 panic("ffs_fsync: not dirty");
2111 if (skipmeta && bp->b_lblkno < 0)
2112 continue;
2113 bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
2114 mutex_exit(&bufcache_lock);
2115 /*
2116 * On our final pass through, do all I/O synchronously
2117 * so that we can find out if our flush is failing
2118 * because of write errors.
2119 */
2120 if (passes > 0 || !(flags & FSYNC_WAIT))
2121 (void) bawrite(bp);
2122 else if ((error = bwrite(bp)) != 0)
2123 return (error);
2124 /*
2125 * Since we unlocked during the I/O, we need
2126 * to start from a known point.
2127 */
2128 mutex_enter(&bufcache_lock);
2129 nbp = LIST_FIRST(&vp->v_dirtyblkhd);
2130 }
2131 mutex_exit(&bufcache_lock);
2132 if (skipmeta) {
2133 skipmeta = 0;
2134 goto loop;
2135 }
2136
2137 if ((flags & FSYNC_WAIT) != 0) {
2138 mutex_enter(&vp->v_interlock);
2139 while (vp->v_numoutput) {
2140 cv_wait(&vp->v_cv, &vp->v_interlock);
2141 }
2142 mutex_exit(&vp->v_interlock);
2143
2144 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2145 /*
2146 * Block devices associated with filesystems may
2147 * have new I/O requests posted for them even if
2148 * the vnode is locked, so no amount of trying will
2149 * get them clean. Thus we give block devices a
2150 * good effort, then just give up. For all other file
2151 * types, go around and try again until it is clean.
2152 */
2153 if (passes > 0) {
2154 passes--;
2155 goto loop;
2156 }
2157 #ifdef DIAGNOSTIC
2158 if (vp->v_type != VBLK)
2159 vprint("ffs_fsync: dirty", vp);
2160 #endif
2161 }
2162 }
2163
2164 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2165 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2166 kauth_cred_get());
2167 }
2168
2169 return error;
2170 }
2171