Home | History | Annotate | Line # | Download | only in ffs
ffs_vfsops.c revision 1.255
      1 /*	$NetBSD: ffs_vfsops.c,v 1.255 2010/01/31 10:50:23 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.255 2010/01/31 10:50:23 mlelstv Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_ffs.h"
     68 #include "opt_quota.h"
     69 #include "opt_wapbl.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/proc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/vnode.h>
     78 #include <sys/socket.h>
     79 #include <sys/mount.h>
     80 #include <sys/buf.h>
     81 #include <sys/device.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/file.h>
     84 #include <sys/disklabel.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/lock.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/conf.h>
     92 #include <sys/kauth.h>
     93 #include <sys/wapbl.h>
     94 #include <sys/fstrans.h>
     95 #include <sys/module.h>
     96 
     97 #include <miscfs/genfs/genfs.h>
     98 #include <miscfs/specfs/specdev.h>
     99 
    100 #include <ufs/ufs/quota.h>
    101 #include <ufs/ufs/ufsmount.h>
    102 #include <ufs/ufs/inode.h>
    103 #include <ufs/ufs/dir.h>
    104 #include <ufs/ufs/ufs_extern.h>
    105 #include <ufs/ufs/ufs_bswap.h>
    106 #include <ufs/ufs/ufs_wapbl.h>
    107 
    108 #include <ufs/ffs/fs.h>
    109 #include <ufs/ffs/ffs_extern.h>
    110 
    111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
    112 
    113 static int	ffs_vfs_fsync(vnode_t *, int);
    114 
    115 static struct sysctllog *ffs_sysctl_log;
    116 
    117 /* how many times ffs_init() was called */
    118 int ffs_initcount = 0;
    119 
    120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
    121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
    122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
    123 
    124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
    125 	&ffs_vnodeop_opv_desc,
    126 	&ffs_specop_opv_desc,
    127 	&ffs_fifoop_opv_desc,
    128 	NULL,
    129 };
    130 
    131 struct vfsops ffs_vfsops = {
    132 	MOUNT_FFS,
    133 	sizeof (struct ufs_args),
    134 	ffs_mount,
    135 	ufs_start,
    136 	ffs_unmount,
    137 	ufs_root,
    138 	ufs_quotactl,
    139 	ffs_statvfs,
    140 	ffs_sync,
    141 	ffs_vget,
    142 	ffs_fhtovp,
    143 	ffs_vptofh,
    144 	ffs_init,
    145 	ffs_reinit,
    146 	ffs_done,
    147 	ffs_mountroot,
    148 	ffs_snapshot,
    149 	ffs_extattrctl,
    150 	ffs_suspendctl,
    151 	genfs_renamelock_enter,
    152 	genfs_renamelock_exit,
    153 	ffs_vfs_fsync,
    154 	ffs_vnodeopv_descs,
    155 	0,
    156 	{ NULL, NULL },
    157 };
    158 
    159 static const struct genfs_ops ffs_genfsops = {
    160 	.gop_size = ffs_gop_size,
    161 	.gop_alloc = ufs_gop_alloc,
    162 	.gop_write = genfs_gop_write,
    163 	.gop_markupdate = ufs_gop_markupdate,
    164 };
    165 
    166 static const struct ufs_ops ffs_ufsops = {
    167 	.uo_itimes = ffs_itimes,
    168 	.uo_update = ffs_update,
    169 	.uo_truncate = ffs_truncate,
    170 	.uo_valloc = ffs_valloc,
    171 	.uo_vfree = ffs_vfree,
    172 	.uo_balloc = ffs_balloc,
    173 	.uo_unmark_vnode = (void (*)(vnode_t *))nullop,
    174 };
    175 
    176 static int
    177 ffs_modcmd(modcmd_t cmd, void *arg)
    178 {
    179 	int error;
    180 
    181 #if 0
    182 	extern int doasyncfree;
    183 #endif
    184 	extern int ffs_log_changeopt;
    185 
    186 	switch (cmd) {
    187 	case MODULE_CMD_INIT:
    188 		error = vfs_attach(&ffs_vfsops);
    189 		if (error != 0)
    190 			break;
    191 
    192 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    193 			       CTLFLAG_PERMANENT,
    194 			       CTLTYPE_NODE, "vfs", NULL,
    195 			       NULL, 0, NULL, 0,
    196 			       CTL_VFS, CTL_EOL);
    197 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    198 			       CTLFLAG_PERMANENT,
    199 			       CTLTYPE_NODE, "ffs",
    200 			       SYSCTL_DESCR("Berkeley Fast File System"),
    201 			       NULL, 0, NULL, 0,
    202 			       CTL_VFS, 1, CTL_EOL);
    203 
    204 		/*
    205 		 * @@@ should we even bother with these first three?
    206 		 */
    207 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    208 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    209 			       CTLTYPE_INT, "doclusterread", NULL,
    210 			       sysctl_notavail, 0, NULL, 0,
    211 			       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
    212 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    213 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    214 			       CTLTYPE_INT, "doclusterwrite", NULL,
    215 			       sysctl_notavail, 0, NULL, 0,
    216 			       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
    217 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    218 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    219 			       CTLTYPE_INT, "doreallocblks", NULL,
    220 			       sysctl_notavail, 0, NULL, 0,
    221 			       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
    222 #if 0
    223 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    224 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    225 			       CTLTYPE_INT, "doasyncfree",
    226 			       SYSCTL_DESCR("Release dirty blocks asynchronously"),
    227 			       NULL, 0, &doasyncfree, 0,
    228 			       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
    229 #endif
    230 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    231 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    232 			       CTLTYPE_INT, "log_changeopt",
    233 			       SYSCTL_DESCR("Log changes in optimization strategy"),
    234 			       NULL, 0, &ffs_log_changeopt, 0,
    235 			       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
    236 		break;
    237 	case MODULE_CMD_FINI:
    238 		error = vfs_detach(&ffs_vfsops);
    239 		if (error != 0)
    240 			break;
    241 		sysctl_teardown(&ffs_sysctl_log);
    242 		break;
    243 	default:
    244 		error = ENOTTY;
    245 		break;
    246 	}
    247 
    248 	return (error);
    249 }
    250 
    251 pool_cache_t ffs_inode_cache;
    252 pool_cache_t ffs_dinode1_cache;
    253 pool_cache_t ffs_dinode2_cache;
    254 
    255 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
    256 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
    257 
    258 /*
    259  * Called by main() when ffs is going to be mounted as root.
    260  */
    261 
    262 int
    263 ffs_mountroot(void)
    264 {
    265 	struct fs *fs;
    266 	struct mount *mp;
    267 	struct lwp *l = curlwp;			/* XXX */
    268 	struct ufsmount *ump;
    269 	int error;
    270 
    271 	if (device_class(root_device) != DV_DISK)
    272 		return (ENODEV);
    273 
    274 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
    275 		vrele(rootvp);
    276 		return (error);
    277 	}
    278 
    279 	/*
    280 	 * We always need to be able to mount the root file system.
    281 	 */
    282 	mp->mnt_flag |= MNT_FORCE;
    283 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
    284 		vfs_unbusy(mp, false, NULL);
    285 		vfs_destroy(mp);
    286 		return (error);
    287 	}
    288 	mp->mnt_flag &= ~MNT_FORCE;
    289 	mutex_enter(&mountlist_lock);
    290 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    291 	mutex_exit(&mountlist_lock);
    292 	ump = VFSTOUFS(mp);
    293 	fs = ump->um_fs;
    294 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
    295 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
    296 	(void)ffs_statvfs(mp, &mp->mnt_stat);
    297 	vfs_unbusy(mp, false, NULL);
    298 	setrootfstime((time_t)fs->fs_time);
    299 	return (0);
    300 }
    301 
    302 /*
    303  * VFS Operations.
    304  *
    305  * mount system call
    306  */
    307 int
    308 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    309 {
    310 	struct lwp *l = curlwp;
    311 	struct vnode *devvp = NULL;
    312 	struct ufs_args *args = data;
    313 	struct ufsmount *ump = NULL;
    314 	struct fs *fs;
    315 	int error = 0, flags, update;
    316 	mode_t accessmode;
    317 
    318 	if (*data_len < sizeof *args)
    319 		return EINVAL;
    320 
    321 	if (mp->mnt_flag & MNT_GETARGS) {
    322 		ump = VFSTOUFS(mp);
    323 		if (ump == NULL)
    324 			return EIO;
    325 		args->fspec = NULL;
    326 		*data_len = sizeof *args;
    327 		return 0;
    328 	}
    329 
    330 	update = mp->mnt_flag & MNT_UPDATE;
    331 
    332 	/* Check arguments */
    333 	if (args->fspec != NULL) {
    334 		/*
    335 		 * Look up the name and verify that it's sane.
    336 		 */
    337 		error = namei_simple_user(args->fspec,
    338 					NSM_FOLLOW_NOEMULROOT, &devvp);
    339 		if (error != 0)
    340 			return (error);
    341 
    342 		if (!update) {
    343 			/*
    344 			 * Be sure this is a valid block device
    345 			 */
    346 			if (devvp->v_type != VBLK)
    347 				error = ENOTBLK;
    348 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    349 				error = ENXIO;
    350 		} else {
    351 			/*
    352 			 * Be sure we're still naming the same device
    353 			 * used for our initial mount
    354 			 */
    355 			ump = VFSTOUFS(mp);
    356 			if (devvp != ump->um_devvp) {
    357 				if (devvp->v_rdev != ump->um_devvp->v_rdev)
    358 					error = EINVAL;
    359 				else {
    360 					vrele(devvp);
    361 					devvp = ump->um_devvp;
    362 					vref(devvp);
    363 				}
    364 			}
    365 		}
    366 	} else {
    367 		if (!update) {
    368 			/* New mounts must have a filename for the device */
    369 			return (EINVAL);
    370 		} else {
    371 			/* Use the extant mount */
    372 			ump = VFSTOUFS(mp);
    373 			devvp = ump->um_devvp;
    374 			vref(devvp);
    375 		}
    376 	}
    377 
    378 	/*
    379 	 * If mount by non-root, then verify that user has necessary
    380 	 * permissions on the device.
    381 	 *
    382 	 * Permission to update a mount is checked higher, so here we presume
    383 	 * updating the mount is okay (for example, as far as securelevel goes)
    384 	 * which leaves us with the normal check.
    385 	 */
    386 	if (error == 0) {
    387 		accessmode = VREAD;
    388 		if (update ?
    389 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    390 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    391 			accessmode |= VWRITE;
    392 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    393 		error = genfs_can_mount(devvp, accessmode, l->l_cred);
    394 		VOP_UNLOCK(devvp, 0);
    395 	}
    396 
    397 	if (error) {
    398 		vrele(devvp);
    399 		return (error);
    400 	}
    401 
    402 #ifdef WAPBL
    403 	/* WAPBL can only be enabled on a r/w mount. */
    404 	if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
    405 		mp->mnt_flag &= ~MNT_LOG;
    406 	}
    407 #else /* !WAPBL */
    408 	mp->mnt_flag &= ~MNT_LOG;
    409 #endif /* !WAPBL */
    410 
    411 	if (!update) {
    412 		int xflags;
    413 
    414 		if (mp->mnt_flag & MNT_RDONLY)
    415 			xflags = FREAD;
    416 		else
    417 			xflags = FREAD | FWRITE;
    418 		error = VOP_OPEN(devvp, xflags, FSCRED);
    419 		if (error)
    420 			goto fail;
    421 		error = ffs_mountfs(devvp, mp, l);
    422 		if (error) {
    423 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    424 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
    425 			VOP_UNLOCK(devvp, 0);
    426 			goto fail;
    427 		}
    428 
    429 		ump = VFSTOUFS(mp);
    430 		fs = ump->um_fs;
    431 	} else {
    432 		/*
    433 		 * Update the mount.
    434 		 */
    435 
    436 		/*
    437 		 * The initial mount got a reference on this
    438 		 * device, so drop the one obtained via
    439 		 * namei(), above.
    440 		 */
    441 		vrele(devvp);
    442 
    443 		ump = VFSTOUFS(mp);
    444 		fs = ump->um_fs;
    445 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    446 			/*
    447 			 * Changing from r/w to r/o
    448 			 */
    449 			flags = WRITECLOSE;
    450 			if (mp->mnt_flag & MNT_FORCE)
    451 				flags |= FORCECLOSE;
    452 			error = ffs_flushfiles(mp, flags, l);
    453 			if (error == 0)
    454 				error = UFS_WAPBL_BEGIN(mp);
    455 			if (error == 0 &&
    456 			    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
    457 			    fs->fs_clean & FS_WASCLEAN) {
    458 				if (mp->mnt_flag & MNT_SOFTDEP)
    459 					fs->fs_flags &= ~FS_DOSOFTDEP;
    460 				fs->fs_clean = FS_ISCLEAN;
    461 				(void) ffs_sbupdate(ump, MNT_WAIT);
    462 			}
    463 			if (error == 0)
    464 				UFS_WAPBL_END(mp);
    465 			if (error)
    466 				return (error);
    467 		}
    468 
    469 #ifdef WAPBL
    470 		if ((mp->mnt_flag & MNT_LOG) == 0) {
    471 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
    472 			if (error)
    473 				return error;
    474 		}
    475 #endif /* WAPBL */
    476 
    477 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    478 			/*
    479 			 * Finish change from r/w to r/o
    480 			 */
    481 			fs->fs_ronly = 1;
    482 			fs->fs_fmod = 0;
    483 		}
    484 
    485 		if (mp->mnt_flag & MNT_RELOAD) {
    486 			error = ffs_reload(mp, l->l_cred, l);
    487 			if (error)
    488 				return (error);
    489 		}
    490 
    491 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    492 			/*
    493 			 * Changing from read-only to read/write
    494 			 */
    495 			fs->fs_ronly = 0;
    496 			fs->fs_clean <<= 1;
    497 			fs->fs_fmod = 1;
    498 #ifdef WAPBL
    499 			if (fs->fs_flags & FS_DOWAPBL) {
    500 				printf("%s: replaying log to disk\n",
    501 				    fs->fs_fsmnt);
    502 				KDASSERT(mp->mnt_wapbl_replay);
    503 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    504 							   devvp);
    505 				if (error) {
    506 					return error;
    507 				}
    508 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    509 				fs->fs_clean = FS_WASCLEAN;
    510 			}
    511 #endif /* WAPBL */
    512 			if (fs->fs_snapinum[0] != 0)
    513 				ffs_snapshot_mount(mp);
    514 		}
    515 
    516 #ifdef WAPBL
    517 		error = ffs_wapbl_start(mp);
    518 		if (error)
    519 			return error;
    520 #endif /* WAPBL */
    521 
    522 		if (args->fspec == NULL)
    523 			return 0;
    524 	}
    525 
    526 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    527 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    528 	if (error == 0)
    529 		(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
    530 		    sizeof(fs->fs_fsmnt));
    531 	fs->fs_flags &= ~FS_DOSOFTDEP;
    532 	if (fs->fs_fmod != 0) {	/* XXX */
    533 		int err;
    534 
    535 		fs->fs_fmod = 0;
    536 		if (fs->fs_clean & FS_WASCLEAN)
    537 			fs->fs_time = time_second;
    538 		else {
    539 			printf("%s: file system not clean (fs_clean=%#x); "
    540 			    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
    541 			    fs->fs_clean);
    542 			printf("%s: lost blocks %" PRId64 " files %d\n",
    543 			    mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
    544 			    fs->fs_pendinginodes);
    545 		}
    546 		err = UFS_WAPBL_BEGIN(mp);
    547 		if (err == 0) {
    548 			(void) ffs_cgupdate(ump, MNT_WAIT);
    549 			UFS_WAPBL_END(mp);
    550 		}
    551 	}
    552 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
    553 		printf("%s: `-o softdep' is no longer supported, "
    554 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
    555 		mp->mnt_flag &= ~MNT_SOFTDEP;
    556 	}
    557 
    558 	return (error);
    559 
    560 fail:
    561 	vrele(devvp);
    562 	return (error);
    563 }
    564 
    565 /*
    566  * Reload all incore data for a filesystem (used after running fsck on
    567  * the root filesystem and finding things to fix). The filesystem must
    568  * be mounted read-only.
    569  *
    570  * Things to do to update the mount:
    571  *	1) invalidate all cached meta-data.
    572  *	2) re-read superblock from disk.
    573  *	3) re-read summary information from disk.
    574  *	4) invalidate all inactive vnodes.
    575  *	5) invalidate all cached file data.
    576  *	6) re-read inode data for all active vnodes.
    577  */
    578 int
    579 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
    580 {
    581 	struct vnode *vp, *mvp, *devvp;
    582 	struct inode *ip;
    583 	void *space;
    584 	struct buf *bp;
    585 	struct fs *fs, *newfs;
    586 	struct partinfo dpart;
    587 	int i, bsize, blks, error;
    588 	uint64_t numsecs;
    589 	unsigned secsize;
    590 	int32_t *lp;
    591 	struct ufsmount *ump;
    592 	daddr_t sblockloc;
    593 
    594 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
    595 		return (EINVAL);
    596 
    597 	ump = VFSTOUFS(mp);
    598 	/*
    599 	 * Step 1: invalidate all cached meta-data.
    600 	 */
    601 	devvp = ump->um_devvp;
    602 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    603 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
    604 	VOP_UNLOCK(devvp, 0);
    605 	if (error)
    606 		panic("ffs_reload: dirty1");
    607 	/*
    608 	 * Step 2: re-read superblock from disk.
    609 	 */
    610 	fs = ump->um_fs;
    611 	error = getdisksize(devvp, &numsecs, &secsize);
    612 	if (error)
    613 		secsize = DEV_BSIZE;
    614 	/* XXX we don't handle possibility that superblock moved. */
    615 	error = bread(devvp, fs->fs_sblockloc / secsize, fs->fs_sbsize,
    616 		      NOCRED, 0, &bp);
    617 	if (error) {
    618 		brelse(bp, 0);
    619 		return (error);
    620 	}
    621 	newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
    622 	memcpy(newfs, bp->b_data, fs->fs_sbsize);
    623 #ifdef FFS_EI
    624 	if (ump->um_flags & UFS_NEEDSWAP) {
    625 		ffs_sb_swap((struct fs*)bp->b_data, newfs);
    626 		fs->fs_flags |= FS_SWAPPED;
    627 	} else
    628 #endif
    629 		fs->fs_flags &= ~FS_SWAPPED;
    630 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
    631 	     newfs->fs_magic != FS_UFS2_MAGIC)||
    632 	     newfs->fs_bsize > MAXBSIZE ||
    633 	     newfs->fs_bsize < sizeof(struct fs)) {
    634 		brelse(bp, 0);
    635 		free(newfs, M_UFSMNT);
    636 		return (EIO);		/* XXX needs translation */
    637 	}
    638 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
    639 	sblockloc = fs->fs_sblockloc;
    640 	/*
    641 	 * Copy pointer fields back into superblock before copying in	XXX
    642 	 * new superblock. These should really be in the ufsmount.	XXX
    643 	 * Note that important parameters (eg fs_ncg) are unchanged.
    644 	 */
    645 	newfs->fs_csp = fs->fs_csp;
    646 	newfs->fs_maxcluster = fs->fs_maxcluster;
    647 	newfs->fs_contigdirs = fs->fs_contigdirs;
    648 	newfs->fs_ronly = fs->fs_ronly;
    649 	newfs->fs_active = fs->fs_active;
    650 	memcpy(fs, newfs, (u_int)fs->fs_sbsize);
    651 	brelse(bp, 0);
    652 	free(newfs, M_UFSMNT);
    653 
    654 	/* Recheck for apple UFS filesystem */
    655 	ump->um_flags &= ~UFS_ISAPPLEUFS;
    656 	/* First check to see if this is tagged as an Apple UFS filesystem
    657 	 * in the disklabel
    658 	 */
    659 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
    660 		(dpart.part->p_fstype == FS_APPLEUFS)) {
    661 		ump->um_flags |= UFS_ISAPPLEUFS;
    662 	}
    663 #ifdef APPLE_UFS
    664 	else {
    665 		/* Manually look for an apple ufs label, and if a valid one
    666 		 * is found, then treat it like an Apple UFS filesystem anyway
    667 		 */
    668 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / secsize),
    669 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
    670 		if (error) {
    671 			brelse(bp, 0);
    672 			return (error);
    673 		}
    674 		error = ffs_appleufs_validate(fs->fs_fsmnt,
    675 			(struct appleufslabel *)bp->b_data, NULL);
    676 		if (error == 0)
    677 			ump->um_flags |= UFS_ISAPPLEUFS;
    678 		brelse(bp, 0);
    679 		bp = NULL;
    680 	}
    681 #else
    682 	if (ump->um_flags & UFS_ISAPPLEUFS)
    683 		return (EIO);
    684 #endif
    685 
    686 	if (UFS_MPISAPPLEUFS(ump)) {
    687 		/* see comment about NeXT below */
    688 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
    689 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
    690 		mp->mnt_iflag |= IMNT_DTYPE;
    691 	} else {
    692 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
    693 		ump->um_dirblksiz = DIRBLKSIZ;
    694 		if (ump->um_maxsymlinklen > 0)
    695 			mp->mnt_iflag |= IMNT_DTYPE;
    696 		else
    697 			mp->mnt_iflag &= ~IMNT_DTYPE;
    698 	}
    699 	ffs_oldfscompat_read(fs, ump, sblockloc);
    700 
    701 	mutex_enter(&ump->um_lock);
    702 	ump->um_maxfilesize = fs->fs_maxfilesize;
    703 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    704 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    705 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    706 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    707 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    708 			mutex_exit(&ump->um_lock);
    709 			return (EINVAL);
    710 		}
    711 	}
    712 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
    713 		fs->fs_pendingblocks = 0;
    714 		fs->fs_pendinginodes = 0;
    715 	}
    716 	mutex_exit(&ump->um_lock);
    717 
    718 	ffs_statvfs(mp, &mp->mnt_stat);
    719 	/*
    720 	 * Step 3: re-read summary information from disk.
    721 	 */
    722 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
    723 	space = fs->fs_csp;
    724 	for (i = 0; i < blks; i += fs->fs_frag) {
    725 		bsize = fs->fs_bsize;
    726 		if (i + fs->fs_frag > blks)
    727 			bsize = (blks - i) * fs->fs_fsize;
    728 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
    729 			      NOCRED, 0, &bp);
    730 		if (error) {
    731 			brelse(bp, 0);
    732 			return (error);
    733 		}
    734 #ifdef FFS_EI
    735 		if (UFS_FSNEEDSWAP(fs))
    736 			ffs_csum_swap((struct csum *)bp->b_data,
    737 			    (struct csum *)space, bsize);
    738 		else
    739 #endif
    740 			memcpy(space, bp->b_data, (size_t)bsize);
    741 		space = (char *)space + bsize;
    742 		brelse(bp, 0);
    743 	}
    744 	if (fs->fs_snapinum[0] != 0)
    745 		ffs_snapshot_mount(mp);
    746 	/*
    747 	 * We no longer know anything about clusters per cylinder group.
    748 	 */
    749 	if (fs->fs_contigsumsize > 0) {
    750 		lp = fs->fs_maxcluster;
    751 		for (i = 0; i < fs->fs_ncg; i++)
    752 			*lp++ = fs->fs_contigsumsize;
    753 	}
    754 
    755 	/* Allocate a marker vnode. */
    756 	if ((mvp = vnalloc(mp)) == NULL)
    757 		return ENOMEM;
    758 	/*
    759 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
    760 	 * and vclean() can be called indirectly
    761 	 */
    762 	mutex_enter(&mntvnode_lock);
    763  loop:
    764 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
    765 		vmark(mvp, vp);
    766 		if (vp->v_mount != mp || vismarker(vp))
    767 			continue;
    768 		/*
    769 		 * Step 4: invalidate all inactive vnodes.
    770 		 */
    771 		if (vrecycle(vp, &mntvnode_lock, l)) {
    772 			mutex_enter(&mntvnode_lock);
    773 			(void)vunmark(mvp);
    774 			goto loop;
    775 		}
    776 		/*
    777 		 * Step 5: invalidate all cached file data.
    778 		 */
    779 		mutex_enter(&vp->v_interlock);
    780 		mutex_exit(&mntvnode_lock);
    781 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
    782 			(void)vunmark(mvp);
    783 			goto loop;
    784 		}
    785 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
    786 			panic("ffs_reload: dirty2");
    787 		/*
    788 		 * Step 6: re-read inode data for all active vnodes.
    789 		 */
    790 		ip = VTOI(vp);
    791 		error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
    792 			      (int)fs->fs_bsize, NOCRED, 0, &bp);
    793 		if (error) {
    794 			brelse(bp, 0);
    795 			vput(vp);
    796 			(void)vunmark(mvp);
    797 			break;
    798 		}
    799 		ffs_load_inode(bp, ip, fs, ip->i_number);
    800 		brelse(bp, 0);
    801 		vput(vp);
    802 		mutex_enter(&mntvnode_lock);
    803 	}
    804 	mutex_exit(&mntvnode_lock);
    805 	vnfree(mvp);
    806 	return (error);
    807 }
    808 
    809 /*
    810  * Possible superblock locations ordered from most to least likely.
    811  */
    812 static const int sblock_try[] = SBLOCKSEARCH;
    813 
    814 /*
    815  * Common code for mount and mountroot
    816  */
    817 int
    818 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    819 {
    820 	struct ufsmount *ump;
    821 	struct buf *bp;
    822 	struct fs *fs;
    823 	dev_t dev;
    824 	struct partinfo dpart;
    825 	void *space;
    826 	daddr_t sblockloc, fsblockloc;
    827 	int blks, fstype;
    828 	int error, i, bsize, ronly, bset = 0;
    829 	uint64_t numsecs;
    830 	unsigned secsize;
    831 #ifdef FFS_EI
    832 	int needswap = 0;		/* keep gcc happy */
    833 #endif
    834 	int32_t *lp;
    835 	kauth_cred_t cred;
    836 	u_int32_t sbsize = 8192;	/* keep gcc happy*/
    837 
    838 	dev = devvp->v_rdev;
    839 	cred = l ? l->l_cred : NOCRED;
    840 
    841 	/* Flush out any old buffers remaining from a previous use. */
    842 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    843 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    844 	VOP_UNLOCK(devvp, 0);
    845 	if (error)
    846 		return (error);
    847 
    848 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    849 	error = getdisksize(devvp, &numsecs, &secsize);
    850 	if (error)
    851 		return (error);
    852 
    853 	bp = NULL;
    854 	ump = NULL;
    855 	fs = NULL;
    856 	sblockloc = 0;
    857 	fstype = 0;
    858 
    859 	error = fstrans_mount(mp);
    860 	if (error)
    861 		return error;
    862 
    863 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
    864 	memset(ump, 0, sizeof *ump);
    865 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
    866 	error = ffs_snapshot_init(ump);
    867 	if (error)
    868 		goto out;
    869 	ump->um_ops = &ffs_ufsops;
    870 
    871 #ifdef WAPBL
    872  sbagain:
    873 #endif
    874 	/*
    875 	 * Try reading the superblock in each of its possible locations.
    876 	 */
    877 	for (i = 0; ; i++) {
    878 		if (bp != NULL) {
    879 			brelse(bp, BC_NOCACHE);
    880 			bp = NULL;
    881 		}
    882 		if (sblock_try[i] == -1) {
    883 			error = EINVAL;
    884 			fs = NULL;
    885 			goto out;
    886 		}
    887 		error = bread(devvp, sblock_try[i] / secsize, SBLOCKSIZE, cred,
    888 			      0, &bp);
    889 		if (error) {
    890 			fs = NULL;
    891 			goto out;
    892 		}
    893 		fs = (struct fs*)bp->b_data;
    894 		fsblockloc = sblockloc = sblock_try[i];
    895 		if (fs->fs_magic == FS_UFS1_MAGIC) {
    896 			sbsize = fs->fs_sbsize;
    897 			fstype = UFS1;
    898 #ifdef FFS_EI
    899 			needswap = 0;
    900 		} else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
    901 			sbsize = bswap32(fs->fs_sbsize);
    902 			fstype = UFS1;
    903 			needswap = 1;
    904 #endif
    905 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
    906 			sbsize = fs->fs_sbsize;
    907 			fstype = UFS2;
    908 #ifdef FFS_EI
    909 			needswap = 0;
    910 		} else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
    911 			sbsize = bswap32(fs->fs_sbsize);
    912 			fstype = UFS2;
    913 			needswap = 1;
    914 #endif
    915 		} else
    916 			continue;
    917 
    918 
    919 		/* fs->fs_sblockloc isn't defined for old filesystems */
    920 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
    921 			if (sblockloc == SBLOCK_UFS2)
    922 				/*
    923 				 * This is likely to be the first alternate
    924 				 * in a filesystem with 64k blocks.
    925 				 * Don't use it.
    926 				 */
    927 				continue;
    928 			fsblockloc = sblockloc;
    929 		} else {
    930 			fsblockloc = fs->fs_sblockloc;
    931 #ifdef FFS_EI
    932 			if (needswap)
    933 				fsblockloc = bswap64(fsblockloc);
    934 #endif
    935 		}
    936 
    937 		/* Check we haven't found an alternate superblock */
    938 		if (fsblockloc != sblockloc)
    939 			continue;
    940 
    941 		/* Validate size of superblock */
    942 		if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
    943 			continue;
    944 
    945 		/* Ok seems to be a good superblock */
    946 		break;
    947 	}
    948 
    949 	fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
    950 	memcpy(fs, bp->b_data, sbsize);
    951 	ump->um_fs = fs;
    952 
    953 #ifdef FFS_EI
    954 	if (needswap) {
    955 		ffs_sb_swap((struct fs*)bp->b_data, fs);
    956 		fs->fs_flags |= FS_SWAPPED;
    957 	} else
    958 #endif
    959 		fs->fs_flags &= ~FS_SWAPPED;
    960 
    961 #ifdef WAPBL
    962 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
    963 		error = ffs_wapbl_replay_start(mp, fs, devvp);
    964 		if (error && (mp->mnt_flag & MNT_FORCE) == 0)
    965 			goto out;
    966 		if (!error) {
    967 			if (!ronly) {
    968 				/* XXX fsmnt may be stale. */
    969 				printf("%s: replaying log to disk\n",
    970 				    fs->fs_fsmnt);
    971 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    972 				    devvp);
    973 				if (error)
    974 					goto out;
    975 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    976 				fs->fs_clean = FS_WASCLEAN;
    977 			} else {
    978 				/* XXX fsmnt may be stale */
    979 				printf("%s: replaying log to memory\n",
    980 				    fs->fs_fsmnt);
    981 			}
    982 
    983 			/* Force a re-read of the superblock */
    984 			brelse(bp, BC_INVAL);
    985 			bp = NULL;
    986 			free(fs, M_UFSMNT);
    987 			fs = NULL;
    988 			goto sbagain;
    989 		}
    990 	}
    991 #else /* !WAPBL */
    992 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
    993 		error = EPERM;
    994 		goto out;
    995 	}
    996 #endif /* !WAPBL */
    997 
    998 	ffs_oldfscompat_read(fs, ump, sblockloc);
    999 	ump->um_maxfilesize = fs->fs_maxfilesize;
   1000 
   1001 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
   1002 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
   1003 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
   1004 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1005 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1006 			error = EINVAL;
   1007 			goto out;
   1008 		}
   1009 	}
   1010 
   1011 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
   1012 		fs->fs_pendingblocks = 0;
   1013 		fs->fs_pendinginodes = 0;
   1014 	}
   1015 
   1016 	ump->um_fstype = fstype;
   1017 	if (fs->fs_sbsize < SBLOCKSIZE)
   1018 		brelse(bp, BC_INVAL);
   1019 	else
   1020 		brelse(bp, 0);
   1021 	bp = NULL;
   1022 
   1023 	/* First check to see if this is tagged as an Apple UFS filesystem
   1024 	 * in the disklabel
   1025 	 */
   1026 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
   1027 		(dpart.part->p_fstype == FS_APPLEUFS)) {
   1028 		ump->um_flags |= UFS_ISAPPLEUFS;
   1029 	}
   1030 #ifdef APPLE_UFS
   1031 	else {
   1032 		/* Manually look for an apple ufs label, and if a valid one
   1033 		 * is found, then treat it like an Apple UFS filesystem anyway
   1034 		 */
   1035 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size),
   1036 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
   1037 		if (error)
   1038 			goto out;
   1039 		error = ffs_appleufs_validate(fs->fs_fsmnt,
   1040 			(struct appleufslabel *)bp->b_data, NULL);
   1041 		if (error == 0) {
   1042 			ump->um_flags |= UFS_ISAPPLEUFS;
   1043 		}
   1044 		brelse(bp, 0);
   1045 		bp = NULL;
   1046 	}
   1047 #else
   1048 	if (ump->um_flags & UFS_ISAPPLEUFS) {
   1049 		error = EINVAL;
   1050 		goto out;
   1051 	}
   1052 #endif
   1053 
   1054 #if 0
   1055 /*
   1056  * XXX This code changes the behaviour of mounting dirty filesystems, to
   1057  * XXX require "mount -f ..." to mount them.  This doesn't match what
   1058  * XXX mount(8) describes and is disabled for now.
   1059  */
   1060 	/*
   1061 	 * If the file system is not clean, don't allow it to be mounted
   1062 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
   1063 	 * for the root file system.)
   1064 	 */
   1065 	if (fs->fs_flags & FS_DOWAPBL) {
   1066 		/*
   1067 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
   1068 		 * bit is set, although there's a window in unmount where it
   1069 		 * could be FS_ISCLEAN
   1070 		 */
   1071 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
   1072 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
   1073 			error = EPERM;
   1074 			goto out;
   1075 		}
   1076 	} else
   1077 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
   1078 		    (mp->mnt_flag & MNT_FORCE) == 0) {
   1079 			error = EPERM;
   1080 			goto out;
   1081 		}
   1082 #endif
   1083 
   1084 	/*
   1085 	 * verify that we can access the last block in the fs
   1086 	 * if we're mounting read/write.
   1087 	 */
   1088 
   1089 	if (!ronly) {
   1090 		error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
   1091 		    cred, 0, &bp);
   1092 		if (bp->b_bcount != fs->fs_fsize)
   1093 			error = EINVAL;
   1094 		if (error) {
   1095 			bset = BC_INVAL;
   1096 			goto out;
   1097 		}
   1098 		brelse(bp, BC_INVAL);
   1099 		bp = NULL;
   1100 	}
   1101 
   1102 	fs->fs_ronly = ronly;
   1103 	/* Don't bump fs_clean if we're replaying journal */
   1104 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
   1105 		if (ronly == 0) {
   1106 			fs->fs_clean <<= 1;
   1107 			fs->fs_fmod = 1;
   1108 		}
   1109 	bsize = fs->fs_cssize;
   1110 	blks = howmany(bsize, fs->fs_fsize);
   1111 	if (fs->fs_contigsumsize > 0)
   1112 		bsize += fs->fs_ncg * sizeof(int32_t);
   1113 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1114 	space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
   1115 	fs->fs_csp = space;
   1116 	for (i = 0; i < blks; i += fs->fs_frag) {
   1117 		bsize = fs->fs_bsize;
   1118 		if (i + fs->fs_frag > blks)
   1119 			bsize = (blks - i) * fs->fs_fsize;
   1120 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
   1121 			      cred, 0, &bp);
   1122 		if (error) {
   1123 			free(fs->fs_csp, M_UFSMNT);
   1124 			goto out;
   1125 		}
   1126 #ifdef FFS_EI
   1127 		if (needswap)
   1128 			ffs_csum_swap((struct csum *)bp->b_data,
   1129 				(struct csum *)space, bsize);
   1130 		else
   1131 #endif
   1132 			memcpy(space, bp->b_data, (u_int)bsize);
   1133 
   1134 		space = (char *)space + bsize;
   1135 		brelse(bp, 0);
   1136 		bp = NULL;
   1137 	}
   1138 	if (fs->fs_contigsumsize > 0) {
   1139 		fs->fs_maxcluster = lp = space;
   1140 		for (i = 0; i < fs->fs_ncg; i++)
   1141 			*lp++ = fs->fs_contigsumsize;
   1142 		space = lp;
   1143 	}
   1144 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1145 	fs->fs_contigdirs = space;
   1146 	space = (char *)space + bsize;
   1147 	memset(fs->fs_contigdirs, 0, bsize);
   1148 		/* Compatibility for old filesystems - XXX */
   1149 	if (fs->fs_avgfilesize <= 0)
   1150 		fs->fs_avgfilesize = AVFILESIZ;
   1151 	if (fs->fs_avgfpdir <= 0)
   1152 		fs->fs_avgfpdir = AFPDIR;
   1153 	fs->fs_active = NULL;
   1154 	mp->mnt_data = ump;
   1155 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
   1156 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
   1157 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
   1158 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
   1159 	if (UFS_MPISAPPLEUFS(ump)) {
   1160 		/* NeXT used to keep short symlinks in the inode even
   1161 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
   1162 		 * is probably -1, but we still need to be able to identify
   1163 		 * short symlinks.
   1164 		 */
   1165 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
   1166 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
   1167 		mp->mnt_iflag |= IMNT_DTYPE;
   1168 	} else {
   1169 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
   1170 		ump->um_dirblksiz = DIRBLKSIZ;
   1171 		if (ump->um_maxsymlinklen > 0)
   1172 			mp->mnt_iflag |= IMNT_DTYPE;
   1173 		else
   1174 			mp->mnt_iflag &= ~IMNT_DTYPE;
   1175 	}
   1176 	mp->mnt_fs_bshift = fs->fs_bshift;
   1177 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
   1178 	mp->mnt_flag |= MNT_LOCAL;
   1179 	mp->mnt_iflag |= IMNT_MPSAFE;
   1180 #ifdef FFS_EI
   1181 	if (needswap)
   1182 		ump->um_flags |= UFS_NEEDSWAP;
   1183 #endif
   1184 	ump->um_mountp = mp;
   1185 	ump->um_dev = dev;
   1186 	ump->um_devvp = devvp;
   1187 	ump->um_nindir = fs->fs_nindir;
   1188 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
   1189 	ump->um_bptrtodb = fs->fs_fsbtodb;
   1190 	ump->um_seqinc = fs->fs_frag;
   1191 	for (i = 0; i < MAXQUOTAS; i++)
   1192 		ump->um_quotas[i] = NULLVP;
   1193 	devvp->v_specmountpoint = mp;
   1194 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
   1195 		ffs_snapshot_mount(mp);
   1196 
   1197 #ifdef WAPBL
   1198 	if (!ronly) {
   1199 		KDASSERT(fs->fs_ronly == 0);
   1200 		/*
   1201 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
   1202 		 * needs to create a new log file in-filesystem.
   1203 		 */
   1204 		ffs_statvfs(mp, &mp->mnt_stat);
   1205 
   1206 		error = ffs_wapbl_start(mp);
   1207 		if (error) {
   1208 			free(fs->fs_csp, M_UFSMNT);
   1209 			goto out;
   1210 		}
   1211 	}
   1212 #endif /* WAPBL */
   1213 #ifdef UFS_EXTATTR
   1214 	/*
   1215 	 * Initialize file-backed extended attributes on UFS1 file
   1216 	 * systems.
   1217 	 */
   1218 	if (ump->um_fstype == UFS1) {
   1219 		ufs_extattr_uepm_init(&ump->um_extattr);
   1220 #ifdef UFS_EXTATTR_AUTOSTART
   1221 		/*
   1222 		 * XXX Just ignore errors.  Not clear that we should
   1223 		 * XXX fail the mount in this case.
   1224 		 */
   1225 		(void) ufs_extattr_autostart(mp, l);
   1226 #endif
   1227 	}
   1228 #endif /* UFS_EXTATTR */
   1229 	return (0);
   1230 out:
   1231 #ifdef WAPBL
   1232 	if (mp->mnt_wapbl_replay) {
   1233 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1234 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1235 		mp->mnt_wapbl_replay = 0;
   1236 	}
   1237 #endif
   1238 
   1239 	fstrans_unmount(mp);
   1240 	if (fs)
   1241 		free(fs, M_UFSMNT);
   1242 	devvp->v_specmountpoint = NULL;
   1243 	if (bp)
   1244 		brelse(bp, bset);
   1245 	if (ump) {
   1246 		if (ump->um_oldfscompat)
   1247 			free(ump->um_oldfscompat, M_UFSMNT);
   1248 		mutex_destroy(&ump->um_lock);
   1249 		free(ump, M_UFSMNT);
   1250 		mp->mnt_data = NULL;
   1251 	}
   1252 	return (error);
   1253 }
   1254 
   1255 /*
   1256  * Sanity checks for loading old filesystem superblocks.
   1257  * See ffs_oldfscompat_write below for unwound actions.
   1258  *
   1259  * XXX - Parts get retired eventually.
   1260  * Unfortunately new bits get added.
   1261  */
   1262 static void
   1263 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
   1264 {
   1265 	off_t maxfilesize;
   1266 	int32_t *extrasave;
   1267 
   1268 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1269 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1270 		return;
   1271 
   1272 	if (!ump->um_oldfscompat)
   1273 		ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
   1274 		    M_UFSMNT, M_WAITOK);
   1275 
   1276 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
   1277 	extrasave = ump->um_oldfscompat;
   1278 	extrasave += 512/sizeof(int32_t);
   1279 	extrasave[0] = fs->fs_old_npsect;
   1280 	extrasave[1] = fs->fs_old_interleave;
   1281 	extrasave[2] = fs->fs_old_trackskew;
   1282 
   1283 	/* These fields will be overwritten by their
   1284 	 * original values in fs_oldfscompat_write, so it is harmless
   1285 	 * to modify them here.
   1286 	 */
   1287 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
   1288 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
   1289 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
   1290 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
   1291 
   1292 	fs->fs_maxbsize = fs->fs_bsize;
   1293 	fs->fs_time = fs->fs_old_time;
   1294 	fs->fs_size = fs->fs_old_size;
   1295 	fs->fs_dsize = fs->fs_old_dsize;
   1296 	fs->fs_csaddr = fs->fs_old_csaddr;
   1297 	fs->fs_sblockloc = sblockloc;
   1298 
   1299 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
   1300 
   1301 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
   1302 		fs->fs_old_nrpos = 8;
   1303 		fs->fs_old_npsect = fs->fs_old_nsect;
   1304 		fs->fs_old_interleave = 1;
   1305 		fs->fs_old_trackskew = 0;
   1306 	}
   1307 
   1308 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {
   1309 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
   1310 		fs->fs_qbmask = ~fs->fs_bmask;
   1311 		fs->fs_qfmask = ~fs->fs_fmask;
   1312 	}
   1313 
   1314 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
   1315 	if (fs->fs_maxfilesize > maxfilesize)
   1316 		fs->fs_maxfilesize = maxfilesize;
   1317 
   1318 	/* Compatibility for old filesystems */
   1319 	if (fs->fs_avgfilesize <= 0)
   1320 		fs->fs_avgfilesize = AVFILESIZ;
   1321 	if (fs->fs_avgfpdir <= 0)
   1322 		fs->fs_avgfpdir = AFPDIR;
   1323 
   1324 #if 0
   1325 	if (bigcgs) {
   1326 		fs->fs_save_cgsize = fs->fs_cgsize;
   1327 		fs->fs_cgsize = fs->fs_bsize;
   1328 	}
   1329 #endif
   1330 }
   1331 
   1332 /*
   1333  * Unwinding superblock updates for old filesystems.
   1334  * See ffs_oldfscompat_read above for details.
   1335  *
   1336  * XXX - Parts get retired eventually.
   1337  * Unfortunately new bits get added.
   1338  */
   1339 static void
   1340 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
   1341 {
   1342 	int32_t *extrasave;
   1343 
   1344 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1345 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1346 		return;
   1347 
   1348 	fs->fs_old_time = fs->fs_time;
   1349 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
   1350 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
   1351 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
   1352 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
   1353 	fs->fs_old_flags = fs->fs_flags;
   1354 
   1355 #if 0
   1356 	if (bigcgs) {
   1357 		fs->fs_cgsize = fs->fs_save_cgsize;
   1358 	}
   1359 #endif
   1360 
   1361 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
   1362 	extrasave = ump->um_oldfscompat;
   1363 	extrasave += 512/sizeof(int32_t);
   1364 	fs->fs_old_npsect = extrasave[0];
   1365 	fs->fs_old_interleave = extrasave[1];
   1366 	fs->fs_old_trackskew = extrasave[2];
   1367 
   1368 }
   1369 
   1370 /*
   1371  * unmount vfs operation
   1372  */
   1373 int
   1374 ffs_unmount(struct mount *mp, int mntflags)
   1375 {
   1376 	struct lwp *l = curlwp;
   1377 	struct ufsmount *ump = VFSTOUFS(mp);
   1378 	struct fs *fs = ump->um_fs;
   1379 	int error, flags;
   1380 #ifdef WAPBL
   1381 	extern int doforce;
   1382 #endif
   1383 
   1384 	flags = 0;
   1385 	if (mntflags & MNT_FORCE)
   1386 		flags |= FORCECLOSE;
   1387 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
   1388 		return (error);
   1389 	error = UFS_WAPBL_BEGIN(mp);
   1390 	if (error == 0)
   1391 		if (fs->fs_ronly == 0 &&
   1392 		    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
   1393 		    fs->fs_clean & FS_WASCLEAN) {
   1394 			fs->fs_clean = FS_ISCLEAN;
   1395 			fs->fs_fmod = 0;
   1396 			(void) ffs_sbupdate(ump, MNT_WAIT);
   1397 		}
   1398 	if (error == 0)
   1399 		UFS_WAPBL_END(mp);
   1400 #ifdef WAPBL
   1401 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
   1402 	if (mp->mnt_wapbl_replay) {
   1403 		KDASSERT(fs->fs_ronly);
   1404 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1405 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1406 		mp->mnt_wapbl_replay = 0;
   1407 	}
   1408 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
   1409 	if (error) {
   1410 		return error;
   1411 	}
   1412 #endif /* WAPBL */
   1413 #ifdef UFS_EXTATTR
   1414 	if (ump->um_fstype == UFS1) {
   1415 		ufs_extattr_stop(mp, l);
   1416 		ufs_extattr_uepm_destroy(&ump->um_extattr);
   1417 	}
   1418 #endif /* UFS_EXTATTR */
   1419 
   1420 	if (ump->um_devvp->v_type != VBAD)
   1421 		ump->um_devvp->v_specmountpoint = NULL;
   1422 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1423 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
   1424 		NOCRED);
   1425 	vput(ump->um_devvp);
   1426 	free(fs->fs_csp, M_UFSMNT);
   1427 	free(fs, M_UFSMNT);
   1428 	if (ump->um_oldfscompat != NULL)
   1429 		free(ump->um_oldfscompat, M_UFSMNT);
   1430 	mutex_destroy(&ump->um_lock);
   1431 	ffs_snapshot_fini(ump);
   1432 	free(ump, M_UFSMNT);
   1433 	mp->mnt_data = NULL;
   1434 	mp->mnt_flag &= ~MNT_LOCAL;
   1435 	fstrans_unmount(mp);
   1436 	return (0);
   1437 }
   1438 
   1439 /*
   1440  * Flush out all the files in a filesystem.
   1441  */
   1442 int
   1443 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
   1444 {
   1445 	extern int doforce;
   1446 	struct ufsmount *ump;
   1447 	int error;
   1448 
   1449 	if (!doforce)
   1450 		flags &= ~FORCECLOSE;
   1451 	ump = VFSTOUFS(mp);
   1452 #ifdef QUOTA
   1453 	if (mp->mnt_flag & MNT_QUOTA) {
   1454 		int i;
   1455 		if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
   1456 			return (error);
   1457 		for (i = 0; i < MAXQUOTAS; i++) {
   1458 			if (ump->um_quotas[i] == NULLVP)
   1459 				continue;
   1460 			quotaoff(l, mp, i);
   1461 		}
   1462 		/*
   1463 		 * Here we fall through to vflush again to ensure
   1464 		 * that we have gotten rid of all the system vnodes.
   1465 		 */
   1466 	}
   1467 #endif
   1468 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
   1469 		return (error);
   1470 	ffs_snapshot_unmount(mp);
   1471 	/*
   1472 	 * Flush all the files.
   1473 	 */
   1474 	error = vflush(mp, NULLVP, flags);
   1475 	if (error)
   1476 		return (error);
   1477 	/*
   1478 	 * Flush filesystem metadata.
   1479 	 */
   1480 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1481 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
   1482 	VOP_UNLOCK(ump->um_devvp, 0);
   1483 	if (flags & FORCECLOSE) /* XXXDBJ */
   1484 		error = 0;
   1485 
   1486 #ifdef WAPBL
   1487 	if (error)
   1488 		return error;
   1489 	if (mp->mnt_wapbl) {
   1490 		error = wapbl_flush(mp->mnt_wapbl, 1);
   1491 		if (flags & FORCECLOSE)
   1492 			error = 0;
   1493 	}
   1494 #endif
   1495 
   1496 	return (error);
   1497 }
   1498 
   1499 /*
   1500  * Get file system statistics.
   1501  */
   1502 int
   1503 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
   1504 {
   1505 	struct ufsmount *ump;
   1506 	struct fs *fs;
   1507 
   1508 	ump = VFSTOUFS(mp);
   1509 	fs = ump->um_fs;
   1510 	mutex_enter(&ump->um_lock);
   1511 	sbp->f_bsize = fs->fs_bsize;
   1512 	sbp->f_frsize = fs->fs_fsize;
   1513 	sbp->f_iosize = fs->fs_bsize;
   1514 	sbp->f_blocks = fs->fs_dsize;
   1515 	sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
   1516 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
   1517 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
   1518 	    fs->fs_minfree) / (u_int64_t) 100;
   1519 	if (sbp->f_bfree > sbp->f_bresvd)
   1520 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1521 	else
   1522 		sbp->f_bavail = 0;
   1523 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - ROOTINO;
   1524 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
   1525 	sbp->f_favail = sbp->f_ffree;
   1526 	sbp->f_fresvd = 0;
   1527 	mutex_exit(&ump->um_lock);
   1528 	copy_statvfs_info(sbp, mp);
   1529 
   1530 	return (0);
   1531 }
   1532 
   1533 /*
   1534  * Go through the disk queues to initiate sandbagged IO;
   1535  * go through the inodes to write those that have been modified;
   1536  * initiate the writing of the super block if it has been modified.
   1537  *
   1538  * Note: we are always called with the filesystem marked `MPBUSY'.
   1539  */
   1540 int
   1541 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1542 {
   1543 	struct vnode *vp, *mvp, *nvp;
   1544 	struct inode *ip;
   1545 	struct ufsmount *ump = VFSTOUFS(mp);
   1546 	struct fs *fs;
   1547 	int lk_flags, error, allerror = 0;
   1548 	bool is_suspending;
   1549 
   1550 	fs = ump->um_fs;
   1551 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
   1552 		printf("fs = %s\n", fs->fs_fsmnt);
   1553 		panic("update: rofs mod");
   1554 	}
   1555 
   1556 	/* Allocate a marker vnode. */
   1557 	if ((mvp = vnalloc(mp)) == NULL)
   1558 		return (ENOMEM);
   1559 
   1560 	fstrans_start(mp, FSTRANS_SHARED);
   1561 	is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
   1562 	/*
   1563 	 * We can't lock vnodes while the file system is suspending because
   1564 	 * threads waiting on fstrans may have locked vnodes.
   1565 	 */
   1566 	if (is_suspending)
   1567 		lk_flags = LK_INTERLOCK;
   1568 	else
   1569 		lk_flags = LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK;
   1570 	/*
   1571 	 * Write back each (modified) inode.
   1572 	 */
   1573 	mutex_enter(&mntvnode_lock);
   1574 loop:
   1575 	/*
   1576 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
   1577 	 * and vclean() can be called indirectly
   1578 	 */
   1579 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
   1580 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
   1581 		/*
   1582 		 * If the vnode that we are about to sync is no longer
   1583 		 * associated with this mount point, start over.
   1584 		 */
   1585 		if (vp->v_mount != mp)
   1586 			goto loop;
   1587 		/*
   1588 		 * Don't interfere with concurrent scans of this FS.
   1589 		 */
   1590 		if (vismarker(vp))
   1591 			continue;
   1592 		mutex_enter(&vp->v_interlock);
   1593 		ip = VTOI(vp);
   1594 
   1595 		/*
   1596 		 * Skip the vnode/inode if inaccessible.
   1597 		 */
   1598 		if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
   1599 		    vp->v_type == VNON) {
   1600 			mutex_exit(&vp->v_interlock);
   1601 			continue;
   1602 		}
   1603 
   1604 		/*
   1605 		 * We deliberately update inode times here.  This will
   1606 		 * prevent a massive queue of updates accumulating, only
   1607 		 * to be handled by a call to unmount.
   1608 		 *
   1609 		 * XXX It would be better to have the syncer trickle these
   1610 		 * out.  Adjustment needed to allow registering vnodes for
   1611 		 * sync when the vnode is clean, but the inode dirty.  Or
   1612 		 * have ufs itself trickle out inode updates.
   1613 		 *
   1614 		 * If doing a lazy sync, we don't care about metadata or
   1615 		 * data updates, because they are handled by each vnode's
   1616 		 * synclist entry.  In this case we are only interested in
   1617 		 * writing back modified inodes.
   1618 		 */
   1619 		if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
   1620 		    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
   1621 		    (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
   1622 		    UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
   1623 			mutex_exit(&vp->v_interlock);
   1624 			continue;
   1625 		}
   1626 		if (vp->v_type == VBLK && is_suspending) {
   1627 			mutex_exit(&vp->v_interlock);
   1628 			continue;
   1629 		}
   1630 		vmark(mvp, vp);
   1631 		mutex_exit(&mntvnode_lock);
   1632 		error = vget(vp, lk_flags);
   1633 		if (error) {
   1634 			mutex_enter(&mntvnode_lock);
   1635 			nvp = vunmark(mvp);
   1636 			if (error == ENOENT) {
   1637 				goto loop;
   1638 			}
   1639 			continue;
   1640 		}
   1641 		if (waitfor == MNT_LAZY) {
   1642 			error = UFS_WAPBL_BEGIN(vp->v_mount);
   1643 			if (!error) {
   1644 				error = ffs_update(vp, NULL, NULL,
   1645 				    UPDATE_CLOSE);
   1646 				UFS_WAPBL_END(vp->v_mount);
   1647 			}
   1648 		} else {
   1649 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
   1650 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
   1651 		}
   1652 		if (error)
   1653 			allerror = error;
   1654 		if (is_suspending)
   1655 			vrele(vp);
   1656 		else
   1657 			vput(vp);
   1658 		mutex_enter(&mntvnode_lock);
   1659 		nvp = vunmark(mvp);
   1660 	}
   1661 	mutex_exit(&mntvnode_lock);
   1662 	/*
   1663 	 * Force stale file system control information to be flushed.
   1664 	 */
   1665 	if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
   1666 	    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
   1667 		vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1668 		if ((error = VOP_FSYNC(ump->um_devvp, cred,
   1669 		    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
   1670 		    0, 0)) != 0)
   1671 			allerror = error;
   1672 		VOP_UNLOCK(ump->um_devvp, 0);
   1673 		if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
   1674 			mutex_enter(&mntvnode_lock);
   1675 			goto loop;
   1676 		}
   1677 	}
   1678 #ifdef QUOTA
   1679 	qsync(mp);
   1680 #endif
   1681 	/*
   1682 	 * Write back modified superblock.
   1683 	 */
   1684 	if (fs->fs_fmod != 0) {
   1685 		fs->fs_fmod = 0;
   1686 		fs->fs_time = time_second;
   1687 		error = UFS_WAPBL_BEGIN(mp);
   1688 		if (error)
   1689 			allerror = error;
   1690 		else {
   1691 			if ((error = ffs_cgupdate(ump, waitfor)))
   1692 				allerror = error;
   1693 			UFS_WAPBL_END(mp);
   1694 		}
   1695 	}
   1696 
   1697 #ifdef WAPBL
   1698 	if (mp->mnt_wapbl) {
   1699 		error = wapbl_flush(mp->mnt_wapbl, 0);
   1700 		if (error)
   1701 			allerror = error;
   1702 	}
   1703 #endif
   1704 
   1705 	fstrans_done(mp);
   1706 	vnfree(mvp);
   1707 	return (allerror);
   1708 }
   1709 
   1710 /*
   1711  * Look up a FFS dinode number to find its incore vnode, otherwise read it
   1712  * in from disk.  If it is in core, wait for the lock bit to clear, then
   1713  * return the inode locked.  Detection and handling of mount points must be
   1714  * done by the calling routine.
   1715  */
   1716 int
   1717 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1718 {
   1719 	struct fs *fs;
   1720 	struct inode *ip;
   1721 	struct ufsmount *ump;
   1722 	struct buf *bp;
   1723 	struct vnode *vp;
   1724 	dev_t dev;
   1725 	int error;
   1726 
   1727 	ump = VFSTOUFS(mp);
   1728 	dev = ump->um_dev;
   1729 
   1730  retry:
   1731 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1732 		return (0);
   1733 
   1734 	/* Allocate a new vnode/inode. */
   1735 	if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
   1736 		*vpp = NULL;
   1737 		return (error);
   1738 	}
   1739 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
   1740 
   1741 	/*
   1742 	 * If someone beat us to it, put back the freshly allocated
   1743 	 * vnode/inode pair and retry.
   1744 	 */
   1745 	mutex_enter(&ufs_hashlock);
   1746 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1747 		mutex_exit(&ufs_hashlock);
   1748 		ungetnewvnode(vp);
   1749 		pool_cache_put(ffs_inode_cache, ip);
   1750 		goto retry;
   1751 	}
   1752 
   1753 	vp->v_vflag |= VV_LOCKSWORK;
   1754 
   1755 	/*
   1756 	 * XXX MFS ends up here, too, to allocate an inode.  Should we
   1757 	 * XXX create another pool for MFS inodes?
   1758 	 */
   1759 
   1760 	memset(ip, 0, sizeof(struct inode));
   1761 	vp->v_data = ip;
   1762 	ip->i_vnode = vp;
   1763 	ip->i_ump = ump;
   1764 	ip->i_fs = fs = ump->um_fs;
   1765 	ip->i_dev = dev;
   1766 	ip->i_number = ino;
   1767 #ifdef QUOTA
   1768 	ufsquota_init(ip);
   1769 #endif
   1770 
   1771 	/*
   1772 	 * Initialize genfs node, we might proceed to destroy it in
   1773 	 * error branches.
   1774 	 */
   1775 	genfs_node_init(vp, &ffs_genfsops);
   1776 
   1777 	/*
   1778 	 * Put it onto its hash chain and lock it so that other requests for
   1779 	 * this inode will block if they arrive while we are sleeping waiting
   1780 	 * for old data structures to be purged or for the contents of the
   1781 	 * disk portion of this inode to be read.
   1782 	 */
   1783 
   1784 	ufs_ihashins(ip);
   1785 	mutex_exit(&ufs_hashlock);
   1786 
   1787 	/* Read in the disk contents for the inode, copy into the inode. */
   1788 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
   1789 		      (int)fs->fs_bsize, NOCRED, 0, &bp);
   1790 	if (error) {
   1791 
   1792 		/*
   1793 		 * The inode does not contain anything useful, so it would
   1794 		 * be misleading to leave it on its hash chain. With mode
   1795 		 * still zero, it will be unlinked and returned to the free
   1796 		 * list by vput().
   1797 		 */
   1798 
   1799 		vput(vp);
   1800 		brelse(bp, 0);
   1801 		*vpp = NULL;
   1802 		return (error);
   1803 	}
   1804 	if (ip->i_ump->um_fstype == UFS1)
   1805 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
   1806 		    PR_WAITOK);
   1807 	else
   1808 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
   1809 		    PR_WAITOK);
   1810 	ffs_load_inode(bp, ip, fs, ino);
   1811 	brelse(bp, 0);
   1812 
   1813 	/*
   1814 	 * Initialize the vnode from the inode, check for aliases.
   1815 	 * Note that the underlying vnode may have changed.
   1816 	 */
   1817 
   1818 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   1819 
   1820 	/*
   1821 	 * Finish inode initialization now that aliasing has been resolved.
   1822 	 */
   1823 
   1824 	ip->i_devvp = ump->um_devvp;
   1825 	vref(ip->i_devvp);
   1826 
   1827 	/*
   1828 	 * Ensure that uid and gid are correct. This is a temporary
   1829 	 * fix until fsck has been changed to do the update.
   1830 	 */
   1831 
   1832 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
   1833 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
   1834 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
   1835 	}							/* XXX */
   1836 	uvm_vnp_setsize(vp, ip->i_size);
   1837 	*vpp = vp;
   1838 	return (0);
   1839 }
   1840 
   1841 /*
   1842  * File handle to vnode
   1843  *
   1844  * Have to be really careful about stale file handles:
   1845  * - check that the inode number is valid
   1846  * - call ffs_vget() to get the locked inode
   1847  * - check for an unallocated inode (i_mode == 0)
   1848  * - check that the given client host has export rights and return
   1849  *   those rights via. exflagsp and credanonp
   1850  */
   1851 int
   1852 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1853 {
   1854 	struct ufid ufh;
   1855 	struct fs *fs;
   1856 
   1857 	if (fhp->fid_len != sizeof(struct ufid))
   1858 		return EINVAL;
   1859 
   1860 	memcpy(&ufh, fhp, sizeof(ufh));
   1861 	fs = VFSTOUFS(mp)->um_fs;
   1862 	if (ufh.ufid_ino < ROOTINO ||
   1863 	    ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
   1864 		return (ESTALE);
   1865 	return (ufs_fhtovp(mp, &ufh, vpp));
   1866 }
   1867 
   1868 /*
   1869  * Vnode pointer to File handle
   1870  */
   1871 /* ARGSUSED */
   1872 int
   1873 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1874 {
   1875 	struct inode *ip;
   1876 	struct ufid ufh;
   1877 
   1878 	if (*fh_size < sizeof(struct ufid)) {
   1879 		*fh_size = sizeof(struct ufid);
   1880 		return E2BIG;
   1881 	}
   1882 	ip = VTOI(vp);
   1883 	*fh_size = sizeof(struct ufid);
   1884 	memset(&ufh, 0, sizeof(ufh));
   1885 	ufh.ufid_len = sizeof(struct ufid);
   1886 	ufh.ufid_ino = ip->i_number;
   1887 	ufh.ufid_gen = ip->i_gen;
   1888 	memcpy(fhp, &ufh, sizeof(ufh));
   1889 	return (0);
   1890 }
   1891 
   1892 void
   1893 ffs_init(void)
   1894 {
   1895 	if (ffs_initcount++ > 0)
   1896 		return;
   1897 
   1898 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
   1899 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
   1900 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
   1901 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
   1902 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
   1903 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
   1904 	ufs_init();
   1905 }
   1906 
   1907 void
   1908 ffs_reinit(void)
   1909 {
   1910 
   1911 	ufs_reinit();
   1912 }
   1913 
   1914 void
   1915 ffs_done(void)
   1916 {
   1917 	if (--ffs_initcount > 0)
   1918 		return;
   1919 
   1920 	ufs_done();
   1921 	pool_cache_destroy(ffs_dinode2_cache);
   1922 	pool_cache_destroy(ffs_dinode1_cache);
   1923 	pool_cache_destroy(ffs_inode_cache);
   1924 }
   1925 
   1926 /*
   1927  * Write a superblock and associated information back to disk.
   1928  */
   1929 int
   1930 ffs_sbupdate(struct ufsmount *mp, int waitfor)
   1931 {
   1932 	struct fs *fs = mp->um_fs;
   1933 	struct buf *bp;
   1934 	int error = 0;
   1935 	u_int32_t saveflag;
   1936 
   1937 	error = ffs_getblk(mp->um_devvp,
   1938 	    fs->fs_sblockloc >> (fs->fs_fshift - fs->fs_fsbtodb), FFS_NOBLK,
   1939 	    fs->fs_sbsize, false, &bp);
   1940 	if (error)
   1941 		return error;
   1942 	saveflag = fs->fs_flags & FS_INTERNAL;
   1943 	fs->fs_flags &= ~FS_INTERNAL;
   1944 
   1945 	memcpy(bp->b_data, fs, fs->fs_sbsize);
   1946 
   1947 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
   1948 #ifdef FFS_EI
   1949 	if (mp->um_flags & UFS_NEEDSWAP)
   1950 		ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
   1951 #endif
   1952 	fs->fs_flags |= saveflag;
   1953 
   1954 	if (waitfor == MNT_WAIT)
   1955 		error = bwrite(bp);
   1956 	else
   1957 		bawrite(bp);
   1958 	return (error);
   1959 }
   1960 
   1961 int
   1962 ffs_cgupdate(struct ufsmount *mp, int waitfor)
   1963 {
   1964 	struct fs *fs = mp->um_fs;
   1965 	struct buf *bp;
   1966 	int blks;
   1967 	void *space;
   1968 	int i, size, error = 0, allerror = 0;
   1969 
   1970 	allerror = ffs_sbupdate(mp, waitfor);
   1971 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
   1972 	space = fs->fs_csp;
   1973 	for (i = 0; i < blks; i += fs->fs_frag) {
   1974 		size = fs->fs_bsize;
   1975 		if (i + fs->fs_frag > blks)
   1976 			size = (blks - i) * fs->fs_fsize;
   1977 		error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
   1978 		    FFS_NOBLK, size, false, &bp);
   1979 		if (error)
   1980 			break;
   1981 #ifdef FFS_EI
   1982 		if (mp->um_flags & UFS_NEEDSWAP)
   1983 			ffs_csum_swap((struct csum*)space,
   1984 			    (struct csum*)bp->b_data, size);
   1985 		else
   1986 #endif
   1987 			memcpy(bp->b_data, space, (u_int)size);
   1988 		space = (char *)space + size;
   1989 		if (waitfor == MNT_WAIT)
   1990 			error = bwrite(bp);
   1991 		else
   1992 			bawrite(bp);
   1993 	}
   1994 	if (!allerror && error)
   1995 		allerror = error;
   1996 	return (allerror);
   1997 }
   1998 
   1999 int
   2000 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
   2001     int attrnamespace, const char *attrname)
   2002 {
   2003 #ifdef UFS_EXTATTR
   2004 	/*
   2005 	 * File-backed extended attributes are only supported on UFS1.
   2006 	 * UFS2 has native extended attributes.
   2007 	 */
   2008 	if (VFSTOUFS(mp)->um_fstype == UFS1)
   2009 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
   2010 #endif
   2011 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
   2012 }
   2013 
   2014 int
   2015 ffs_suspendctl(struct mount *mp, int cmd)
   2016 {
   2017 	int error;
   2018 	struct lwp *l = curlwp;
   2019 
   2020 	switch (cmd) {
   2021 	case SUSPEND_SUSPEND:
   2022 		if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
   2023 			return error;
   2024 		error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
   2025 		if (error == 0)
   2026 			error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
   2027 #ifdef WAPBL
   2028 		if (error == 0 && mp->mnt_wapbl)
   2029 			error = wapbl_flush(mp->mnt_wapbl, 1);
   2030 #endif
   2031 		if (error != 0) {
   2032 			(void) fstrans_setstate(mp, FSTRANS_NORMAL);
   2033 			return error;
   2034 		}
   2035 		return 0;
   2036 
   2037 	case SUSPEND_RESUME:
   2038 		return fstrans_setstate(mp, FSTRANS_NORMAL);
   2039 
   2040 	default:
   2041 		return EINVAL;
   2042 	}
   2043 }
   2044 
   2045 /*
   2046  * Synch vnode for a mounted file system.  This is called for foreign
   2047  * vnodes, i.e. non-ffs.
   2048  */
   2049 static int
   2050 ffs_vfs_fsync(vnode_t *vp, int flags)
   2051 {
   2052 	int error, passes, skipmeta, i, pflags;
   2053 	buf_t *bp, *nbp;
   2054 #ifdef WAPBL
   2055 	struct mount *mp;
   2056 #endif
   2057 
   2058 	KASSERT(vp->v_type == VBLK);
   2059 	KASSERT(vp->v_specmountpoint != NULL);
   2060 
   2061 	/*
   2062 	 * Flush all dirty data associated with the vnode.
   2063 	 */
   2064 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
   2065 	if ((flags & FSYNC_WAIT) != 0)
   2066 		pflags |= PGO_SYNCIO;
   2067 	mutex_enter(&vp->v_interlock);
   2068 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
   2069 	if (error)
   2070 		return error;
   2071 
   2072 #ifdef WAPBL
   2073 	mp = vp->v_specmountpoint;
   2074 	if (mp && mp->mnt_wapbl) {
   2075 		/*
   2076 		 * Don't bother writing out metadata if the syncer is
   2077 		 * making the request.  We will let the sync vnode
   2078 		 * write it out in a single burst through a call to
   2079 		 * VFS_SYNC().
   2080 		 */
   2081 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
   2082 			return 0;
   2083 
   2084 		/*
   2085 		 * Don't flush the log if the vnode being flushed
   2086 		 * contains no dirty buffers that could be in the log.
   2087 		 */
   2088 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2089 			error = wapbl_flush(mp->mnt_wapbl, 0);
   2090 			if (error)
   2091 				return error;
   2092 		}
   2093 
   2094 		if ((flags & FSYNC_WAIT) != 0) {
   2095 			mutex_enter(&vp->v_interlock);
   2096 			while (vp->v_numoutput)
   2097 				cv_wait(&vp->v_cv, &vp->v_interlock);
   2098 			mutex_exit(&vp->v_interlock);
   2099 		}
   2100 
   2101 		return 0;
   2102 	}
   2103 #endif /* WAPBL */
   2104 
   2105 	/*
   2106 	 * Write out metadata for non-logging file systems. XXX This block
   2107 	 * should be simplified now that softdep is gone.
   2108 	 */
   2109 	passes = NIADDR + 1;
   2110 	skipmeta = 0;
   2111 	if (flags & FSYNC_WAIT)
   2112 		skipmeta = 1;
   2113 
   2114 loop:
   2115 	mutex_enter(&bufcache_lock);
   2116 	LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
   2117 		bp->b_cflags &= ~BC_SCANNED;
   2118 	}
   2119 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   2120 		nbp = LIST_NEXT(bp, b_vnbufs);
   2121 		if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
   2122 			continue;
   2123 		if ((bp->b_oflags & BO_DELWRI) == 0)
   2124 			panic("ffs_fsync: not dirty");
   2125 		if (skipmeta && bp->b_lblkno < 0)
   2126 			continue;
   2127 		bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
   2128 		mutex_exit(&bufcache_lock);
   2129 		/*
   2130 		 * On our final pass through, do all I/O synchronously
   2131 		 * so that we can find out if our flush is failing
   2132 		 * because of write errors.
   2133 		 */
   2134 		if (passes > 0 || !(flags & FSYNC_WAIT))
   2135 			(void) bawrite(bp);
   2136 		else if ((error = bwrite(bp)) != 0)
   2137 			return (error);
   2138 		/*
   2139 		 * Since we unlocked during the I/O, we need
   2140 		 * to start from a known point.
   2141 		 */
   2142 		mutex_enter(&bufcache_lock);
   2143 		nbp = LIST_FIRST(&vp->v_dirtyblkhd);
   2144 	}
   2145 	mutex_exit(&bufcache_lock);
   2146 	if (skipmeta) {
   2147 		skipmeta = 0;
   2148 		goto loop;
   2149 	}
   2150 
   2151 	if ((flags & FSYNC_WAIT) != 0) {
   2152 		mutex_enter(&vp->v_interlock);
   2153 		while (vp->v_numoutput) {
   2154 			cv_wait(&vp->v_cv, &vp->v_interlock);
   2155 		}
   2156 		mutex_exit(&vp->v_interlock);
   2157 
   2158 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2159 			/*
   2160 			* Block devices associated with filesystems may
   2161 			* have new I/O requests posted for them even if
   2162 			* the vnode is locked, so no amount of trying will
   2163 			* get them clean. Thus we give block devices a
   2164 			* good effort, then just give up. For all other file
   2165 			* types, go around and try again until it is clean.
   2166 			*/
   2167 			if (passes > 0) {
   2168 				passes--;
   2169 				goto loop;
   2170 			}
   2171 #ifdef DIAGNOSTIC
   2172 			if (vp->v_type != VBLK)
   2173 				vprint("ffs_fsync: dirty", vp);
   2174 #endif
   2175 		}
   2176 	}
   2177 
   2178 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
   2179 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
   2180 		    kauth_cred_get());
   2181 	}
   2182 
   2183 	return error;
   2184 }
   2185