ffs_vfsops.c revision 1.258.2.3 1 /* $NetBSD: ffs_vfsops.c,v 1.258.2.3 2011/03/05 20:56:30 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.258.2.3 2011/03/05 20:56:30 rmind Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/mbuf.h>
83 #include <sys/file.h>
84 #include <sys/disklabel.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/lock.h>
90 #include <sys/sysctl.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/wapbl.h>
94 #include <sys/fstrans.h>
95 #include <sys/module.h>
96
97 #include <miscfs/genfs/genfs.h>
98 #include <miscfs/specfs/specdev.h>
99
100 #include <ufs/ufs/quota.h>
101 #include <ufs/ufs/ufsmount.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/dir.h>
104 #include <ufs/ufs/ufs_extern.h>
105 #include <ufs/ufs/ufs_bswap.h>
106 #include <ufs/ufs/ufs_wapbl.h>
107
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110
111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
112
113 static int ffs_vfs_fsync(vnode_t *, int);
114
115 static struct sysctllog *ffs_sysctl_log;
116
117 /* how many times ffs_init() was called */
118 int ffs_initcount = 0;
119
120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
123
124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
125 &ffs_vnodeop_opv_desc,
126 &ffs_specop_opv_desc,
127 &ffs_fifoop_opv_desc,
128 NULL,
129 };
130
131 struct vfsops ffs_vfsops = {
132 MOUNT_FFS,
133 sizeof (struct ufs_args),
134 ffs_mount,
135 ufs_start,
136 ffs_unmount,
137 ufs_root,
138 ufs_quotactl,
139 ffs_statvfs,
140 ffs_sync,
141 ffs_vget,
142 ffs_fhtovp,
143 ffs_vptofh,
144 ffs_init,
145 ffs_reinit,
146 ffs_done,
147 ffs_mountroot,
148 ffs_snapshot,
149 ffs_extattrctl,
150 ffs_suspendctl,
151 genfs_renamelock_enter,
152 genfs_renamelock_exit,
153 ffs_vfs_fsync,
154 ffs_vnodeopv_descs,
155 0,
156 { NULL, NULL },
157 };
158
159 static const struct genfs_ops ffs_genfsops = {
160 .gop_size = ffs_gop_size,
161 .gop_alloc = ufs_gop_alloc,
162 .gop_write = genfs_gop_write,
163 .gop_markupdate = ufs_gop_markupdate,
164 };
165
166 static const struct ufs_ops ffs_ufsops = {
167 .uo_itimes = ffs_itimes,
168 .uo_update = ffs_update,
169 .uo_truncate = ffs_truncate,
170 .uo_valloc = ffs_valloc,
171 .uo_vfree = ffs_vfree,
172 .uo_balloc = ffs_balloc,
173 .uo_unmark_vnode = (void (*)(vnode_t *))nullop,
174 };
175
176 static int
177 ffs_modcmd(modcmd_t cmd, void *arg)
178 {
179 int error;
180
181 #if 0
182 extern int doasyncfree;
183 #endif
184 extern int ffs_log_changeopt;
185
186 switch (cmd) {
187 case MODULE_CMD_INIT:
188 error = vfs_attach(&ffs_vfsops);
189 if (error != 0)
190 break;
191
192 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
193 CTLFLAG_PERMANENT,
194 CTLTYPE_NODE, "vfs", NULL,
195 NULL, 0, NULL, 0,
196 CTL_VFS, CTL_EOL);
197 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
198 CTLFLAG_PERMANENT,
199 CTLTYPE_NODE, "ffs",
200 SYSCTL_DESCR("Berkeley Fast File System"),
201 NULL, 0, NULL, 0,
202 CTL_VFS, 1, CTL_EOL);
203
204 /*
205 * @@@ should we even bother with these first three?
206 */
207 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
209 CTLTYPE_INT, "doclusterread", NULL,
210 sysctl_notavail, 0, NULL, 0,
211 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
212 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
213 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
214 CTLTYPE_INT, "doclusterwrite", NULL,
215 sysctl_notavail, 0, NULL, 0,
216 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
217 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 CTLTYPE_INT, "doreallocblks", NULL,
220 sysctl_notavail, 0, NULL, 0,
221 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
222 #if 0
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
225 CTLTYPE_INT, "doasyncfree",
226 SYSCTL_DESCR("Release dirty blocks asynchronously"),
227 NULL, 0, &doasyncfree, 0,
228 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
229 #endif
230 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
232 CTLTYPE_INT, "log_changeopt",
233 SYSCTL_DESCR("Log changes in optimization strategy"),
234 NULL, 0, &ffs_log_changeopt, 0,
235 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
236 break;
237 case MODULE_CMD_FINI:
238 error = vfs_detach(&ffs_vfsops);
239 if (error != 0)
240 break;
241 sysctl_teardown(&ffs_sysctl_log);
242 break;
243 default:
244 error = ENOTTY;
245 break;
246 }
247
248 return (error);
249 }
250
251 pool_cache_t ffs_inode_cache;
252 pool_cache_t ffs_dinode1_cache;
253 pool_cache_t ffs_dinode2_cache;
254
255 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
256 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
257
258 /*
259 * Called by main() when ffs is going to be mounted as root.
260 */
261
262 int
263 ffs_mountroot(void)
264 {
265 struct fs *fs;
266 struct mount *mp;
267 struct lwp *l = curlwp; /* XXX */
268 struct ufsmount *ump;
269 int error;
270
271 if (device_class(root_device) != DV_DISK)
272 return (ENODEV);
273
274 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
275 vrele(rootvp);
276 return (error);
277 }
278
279 /*
280 * We always need to be able to mount the root file system.
281 */
282 mp->mnt_flag |= MNT_FORCE;
283 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
284 vfs_unbusy(mp, false, NULL);
285 vfs_destroy(mp);
286 return (error);
287 }
288 mp->mnt_flag &= ~MNT_FORCE;
289 mutex_enter(&mountlist_lock);
290 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
291 mutex_exit(&mountlist_lock);
292 ump = VFSTOUFS(mp);
293 fs = ump->um_fs;
294 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
295 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
296 (void)ffs_statvfs(mp, &mp->mnt_stat);
297 vfs_unbusy(mp, false, NULL);
298 setrootfstime((time_t)fs->fs_time);
299 return (0);
300 }
301
302 /*
303 * VFS Operations.
304 *
305 * mount system call
306 */
307 int
308 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
309 {
310 struct lwp *l = curlwp;
311 struct vnode *devvp = NULL;
312 struct ufs_args *args = data;
313 struct ufsmount *ump = NULL;
314 struct fs *fs;
315 int error = 0, flags, update;
316 mode_t accessmode;
317
318 if (*data_len < sizeof *args)
319 return EINVAL;
320
321 if (mp->mnt_flag & MNT_GETARGS) {
322 ump = VFSTOUFS(mp);
323 if (ump == NULL)
324 return EIO;
325 args->fspec = NULL;
326 *data_len = sizeof *args;
327 return 0;
328 }
329
330 update = mp->mnt_flag & MNT_UPDATE;
331
332 /* Check arguments */
333 if (args->fspec != NULL) {
334 /*
335 * Look up the name and verify that it's sane.
336 */
337 error = namei_simple_user(args->fspec,
338 NSM_FOLLOW_NOEMULROOT, &devvp);
339 if (error != 0)
340 return (error);
341
342 if (!update) {
343 /*
344 * Be sure this is a valid block device
345 */
346 if (devvp->v_type != VBLK)
347 error = ENOTBLK;
348 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
349 error = ENXIO;
350 } else {
351 /*
352 * Be sure we're still naming the same device
353 * used for our initial mount
354 */
355 ump = VFSTOUFS(mp);
356 if (devvp != ump->um_devvp) {
357 if (devvp->v_rdev != ump->um_devvp->v_rdev)
358 error = EINVAL;
359 else {
360 vrele(devvp);
361 devvp = ump->um_devvp;
362 vref(devvp);
363 }
364 }
365 }
366 } else {
367 if (!update) {
368 /* New mounts must have a filename for the device */
369 return (EINVAL);
370 } else {
371 /* Use the extant mount */
372 ump = VFSTOUFS(mp);
373 devvp = ump->um_devvp;
374 vref(devvp);
375 }
376 }
377
378 /*
379 * If mount by non-root, then verify that user has necessary
380 * permissions on the device.
381 *
382 * Permission to update a mount is checked higher, so here we presume
383 * updating the mount is okay (for example, as far as securelevel goes)
384 * which leaves us with the normal check.
385 */
386 if (error == 0) {
387 accessmode = VREAD;
388 if (update ?
389 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
390 (mp->mnt_flag & MNT_RDONLY) == 0)
391 accessmode |= VWRITE;
392 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
393 error = genfs_can_mount(devvp, accessmode, l->l_cred);
394 VOP_UNLOCK(devvp);
395 }
396
397 if (error) {
398 vrele(devvp);
399 return (error);
400 }
401
402 #ifdef WAPBL
403 /* WAPBL can only be enabled on a r/w mount. */
404 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
405 mp->mnt_flag &= ~MNT_LOG;
406 }
407 #else /* !WAPBL */
408 mp->mnt_flag &= ~MNT_LOG;
409 #endif /* !WAPBL */
410
411 if (!update) {
412 int xflags;
413
414 if (mp->mnt_flag & MNT_RDONLY)
415 xflags = FREAD;
416 else
417 xflags = FREAD | FWRITE;
418 error = VOP_OPEN(devvp, xflags, FSCRED);
419 if (error)
420 goto fail;
421 error = ffs_mountfs(devvp, mp, l);
422 if (error) {
423 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
424 (void)VOP_CLOSE(devvp, xflags, NOCRED);
425 VOP_UNLOCK(devvp);
426 goto fail;
427 }
428
429 ump = VFSTOUFS(mp);
430 fs = ump->um_fs;
431 } else {
432 /*
433 * Update the mount.
434 */
435
436 /*
437 * The initial mount got a reference on this
438 * device, so drop the one obtained via
439 * namei(), above.
440 */
441 vrele(devvp);
442
443 ump = VFSTOUFS(mp);
444 fs = ump->um_fs;
445 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
446 /*
447 * Changing from r/w to r/o
448 */
449 flags = WRITECLOSE;
450 if (mp->mnt_flag & MNT_FORCE)
451 flags |= FORCECLOSE;
452 error = ffs_flushfiles(mp, flags, l);
453 if (error == 0)
454 error = UFS_WAPBL_BEGIN(mp);
455 if (error == 0 &&
456 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
457 fs->fs_clean & FS_WASCLEAN) {
458 if (mp->mnt_flag & MNT_SOFTDEP)
459 fs->fs_flags &= ~FS_DOSOFTDEP;
460 fs->fs_clean = FS_ISCLEAN;
461 (void) ffs_sbupdate(ump, MNT_WAIT);
462 }
463 if (error == 0)
464 UFS_WAPBL_END(mp);
465 if (error)
466 return (error);
467 }
468
469 #ifdef WAPBL
470 if ((mp->mnt_flag & MNT_LOG) == 0) {
471 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
472 if (error)
473 return error;
474 }
475 #endif /* WAPBL */
476
477 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
478 /*
479 * Finish change from r/w to r/o
480 */
481 fs->fs_ronly = 1;
482 fs->fs_fmod = 0;
483 }
484
485 if (mp->mnt_flag & MNT_RELOAD) {
486 error = ffs_reload(mp, l->l_cred, l);
487 if (error)
488 return (error);
489 }
490
491 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
492 /*
493 * Changing from read-only to read/write
494 */
495 fs->fs_ronly = 0;
496 fs->fs_clean <<= 1;
497 fs->fs_fmod = 1;
498 #ifdef WAPBL
499 if (fs->fs_flags & FS_DOWAPBL) {
500 printf("%s: replaying log to disk\n",
501 fs->fs_fsmnt);
502 KDASSERT(mp->mnt_wapbl_replay);
503 error = wapbl_replay_write(mp->mnt_wapbl_replay,
504 devvp);
505 if (error) {
506 return error;
507 }
508 wapbl_replay_stop(mp->mnt_wapbl_replay);
509 fs->fs_clean = FS_WASCLEAN;
510 }
511 #endif /* WAPBL */
512 if (fs->fs_snapinum[0] != 0)
513 ffs_snapshot_mount(mp);
514 }
515
516 #ifdef WAPBL
517 error = ffs_wapbl_start(mp);
518 if (error)
519 return error;
520 #endif /* WAPBL */
521
522 if (args->fspec == NULL)
523 return 0;
524 }
525
526 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
527 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
528 if (error == 0)
529 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
530 sizeof(fs->fs_fsmnt));
531 fs->fs_flags &= ~FS_DOSOFTDEP;
532 if (fs->fs_fmod != 0) { /* XXX */
533 int err;
534
535 fs->fs_fmod = 0;
536 if (fs->fs_clean & FS_WASCLEAN)
537 fs->fs_time = time_second;
538 else {
539 printf("%s: file system not clean (fs_clean=%#x); "
540 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
541 fs->fs_clean);
542 printf("%s: lost blocks %" PRId64 " files %d\n",
543 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
544 fs->fs_pendinginodes);
545 }
546 err = UFS_WAPBL_BEGIN(mp);
547 if (err == 0) {
548 (void) ffs_cgupdate(ump, MNT_WAIT);
549 UFS_WAPBL_END(mp);
550 }
551 }
552 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
553 printf("%s: `-o softdep' is no longer supported, "
554 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
555 mp->mnt_flag &= ~MNT_SOFTDEP;
556 }
557
558 return (error);
559
560 fail:
561 vrele(devvp);
562 return (error);
563 }
564
565 /*
566 * Reload all incore data for a filesystem (used after running fsck on
567 * the root filesystem and finding things to fix). The filesystem must
568 * be mounted read-only.
569 *
570 * Things to do to update the mount:
571 * 1) invalidate all cached meta-data.
572 * 2) re-read superblock from disk.
573 * 3) re-read summary information from disk.
574 * 4) invalidate all inactive vnodes.
575 * 5) invalidate all cached file data.
576 * 6) re-read inode data for all active vnodes.
577 */
578 int
579 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
580 {
581 struct vnode *vp, *mvp, *devvp;
582 struct inode *ip;
583 void *space;
584 struct buf *bp;
585 struct fs *fs, *newfs;
586 struct partinfo dpart;
587 int i, bsize, blks, error;
588 int32_t *lp;
589 struct ufsmount *ump;
590 daddr_t sblockloc;
591
592 if ((mp->mnt_flag & MNT_RDONLY) == 0)
593 return (EINVAL);
594
595 ump = VFSTOUFS(mp);
596 /*
597 * Step 1: invalidate all cached meta-data.
598 */
599 devvp = ump->um_devvp;
600 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
601 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
602 VOP_UNLOCK(devvp);
603 if (error)
604 panic("ffs_reload: dirty1");
605 /*
606 * Step 2: re-read superblock from disk.
607 */
608 fs = ump->um_fs;
609
610 /* XXX we don't handle possibility that superblock moved. */
611 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
612 NOCRED, 0, &bp);
613 if (error) {
614 brelse(bp, 0);
615 return (error);
616 }
617 newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
618 memcpy(newfs, bp->b_data, fs->fs_sbsize);
619 #ifdef FFS_EI
620 if (ump->um_flags & UFS_NEEDSWAP) {
621 ffs_sb_swap((struct fs*)bp->b_data, newfs);
622 fs->fs_flags |= FS_SWAPPED;
623 } else
624 #endif
625 fs->fs_flags &= ~FS_SWAPPED;
626 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
627 newfs->fs_magic != FS_UFS2_MAGIC)||
628 newfs->fs_bsize > MAXBSIZE ||
629 newfs->fs_bsize < sizeof(struct fs)) {
630 brelse(bp, 0);
631 free(newfs, M_UFSMNT);
632 return (EIO); /* XXX needs translation */
633 }
634 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
635 sblockloc = fs->fs_sblockloc;
636 /*
637 * Copy pointer fields back into superblock before copying in XXX
638 * new superblock. These should really be in the ufsmount. XXX
639 * Note that important parameters (eg fs_ncg) are unchanged.
640 */
641 newfs->fs_csp = fs->fs_csp;
642 newfs->fs_maxcluster = fs->fs_maxcluster;
643 newfs->fs_contigdirs = fs->fs_contigdirs;
644 newfs->fs_ronly = fs->fs_ronly;
645 newfs->fs_active = fs->fs_active;
646 memcpy(fs, newfs, (u_int)fs->fs_sbsize);
647 brelse(bp, 0);
648 free(newfs, M_UFSMNT);
649
650 /* Recheck for apple UFS filesystem */
651 ump->um_flags &= ~UFS_ISAPPLEUFS;
652 /* First check to see if this is tagged as an Apple UFS filesystem
653 * in the disklabel
654 */
655 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
656 (dpart.part->p_fstype == FS_APPLEUFS)) {
657 ump->um_flags |= UFS_ISAPPLEUFS;
658 }
659 #ifdef APPLE_UFS
660 else {
661 /* Manually look for an apple ufs label, and if a valid one
662 * is found, then treat it like an Apple UFS filesystem anyway
663 */
664 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
665 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
666 if (error) {
667 brelse(bp, 0);
668 return (error);
669 }
670 error = ffs_appleufs_validate(fs->fs_fsmnt,
671 (struct appleufslabel *)bp->b_data, NULL);
672 if (error == 0)
673 ump->um_flags |= UFS_ISAPPLEUFS;
674 brelse(bp, 0);
675 bp = NULL;
676 }
677 #else
678 if (ump->um_flags & UFS_ISAPPLEUFS)
679 return (EIO);
680 #endif
681
682 if (UFS_MPISAPPLEUFS(ump)) {
683 /* see comment about NeXT below */
684 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
685 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
686 mp->mnt_iflag |= IMNT_DTYPE;
687 } else {
688 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
689 ump->um_dirblksiz = DIRBLKSIZ;
690 if (ump->um_maxsymlinklen > 0)
691 mp->mnt_iflag |= IMNT_DTYPE;
692 else
693 mp->mnt_iflag &= ~IMNT_DTYPE;
694 }
695 ffs_oldfscompat_read(fs, ump, sblockloc);
696
697 mutex_enter(&ump->um_lock);
698 ump->um_maxfilesize = fs->fs_maxfilesize;
699 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
700 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
701 mp->mnt_stat.f_mntonname, fs->fs_flags,
702 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
703 if ((mp->mnt_flag & MNT_FORCE) == 0) {
704 mutex_exit(&ump->um_lock);
705 return (EINVAL);
706 }
707 }
708 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
709 fs->fs_pendingblocks = 0;
710 fs->fs_pendinginodes = 0;
711 }
712 mutex_exit(&ump->um_lock);
713
714 ffs_statvfs(mp, &mp->mnt_stat);
715 /*
716 * Step 3: re-read summary information from disk.
717 */
718 blks = howmany(fs->fs_cssize, fs->fs_fsize);
719 space = fs->fs_csp;
720 for (i = 0; i < blks; i += fs->fs_frag) {
721 bsize = fs->fs_bsize;
722 if (i + fs->fs_frag > blks)
723 bsize = (blks - i) * fs->fs_fsize;
724 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
725 NOCRED, 0, &bp);
726 if (error) {
727 brelse(bp, 0);
728 return (error);
729 }
730 #ifdef FFS_EI
731 if (UFS_FSNEEDSWAP(fs))
732 ffs_csum_swap((struct csum *)bp->b_data,
733 (struct csum *)space, bsize);
734 else
735 #endif
736 memcpy(space, bp->b_data, (size_t)bsize);
737 space = (char *)space + bsize;
738 brelse(bp, 0);
739 }
740 if (fs->fs_snapinum[0] != 0)
741 ffs_snapshot_mount(mp);
742 /*
743 * We no longer know anything about clusters per cylinder group.
744 */
745 if (fs->fs_contigsumsize > 0) {
746 lp = fs->fs_maxcluster;
747 for (i = 0; i < fs->fs_ncg; i++)
748 *lp++ = fs->fs_contigsumsize;
749 }
750
751 /* Allocate a marker vnode. */
752 if ((mvp = vnalloc(mp)) == NULL)
753 return ENOMEM;
754 /*
755 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
756 * and vclean() can be called indirectly
757 */
758 mutex_enter(&mntvnode_lock);
759 loop:
760 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
761 vmark(mvp, vp);
762 if (vp->v_mount != mp || vismarker(vp))
763 continue;
764 /*
765 * Step 4: invalidate all inactive vnodes.
766 */
767 if (vrecycle(vp, &mntvnode_lock, l)) {
768 mutex_enter(&mntvnode_lock);
769 (void)vunmark(mvp);
770 goto loop;
771 }
772 /*
773 * Step 5: invalidate all cached file data.
774 */
775 mutex_enter(vp->v_interlock);
776 mutex_exit(&mntvnode_lock);
777 if (vget(vp, LK_EXCLUSIVE)) {
778 (void)vunmark(mvp);
779 goto loop;
780 }
781 if (vinvalbuf(vp, 0, cred, l, 0, 0))
782 panic("ffs_reload: dirty2");
783 /*
784 * Step 6: re-read inode data for all active vnodes.
785 */
786 ip = VTOI(vp);
787 error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
788 (int)fs->fs_bsize, NOCRED, 0, &bp);
789 if (error) {
790 brelse(bp, 0);
791 vput(vp);
792 (void)vunmark(mvp);
793 break;
794 }
795 ffs_load_inode(bp, ip, fs, ip->i_number);
796 brelse(bp, 0);
797 vput(vp);
798 mutex_enter(&mntvnode_lock);
799 }
800 mutex_exit(&mntvnode_lock);
801 vnfree(mvp);
802 return (error);
803 }
804
805 /*
806 * Possible superblock locations ordered from most to least likely.
807 */
808 static const int sblock_try[] = SBLOCKSEARCH;
809
810 /*
811 * Common code for mount and mountroot
812 */
813 int
814 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
815 {
816 struct ufsmount *ump;
817 struct buf *bp;
818 struct fs *fs;
819 dev_t dev;
820 struct partinfo dpart;
821 void *space;
822 daddr_t sblockloc, fsblockloc;
823 int blks, fstype;
824 int error, i, bsize, ronly, bset = 0;
825 #ifdef FFS_EI
826 int needswap = 0; /* keep gcc happy */
827 #endif
828 int32_t *lp;
829 kauth_cred_t cred;
830 u_int32_t sbsize = 8192; /* keep gcc happy*/
831 int32_t fsbsize;
832
833 dev = devvp->v_rdev;
834 cred = l ? l->l_cred : NOCRED;
835
836 /* Flush out any old buffers remaining from a previous use. */
837 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
838 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
839 VOP_UNLOCK(devvp);
840 if (error)
841 return (error);
842
843 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
844
845 bp = NULL;
846 ump = NULL;
847 fs = NULL;
848 sblockloc = 0;
849 fstype = 0;
850
851 error = fstrans_mount(mp);
852 if (error)
853 return error;
854
855 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
856 memset(ump, 0, sizeof *ump);
857 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
858 error = ffs_snapshot_init(ump);
859 if (error)
860 goto out;
861 ump->um_ops = &ffs_ufsops;
862
863 #ifdef WAPBL
864 sbagain:
865 #endif
866 /*
867 * Try reading the superblock in each of its possible locations.
868 */
869 for (i = 0; ; i++) {
870 if (bp != NULL) {
871 brelse(bp, BC_NOCACHE);
872 bp = NULL;
873 }
874 if (sblock_try[i] == -1) {
875 error = EINVAL;
876 fs = NULL;
877 goto out;
878 }
879 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
880 0, &bp);
881 if (error) {
882 fs = NULL;
883 goto out;
884 }
885 fs = (struct fs*)bp->b_data;
886 fsblockloc = sblockloc = sblock_try[i];
887 if (fs->fs_magic == FS_UFS1_MAGIC) {
888 sbsize = fs->fs_sbsize;
889 fstype = UFS1;
890 fsbsize = fs->fs_bsize;
891 #ifdef FFS_EI
892 needswap = 0;
893 } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
894 sbsize = bswap32(fs->fs_sbsize);
895 fstype = UFS1;
896 fsbsize = bswap32(fs->fs_bsize);
897 needswap = 1;
898 #endif
899 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
900 sbsize = fs->fs_sbsize;
901 fstype = UFS2;
902 fsbsize = fs->fs_bsize;
903 #ifdef FFS_EI
904 needswap = 0;
905 } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
906 sbsize = bswap32(fs->fs_sbsize);
907 fstype = UFS2;
908 fsbsize = bswap32(fs->fs_bsize);
909 needswap = 1;
910 #endif
911 } else
912 continue;
913
914
915 /* fs->fs_sblockloc isn't defined for old filesystems */
916 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
917 if (sblockloc == SBLOCK_UFS2)
918 /*
919 * This is likely to be the first alternate
920 * in a filesystem with 64k blocks.
921 * Don't use it.
922 */
923 continue;
924 fsblockloc = sblockloc;
925 } else {
926 fsblockloc = fs->fs_sblockloc;
927 #ifdef FFS_EI
928 if (needswap)
929 fsblockloc = bswap64(fsblockloc);
930 #endif
931 }
932
933 /* Check we haven't found an alternate superblock */
934 if (fsblockloc != sblockloc)
935 continue;
936
937 /* Validate size of superblock */
938 if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
939 continue;
940
941 /* Check that we can handle the file system blocksize */
942 if (fsbsize > MAXBSIZE) {
943 printf("ffs_mountfs: block size (%d) > MAXBSIZE (%d)\n",
944 fsbsize, MAXBSIZE);
945 continue;
946 }
947
948 /* Ok seems to be a good superblock */
949 break;
950 }
951
952 fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
953 memcpy(fs, bp->b_data, sbsize);
954 ump->um_fs = fs;
955
956 #ifdef FFS_EI
957 if (needswap) {
958 ffs_sb_swap((struct fs*)bp->b_data, fs);
959 fs->fs_flags |= FS_SWAPPED;
960 } else
961 #endif
962 fs->fs_flags &= ~FS_SWAPPED;
963
964 #ifdef WAPBL
965 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
966 error = ffs_wapbl_replay_start(mp, fs, devvp);
967 if (error && (mp->mnt_flag & MNT_FORCE) == 0)
968 goto out;
969 if (!error) {
970 if (!ronly) {
971 /* XXX fsmnt may be stale. */
972 printf("%s: replaying log to disk\n",
973 fs->fs_fsmnt);
974 error = wapbl_replay_write(mp->mnt_wapbl_replay,
975 devvp);
976 if (error)
977 goto out;
978 wapbl_replay_stop(mp->mnt_wapbl_replay);
979 fs->fs_clean = FS_WASCLEAN;
980 } else {
981 /* XXX fsmnt may be stale */
982 printf("%s: replaying log to memory\n",
983 fs->fs_fsmnt);
984 }
985
986 /* Force a re-read of the superblock */
987 brelse(bp, BC_INVAL);
988 bp = NULL;
989 free(fs, M_UFSMNT);
990 fs = NULL;
991 goto sbagain;
992 }
993 }
994 #else /* !WAPBL */
995 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
996 error = EPERM;
997 goto out;
998 }
999 #endif /* !WAPBL */
1000
1001 ffs_oldfscompat_read(fs, ump, sblockloc);
1002 ump->um_maxfilesize = fs->fs_maxfilesize;
1003
1004 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1005 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1006 mp->mnt_stat.f_mntonname, fs->fs_flags,
1007 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1008 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1009 error = EINVAL;
1010 goto out;
1011 }
1012 }
1013
1014 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1015 fs->fs_pendingblocks = 0;
1016 fs->fs_pendinginodes = 0;
1017 }
1018
1019 ump->um_fstype = fstype;
1020 if (fs->fs_sbsize < SBLOCKSIZE)
1021 brelse(bp, BC_INVAL);
1022 else
1023 brelse(bp, 0);
1024 bp = NULL;
1025
1026 /* First check to see if this is tagged as an Apple UFS filesystem
1027 * in the disklabel
1028 */
1029 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
1030 (dpart.part->p_fstype == FS_APPLEUFS)) {
1031 ump->um_flags |= UFS_ISAPPLEUFS;
1032 }
1033 #ifdef APPLE_UFS
1034 else {
1035 /* Manually look for an apple ufs label, and if a valid one
1036 * is found, then treat it like an Apple UFS filesystem anyway
1037 */
1038 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1039 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1040 if (error)
1041 goto out;
1042 error = ffs_appleufs_validate(fs->fs_fsmnt,
1043 (struct appleufslabel *)bp->b_data, NULL);
1044 if (error == 0) {
1045 ump->um_flags |= UFS_ISAPPLEUFS;
1046 }
1047 brelse(bp, 0);
1048 bp = NULL;
1049 }
1050 #else
1051 if (ump->um_flags & UFS_ISAPPLEUFS) {
1052 error = EINVAL;
1053 goto out;
1054 }
1055 #endif
1056
1057 #if 0
1058 /*
1059 * XXX This code changes the behaviour of mounting dirty filesystems, to
1060 * XXX require "mount -f ..." to mount them. This doesn't match what
1061 * XXX mount(8) describes and is disabled for now.
1062 */
1063 /*
1064 * If the file system is not clean, don't allow it to be mounted
1065 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1066 * for the root file system.)
1067 */
1068 if (fs->fs_flags & FS_DOWAPBL) {
1069 /*
1070 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1071 * bit is set, although there's a window in unmount where it
1072 * could be FS_ISCLEAN
1073 */
1074 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1075 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1076 error = EPERM;
1077 goto out;
1078 }
1079 } else
1080 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1081 (mp->mnt_flag & MNT_FORCE) == 0) {
1082 error = EPERM;
1083 goto out;
1084 }
1085 #endif
1086
1087 /*
1088 * verify that we can access the last block in the fs
1089 * if we're mounting read/write.
1090 */
1091
1092 if (!ronly) {
1093 error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
1094 cred, 0, &bp);
1095 if (bp->b_bcount != fs->fs_fsize)
1096 error = EINVAL;
1097 if (error) {
1098 bset = BC_INVAL;
1099 goto out;
1100 }
1101 brelse(bp, BC_INVAL);
1102 bp = NULL;
1103 }
1104
1105 fs->fs_ronly = ronly;
1106 /* Don't bump fs_clean if we're replaying journal */
1107 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
1108 if (ronly == 0) {
1109 fs->fs_clean <<= 1;
1110 fs->fs_fmod = 1;
1111 }
1112 bsize = fs->fs_cssize;
1113 blks = howmany(bsize, fs->fs_fsize);
1114 if (fs->fs_contigsumsize > 0)
1115 bsize += fs->fs_ncg * sizeof(int32_t);
1116 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1117 space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
1118 fs->fs_csp = space;
1119 for (i = 0; i < blks; i += fs->fs_frag) {
1120 bsize = fs->fs_bsize;
1121 if (i + fs->fs_frag > blks)
1122 bsize = (blks - i) * fs->fs_fsize;
1123 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
1124 cred, 0, &bp);
1125 if (error) {
1126 free(fs->fs_csp, M_UFSMNT);
1127 goto out;
1128 }
1129 #ifdef FFS_EI
1130 if (needswap)
1131 ffs_csum_swap((struct csum *)bp->b_data,
1132 (struct csum *)space, bsize);
1133 else
1134 #endif
1135 memcpy(space, bp->b_data, (u_int)bsize);
1136
1137 space = (char *)space + bsize;
1138 brelse(bp, 0);
1139 bp = NULL;
1140 }
1141 if (fs->fs_contigsumsize > 0) {
1142 fs->fs_maxcluster = lp = space;
1143 for (i = 0; i < fs->fs_ncg; i++)
1144 *lp++ = fs->fs_contigsumsize;
1145 space = lp;
1146 }
1147 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1148 fs->fs_contigdirs = space;
1149 space = (char *)space + bsize;
1150 memset(fs->fs_contigdirs, 0, bsize);
1151 /* Compatibility for old filesystems - XXX */
1152 if (fs->fs_avgfilesize <= 0)
1153 fs->fs_avgfilesize = AVFILESIZ;
1154 if (fs->fs_avgfpdir <= 0)
1155 fs->fs_avgfpdir = AFPDIR;
1156 fs->fs_active = NULL;
1157 mp->mnt_data = ump;
1158 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1159 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1160 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1161 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1162 if (UFS_MPISAPPLEUFS(ump)) {
1163 /* NeXT used to keep short symlinks in the inode even
1164 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1165 * is probably -1, but we still need to be able to identify
1166 * short symlinks.
1167 */
1168 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1169 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1170 mp->mnt_iflag |= IMNT_DTYPE;
1171 } else {
1172 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1173 ump->um_dirblksiz = DIRBLKSIZ;
1174 if (ump->um_maxsymlinklen > 0)
1175 mp->mnt_iflag |= IMNT_DTYPE;
1176 else
1177 mp->mnt_iflag &= ~IMNT_DTYPE;
1178 }
1179 mp->mnt_fs_bshift = fs->fs_bshift;
1180 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1181 mp->mnt_flag |= MNT_LOCAL;
1182 mp->mnt_iflag |= IMNT_MPSAFE;
1183 #ifdef FFS_EI
1184 if (needswap)
1185 ump->um_flags |= UFS_NEEDSWAP;
1186 #endif
1187 ump->um_mountp = mp;
1188 ump->um_dev = dev;
1189 ump->um_devvp = devvp;
1190 ump->um_nindir = fs->fs_nindir;
1191 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1192 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1193 ump->um_seqinc = fs->fs_frag;
1194 for (i = 0; i < MAXQUOTAS; i++)
1195 ump->um_quotas[i] = NULLVP;
1196 devvp->v_specmountpoint = mp;
1197 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1198 ffs_snapshot_mount(mp);
1199
1200 #ifdef WAPBL
1201 if (!ronly) {
1202 KDASSERT(fs->fs_ronly == 0);
1203 /*
1204 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1205 * needs to create a new log file in-filesystem.
1206 */
1207 ffs_statvfs(mp, &mp->mnt_stat);
1208
1209 error = ffs_wapbl_start(mp);
1210 if (error) {
1211 free(fs->fs_csp, M_UFSMNT);
1212 goto out;
1213 }
1214 }
1215 #endif /* WAPBL */
1216 #ifdef UFS_EXTATTR
1217 /*
1218 * Initialize file-backed extended attributes on UFS1 file
1219 * systems.
1220 */
1221 if (ump->um_fstype == UFS1) {
1222 ufs_extattr_uepm_init(&ump->um_extattr);
1223 #ifdef UFS_EXTATTR_AUTOSTART
1224 /*
1225 * XXX Just ignore errors. Not clear that we should
1226 * XXX fail the mount in this case.
1227 */
1228 (void) ufs_extattr_autostart(mp, l);
1229 #endif
1230 }
1231 #endif /* UFS_EXTATTR */
1232 return (0);
1233 out:
1234 #ifdef WAPBL
1235 if (mp->mnt_wapbl_replay) {
1236 wapbl_replay_stop(mp->mnt_wapbl_replay);
1237 wapbl_replay_free(mp->mnt_wapbl_replay);
1238 mp->mnt_wapbl_replay = 0;
1239 }
1240 #endif
1241
1242 fstrans_unmount(mp);
1243 if (fs)
1244 free(fs, M_UFSMNT);
1245 devvp->v_specmountpoint = NULL;
1246 if (bp)
1247 brelse(bp, bset);
1248 if (ump) {
1249 if (ump->um_oldfscompat)
1250 free(ump->um_oldfscompat, M_UFSMNT);
1251 mutex_destroy(&ump->um_lock);
1252 free(ump, M_UFSMNT);
1253 mp->mnt_data = NULL;
1254 }
1255 return (error);
1256 }
1257
1258 /*
1259 * Sanity checks for loading old filesystem superblocks.
1260 * See ffs_oldfscompat_write below for unwound actions.
1261 *
1262 * XXX - Parts get retired eventually.
1263 * Unfortunately new bits get added.
1264 */
1265 static void
1266 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1267 {
1268 off_t maxfilesize;
1269 int32_t *extrasave;
1270
1271 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1272 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1273 return;
1274
1275 if (!ump->um_oldfscompat)
1276 ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
1277 M_UFSMNT, M_WAITOK);
1278
1279 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1280 extrasave = ump->um_oldfscompat;
1281 extrasave += 512/sizeof(int32_t);
1282 extrasave[0] = fs->fs_old_npsect;
1283 extrasave[1] = fs->fs_old_interleave;
1284 extrasave[2] = fs->fs_old_trackskew;
1285
1286 /* These fields will be overwritten by their
1287 * original values in fs_oldfscompat_write, so it is harmless
1288 * to modify them here.
1289 */
1290 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1291 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1292 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1293 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1294
1295 fs->fs_maxbsize = fs->fs_bsize;
1296 fs->fs_time = fs->fs_old_time;
1297 fs->fs_size = fs->fs_old_size;
1298 fs->fs_dsize = fs->fs_old_dsize;
1299 fs->fs_csaddr = fs->fs_old_csaddr;
1300 fs->fs_sblockloc = sblockloc;
1301
1302 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1303
1304 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1305 fs->fs_old_nrpos = 8;
1306 fs->fs_old_npsect = fs->fs_old_nsect;
1307 fs->fs_old_interleave = 1;
1308 fs->fs_old_trackskew = 0;
1309 }
1310
1311 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1312 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1313 fs->fs_qbmask = ~fs->fs_bmask;
1314 fs->fs_qfmask = ~fs->fs_fmask;
1315 }
1316
1317 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1318 if (fs->fs_maxfilesize > maxfilesize)
1319 fs->fs_maxfilesize = maxfilesize;
1320
1321 /* Compatibility for old filesystems */
1322 if (fs->fs_avgfilesize <= 0)
1323 fs->fs_avgfilesize = AVFILESIZ;
1324 if (fs->fs_avgfpdir <= 0)
1325 fs->fs_avgfpdir = AFPDIR;
1326
1327 #if 0
1328 if (bigcgs) {
1329 fs->fs_save_cgsize = fs->fs_cgsize;
1330 fs->fs_cgsize = fs->fs_bsize;
1331 }
1332 #endif
1333 }
1334
1335 /*
1336 * Unwinding superblock updates for old filesystems.
1337 * See ffs_oldfscompat_read above for details.
1338 *
1339 * XXX - Parts get retired eventually.
1340 * Unfortunately new bits get added.
1341 */
1342 static void
1343 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1344 {
1345 int32_t *extrasave;
1346
1347 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1348 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1349 return;
1350
1351 fs->fs_old_time = fs->fs_time;
1352 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1353 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1354 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1355 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1356 fs->fs_old_flags = fs->fs_flags;
1357
1358 #if 0
1359 if (bigcgs) {
1360 fs->fs_cgsize = fs->fs_save_cgsize;
1361 }
1362 #endif
1363
1364 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1365 extrasave = ump->um_oldfscompat;
1366 extrasave += 512/sizeof(int32_t);
1367 fs->fs_old_npsect = extrasave[0];
1368 fs->fs_old_interleave = extrasave[1];
1369 fs->fs_old_trackskew = extrasave[2];
1370
1371 }
1372
1373 /*
1374 * unmount vfs operation
1375 */
1376 int
1377 ffs_unmount(struct mount *mp, int mntflags)
1378 {
1379 struct lwp *l = curlwp;
1380 struct ufsmount *ump = VFSTOUFS(mp);
1381 struct fs *fs = ump->um_fs;
1382 int error, flags;
1383 #ifdef WAPBL
1384 extern int doforce;
1385 #endif
1386
1387 flags = 0;
1388 if (mntflags & MNT_FORCE)
1389 flags |= FORCECLOSE;
1390 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1391 return (error);
1392 error = UFS_WAPBL_BEGIN(mp);
1393 if (error == 0)
1394 if (fs->fs_ronly == 0 &&
1395 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1396 fs->fs_clean & FS_WASCLEAN) {
1397 fs->fs_clean = FS_ISCLEAN;
1398 fs->fs_fmod = 0;
1399 (void) ffs_sbupdate(ump, MNT_WAIT);
1400 }
1401 if (error == 0)
1402 UFS_WAPBL_END(mp);
1403 #ifdef WAPBL
1404 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1405 if (mp->mnt_wapbl_replay) {
1406 KDASSERT(fs->fs_ronly);
1407 wapbl_replay_stop(mp->mnt_wapbl_replay);
1408 wapbl_replay_free(mp->mnt_wapbl_replay);
1409 mp->mnt_wapbl_replay = 0;
1410 }
1411 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1412 if (error) {
1413 return error;
1414 }
1415 #endif /* WAPBL */
1416 #ifdef UFS_EXTATTR
1417 if (ump->um_fstype == UFS1) {
1418 ufs_extattr_stop(mp, l);
1419 ufs_extattr_uepm_destroy(&ump->um_extattr);
1420 }
1421 #endif /* UFS_EXTATTR */
1422
1423 if (ump->um_devvp->v_type != VBAD)
1424 ump->um_devvp->v_specmountpoint = NULL;
1425 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1426 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1427 NOCRED);
1428 vput(ump->um_devvp);
1429 free(fs->fs_csp, M_UFSMNT);
1430 free(fs, M_UFSMNT);
1431 if (ump->um_oldfscompat != NULL)
1432 free(ump->um_oldfscompat, M_UFSMNT);
1433 mutex_destroy(&ump->um_lock);
1434 ffs_snapshot_fini(ump);
1435 free(ump, M_UFSMNT);
1436 mp->mnt_data = NULL;
1437 mp->mnt_flag &= ~MNT_LOCAL;
1438 fstrans_unmount(mp);
1439 return (0);
1440 }
1441
1442 /*
1443 * Flush out all the files in a filesystem.
1444 */
1445 int
1446 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1447 {
1448 extern int doforce;
1449 struct ufsmount *ump;
1450 int error;
1451
1452 if (!doforce)
1453 flags &= ~FORCECLOSE;
1454 ump = VFSTOUFS(mp);
1455 #ifdef QUOTA
1456 if (mp->mnt_flag & MNT_QUOTA) {
1457 int i;
1458 if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
1459 return (error);
1460 for (i = 0; i < MAXQUOTAS; i++) {
1461 if (ump->um_quotas[i] == NULLVP)
1462 continue;
1463 quotaoff(l, mp, i);
1464 }
1465 /*
1466 * Here we fall through to vflush again to ensure
1467 * that we have gotten rid of all the system vnodes.
1468 */
1469 }
1470 #endif
1471 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1472 return (error);
1473 ffs_snapshot_unmount(mp);
1474 /*
1475 * Flush all the files.
1476 */
1477 error = vflush(mp, NULLVP, flags);
1478 if (error)
1479 return (error);
1480 /*
1481 * Flush filesystem metadata.
1482 */
1483 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1484 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1485 VOP_UNLOCK(ump->um_devvp);
1486 if (flags & FORCECLOSE) /* XXXDBJ */
1487 error = 0;
1488
1489 #ifdef WAPBL
1490 if (error)
1491 return error;
1492 if (mp->mnt_wapbl) {
1493 error = wapbl_flush(mp->mnt_wapbl, 1);
1494 if (flags & FORCECLOSE)
1495 error = 0;
1496 }
1497 #endif
1498
1499 return (error);
1500 }
1501
1502 /*
1503 * Get file system statistics.
1504 */
1505 int
1506 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1507 {
1508 struct ufsmount *ump;
1509 struct fs *fs;
1510
1511 ump = VFSTOUFS(mp);
1512 fs = ump->um_fs;
1513 mutex_enter(&ump->um_lock);
1514 sbp->f_bsize = fs->fs_bsize;
1515 sbp->f_frsize = fs->fs_fsize;
1516 sbp->f_iosize = fs->fs_bsize;
1517 sbp->f_blocks = fs->fs_dsize;
1518 sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1519 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1520 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1521 fs->fs_minfree) / (u_int64_t) 100;
1522 if (sbp->f_bfree > sbp->f_bresvd)
1523 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1524 else
1525 sbp->f_bavail = 0;
1526 sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
1527 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1528 sbp->f_favail = sbp->f_ffree;
1529 sbp->f_fresvd = 0;
1530 mutex_exit(&ump->um_lock);
1531 copy_statvfs_info(sbp, mp);
1532
1533 return (0);
1534 }
1535
1536 /*
1537 * Go through the disk queues to initiate sandbagged IO;
1538 * go through the inodes to write those that have been modified;
1539 * initiate the writing of the super block if it has been modified.
1540 *
1541 * Note: we are always called with the filesystem marked `MPBUSY'.
1542 */
1543 int
1544 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1545 {
1546 struct vnode *vp, *mvp, *nvp;
1547 struct inode *ip;
1548 struct ufsmount *ump = VFSTOUFS(mp);
1549 struct fs *fs;
1550 int error, allerror = 0;
1551 bool is_suspending;
1552
1553 fs = ump->um_fs;
1554 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1555 printf("fs = %s\n", fs->fs_fsmnt);
1556 panic("update: rofs mod");
1557 }
1558
1559 /* Allocate a marker vnode. */
1560 if ((mvp = vnalloc(mp)) == NULL)
1561 return (ENOMEM);
1562
1563 fstrans_start(mp, FSTRANS_SHARED);
1564 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1565 /*
1566 * Write back each (modified) inode.
1567 */
1568 mutex_enter(&mntvnode_lock);
1569 loop:
1570 /*
1571 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1572 * and vclean() can be called indirectly
1573 */
1574 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1575 nvp = TAILQ_NEXT(vp, v_mntvnodes);
1576 /*
1577 * If the vnode that we are about to sync is no longer
1578 * associated with this mount point, start over.
1579 */
1580 if (vp->v_mount != mp)
1581 goto loop;
1582 /*
1583 * Don't interfere with concurrent scans of this FS.
1584 */
1585 if (vismarker(vp))
1586 continue;
1587 mutex_enter(vp->v_interlock);
1588 ip = VTOI(vp);
1589
1590 /*
1591 * Skip the vnode/inode if inaccessible.
1592 */
1593 if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
1594 vp->v_type == VNON) {
1595 mutex_exit(vp->v_interlock);
1596 continue;
1597 }
1598
1599 /*
1600 * We deliberately update inode times here. This will
1601 * prevent a massive queue of updates accumulating, only
1602 * to be handled by a call to unmount.
1603 *
1604 * XXX It would be better to have the syncer trickle these
1605 * out. Adjustment needed to allow registering vnodes for
1606 * sync when the vnode is clean, but the inode dirty. Or
1607 * have ufs itself trickle out inode updates.
1608 *
1609 * If doing a lazy sync, we don't care about metadata or
1610 * data updates, because they are handled by each vnode's
1611 * synclist entry. In this case we are only interested in
1612 * writing back modified inodes.
1613 */
1614 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1615 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1616 (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1617 UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
1618 mutex_exit(vp->v_interlock);
1619 continue;
1620 }
1621 if (vp->v_type == VBLK && is_suspending) {
1622 mutex_exit(vp->v_interlock);
1623 continue;
1624 }
1625 vmark(mvp, vp);
1626 mutex_exit(&mntvnode_lock);
1627 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
1628 if (error) {
1629 mutex_enter(&mntvnode_lock);
1630 nvp = vunmark(mvp);
1631 if (error == ENOENT) {
1632 goto loop;
1633 }
1634 continue;
1635 }
1636 if (waitfor == MNT_LAZY) {
1637 error = UFS_WAPBL_BEGIN(vp->v_mount);
1638 if (!error) {
1639 error = ffs_update(vp, NULL, NULL,
1640 UPDATE_CLOSE);
1641 UFS_WAPBL_END(vp->v_mount);
1642 }
1643 } else {
1644 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1645 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1646 }
1647 if (error)
1648 allerror = error;
1649 vput(vp);
1650 mutex_enter(&mntvnode_lock);
1651 nvp = vunmark(mvp);
1652 }
1653 mutex_exit(&mntvnode_lock);
1654 /*
1655 * Force stale file system control information to be flushed.
1656 */
1657 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1658 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1659 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1660 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1661 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1662 0, 0)) != 0)
1663 allerror = error;
1664 VOP_UNLOCK(ump->um_devvp);
1665 if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
1666 mutex_enter(&mntvnode_lock);
1667 goto loop;
1668 }
1669 }
1670 #ifdef QUOTA
1671 qsync(mp);
1672 #endif
1673 /*
1674 * Write back modified superblock.
1675 */
1676 if (fs->fs_fmod != 0) {
1677 fs->fs_fmod = 0;
1678 fs->fs_time = time_second;
1679 error = UFS_WAPBL_BEGIN(mp);
1680 if (error)
1681 allerror = error;
1682 else {
1683 if ((error = ffs_cgupdate(ump, waitfor)))
1684 allerror = error;
1685 UFS_WAPBL_END(mp);
1686 }
1687 }
1688
1689 #ifdef WAPBL
1690 if (mp->mnt_wapbl) {
1691 error = wapbl_flush(mp->mnt_wapbl, 0);
1692 if (error)
1693 allerror = error;
1694 }
1695 #endif
1696
1697 fstrans_done(mp);
1698 vnfree(mvp);
1699 return (allerror);
1700 }
1701
1702 /*
1703 * Look up a FFS dinode number to find its incore vnode, otherwise read it
1704 * in from disk. If it is in core, wait for the lock bit to clear, then
1705 * return the inode locked. Detection and handling of mount points must be
1706 * done by the calling routine.
1707 */
1708 int
1709 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1710 {
1711 struct fs *fs;
1712 struct inode *ip;
1713 struct ufsmount *ump;
1714 struct buf *bp;
1715 struct vnode *vp;
1716 dev_t dev;
1717 int error;
1718
1719 ump = VFSTOUFS(mp);
1720 dev = ump->um_dev;
1721
1722 retry:
1723 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1724 return (0);
1725
1726 /* Allocate a new vnode/inode. */
1727 if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
1728 *vpp = NULL;
1729 return (error);
1730 }
1731 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1732
1733 /*
1734 * If someone beat us to it, put back the freshly allocated
1735 * vnode/inode pair and retry.
1736 */
1737 mutex_enter(&ufs_hashlock);
1738 if (ufs_ihashget(dev, ino, 0) != NULL) {
1739 mutex_exit(&ufs_hashlock);
1740 ungetnewvnode(vp);
1741 pool_cache_put(ffs_inode_cache, ip);
1742 goto retry;
1743 }
1744
1745 vp->v_vflag |= VV_LOCKSWORK;
1746
1747 /*
1748 * XXX MFS ends up here, too, to allocate an inode. Should we
1749 * XXX create another pool for MFS inodes?
1750 */
1751
1752 memset(ip, 0, sizeof(struct inode));
1753 vp->v_data = ip;
1754 ip->i_vnode = vp;
1755 ip->i_ump = ump;
1756 ip->i_fs = fs = ump->um_fs;
1757 ip->i_dev = dev;
1758 ip->i_number = ino;
1759 #ifdef QUOTA
1760 ufsquota_init(ip);
1761 #endif
1762
1763 /*
1764 * Initialize genfs node, we might proceed to destroy it in
1765 * error branches.
1766 */
1767 genfs_node_init(vp, &ffs_genfsops);
1768
1769 /*
1770 * Put it onto its hash chain and lock it so that other requests for
1771 * this inode will block if they arrive while we are sleeping waiting
1772 * for old data structures to be purged or for the contents of the
1773 * disk portion of this inode to be read.
1774 */
1775
1776 ufs_ihashins(ip);
1777 mutex_exit(&ufs_hashlock);
1778
1779 /* Read in the disk contents for the inode, copy into the inode. */
1780 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
1781 (int)fs->fs_bsize, NOCRED, 0, &bp);
1782 if (error) {
1783
1784 /*
1785 * The inode does not contain anything useful, so it would
1786 * be misleading to leave it on its hash chain. With mode
1787 * still zero, it will be unlinked and returned to the free
1788 * list by vput().
1789 */
1790
1791 vput(vp);
1792 brelse(bp, 0);
1793 *vpp = NULL;
1794 return (error);
1795 }
1796 if (ip->i_ump->um_fstype == UFS1)
1797 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1798 PR_WAITOK);
1799 else
1800 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1801 PR_WAITOK);
1802 ffs_load_inode(bp, ip, fs, ino);
1803 brelse(bp, 0);
1804
1805 /*
1806 * Initialize the vnode from the inode, check for aliases.
1807 * Note that the underlying vnode may have changed.
1808 */
1809
1810 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1811
1812 /*
1813 * Finish inode initialization now that aliasing has been resolved.
1814 */
1815
1816 ip->i_devvp = ump->um_devvp;
1817 vref(ip->i_devvp);
1818
1819 /*
1820 * Ensure that uid and gid are correct. This is a temporary
1821 * fix until fsck has been changed to do the update.
1822 */
1823
1824 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1825 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1826 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1827 } /* XXX */
1828 uvm_vnp_setsize(vp, ip->i_size);
1829 *vpp = vp;
1830 return (0);
1831 }
1832
1833 /*
1834 * File handle to vnode
1835 *
1836 * Have to be really careful about stale file handles:
1837 * - check that the inode number is valid
1838 * - call ffs_vget() to get the locked inode
1839 * - check for an unallocated inode (i_mode == 0)
1840 * - check that the given client host has export rights and return
1841 * those rights via. exflagsp and credanonp
1842 */
1843 int
1844 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1845 {
1846 struct ufid ufh;
1847 struct fs *fs;
1848
1849 if (fhp->fid_len != sizeof(struct ufid))
1850 return EINVAL;
1851
1852 memcpy(&ufh, fhp, sizeof(ufh));
1853 fs = VFSTOUFS(mp)->um_fs;
1854 if (ufh.ufid_ino < ROOTINO ||
1855 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1856 return (ESTALE);
1857 return (ufs_fhtovp(mp, &ufh, vpp));
1858 }
1859
1860 /*
1861 * Vnode pointer to File handle
1862 */
1863 /* ARGSUSED */
1864 int
1865 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1866 {
1867 struct inode *ip;
1868 struct ufid ufh;
1869
1870 if (*fh_size < sizeof(struct ufid)) {
1871 *fh_size = sizeof(struct ufid);
1872 return E2BIG;
1873 }
1874 ip = VTOI(vp);
1875 *fh_size = sizeof(struct ufid);
1876 memset(&ufh, 0, sizeof(ufh));
1877 ufh.ufid_len = sizeof(struct ufid);
1878 ufh.ufid_ino = ip->i_number;
1879 ufh.ufid_gen = ip->i_gen;
1880 memcpy(fhp, &ufh, sizeof(ufh));
1881 return (0);
1882 }
1883
1884 void
1885 ffs_init(void)
1886 {
1887 if (ffs_initcount++ > 0)
1888 return;
1889
1890 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
1891 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
1892 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
1893 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
1894 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
1895 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
1896 ufs_init();
1897 }
1898
1899 void
1900 ffs_reinit(void)
1901 {
1902
1903 ufs_reinit();
1904 }
1905
1906 void
1907 ffs_done(void)
1908 {
1909 if (--ffs_initcount > 0)
1910 return;
1911
1912 ufs_done();
1913 pool_cache_destroy(ffs_dinode2_cache);
1914 pool_cache_destroy(ffs_dinode1_cache);
1915 pool_cache_destroy(ffs_inode_cache);
1916 }
1917
1918 /*
1919 * Write a superblock and associated information back to disk.
1920 */
1921 int
1922 ffs_sbupdate(struct ufsmount *mp, int waitfor)
1923 {
1924 struct fs *fs = mp->um_fs;
1925 struct buf *bp;
1926 int error = 0;
1927 u_int32_t saveflag;
1928
1929 error = ffs_getblk(mp->um_devvp,
1930 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
1931 fs->fs_sbsize, false, &bp);
1932 if (error)
1933 return error;
1934 saveflag = fs->fs_flags & FS_INTERNAL;
1935 fs->fs_flags &= ~FS_INTERNAL;
1936
1937 memcpy(bp->b_data, fs, fs->fs_sbsize);
1938
1939 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
1940 #ifdef FFS_EI
1941 if (mp->um_flags & UFS_NEEDSWAP)
1942 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
1943 #endif
1944 fs->fs_flags |= saveflag;
1945
1946 if (waitfor == MNT_WAIT)
1947 error = bwrite(bp);
1948 else
1949 bawrite(bp);
1950 return (error);
1951 }
1952
1953 int
1954 ffs_cgupdate(struct ufsmount *mp, int waitfor)
1955 {
1956 struct fs *fs = mp->um_fs;
1957 struct buf *bp;
1958 int blks;
1959 void *space;
1960 int i, size, error = 0, allerror = 0;
1961
1962 allerror = ffs_sbupdate(mp, waitfor);
1963 blks = howmany(fs->fs_cssize, fs->fs_fsize);
1964 space = fs->fs_csp;
1965 for (i = 0; i < blks; i += fs->fs_frag) {
1966 size = fs->fs_bsize;
1967 if (i + fs->fs_frag > blks)
1968 size = (blks - i) * fs->fs_fsize;
1969 error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
1970 FFS_NOBLK, size, false, &bp);
1971 if (error)
1972 break;
1973 #ifdef FFS_EI
1974 if (mp->um_flags & UFS_NEEDSWAP)
1975 ffs_csum_swap((struct csum*)space,
1976 (struct csum*)bp->b_data, size);
1977 else
1978 #endif
1979 memcpy(bp->b_data, space, (u_int)size);
1980 space = (char *)space + size;
1981 if (waitfor == MNT_WAIT)
1982 error = bwrite(bp);
1983 else
1984 bawrite(bp);
1985 }
1986 if (!allerror && error)
1987 allerror = error;
1988 return (allerror);
1989 }
1990
1991 int
1992 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
1993 int attrnamespace, const char *attrname)
1994 {
1995 #ifdef UFS_EXTATTR
1996 /*
1997 * File-backed extended attributes are only supported on UFS1.
1998 * UFS2 has native extended attributes.
1999 */
2000 if (VFSTOUFS(mp)->um_fstype == UFS1)
2001 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2002 #endif
2003 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2004 }
2005
2006 int
2007 ffs_suspendctl(struct mount *mp, int cmd)
2008 {
2009 int error;
2010 struct lwp *l = curlwp;
2011
2012 switch (cmd) {
2013 case SUSPEND_SUSPEND:
2014 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2015 return error;
2016 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2017 if (error == 0)
2018 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2019 #ifdef WAPBL
2020 if (error == 0 && mp->mnt_wapbl)
2021 error = wapbl_flush(mp->mnt_wapbl, 1);
2022 #endif
2023 if (error != 0) {
2024 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2025 return error;
2026 }
2027 return 0;
2028
2029 case SUSPEND_RESUME:
2030 return fstrans_setstate(mp, FSTRANS_NORMAL);
2031
2032 default:
2033 return EINVAL;
2034 }
2035 }
2036
2037 /*
2038 * Synch vnode for a mounted file system. This is called for foreign
2039 * vnodes, i.e. non-ffs.
2040 */
2041 static int
2042 ffs_vfs_fsync(vnode_t *vp, int flags)
2043 {
2044 int error, passes, skipmeta, i, pflags;
2045 buf_t *bp, *nbp;
2046 #ifdef WAPBL
2047 struct mount *mp;
2048 #endif
2049
2050 KASSERT(vp->v_type == VBLK);
2051 KASSERT(vp->v_specmountpoint != NULL);
2052
2053 /*
2054 * Flush all dirty data associated with the vnode.
2055 */
2056 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2057 if ((flags & FSYNC_WAIT) != 0)
2058 pflags |= PGO_SYNCIO;
2059 mutex_enter(vp->v_interlock);
2060 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2061 if (error)
2062 return error;
2063
2064 #ifdef WAPBL
2065 mp = vp->v_specmountpoint;
2066 if (mp && mp->mnt_wapbl) {
2067 /*
2068 * Don't bother writing out metadata if the syncer is
2069 * making the request. We will let the sync vnode
2070 * write it out in a single burst through a call to
2071 * VFS_SYNC().
2072 */
2073 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2074 return 0;
2075
2076 /*
2077 * Don't flush the log if the vnode being flushed
2078 * contains no dirty buffers that could be in the log.
2079 */
2080 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2081 error = wapbl_flush(mp->mnt_wapbl, 0);
2082 if (error)
2083 return error;
2084 }
2085
2086 if ((flags & FSYNC_WAIT) != 0) {
2087 mutex_enter(vp->v_interlock);
2088 while (vp->v_numoutput)
2089 cv_wait(&vp->v_cv, vp->v_interlock);
2090 mutex_exit(vp->v_interlock);
2091 }
2092
2093 return 0;
2094 }
2095 #endif /* WAPBL */
2096
2097 /*
2098 * Write out metadata for non-logging file systems. XXX This block
2099 * should be simplified now that softdep is gone.
2100 */
2101 passes = NIADDR + 1;
2102 skipmeta = 0;
2103 if (flags & FSYNC_WAIT)
2104 skipmeta = 1;
2105
2106 loop:
2107 mutex_enter(&bufcache_lock);
2108 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
2109 bp->b_cflags &= ~BC_SCANNED;
2110 }
2111 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2112 nbp = LIST_NEXT(bp, b_vnbufs);
2113 if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
2114 continue;
2115 if ((bp->b_oflags & BO_DELWRI) == 0)
2116 panic("ffs_fsync: not dirty");
2117 if (skipmeta && bp->b_lblkno < 0)
2118 continue;
2119 bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
2120 mutex_exit(&bufcache_lock);
2121 /*
2122 * On our final pass through, do all I/O synchronously
2123 * so that we can find out if our flush is failing
2124 * because of write errors.
2125 */
2126 if (passes > 0 || !(flags & FSYNC_WAIT))
2127 (void) bawrite(bp);
2128 else if ((error = bwrite(bp)) != 0)
2129 return (error);
2130 /*
2131 * Since we unlocked during the I/O, we need
2132 * to start from a known point.
2133 */
2134 mutex_enter(&bufcache_lock);
2135 nbp = LIST_FIRST(&vp->v_dirtyblkhd);
2136 }
2137 mutex_exit(&bufcache_lock);
2138 if (skipmeta) {
2139 skipmeta = 0;
2140 goto loop;
2141 }
2142
2143 if ((flags & FSYNC_WAIT) != 0) {
2144 mutex_enter(vp->v_interlock);
2145 while (vp->v_numoutput) {
2146 cv_wait(&vp->v_cv, vp->v_interlock);
2147 }
2148 mutex_exit(vp->v_interlock);
2149
2150 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2151 /*
2152 * Block devices associated with filesystems may
2153 * have new I/O requests posted for them even if
2154 * the vnode is locked, so no amount of trying will
2155 * get them clean. Thus we give block devices a
2156 * good effort, then just give up. For all other file
2157 * types, go around and try again until it is clean.
2158 */
2159 if (passes > 0) {
2160 passes--;
2161 goto loop;
2162 }
2163 #ifdef DIAGNOSTIC
2164 if (vp->v_type != VBLK)
2165 vprint("ffs_fsync: dirty", vp);
2166 #endif
2167 }
2168 }
2169
2170 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2171 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2172 kauth_cred_get());
2173 }
2174
2175 return error;
2176 }
2177