Home | History | Annotate | Line # | Download | only in ffs
ffs_vfsops.c revision 1.259
      1 /*	$NetBSD: ffs_vfsops.c,v 1.259 2010/06/24 13:03:19 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.259 2010/06/24 13:03:19 hannken Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_ffs.h"
     68 #include "opt_quota.h"
     69 #include "opt_wapbl.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/proc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/vnode.h>
     78 #include <sys/socket.h>
     79 #include <sys/mount.h>
     80 #include <sys/buf.h>
     81 #include <sys/device.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/file.h>
     84 #include <sys/disklabel.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/lock.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/conf.h>
     92 #include <sys/kauth.h>
     93 #include <sys/wapbl.h>
     94 #include <sys/fstrans.h>
     95 #include <sys/module.h>
     96 
     97 #include <miscfs/genfs/genfs.h>
     98 #include <miscfs/specfs/specdev.h>
     99 
    100 #include <ufs/ufs/quota.h>
    101 #include <ufs/ufs/ufsmount.h>
    102 #include <ufs/ufs/inode.h>
    103 #include <ufs/ufs/dir.h>
    104 #include <ufs/ufs/ufs_extern.h>
    105 #include <ufs/ufs/ufs_bswap.h>
    106 #include <ufs/ufs/ufs_wapbl.h>
    107 
    108 #include <ufs/ffs/fs.h>
    109 #include <ufs/ffs/ffs_extern.h>
    110 
    111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
    112 
    113 static int	ffs_vfs_fsync(vnode_t *, int);
    114 
    115 static struct sysctllog *ffs_sysctl_log;
    116 
    117 /* how many times ffs_init() was called */
    118 int ffs_initcount = 0;
    119 
    120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
    121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
    122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
    123 
    124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
    125 	&ffs_vnodeop_opv_desc,
    126 	&ffs_specop_opv_desc,
    127 	&ffs_fifoop_opv_desc,
    128 	NULL,
    129 };
    130 
    131 struct vfsops ffs_vfsops = {
    132 	MOUNT_FFS,
    133 	sizeof (struct ufs_args),
    134 	ffs_mount,
    135 	ufs_start,
    136 	ffs_unmount,
    137 	ufs_root,
    138 	ufs_quotactl,
    139 	ffs_statvfs,
    140 	ffs_sync,
    141 	ffs_vget,
    142 	ffs_fhtovp,
    143 	ffs_vptofh,
    144 	ffs_init,
    145 	ffs_reinit,
    146 	ffs_done,
    147 	ffs_mountroot,
    148 	ffs_snapshot,
    149 	ffs_extattrctl,
    150 	ffs_suspendctl,
    151 	genfs_renamelock_enter,
    152 	genfs_renamelock_exit,
    153 	ffs_vfs_fsync,
    154 	ffs_vnodeopv_descs,
    155 	0,
    156 	{ NULL, NULL },
    157 };
    158 
    159 static const struct genfs_ops ffs_genfsops = {
    160 	.gop_size = ffs_gop_size,
    161 	.gop_alloc = ufs_gop_alloc,
    162 	.gop_write = genfs_gop_write,
    163 	.gop_markupdate = ufs_gop_markupdate,
    164 };
    165 
    166 static const struct ufs_ops ffs_ufsops = {
    167 	.uo_itimes = ffs_itimes,
    168 	.uo_update = ffs_update,
    169 	.uo_truncate = ffs_truncate,
    170 	.uo_valloc = ffs_valloc,
    171 	.uo_vfree = ffs_vfree,
    172 	.uo_balloc = ffs_balloc,
    173 	.uo_unmark_vnode = (void (*)(vnode_t *))nullop,
    174 };
    175 
    176 static int
    177 ffs_modcmd(modcmd_t cmd, void *arg)
    178 {
    179 	int error;
    180 
    181 #if 0
    182 	extern int doasyncfree;
    183 #endif
    184 	extern int ffs_log_changeopt;
    185 
    186 	switch (cmd) {
    187 	case MODULE_CMD_INIT:
    188 		error = vfs_attach(&ffs_vfsops);
    189 		if (error != 0)
    190 			break;
    191 
    192 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    193 			       CTLFLAG_PERMANENT,
    194 			       CTLTYPE_NODE, "vfs", NULL,
    195 			       NULL, 0, NULL, 0,
    196 			       CTL_VFS, CTL_EOL);
    197 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    198 			       CTLFLAG_PERMANENT,
    199 			       CTLTYPE_NODE, "ffs",
    200 			       SYSCTL_DESCR("Berkeley Fast File System"),
    201 			       NULL, 0, NULL, 0,
    202 			       CTL_VFS, 1, CTL_EOL);
    203 
    204 		/*
    205 		 * @@@ should we even bother with these first three?
    206 		 */
    207 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    208 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    209 			       CTLTYPE_INT, "doclusterread", NULL,
    210 			       sysctl_notavail, 0, NULL, 0,
    211 			       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
    212 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    213 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    214 			       CTLTYPE_INT, "doclusterwrite", NULL,
    215 			       sysctl_notavail, 0, NULL, 0,
    216 			       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
    217 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    218 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    219 			       CTLTYPE_INT, "doreallocblks", NULL,
    220 			       sysctl_notavail, 0, NULL, 0,
    221 			       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
    222 #if 0
    223 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    224 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    225 			       CTLTYPE_INT, "doasyncfree",
    226 			       SYSCTL_DESCR("Release dirty blocks asynchronously"),
    227 			       NULL, 0, &doasyncfree, 0,
    228 			       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
    229 #endif
    230 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    231 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    232 			       CTLTYPE_INT, "log_changeopt",
    233 			       SYSCTL_DESCR("Log changes in optimization strategy"),
    234 			       NULL, 0, &ffs_log_changeopt, 0,
    235 			       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
    236 		break;
    237 	case MODULE_CMD_FINI:
    238 		error = vfs_detach(&ffs_vfsops);
    239 		if (error != 0)
    240 			break;
    241 		sysctl_teardown(&ffs_sysctl_log);
    242 		break;
    243 	default:
    244 		error = ENOTTY;
    245 		break;
    246 	}
    247 
    248 	return (error);
    249 }
    250 
    251 pool_cache_t ffs_inode_cache;
    252 pool_cache_t ffs_dinode1_cache;
    253 pool_cache_t ffs_dinode2_cache;
    254 
    255 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
    256 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
    257 
    258 /*
    259  * Called by main() when ffs is going to be mounted as root.
    260  */
    261 
    262 int
    263 ffs_mountroot(void)
    264 {
    265 	struct fs *fs;
    266 	struct mount *mp;
    267 	struct lwp *l = curlwp;			/* XXX */
    268 	struct ufsmount *ump;
    269 	int error;
    270 
    271 	if (device_class(root_device) != DV_DISK)
    272 		return (ENODEV);
    273 
    274 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
    275 		vrele(rootvp);
    276 		return (error);
    277 	}
    278 
    279 	/*
    280 	 * We always need to be able to mount the root file system.
    281 	 */
    282 	mp->mnt_flag |= MNT_FORCE;
    283 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
    284 		vfs_unbusy(mp, false, NULL);
    285 		vfs_destroy(mp);
    286 		return (error);
    287 	}
    288 	mp->mnt_flag &= ~MNT_FORCE;
    289 	mutex_enter(&mountlist_lock);
    290 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    291 	mutex_exit(&mountlist_lock);
    292 	ump = VFSTOUFS(mp);
    293 	fs = ump->um_fs;
    294 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
    295 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
    296 	(void)ffs_statvfs(mp, &mp->mnt_stat);
    297 	vfs_unbusy(mp, false, NULL);
    298 	setrootfstime((time_t)fs->fs_time);
    299 	return (0);
    300 }
    301 
    302 /*
    303  * VFS Operations.
    304  *
    305  * mount system call
    306  */
    307 int
    308 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    309 {
    310 	struct lwp *l = curlwp;
    311 	struct vnode *devvp = NULL;
    312 	struct ufs_args *args = data;
    313 	struct ufsmount *ump = NULL;
    314 	struct fs *fs;
    315 	int error = 0, flags, update;
    316 	mode_t accessmode;
    317 
    318 	if (*data_len < sizeof *args)
    319 		return EINVAL;
    320 
    321 	if (mp->mnt_flag & MNT_GETARGS) {
    322 		ump = VFSTOUFS(mp);
    323 		if (ump == NULL)
    324 			return EIO;
    325 		args->fspec = NULL;
    326 		*data_len = sizeof *args;
    327 		return 0;
    328 	}
    329 
    330 	update = mp->mnt_flag & MNT_UPDATE;
    331 
    332 	/* Check arguments */
    333 	if (args->fspec != NULL) {
    334 		/*
    335 		 * Look up the name and verify that it's sane.
    336 		 */
    337 		error = namei_simple_user(args->fspec,
    338 					NSM_FOLLOW_NOEMULROOT, &devvp);
    339 		if (error != 0)
    340 			return (error);
    341 
    342 		if (!update) {
    343 			/*
    344 			 * Be sure this is a valid block device
    345 			 */
    346 			if (devvp->v_type != VBLK)
    347 				error = ENOTBLK;
    348 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    349 				error = ENXIO;
    350 		} else {
    351 			/*
    352 			 * Be sure we're still naming the same device
    353 			 * used for our initial mount
    354 			 */
    355 			ump = VFSTOUFS(mp);
    356 			if (devvp != ump->um_devvp) {
    357 				if (devvp->v_rdev != ump->um_devvp->v_rdev)
    358 					error = EINVAL;
    359 				else {
    360 					vrele(devvp);
    361 					devvp = ump->um_devvp;
    362 					vref(devvp);
    363 				}
    364 			}
    365 		}
    366 	} else {
    367 		if (!update) {
    368 			/* New mounts must have a filename for the device */
    369 			return (EINVAL);
    370 		} else {
    371 			/* Use the extant mount */
    372 			ump = VFSTOUFS(mp);
    373 			devvp = ump->um_devvp;
    374 			vref(devvp);
    375 		}
    376 	}
    377 
    378 	/*
    379 	 * If mount by non-root, then verify that user has necessary
    380 	 * permissions on the device.
    381 	 *
    382 	 * Permission to update a mount is checked higher, so here we presume
    383 	 * updating the mount is okay (for example, as far as securelevel goes)
    384 	 * which leaves us with the normal check.
    385 	 */
    386 	if (error == 0) {
    387 		accessmode = VREAD;
    388 		if (update ?
    389 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    390 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    391 			accessmode |= VWRITE;
    392 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    393 		error = genfs_can_mount(devvp, accessmode, l->l_cred);
    394 		VOP_UNLOCK(devvp);
    395 	}
    396 
    397 	if (error) {
    398 		vrele(devvp);
    399 		return (error);
    400 	}
    401 
    402 #ifdef WAPBL
    403 	/* WAPBL can only be enabled on a r/w mount. */
    404 	if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
    405 		mp->mnt_flag &= ~MNT_LOG;
    406 	}
    407 #else /* !WAPBL */
    408 	mp->mnt_flag &= ~MNT_LOG;
    409 #endif /* !WAPBL */
    410 
    411 	if (!update) {
    412 		int xflags;
    413 
    414 		if (mp->mnt_flag & MNT_RDONLY)
    415 			xflags = FREAD;
    416 		else
    417 			xflags = FREAD | FWRITE;
    418 		error = VOP_OPEN(devvp, xflags, FSCRED);
    419 		if (error)
    420 			goto fail;
    421 		error = ffs_mountfs(devvp, mp, l);
    422 		if (error) {
    423 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    424 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
    425 			VOP_UNLOCK(devvp);
    426 			goto fail;
    427 		}
    428 
    429 		ump = VFSTOUFS(mp);
    430 		fs = ump->um_fs;
    431 	} else {
    432 		/*
    433 		 * Update the mount.
    434 		 */
    435 
    436 		/*
    437 		 * The initial mount got a reference on this
    438 		 * device, so drop the one obtained via
    439 		 * namei(), above.
    440 		 */
    441 		vrele(devvp);
    442 
    443 		ump = VFSTOUFS(mp);
    444 		fs = ump->um_fs;
    445 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    446 			/*
    447 			 * Changing from r/w to r/o
    448 			 */
    449 			flags = WRITECLOSE;
    450 			if (mp->mnt_flag & MNT_FORCE)
    451 				flags |= FORCECLOSE;
    452 			error = ffs_flushfiles(mp, flags, l);
    453 			if (error == 0)
    454 				error = UFS_WAPBL_BEGIN(mp);
    455 			if (error == 0 &&
    456 			    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
    457 			    fs->fs_clean & FS_WASCLEAN) {
    458 				if (mp->mnt_flag & MNT_SOFTDEP)
    459 					fs->fs_flags &= ~FS_DOSOFTDEP;
    460 				fs->fs_clean = FS_ISCLEAN;
    461 				(void) ffs_sbupdate(ump, MNT_WAIT);
    462 			}
    463 			if (error == 0)
    464 				UFS_WAPBL_END(mp);
    465 			if (error)
    466 				return (error);
    467 		}
    468 
    469 #ifdef WAPBL
    470 		if ((mp->mnt_flag & MNT_LOG) == 0) {
    471 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
    472 			if (error)
    473 				return error;
    474 		}
    475 #endif /* WAPBL */
    476 
    477 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    478 			/*
    479 			 * Finish change from r/w to r/o
    480 			 */
    481 			fs->fs_ronly = 1;
    482 			fs->fs_fmod = 0;
    483 		}
    484 
    485 		if (mp->mnt_flag & MNT_RELOAD) {
    486 			error = ffs_reload(mp, l->l_cred, l);
    487 			if (error)
    488 				return (error);
    489 		}
    490 
    491 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    492 			/*
    493 			 * Changing from read-only to read/write
    494 			 */
    495 			fs->fs_ronly = 0;
    496 			fs->fs_clean <<= 1;
    497 			fs->fs_fmod = 1;
    498 #ifdef WAPBL
    499 			if (fs->fs_flags & FS_DOWAPBL) {
    500 				printf("%s: replaying log to disk\n",
    501 				    fs->fs_fsmnt);
    502 				KDASSERT(mp->mnt_wapbl_replay);
    503 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    504 							   devvp);
    505 				if (error) {
    506 					return error;
    507 				}
    508 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    509 				fs->fs_clean = FS_WASCLEAN;
    510 			}
    511 #endif /* WAPBL */
    512 			if (fs->fs_snapinum[0] != 0)
    513 				ffs_snapshot_mount(mp);
    514 		}
    515 
    516 #ifdef WAPBL
    517 		error = ffs_wapbl_start(mp);
    518 		if (error)
    519 			return error;
    520 #endif /* WAPBL */
    521 
    522 		if (args->fspec == NULL)
    523 			return 0;
    524 	}
    525 
    526 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    527 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    528 	if (error == 0)
    529 		(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
    530 		    sizeof(fs->fs_fsmnt));
    531 	fs->fs_flags &= ~FS_DOSOFTDEP;
    532 	if (fs->fs_fmod != 0) {	/* XXX */
    533 		int err;
    534 
    535 		fs->fs_fmod = 0;
    536 		if (fs->fs_clean & FS_WASCLEAN)
    537 			fs->fs_time = time_second;
    538 		else {
    539 			printf("%s: file system not clean (fs_clean=%#x); "
    540 			    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
    541 			    fs->fs_clean);
    542 			printf("%s: lost blocks %" PRId64 " files %d\n",
    543 			    mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
    544 			    fs->fs_pendinginodes);
    545 		}
    546 		err = UFS_WAPBL_BEGIN(mp);
    547 		if (err == 0) {
    548 			(void) ffs_cgupdate(ump, MNT_WAIT);
    549 			UFS_WAPBL_END(mp);
    550 		}
    551 	}
    552 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
    553 		printf("%s: `-o softdep' is no longer supported, "
    554 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
    555 		mp->mnt_flag &= ~MNT_SOFTDEP;
    556 	}
    557 
    558 	return (error);
    559 
    560 fail:
    561 	vrele(devvp);
    562 	return (error);
    563 }
    564 
    565 /*
    566  * Reload all incore data for a filesystem (used after running fsck on
    567  * the root filesystem and finding things to fix). The filesystem must
    568  * be mounted read-only.
    569  *
    570  * Things to do to update the mount:
    571  *	1) invalidate all cached meta-data.
    572  *	2) re-read superblock from disk.
    573  *	3) re-read summary information from disk.
    574  *	4) invalidate all inactive vnodes.
    575  *	5) invalidate all cached file data.
    576  *	6) re-read inode data for all active vnodes.
    577  */
    578 int
    579 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
    580 {
    581 	struct vnode *vp, *mvp, *devvp;
    582 	struct inode *ip;
    583 	void *space;
    584 	struct buf *bp;
    585 	struct fs *fs, *newfs;
    586 	struct partinfo dpart;
    587 	int i, bsize, blks, error;
    588 	int32_t *lp;
    589 	struct ufsmount *ump;
    590 	daddr_t sblockloc;
    591 
    592 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
    593 		return (EINVAL);
    594 
    595 	ump = VFSTOUFS(mp);
    596 	/*
    597 	 * Step 1: invalidate all cached meta-data.
    598 	 */
    599 	devvp = ump->um_devvp;
    600 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    601 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
    602 	VOP_UNLOCK(devvp);
    603 	if (error)
    604 		panic("ffs_reload: dirty1");
    605 	/*
    606 	 * Step 2: re-read superblock from disk.
    607 	 */
    608 	fs = ump->um_fs;
    609 
    610 	/* XXX we don't handle possibility that superblock moved. */
    611 	error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
    612 		      NOCRED, 0, &bp);
    613 	if (error) {
    614 		brelse(bp, 0);
    615 		return (error);
    616 	}
    617 	newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
    618 	memcpy(newfs, bp->b_data, fs->fs_sbsize);
    619 #ifdef FFS_EI
    620 	if (ump->um_flags & UFS_NEEDSWAP) {
    621 		ffs_sb_swap((struct fs*)bp->b_data, newfs);
    622 		fs->fs_flags |= FS_SWAPPED;
    623 	} else
    624 #endif
    625 		fs->fs_flags &= ~FS_SWAPPED;
    626 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
    627 	     newfs->fs_magic != FS_UFS2_MAGIC)||
    628 	     newfs->fs_bsize > MAXBSIZE ||
    629 	     newfs->fs_bsize < sizeof(struct fs)) {
    630 		brelse(bp, 0);
    631 		free(newfs, M_UFSMNT);
    632 		return (EIO);		/* XXX needs translation */
    633 	}
    634 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
    635 	sblockloc = fs->fs_sblockloc;
    636 	/*
    637 	 * Copy pointer fields back into superblock before copying in	XXX
    638 	 * new superblock. These should really be in the ufsmount.	XXX
    639 	 * Note that important parameters (eg fs_ncg) are unchanged.
    640 	 */
    641 	newfs->fs_csp = fs->fs_csp;
    642 	newfs->fs_maxcluster = fs->fs_maxcluster;
    643 	newfs->fs_contigdirs = fs->fs_contigdirs;
    644 	newfs->fs_ronly = fs->fs_ronly;
    645 	newfs->fs_active = fs->fs_active;
    646 	memcpy(fs, newfs, (u_int)fs->fs_sbsize);
    647 	brelse(bp, 0);
    648 	free(newfs, M_UFSMNT);
    649 
    650 	/* Recheck for apple UFS filesystem */
    651 	ump->um_flags &= ~UFS_ISAPPLEUFS;
    652 	/* First check to see if this is tagged as an Apple UFS filesystem
    653 	 * in the disklabel
    654 	 */
    655 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
    656 		(dpart.part->p_fstype == FS_APPLEUFS)) {
    657 		ump->um_flags |= UFS_ISAPPLEUFS;
    658 	}
    659 #ifdef APPLE_UFS
    660 	else {
    661 		/* Manually look for an apple ufs label, and if a valid one
    662 		 * is found, then treat it like an Apple UFS filesystem anyway
    663 		 */
    664 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
    665 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
    666 		if (error) {
    667 			brelse(bp, 0);
    668 			return (error);
    669 		}
    670 		error = ffs_appleufs_validate(fs->fs_fsmnt,
    671 			(struct appleufslabel *)bp->b_data, NULL);
    672 		if (error == 0)
    673 			ump->um_flags |= UFS_ISAPPLEUFS;
    674 		brelse(bp, 0);
    675 		bp = NULL;
    676 	}
    677 #else
    678 	if (ump->um_flags & UFS_ISAPPLEUFS)
    679 		return (EIO);
    680 #endif
    681 
    682 	if (UFS_MPISAPPLEUFS(ump)) {
    683 		/* see comment about NeXT below */
    684 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
    685 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
    686 		mp->mnt_iflag |= IMNT_DTYPE;
    687 	} else {
    688 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
    689 		ump->um_dirblksiz = DIRBLKSIZ;
    690 		if (ump->um_maxsymlinklen > 0)
    691 			mp->mnt_iflag |= IMNT_DTYPE;
    692 		else
    693 			mp->mnt_iflag &= ~IMNT_DTYPE;
    694 	}
    695 	ffs_oldfscompat_read(fs, ump, sblockloc);
    696 
    697 	mutex_enter(&ump->um_lock);
    698 	ump->um_maxfilesize = fs->fs_maxfilesize;
    699 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    700 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    701 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    702 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    703 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    704 			mutex_exit(&ump->um_lock);
    705 			return (EINVAL);
    706 		}
    707 	}
    708 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
    709 		fs->fs_pendingblocks = 0;
    710 		fs->fs_pendinginodes = 0;
    711 	}
    712 	mutex_exit(&ump->um_lock);
    713 
    714 	ffs_statvfs(mp, &mp->mnt_stat);
    715 	/*
    716 	 * Step 3: re-read summary information from disk.
    717 	 */
    718 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
    719 	space = fs->fs_csp;
    720 	for (i = 0; i < blks; i += fs->fs_frag) {
    721 		bsize = fs->fs_bsize;
    722 		if (i + fs->fs_frag > blks)
    723 			bsize = (blks - i) * fs->fs_fsize;
    724 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
    725 			      NOCRED, 0, &bp);
    726 		if (error) {
    727 			brelse(bp, 0);
    728 			return (error);
    729 		}
    730 #ifdef FFS_EI
    731 		if (UFS_FSNEEDSWAP(fs))
    732 			ffs_csum_swap((struct csum *)bp->b_data,
    733 			    (struct csum *)space, bsize);
    734 		else
    735 #endif
    736 			memcpy(space, bp->b_data, (size_t)bsize);
    737 		space = (char *)space + bsize;
    738 		brelse(bp, 0);
    739 	}
    740 	if (fs->fs_snapinum[0] != 0)
    741 		ffs_snapshot_mount(mp);
    742 	/*
    743 	 * We no longer know anything about clusters per cylinder group.
    744 	 */
    745 	if (fs->fs_contigsumsize > 0) {
    746 		lp = fs->fs_maxcluster;
    747 		for (i = 0; i < fs->fs_ncg; i++)
    748 			*lp++ = fs->fs_contigsumsize;
    749 	}
    750 
    751 	/* Allocate a marker vnode. */
    752 	if ((mvp = vnalloc(mp)) == NULL)
    753 		return ENOMEM;
    754 	/*
    755 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
    756 	 * and vclean() can be called indirectly
    757 	 */
    758 	mutex_enter(&mntvnode_lock);
    759  loop:
    760 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
    761 		vmark(mvp, vp);
    762 		if (vp->v_mount != mp || vismarker(vp))
    763 			continue;
    764 		/*
    765 		 * Step 4: invalidate all inactive vnodes.
    766 		 */
    767 		if (vrecycle(vp, &mntvnode_lock, l)) {
    768 			mutex_enter(&mntvnode_lock);
    769 			(void)vunmark(mvp);
    770 			goto loop;
    771 		}
    772 		/*
    773 		 * Step 5: invalidate all cached file data.
    774 		 */
    775 		mutex_enter(&vp->v_interlock);
    776 		mutex_exit(&mntvnode_lock);
    777 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
    778 			(void)vunmark(mvp);
    779 			goto loop;
    780 		}
    781 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
    782 			panic("ffs_reload: dirty2");
    783 		/*
    784 		 * Step 6: re-read inode data for all active vnodes.
    785 		 */
    786 		ip = VTOI(vp);
    787 		error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
    788 			      (int)fs->fs_bsize, NOCRED, 0, &bp);
    789 		if (error) {
    790 			brelse(bp, 0);
    791 			vput(vp);
    792 			(void)vunmark(mvp);
    793 			break;
    794 		}
    795 		ffs_load_inode(bp, ip, fs, ip->i_number);
    796 		brelse(bp, 0);
    797 		vput(vp);
    798 		mutex_enter(&mntvnode_lock);
    799 	}
    800 	mutex_exit(&mntvnode_lock);
    801 	vnfree(mvp);
    802 	return (error);
    803 }
    804 
    805 /*
    806  * Possible superblock locations ordered from most to least likely.
    807  */
    808 static const int sblock_try[] = SBLOCKSEARCH;
    809 
    810 /*
    811  * Common code for mount and mountroot
    812  */
    813 int
    814 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    815 {
    816 	struct ufsmount *ump;
    817 	struct buf *bp;
    818 	struct fs *fs;
    819 	dev_t dev;
    820 	struct partinfo dpart;
    821 	void *space;
    822 	daddr_t sblockloc, fsblockloc;
    823 	int blks, fstype;
    824 	int error, i, bsize, ronly, bset = 0;
    825 #ifdef FFS_EI
    826 	int needswap = 0;		/* keep gcc happy */
    827 #endif
    828 	int32_t *lp;
    829 	kauth_cred_t cred;
    830 	u_int32_t sbsize = 8192;	/* keep gcc happy*/
    831 
    832 	dev = devvp->v_rdev;
    833 	cred = l ? l->l_cred : NOCRED;
    834 
    835 	/* Flush out any old buffers remaining from a previous use. */
    836 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    837 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    838 	VOP_UNLOCK(devvp);
    839 	if (error)
    840 		return (error);
    841 
    842 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    843 
    844 	bp = NULL;
    845 	ump = NULL;
    846 	fs = NULL;
    847 	sblockloc = 0;
    848 	fstype = 0;
    849 
    850 	error = fstrans_mount(mp);
    851 	if (error)
    852 		return error;
    853 
    854 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
    855 	memset(ump, 0, sizeof *ump);
    856 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
    857 	error = ffs_snapshot_init(ump);
    858 	if (error)
    859 		goto out;
    860 	ump->um_ops = &ffs_ufsops;
    861 
    862 #ifdef WAPBL
    863  sbagain:
    864 #endif
    865 	/*
    866 	 * Try reading the superblock in each of its possible locations.
    867 	 */
    868 	for (i = 0; ; i++) {
    869 		if (bp != NULL) {
    870 			brelse(bp, BC_NOCACHE);
    871 			bp = NULL;
    872 		}
    873 		if (sblock_try[i] == -1) {
    874 			error = EINVAL;
    875 			fs = NULL;
    876 			goto out;
    877 		}
    878 		error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
    879 			      0, &bp);
    880 		if (error) {
    881 			fs = NULL;
    882 			goto out;
    883 		}
    884 		fs = (struct fs*)bp->b_data;
    885 		fsblockloc = sblockloc = sblock_try[i];
    886 		if (fs->fs_magic == FS_UFS1_MAGIC) {
    887 			sbsize = fs->fs_sbsize;
    888 			fstype = UFS1;
    889 #ifdef FFS_EI
    890 			needswap = 0;
    891 		} else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
    892 			sbsize = bswap32(fs->fs_sbsize);
    893 			fstype = UFS1;
    894 			needswap = 1;
    895 #endif
    896 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
    897 			sbsize = fs->fs_sbsize;
    898 			fstype = UFS2;
    899 #ifdef FFS_EI
    900 			needswap = 0;
    901 		} else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
    902 			sbsize = bswap32(fs->fs_sbsize);
    903 			fstype = UFS2;
    904 			needswap = 1;
    905 #endif
    906 		} else
    907 			continue;
    908 
    909 
    910 		/* fs->fs_sblockloc isn't defined for old filesystems */
    911 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
    912 			if (sblockloc == SBLOCK_UFS2)
    913 				/*
    914 				 * This is likely to be the first alternate
    915 				 * in a filesystem with 64k blocks.
    916 				 * Don't use it.
    917 				 */
    918 				continue;
    919 			fsblockloc = sblockloc;
    920 		} else {
    921 			fsblockloc = fs->fs_sblockloc;
    922 #ifdef FFS_EI
    923 			if (needswap)
    924 				fsblockloc = bswap64(fsblockloc);
    925 #endif
    926 		}
    927 
    928 		/* Check we haven't found an alternate superblock */
    929 		if (fsblockloc != sblockloc)
    930 			continue;
    931 
    932 		/* Validate size of superblock */
    933 		if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
    934 			continue;
    935 
    936 		/* Ok seems to be a good superblock */
    937 		break;
    938 	}
    939 
    940 	fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
    941 	memcpy(fs, bp->b_data, sbsize);
    942 	ump->um_fs = fs;
    943 
    944 #ifdef FFS_EI
    945 	if (needswap) {
    946 		ffs_sb_swap((struct fs*)bp->b_data, fs);
    947 		fs->fs_flags |= FS_SWAPPED;
    948 	} else
    949 #endif
    950 		fs->fs_flags &= ~FS_SWAPPED;
    951 
    952 #ifdef WAPBL
    953 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
    954 		error = ffs_wapbl_replay_start(mp, fs, devvp);
    955 		if (error && (mp->mnt_flag & MNT_FORCE) == 0)
    956 			goto out;
    957 		if (!error) {
    958 			if (!ronly) {
    959 				/* XXX fsmnt may be stale. */
    960 				printf("%s: replaying log to disk\n",
    961 				    fs->fs_fsmnt);
    962 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    963 				    devvp);
    964 				if (error)
    965 					goto out;
    966 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    967 				fs->fs_clean = FS_WASCLEAN;
    968 			} else {
    969 				/* XXX fsmnt may be stale */
    970 				printf("%s: replaying log to memory\n",
    971 				    fs->fs_fsmnt);
    972 			}
    973 
    974 			/* Force a re-read of the superblock */
    975 			brelse(bp, BC_INVAL);
    976 			bp = NULL;
    977 			free(fs, M_UFSMNT);
    978 			fs = NULL;
    979 			goto sbagain;
    980 		}
    981 	}
    982 #else /* !WAPBL */
    983 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
    984 		error = EPERM;
    985 		goto out;
    986 	}
    987 #endif /* !WAPBL */
    988 
    989 	ffs_oldfscompat_read(fs, ump, sblockloc);
    990 	ump->um_maxfilesize = fs->fs_maxfilesize;
    991 
    992 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    993 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    994 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    995 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    996 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    997 			error = EINVAL;
    998 			goto out;
    999 		}
   1000 	}
   1001 
   1002 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
   1003 		fs->fs_pendingblocks = 0;
   1004 		fs->fs_pendinginodes = 0;
   1005 	}
   1006 
   1007 	ump->um_fstype = fstype;
   1008 	if (fs->fs_sbsize < SBLOCKSIZE)
   1009 		brelse(bp, BC_INVAL);
   1010 	else
   1011 		brelse(bp, 0);
   1012 	bp = NULL;
   1013 
   1014 	/* First check to see if this is tagged as an Apple UFS filesystem
   1015 	 * in the disklabel
   1016 	 */
   1017 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
   1018 		(dpart.part->p_fstype == FS_APPLEUFS)) {
   1019 		ump->um_flags |= UFS_ISAPPLEUFS;
   1020 	}
   1021 #ifdef APPLE_UFS
   1022 	else {
   1023 		/* Manually look for an apple ufs label, and if a valid one
   1024 		 * is found, then treat it like an Apple UFS filesystem anyway
   1025 		 */
   1026 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
   1027 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
   1028 		if (error)
   1029 			goto out;
   1030 		error = ffs_appleufs_validate(fs->fs_fsmnt,
   1031 			(struct appleufslabel *)bp->b_data, NULL);
   1032 		if (error == 0) {
   1033 			ump->um_flags |= UFS_ISAPPLEUFS;
   1034 		}
   1035 		brelse(bp, 0);
   1036 		bp = NULL;
   1037 	}
   1038 #else
   1039 	if (ump->um_flags & UFS_ISAPPLEUFS) {
   1040 		error = EINVAL;
   1041 		goto out;
   1042 	}
   1043 #endif
   1044 
   1045 #if 0
   1046 /*
   1047  * XXX This code changes the behaviour of mounting dirty filesystems, to
   1048  * XXX require "mount -f ..." to mount them.  This doesn't match what
   1049  * XXX mount(8) describes and is disabled for now.
   1050  */
   1051 	/*
   1052 	 * If the file system is not clean, don't allow it to be mounted
   1053 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
   1054 	 * for the root file system.)
   1055 	 */
   1056 	if (fs->fs_flags & FS_DOWAPBL) {
   1057 		/*
   1058 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
   1059 		 * bit is set, although there's a window in unmount where it
   1060 		 * could be FS_ISCLEAN
   1061 		 */
   1062 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
   1063 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
   1064 			error = EPERM;
   1065 			goto out;
   1066 		}
   1067 	} else
   1068 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
   1069 		    (mp->mnt_flag & MNT_FORCE) == 0) {
   1070 			error = EPERM;
   1071 			goto out;
   1072 		}
   1073 #endif
   1074 
   1075 	/*
   1076 	 * verify that we can access the last block in the fs
   1077 	 * if we're mounting read/write.
   1078 	 */
   1079 
   1080 	if (!ronly) {
   1081 		error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
   1082 		    cred, 0, &bp);
   1083 		if (bp->b_bcount != fs->fs_fsize)
   1084 			error = EINVAL;
   1085 		if (error) {
   1086 			bset = BC_INVAL;
   1087 			goto out;
   1088 		}
   1089 		brelse(bp, BC_INVAL);
   1090 		bp = NULL;
   1091 	}
   1092 
   1093 	fs->fs_ronly = ronly;
   1094 	/* Don't bump fs_clean if we're replaying journal */
   1095 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
   1096 		if (ronly == 0) {
   1097 			fs->fs_clean <<= 1;
   1098 			fs->fs_fmod = 1;
   1099 		}
   1100 	bsize = fs->fs_cssize;
   1101 	blks = howmany(bsize, fs->fs_fsize);
   1102 	if (fs->fs_contigsumsize > 0)
   1103 		bsize += fs->fs_ncg * sizeof(int32_t);
   1104 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1105 	space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
   1106 	fs->fs_csp = space;
   1107 	for (i = 0; i < blks; i += fs->fs_frag) {
   1108 		bsize = fs->fs_bsize;
   1109 		if (i + fs->fs_frag > blks)
   1110 			bsize = (blks - i) * fs->fs_fsize;
   1111 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
   1112 			      cred, 0, &bp);
   1113 		if (error) {
   1114 			free(fs->fs_csp, M_UFSMNT);
   1115 			goto out;
   1116 		}
   1117 #ifdef FFS_EI
   1118 		if (needswap)
   1119 			ffs_csum_swap((struct csum *)bp->b_data,
   1120 				(struct csum *)space, bsize);
   1121 		else
   1122 #endif
   1123 			memcpy(space, bp->b_data, (u_int)bsize);
   1124 
   1125 		space = (char *)space + bsize;
   1126 		brelse(bp, 0);
   1127 		bp = NULL;
   1128 	}
   1129 	if (fs->fs_contigsumsize > 0) {
   1130 		fs->fs_maxcluster = lp = space;
   1131 		for (i = 0; i < fs->fs_ncg; i++)
   1132 			*lp++ = fs->fs_contigsumsize;
   1133 		space = lp;
   1134 	}
   1135 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1136 	fs->fs_contigdirs = space;
   1137 	space = (char *)space + bsize;
   1138 	memset(fs->fs_contigdirs, 0, bsize);
   1139 		/* Compatibility for old filesystems - XXX */
   1140 	if (fs->fs_avgfilesize <= 0)
   1141 		fs->fs_avgfilesize = AVFILESIZ;
   1142 	if (fs->fs_avgfpdir <= 0)
   1143 		fs->fs_avgfpdir = AFPDIR;
   1144 	fs->fs_active = NULL;
   1145 	mp->mnt_data = ump;
   1146 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
   1147 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
   1148 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
   1149 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
   1150 	if (UFS_MPISAPPLEUFS(ump)) {
   1151 		/* NeXT used to keep short symlinks in the inode even
   1152 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
   1153 		 * is probably -1, but we still need to be able to identify
   1154 		 * short symlinks.
   1155 		 */
   1156 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
   1157 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
   1158 		mp->mnt_iflag |= IMNT_DTYPE;
   1159 	} else {
   1160 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
   1161 		ump->um_dirblksiz = DIRBLKSIZ;
   1162 		if (ump->um_maxsymlinklen > 0)
   1163 			mp->mnt_iflag |= IMNT_DTYPE;
   1164 		else
   1165 			mp->mnt_iflag &= ~IMNT_DTYPE;
   1166 	}
   1167 	mp->mnt_fs_bshift = fs->fs_bshift;
   1168 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
   1169 	mp->mnt_flag |= MNT_LOCAL;
   1170 	mp->mnt_iflag |= IMNT_MPSAFE;
   1171 #ifdef FFS_EI
   1172 	if (needswap)
   1173 		ump->um_flags |= UFS_NEEDSWAP;
   1174 #endif
   1175 	ump->um_mountp = mp;
   1176 	ump->um_dev = dev;
   1177 	ump->um_devvp = devvp;
   1178 	ump->um_nindir = fs->fs_nindir;
   1179 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
   1180 	ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
   1181 	ump->um_seqinc = fs->fs_frag;
   1182 	for (i = 0; i < MAXQUOTAS; i++)
   1183 		ump->um_quotas[i] = NULLVP;
   1184 	devvp->v_specmountpoint = mp;
   1185 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
   1186 		ffs_snapshot_mount(mp);
   1187 
   1188 #ifdef WAPBL
   1189 	if (!ronly) {
   1190 		KDASSERT(fs->fs_ronly == 0);
   1191 		/*
   1192 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
   1193 		 * needs to create a new log file in-filesystem.
   1194 		 */
   1195 		ffs_statvfs(mp, &mp->mnt_stat);
   1196 
   1197 		error = ffs_wapbl_start(mp);
   1198 		if (error) {
   1199 			free(fs->fs_csp, M_UFSMNT);
   1200 			goto out;
   1201 		}
   1202 	}
   1203 #endif /* WAPBL */
   1204 #ifdef UFS_EXTATTR
   1205 	/*
   1206 	 * Initialize file-backed extended attributes on UFS1 file
   1207 	 * systems.
   1208 	 */
   1209 	if (ump->um_fstype == UFS1) {
   1210 		ufs_extattr_uepm_init(&ump->um_extattr);
   1211 #ifdef UFS_EXTATTR_AUTOSTART
   1212 		/*
   1213 		 * XXX Just ignore errors.  Not clear that we should
   1214 		 * XXX fail the mount in this case.
   1215 		 */
   1216 		(void) ufs_extattr_autostart(mp, l);
   1217 #endif
   1218 	}
   1219 #endif /* UFS_EXTATTR */
   1220 	return (0);
   1221 out:
   1222 #ifdef WAPBL
   1223 	if (mp->mnt_wapbl_replay) {
   1224 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1225 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1226 		mp->mnt_wapbl_replay = 0;
   1227 	}
   1228 #endif
   1229 
   1230 	fstrans_unmount(mp);
   1231 	if (fs)
   1232 		free(fs, M_UFSMNT);
   1233 	devvp->v_specmountpoint = NULL;
   1234 	if (bp)
   1235 		brelse(bp, bset);
   1236 	if (ump) {
   1237 		if (ump->um_oldfscompat)
   1238 			free(ump->um_oldfscompat, M_UFSMNT);
   1239 		mutex_destroy(&ump->um_lock);
   1240 		free(ump, M_UFSMNT);
   1241 		mp->mnt_data = NULL;
   1242 	}
   1243 	return (error);
   1244 }
   1245 
   1246 /*
   1247  * Sanity checks for loading old filesystem superblocks.
   1248  * See ffs_oldfscompat_write below for unwound actions.
   1249  *
   1250  * XXX - Parts get retired eventually.
   1251  * Unfortunately new bits get added.
   1252  */
   1253 static void
   1254 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
   1255 {
   1256 	off_t maxfilesize;
   1257 	int32_t *extrasave;
   1258 
   1259 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1260 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1261 		return;
   1262 
   1263 	if (!ump->um_oldfscompat)
   1264 		ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
   1265 		    M_UFSMNT, M_WAITOK);
   1266 
   1267 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
   1268 	extrasave = ump->um_oldfscompat;
   1269 	extrasave += 512/sizeof(int32_t);
   1270 	extrasave[0] = fs->fs_old_npsect;
   1271 	extrasave[1] = fs->fs_old_interleave;
   1272 	extrasave[2] = fs->fs_old_trackskew;
   1273 
   1274 	/* These fields will be overwritten by their
   1275 	 * original values in fs_oldfscompat_write, so it is harmless
   1276 	 * to modify them here.
   1277 	 */
   1278 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
   1279 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
   1280 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
   1281 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
   1282 
   1283 	fs->fs_maxbsize = fs->fs_bsize;
   1284 	fs->fs_time = fs->fs_old_time;
   1285 	fs->fs_size = fs->fs_old_size;
   1286 	fs->fs_dsize = fs->fs_old_dsize;
   1287 	fs->fs_csaddr = fs->fs_old_csaddr;
   1288 	fs->fs_sblockloc = sblockloc;
   1289 
   1290 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
   1291 
   1292 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
   1293 		fs->fs_old_nrpos = 8;
   1294 		fs->fs_old_npsect = fs->fs_old_nsect;
   1295 		fs->fs_old_interleave = 1;
   1296 		fs->fs_old_trackskew = 0;
   1297 	}
   1298 
   1299 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {
   1300 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
   1301 		fs->fs_qbmask = ~fs->fs_bmask;
   1302 		fs->fs_qfmask = ~fs->fs_fmask;
   1303 	}
   1304 
   1305 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
   1306 	if (fs->fs_maxfilesize > maxfilesize)
   1307 		fs->fs_maxfilesize = maxfilesize;
   1308 
   1309 	/* Compatibility for old filesystems */
   1310 	if (fs->fs_avgfilesize <= 0)
   1311 		fs->fs_avgfilesize = AVFILESIZ;
   1312 	if (fs->fs_avgfpdir <= 0)
   1313 		fs->fs_avgfpdir = AFPDIR;
   1314 
   1315 #if 0
   1316 	if (bigcgs) {
   1317 		fs->fs_save_cgsize = fs->fs_cgsize;
   1318 		fs->fs_cgsize = fs->fs_bsize;
   1319 	}
   1320 #endif
   1321 }
   1322 
   1323 /*
   1324  * Unwinding superblock updates for old filesystems.
   1325  * See ffs_oldfscompat_read above for details.
   1326  *
   1327  * XXX - Parts get retired eventually.
   1328  * Unfortunately new bits get added.
   1329  */
   1330 static void
   1331 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
   1332 {
   1333 	int32_t *extrasave;
   1334 
   1335 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1336 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1337 		return;
   1338 
   1339 	fs->fs_old_time = fs->fs_time;
   1340 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
   1341 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
   1342 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
   1343 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
   1344 	fs->fs_old_flags = fs->fs_flags;
   1345 
   1346 #if 0
   1347 	if (bigcgs) {
   1348 		fs->fs_cgsize = fs->fs_save_cgsize;
   1349 	}
   1350 #endif
   1351 
   1352 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
   1353 	extrasave = ump->um_oldfscompat;
   1354 	extrasave += 512/sizeof(int32_t);
   1355 	fs->fs_old_npsect = extrasave[0];
   1356 	fs->fs_old_interleave = extrasave[1];
   1357 	fs->fs_old_trackskew = extrasave[2];
   1358 
   1359 }
   1360 
   1361 /*
   1362  * unmount vfs operation
   1363  */
   1364 int
   1365 ffs_unmount(struct mount *mp, int mntflags)
   1366 {
   1367 	struct lwp *l = curlwp;
   1368 	struct ufsmount *ump = VFSTOUFS(mp);
   1369 	struct fs *fs = ump->um_fs;
   1370 	int error, flags;
   1371 #ifdef WAPBL
   1372 	extern int doforce;
   1373 #endif
   1374 
   1375 	flags = 0;
   1376 	if (mntflags & MNT_FORCE)
   1377 		flags |= FORCECLOSE;
   1378 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
   1379 		return (error);
   1380 	error = UFS_WAPBL_BEGIN(mp);
   1381 	if (error == 0)
   1382 		if (fs->fs_ronly == 0 &&
   1383 		    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
   1384 		    fs->fs_clean & FS_WASCLEAN) {
   1385 			fs->fs_clean = FS_ISCLEAN;
   1386 			fs->fs_fmod = 0;
   1387 			(void) ffs_sbupdate(ump, MNT_WAIT);
   1388 		}
   1389 	if (error == 0)
   1390 		UFS_WAPBL_END(mp);
   1391 #ifdef WAPBL
   1392 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
   1393 	if (mp->mnt_wapbl_replay) {
   1394 		KDASSERT(fs->fs_ronly);
   1395 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1396 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1397 		mp->mnt_wapbl_replay = 0;
   1398 	}
   1399 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
   1400 	if (error) {
   1401 		return error;
   1402 	}
   1403 #endif /* WAPBL */
   1404 #ifdef UFS_EXTATTR
   1405 	if (ump->um_fstype == UFS1) {
   1406 		ufs_extattr_stop(mp, l);
   1407 		ufs_extattr_uepm_destroy(&ump->um_extattr);
   1408 	}
   1409 #endif /* UFS_EXTATTR */
   1410 
   1411 	if (ump->um_devvp->v_type != VBAD)
   1412 		ump->um_devvp->v_specmountpoint = NULL;
   1413 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1414 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
   1415 		NOCRED);
   1416 	vput(ump->um_devvp);
   1417 	free(fs->fs_csp, M_UFSMNT);
   1418 	free(fs, M_UFSMNT);
   1419 	if (ump->um_oldfscompat != NULL)
   1420 		free(ump->um_oldfscompat, M_UFSMNT);
   1421 	mutex_destroy(&ump->um_lock);
   1422 	ffs_snapshot_fini(ump);
   1423 	free(ump, M_UFSMNT);
   1424 	mp->mnt_data = NULL;
   1425 	mp->mnt_flag &= ~MNT_LOCAL;
   1426 	fstrans_unmount(mp);
   1427 	return (0);
   1428 }
   1429 
   1430 /*
   1431  * Flush out all the files in a filesystem.
   1432  */
   1433 int
   1434 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
   1435 {
   1436 	extern int doforce;
   1437 	struct ufsmount *ump;
   1438 	int error;
   1439 
   1440 	if (!doforce)
   1441 		flags &= ~FORCECLOSE;
   1442 	ump = VFSTOUFS(mp);
   1443 #ifdef QUOTA
   1444 	if (mp->mnt_flag & MNT_QUOTA) {
   1445 		int i;
   1446 		if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
   1447 			return (error);
   1448 		for (i = 0; i < MAXQUOTAS; i++) {
   1449 			if (ump->um_quotas[i] == NULLVP)
   1450 				continue;
   1451 			quotaoff(l, mp, i);
   1452 		}
   1453 		/*
   1454 		 * Here we fall through to vflush again to ensure
   1455 		 * that we have gotten rid of all the system vnodes.
   1456 		 */
   1457 	}
   1458 #endif
   1459 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
   1460 		return (error);
   1461 	ffs_snapshot_unmount(mp);
   1462 	/*
   1463 	 * Flush all the files.
   1464 	 */
   1465 	error = vflush(mp, NULLVP, flags);
   1466 	if (error)
   1467 		return (error);
   1468 	/*
   1469 	 * Flush filesystem metadata.
   1470 	 */
   1471 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1472 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
   1473 	VOP_UNLOCK(ump->um_devvp);
   1474 	if (flags & FORCECLOSE) /* XXXDBJ */
   1475 		error = 0;
   1476 
   1477 #ifdef WAPBL
   1478 	if (error)
   1479 		return error;
   1480 	if (mp->mnt_wapbl) {
   1481 		error = wapbl_flush(mp->mnt_wapbl, 1);
   1482 		if (flags & FORCECLOSE)
   1483 			error = 0;
   1484 	}
   1485 #endif
   1486 
   1487 	return (error);
   1488 }
   1489 
   1490 /*
   1491  * Get file system statistics.
   1492  */
   1493 int
   1494 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
   1495 {
   1496 	struct ufsmount *ump;
   1497 	struct fs *fs;
   1498 
   1499 	ump = VFSTOUFS(mp);
   1500 	fs = ump->um_fs;
   1501 	mutex_enter(&ump->um_lock);
   1502 	sbp->f_bsize = fs->fs_bsize;
   1503 	sbp->f_frsize = fs->fs_fsize;
   1504 	sbp->f_iosize = fs->fs_bsize;
   1505 	sbp->f_blocks = fs->fs_dsize;
   1506 	sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
   1507 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
   1508 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
   1509 	    fs->fs_minfree) / (u_int64_t) 100;
   1510 	if (sbp->f_bfree > sbp->f_bresvd)
   1511 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1512 	else
   1513 		sbp->f_bavail = 0;
   1514 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - ROOTINO;
   1515 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
   1516 	sbp->f_favail = sbp->f_ffree;
   1517 	sbp->f_fresvd = 0;
   1518 	mutex_exit(&ump->um_lock);
   1519 	copy_statvfs_info(sbp, mp);
   1520 
   1521 	return (0);
   1522 }
   1523 
   1524 /*
   1525  * Go through the disk queues to initiate sandbagged IO;
   1526  * go through the inodes to write those that have been modified;
   1527  * initiate the writing of the super block if it has been modified.
   1528  *
   1529  * Note: we are always called with the filesystem marked `MPBUSY'.
   1530  */
   1531 int
   1532 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1533 {
   1534 	struct vnode *vp, *mvp, *nvp;
   1535 	struct inode *ip;
   1536 	struct ufsmount *ump = VFSTOUFS(mp);
   1537 	struct fs *fs;
   1538 	int lk_flags, error, allerror = 0;
   1539 	bool is_suspending;
   1540 
   1541 	fs = ump->um_fs;
   1542 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
   1543 		printf("fs = %s\n", fs->fs_fsmnt);
   1544 		panic("update: rofs mod");
   1545 	}
   1546 
   1547 	/* Allocate a marker vnode. */
   1548 	if ((mvp = vnalloc(mp)) == NULL)
   1549 		return (ENOMEM);
   1550 
   1551 	fstrans_start(mp, FSTRANS_SHARED);
   1552 	is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
   1553 	/*
   1554 	 * We can't lock vnodes while the file system is suspending because
   1555 	 * threads waiting on fstrans may have locked vnodes.
   1556 	 */
   1557 	if (is_suspending)
   1558 		lk_flags = LK_INTERLOCK;
   1559 	else
   1560 		lk_flags = LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK;
   1561 	/*
   1562 	 * Write back each (modified) inode.
   1563 	 */
   1564 	mutex_enter(&mntvnode_lock);
   1565 loop:
   1566 	/*
   1567 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
   1568 	 * and vclean() can be called indirectly
   1569 	 */
   1570 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
   1571 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
   1572 		/*
   1573 		 * If the vnode that we are about to sync is no longer
   1574 		 * associated with this mount point, start over.
   1575 		 */
   1576 		if (vp->v_mount != mp)
   1577 			goto loop;
   1578 		/*
   1579 		 * Don't interfere with concurrent scans of this FS.
   1580 		 */
   1581 		if (vismarker(vp))
   1582 			continue;
   1583 		mutex_enter(&vp->v_interlock);
   1584 		ip = VTOI(vp);
   1585 
   1586 		/*
   1587 		 * Skip the vnode/inode if inaccessible.
   1588 		 */
   1589 		if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
   1590 		    vp->v_type == VNON) {
   1591 			mutex_exit(&vp->v_interlock);
   1592 			continue;
   1593 		}
   1594 
   1595 		/*
   1596 		 * We deliberately update inode times here.  This will
   1597 		 * prevent a massive queue of updates accumulating, only
   1598 		 * to be handled by a call to unmount.
   1599 		 *
   1600 		 * XXX It would be better to have the syncer trickle these
   1601 		 * out.  Adjustment needed to allow registering vnodes for
   1602 		 * sync when the vnode is clean, but the inode dirty.  Or
   1603 		 * have ufs itself trickle out inode updates.
   1604 		 *
   1605 		 * If doing a lazy sync, we don't care about metadata or
   1606 		 * data updates, because they are handled by each vnode's
   1607 		 * synclist entry.  In this case we are only interested in
   1608 		 * writing back modified inodes.
   1609 		 */
   1610 		if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
   1611 		    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
   1612 		    (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
   1613 		    UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
   1614 			mutex_exit(&vp->v_interlock);
   1615 			continue;
   1616 		}
   1617 		if (vp->v_type == VBLK && is_suspending) {
   1618 			mutex_exit(&vp->v_interlock);
   1619 			continue;
   1620 		}
   1621 		vmark(mvp, vp);
   1622 		mutex_exit(&mntvnode_lock);
   1623 		error = vget(vp, lk_flags);
   1624 		if (error) {
   1625 			mutex_enter(&mntvnode_lock);
   1626 			nvp = vunmark(mvp);
   1627 			if (error == ENOENT) {
   1628 				goto loop;
   1629 			}
   1630 			continue;
   1631 		}
   1632 		if (waitfor == MNT_LAZY) {
   1633 			error = UFS_WAPBL_BEGIN(vp->v_mount);
   1634 			if (!error) {
   1635 				error = ffs_update(vp, NULL, NULL,
   1636 				    UPDATE_CLOSE);
   1637 				UFS_WAPBL_END(vp->v_mount);
   1638 			}
   1639 		} else {
   1640 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
   1641 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
   1642 		}
   1643 		if (error)
   1644 			allerror = error;
   1645 		if (is_suspending)
   1646 			vrele(vp);
   1647 		else
   1648 			vput(vp);
   1649 		mutex_enter(&mntvnode_lock);
   1650 		nvp = vunmark(mvp);
   1651 	}
   1652 	mutex_exit(&mntvnode_lock);
   1653 	/*
   1654 	 * Force stale file system control information to be flushed.
   1655 	 */
   1656 	if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
   1657 	    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
   1658 		vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1659 		if ((error = VOP_FSYNC(ump->um_devvp, cred,
   1660 		    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
   1661 		    0, 0)) != 0)
   1662 			allerror = error;
   1663 		VOP_UNLOCK(ump->um_devvp);
   1664 		if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
   1665 			mutex_enter(&mntvnode_lock);
   1666 			goto loop;
   1667 		}
   1668 	}
   1669 #ifdef QUOTA
   1670 	qsync(mp);
   1671 #endif
   1672 	/*
   1673 	 * Write back modified superblock.
   1674 	 */
   1675 	if (fs->fs_fmod != 0) {
   1676 		fs->fs_fmod = 0;
   1677 		fs->fs_time = time_second;
   1678 		error = UFS_WAPBL_BEGIN(mp);
   1679 		if (error)
   1680 			allerror = error;
   1681 		else {
   1682 			if ((error = ffs_cgupdate(ump, waitfor)))
   1683 				allerror = error;
   1684 			UFS_WAPBL_END(mp);
   1685 		}
   1686 	}
   1687 
   1688 #ifdef WAPBL
   1689 	if (mp->mnt_wapbl) {
   1690 		error = wapbl_flush(mp->mnt_wapbl, 0);
   1691 		if (error)
   1692 			allerror = error;
   1693 	}
   1694 #endif
   1695 
   1696 	fstrans_done(mp);
   1697 	vnfree(mvp);
   1698 	return (allerror);
   1699 }
   1700 
   1701 /*
   1702  * Look up a FFS dinode number to find its incore vnode, otherwise read it
   1703  * in from disk.  If it is in core, wait for the lock bit to clear, then
   1704  * return the inode locked.  Detection and handling of mount points must be
   1705  * done by the calling routine.
   1706  */
   1707 int
   1708 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1709 {
   1710 	struct fs *fs;
   1711 	struct inode *ip;
   1712 	struct ufsmount *ump;
   1713 	struct buf *bp;
   1714 	struct vnode *vp;
   1715 	dev_t dev;
   1716 	int error;
   1717 
   1718 	ump = VFSTOUFS(mp);
   1719 	dev = ump->um_dev;
   1720 
   1721  retry:
   1722 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1723 		return (0);
   1724 
   1725 	/* Allocate a new vnode/inode. */
   1726 	if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
   1727 		*vpp = NULL;
   1728 		return (error);
   1729 	}
   1730 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
   1731 
   1732 	/*
   1733 	 * If someone beat us to it, put back the freshly allocated
   1734 	 * vnode/inode pair and retry.
   1735 	 */
   1736 	mutex_enter(&ufs_hashlock);
   1737 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1738 		mutex_exit(&ufs_hashlock);
   1739 		ungetnewvnode(vp);
   1740 		pool_cache_put(ffs_inode_cache, ip);
   1741 		goto retry;
   1742 	}
   1743 
   1744 	vp->v_vflag |= VV_LOCKSWORK;
   1745 
   1746 	/*
   1747 	 * XXX MFS ends up here, too, to allocate an inode.  Should we
   1748 	 * XXX create another pool for MFS inodes?
   1749 	 */
   1750 
   1751 	memset(ip, 0, sizeof(struct inode));
   1752 	vp->v_data = ip;
   1753 	ip->i_vnode = vp;
   1754 	ip->i_ump = ump;
   1755 	ip->i_fs = fs = ump->um_fs;
   1756 	ip->i_dev = dev;
   1757 	ip->i_number = ino;
   1758 #ifdef QUOTA
   1759 	ufsquota_init(ip);
   1760 #endif
   1761 
   1762 	/*
   1763 	 * Initialize genfs node, we might proceed to destroy it in
   1764 	 * error branches.
   1765 	 */
   1766 	genfs_node_init(vp, &ffs_genfsops);
   1767 
   1768 	/*
   1769 	 * Put it onto its hash chain and lock it so that other requests for
   1770 	 * this inode will block if they arrive while we are sleeping waiting
   1771 	 * for old data structures to be purged or for the contents of the
   1772 	 * disk portion of this inode to be read.
   1773 	 */
   1774 
   1775 	ufs_ihashins(ip);
   1776 	mutex_exit(&ufs_hashlock);
   1777 
   1778 	/* Read in the disk contents for the inode, copy into the inode. */
   1779 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
   1780 		      (int)fs->fs_bsize, NOCRED, 0, &bp);
   1781 	if (error) {
   1782 
   1783 		/*
   1784 		 * The inode does not contain anything useful, so it would
   1785 		 * be misleading to leave it on its hash chain. With mode
   1786 		 * still zero, it will be unlinked and returned to the free
   1787 		 * list by vput().
   1788 		 */
   1789 
   1790 		vput(vp);
   1791 		brelse(bp, 0);
   1792 		*vpp = NULL;
   1793 		return (error);
   1794 	}
   1795 	if (ip->i_ump->um_fstype == UFS1)
   1796 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
   1797 		    PR_WAITOK);
   1798 	else
   1799 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
   1800 		    PR_WAITOK);
   1801 	ffs_load_inode(bp, ip, fs, ino);
   1802 	brelse(bp, 0);
   1803 
   1804 	/*
   1805 	 * Initialize the vnode from the inode, check for aliases.
   1806 	 * Note that the underlying vnode may have changed.
   1807 	 */
   1808 
   1809 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   1810 
   1811 	/*
   1812 	 * Finish inode initialization now that aliasing has been resolved.
   1813 	 */
   1814 
   1815 	ip->i_devvp = ump->um_devvp;
   1816 	vref(ip->i_devvp);
   1817 
   1818 	/*
   1819 	 * Ensure that uid and gid are correct. This is a temporary
   1820 	 * fix until fsck has been changed to do the update.
   1821 	 */
   1822 
   1823 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
   1824 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
   1825 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
   1826 	}							/* XXX */
   1827 	uvm_vnp_setsize(vp, ip->i_size);
   1828 	*vpp = vp;
   1829 	return (0);
   1830 }
   1831 
   1832 /*
   1833  * File handle to vnode
   1834  *
   1835  * Have to be really careful about stale file handles:
   1836  * - check that the inode number is valid
   1837  * - call ffs_vget() to get the locked inode
   1838  * - check for an unallocated inode (i_mode == 0)
   1839  * - check that the given client host has export rights and return
   1840  *   those rights via. exflagsp and credanonp
   1841  */
   1842 int
   1843 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1844 {
   1845 	struct ufid ufh;
   1846 	struct fs *fs;
   1847 
   1848 	if (fhp->fid_len != sizeof(struct ufid))
   1849 		return EINVAL;
   1850 
   1851 	memcpy(&ufh, fhp, sizeof(ufh));
   1852 	fs = VFSTOUFS(mp)->um_fs;
   1853 	if (ufh.ufid_ino < ROOTINO ||
   1854 	    ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
   1855 		return (ESTALE);
   1856 	return (ufs_fhtovp(mp, &ufh, vpp));
   1857 }
   1858 
   1859 /*
   1860  * Vnode pointer to File handle
   1861  */
   1862 /* ARGSUSED */
   1863 int
   1864 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1865 {
   1866 	struct inode *ip;
   1867 	struct ufid ufh;
   1868 
   1869 	if (*fh_size < sizeof(struct ufid)) {
   1870 		*fh_size = sizeof(struct ufid);
   1871 		return E2BIG;
   1872 	}
   1873 	ip = VTOI(vp);
   1874 	*fh_size = sizeof(struct ufid);
   1875 	memset(&ufh, 0, sizeof(ufh));
   1876 	ufh.ufid_len = sizeof(struct ufid);
   1877 	ufh.ufid_ino = ip->i_number;
   1878 	ufh.ufid_gen = ip->i_gen;
   1879 	memcpy(fhp, &ufh, sizeof(ufh));
   1880 	return (0);
   1881 }
   1882 
   1883 void
   1884 ffs_init(void)
   1885 {
   1886 	if (ffs_initcount++ > 0)
   1887 		return;
   1888 
   1889 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
   1890 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
   1891 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
   1892 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
   1893 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
   1894 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
   1895 	ufs_init();
   1896 }
   1897 
   1898 void
   1899 ffs_reinit(void)
   1900 {
   1901 
   1902 	ufs_reinit();
   1903 }
   1904 
   1905 void
   1906 ffs_done(void)
   1907 {
   1908 	if (--ffs_initcount > 0)
   1909 		return;
   1910 
   1911 	ufs_done();
   1912 	pool_cache_destroy(ffs_dinode2_cache);
   1913 	pool_cache_destroy(ffs_dinode1_cache);
   1914 	pool_cache_destroy(ffs_inode_cache);
   1915 }
   1916 
   1917 /*
   1918  * Write a superblock and associated information back to disk.
   1919  */
   1920 int
   1921 ffs_sbupdate(struct ufsmount *mp, int waitfor)
   1922 {
   1923 	struct fs *fs = mp->um_fs;
   1924 	struct buf *bp;
   1925 	int error = 0;
   1926 	u_int32_t saveflag;
   1927 
   1928 	error = ffs_getblk(mp->um_devvp,
   1929 	    fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
   1930 	    fs->fs_sbsize, false, &bp);
   1931 	if (error)
   1932 		return error;
   1933 	saveflag = fs->fs_flags & FS_INTERNAL;
   1934 	fs->fs_flags &= ~FS_INTERNAL;
   1935 
   1936 	memcpy(bp->b_data, fs, fs->fs_sbsize);
   1937 
   1938 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
   1939 #ifdef FFS_EI
   1940 	if (mp->um_flags & UFS_NEEDSWAP)
   1941 		ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
   1942 #endif
   1943 	fs->fs_flags |= saveflag;
   1944 
   1945 	if (waitfor == MNT_WAIT)
   1946 		error = bwrite(bp);
   1947 	else
   1948 		bawrite(bp);
   1949 	return (error);
   1950 }
   1951 
   1952 int
   1953 ffs_cgupdate(struct ufsmount *mp, int waitfor)
   1954 {
   1955 	struct fs *fs = mp->um_fs;
   1956 	struct buf *bp;
   1957 	int blks;
   1958 	void *space;
   1959 	int i, size, error = 0, allerror = 0;
   1960 
   1961 	allerror = ffs_sbupdate(mp, waitfor);
   1962 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
   1963 	space = fs->fs_csp;
   1964 	for (i = 0; i < blks; i += fs->fs_frag) {
   1965 		size = fs->fs_bsize;
   1966 		if (i + fs->fs_frag > blks)
   1967 			size = (blks - i) * fs->fs_fsize;
   1968 		error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
   1969 		    FFS_NOBLK, size, false, &bp);
   1970 		if (error)
   1971 			break;
   1972 #ifdef FFS_EI
   1973 		if (mp->um_flags & UFS_NEEDSWAP)
   1974 			ffs_csum_swap((struct csum*)space,
   1975 			    (struct csum*)bp->b_data, size);
   1976 		else
   1977 #endif
   1978 			memcpy(bp->b_data, space, (u_int)size);
   1979 		space = (char *)space + size;
   1980 		if (waitfor == MNT_WAIT)
   1981 			error = bwrite(bp);
   1982 		else
   1983 			bawrite(bp);
   1984 	}
   1985 	if (!allerror && error)
   1986 		allerror = error;
   1987 	return (allerror);
   1988 }
   1989 
   1990 int
   1991 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
   1992     int attrnamespace, const char *attrname)
   1993 {
   1994 #ifdef UFS_EXTATTR
   1995 	/*
   1996 	 * File-backed extended attributes are only supported on UFS1.
   1997 	 * UFS2 has native extended attributes.
   1998 	 */
   1999 	if (VFSTOUFS(mp)->um_fstype == UFS1)
   2000 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
   2001 #endif
   2002 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
   2003 }
   2004 
   2005 int
   2006 ffs_suspendctl(struct mount *mp, int cmd)
   2007 {
   2008 	int error;
   2009 	struct lwp *l = curlwp;
   2010 
   2011 	switch (cmd) {
   2012 	case SUSPEND_SUSPEND:
   2013 		if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
   2014 			return error;
   2015 		error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
   2016 		if (error == 0)
   2017 			error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
   2018 #ifdef WAPBL
   2019 		if (error == 0 && mp->mnt_wapbl)
   2020 			error = wapbl_flush(mp->mnt_wapbl, 1);
   2021 #endif
   2022 		if (error != 0) {
   2023 			(void) fstrans_setstate(mp, FSTRANS_NORMAL);
   2024 			return error;
   2025 		}
   2026 		return 0;
   2027 
   2028 	case SUSPEND_RESUME:
   2029 		return fstrans_setstate(mp, FSTRANS_NORMAL);
   2030 
   2031 	default:
   2032 		return EINVAL;
   2033 	}
   2034 }
   2035 
   2036 /*
   2037  * Synch vnode for a mounted file system.  This is called for foreign
   2038  * vnodes, i.e. non-ffs.
   2039  */
   2040 static int
   2041 ffs_vfs_fsync(vnode_t *vp, int flags)
   2042 {
   2043 	int error, passes, skipmeta, i, pflags;
   2044 	buf_t *bp, *nbp;
   2045 #ifdef WAPBL
   2046 	struct mount *mp;
   2047 #endif
   2048 
   2049 	KASSERT(vp->v_type == VBLK);
   2050 	KASSERT(vp->v_specmountpoint != NULL);
   2051 
   2052 	/*
   2053 	 * Flush all dirty data associated with the vnode.
   2054 	 */
   2055 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
   2056 	if ((flags & FSYNC_WAIT) != 0)
   2057 		pflags |= PGO_SYNCIO;
   2058 	mutex_enter(&vp->v_interlock);
   2059 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
   2060 	if (error)
   2061 		return error;
   2062 
   2063 #ifdef WAPBL
   2064 	mp = vp->v_specmountpoint;
   2065 	if (mp && mp->mnt_wapbl) {
   2066 		/*
   2067 		 * Don't bother writing out metadata if the syncer is
   2068 		 * making the request.  We will let the sync vnode
   2069 		 * write it out in a single burst through a call to
   2070 		 * VFS_SYNC().
   2071 		 */
   2072 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
   2073 			return 0;
   2074 
   2075 		/*
   2076 		 * Don't flush the log if the vnode being flushed
   2077 		 * contains no dirty buffers that could be in the log.
   2078 		 */
   2079 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2080 			error = wapbl_flush(mp->mnt_wapbl, 0);
   2081 			if (error)
   2082 				return error;
   2083 		}
   2084 
   2085 		if ((flags & FSYNC_WAIT) != 0) {
   2086 			mutex_enter(&vp->v_interlock);
   2087 			while (vp->v_numoutput)
   2088 				cv_wait(&vp->v_cv, &vp->v_interlock);
   2089 			mutex_exit(&vp->v_interlock);
   2090 		}
   2091 
   2092 		return 0;
   2093 	}
   2094 #endif /* WAPBL */
   2095 
   2096 	/*
   2097 	 * Write out metadata for non-logging file systems. XXX This block
   2098 	 * should be simplified now that softdep is gone.
   2099 	 */
   2100 	passes = NIADDR + 1;
   2101 	skipmeta = 0;
   2102 	if (flags & FSYNC_WAIT)
   2103 		skipmeta = 1;
   2104 
   2105 loop:
   2106 	mutex_enter(&bufcache_lock);
   2107 	LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
   2108 		bp->b_cflags &= ~BC_SCANNED;
   2109 	}
   2110 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   2111 		nbp = LIST_NEXT(bp, b_vnbufs);
   2112 		if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
   2113 			continue;
   2114 		if ((bp->b_oflags & BO_DELWRI) == 0)
   2115 			panic("ffs_fsync: not dirty");
   2116 		if (skipmeta && bp->b_lblkno < 0)
   2117 			continue;
   2118 		bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
   2119 		mutex_exit(&bufcache_lock);
   2120 		/*
   2121 		 * On our final pass through, do all I/O synchronously
   2122 		 * so that we can find out if our flush is failing
   2123 		 * because of write errors.
   2124 		 */
   2125 		if (passes > 0 || !(flags & FSYNC_WAIT))
   2126 			(void) bawrite(bp);
   2127 		else if ((error = bwrite(bp)) != 0)
   2128 			return (error);
   2129 		/*
   2130 		 * Since we unlocked during the I/O, we need
   2131 		 * to start from a known point.
   2132 		 */
   2133 		mutex_enter(&bufcache_lock);
   2134 		nbp = LIST_FIRST(&vp->v_dirtyblkhd);
   2135 	}
   2136 	mutex_exit(&bufcache_lock);
   2137 	if (skipmeta) {
   2138 		skipmeta = 0;
   2139 		goto loop;
   2140 	}
   2141 
   2142 	if ((flags & FSYNC_WAIT) != 0) {
   2143 		mutex_enter(&vp->v_interlock);
   2144 		while (vp->v_numoutput) {
   2145 			cv_wait(&vp->v_cv, &vp->v_interlock);
   2146 		}
   2147 		mutex_exit(&vp->v_interlock);
   2148 
   2149 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2150 			/*
   2151 			* Block devices associated with filesystems may
   2152 			* have new I/O requests posted for them even if
   2153 			* the vnode is locked, so no amount of trying will
   2154 			* get them clean. Thus we give block devices a
   2155 			* good effort, then just give up. For all other file
   2156 			* types, go around and try again until it is clean.
   2157 			*/
   2158 			if (passes > 0) {
   2159 				passes--;
   2160 				goto loop;
   2161 			}
   2162 #ifdef DIAGNOSTIC
   2163 			if (vp->v_type != VBLK)
   2164 				vprint("ffs_fsync: dirty", vp);
   2165 #endif
   2166 		}
   2167 	}
   2168 
   2169 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
   2170 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
   2171 		    kauth_cred_get());
   2172 	}
   2173 
   2174 	return error;
   2175 }
   2176