ffs_vfsops.c revision 1.268 1 /* $NetBSD: ffs_vfsops.c,v 1.268 2011/06/17 14:23:52 manu Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.268 2011/06/17 14:23:52 manu Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/mbuf.h>
83 #include <sys/file.h>
84 #include <sys/disklabel.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/lock.h>
90 #include <sys/sysctl.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/wapbl.h>
94 #include <sys/fstrans.h>
95 #include <sys/module.h>
96
97 #include <miscfs/genfs/genfs.h>
98 #include <miscfs/specfs/specdev.h>
99
100 #include <ufs/ufs/quota.h>
101 #include <ufs/ufs/ufsmount.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/dir.h>
104 #include <ufs/ufs/ufs_extern.h>
105 #include <ufs/ufs/ufs_bswap.h>
106 #include <ufs/ufs/ufs_wapbl.h>
107
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110
111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
112
113 static int ffs_vfs_fsync(vnode_t *, int);
114
115 static struct sysctllog *ffs_sysctl_log;
116
117 /* how many times ffs_init() was called */
118 int ffs_initcount = 0;
119
120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
123
124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
125 &ffs_vnodeop_opv_desc,
126 &ffs_specop_opv_desc,
127 &ffs_fifoop_opv_desc,
128 NULL,
129 };
130
131 struct vfsops ffs_vfsops = {
132 MOUNT_FFS,
133 sizeof (struct ufs_args),
134 ffs_mount,
135 ufs_start,
136 ffs_unmount,
137 ufs_root,
138 ufs_quotactl,
139 ffs_statvfs,
140 ffs_sync,
141 ffs_vget,
142 ffs_fhtovp,
143 ffs_vptofh,
144 ffs_init,
145 ffs_reinit,
146 ffs_done,
147 ffs_mountroot,
148 ffs_snapshot,
149 ffs_extattrctl,
150 ffs_suspendctl,
151 genfs_renamelock_enter,
152 genfs_renamelock_exit,
153 ffs_vfs_fsync,
154 ffs_vnodeopv_descs,
155 0,
156 { NULL, NULL },
157 };
158
159 static const struct genfs_ops ffs_genfsops = {
160 .gop_size = ffs_gop_size,
161 .gop_alloc = ufs_gop_alloc,
162 .gop_write = genfs_gop_write,
163 .gop_markupdate = ufs_gop_markupdate,
164 };
165
166 static const struct ufs_ops ffs_ufsops = {
167 .uo_itimes = ffs_itimes,
168 .uo_update = ffs_update,
169 .uo_truncate = ffs_truncate,
170 .uo_valloc = ffs_valloc,
171 .uo_vfree = ffs_vfree,
172 .uo_balloc = ffs_balloc,
173 .uo_unmark_vnode = (void (*)(vnode_t *))nullop,
174 };
175
176 static int
177 ffs_modcmd(modcmd_t cmd, void *arg)
178 {
179 int error;
180
181 #if 0
182 extern int doasyncfree;
183 #endif
184 #ifdef UFS_EXTATTR
185 extern int ufs_extattr_autocreate;
186 #endif
187 extern int ffs_log_changeopt;
188
189 switch (cmd) {
190 case MODULE_CMD_INIT:
191 error = vfs_attach(&ffs_vfsops);
192 if (error != 0)
193 break;
194
195 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
196 CTLFLAG_PERMANENT,
197 CTLTYPE_NODE, "vfs", NULL,
198 NULL, 0, NULL, 0,
199 CTL_VFS, CTL_EOL);
200 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
201 CTLFLAG_PERMANENT,
202 CTLTYPE_NODE, "ffs",
203 SYSCTL_DESCR("Berkeley Fast File System"),
204 NULL, 0, NULL, 0,
205 CTL_VFS, 1, CTL_EOL);
206 /*
207 * @@@ should we even bother with these first three?
208 */
209 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
210 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
211 CTLTYPE_INT, "doclusterread", NULL,
212 sysctl_notavail, 0, NULL, 0,
213 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
214 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
215 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
216 CTLTYPE_INT, "doclusterwrite", NULL,
217 sysctl_notavail, 0, NULL, 0,
218 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
219 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
221 CTLTYPE_INT, "doreallocblks", NULL,
222 sysctl_notavail, 0, NULL, 0,
223 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
224 #if 0
225 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
226 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
227 CTLTYPE_INT, "doasyncfree",
228 SYSCTL_DESCR("Release dirty blocks asynchronously"),
229 NULL, 0, &doasyncfree, 0,
230 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
231 #endif
232 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
233 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
234 CTLTYPE_INT, "log_changeopt",
235 SYSCTL_DESCR("Log changes in optimization strategy"),
236 NULL, 0, &ffs_log_changeopt, 0,
237 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
238 #ifdef UFS_EXTATTR
239 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
241 CTLTYPE_INT, "extattr_autocreate",
242 SYSCTL_DESCR("Size of attribute for "
243 "backing file autocreation"),
244 NULL, 0, &ufs_extattr_autocreate, 0,
245 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
246
247 #endif /* UFS_EXTATTR */
248
249 break;
250 case MODULE_CMD_FINI:
251 error = vfs_detach(&ffs_vfsops);
252 if (error != 0)
253 break;
254 sysctl_teardown(&ffs_sysctl_log);
255 break;
256 default:
257 error = ENOTTY;
258 break;
259 }
260
261 return (error);
262 }
263
264 pool_cache_t ffs_inode_cache;
265 pool_cache_t ffs_dinode1_cache;
266 pool_cache_t ffs_dinode2_cache;
267
268 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
269 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
270
271 /*
272 * Called by main() when ffs is going to be mounted as root.
273 */
274
275 int
276 ffs_mountroot(void)
277 {
278 struct fs *fs;
279 struct mount *mp;
280 struct lwp *l = curlwp; /* XXX */
281 struct ufsmount *ump;
282 int error;
283
284 if (device_class(root_device) != DV_DISK)
285 return (ENODEV);
286
287 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
288 vrele(rootvp);
289 return (error);
290 }
291
292 /*
293 * We always need to be able to mount the root file system.
294 */
295 mp->mnt_flag |= MNT_FORCE;
296 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
297 vfs_unbusy(mp, false, NULL);
298 vfs_destroy(mp);
299 return (error);
300 }
301 mp->mnt_flag &= ~MNT_FORCE;
302 mutex_enter(&mountlist_lock);
303 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
304 mutex_exit(&mountlist_lock);
305 ump = VFSTOUFS(mp);
306 fs = ump->um_fs;
307 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
308 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
309 (void)ffs_statvfs(mp, &mp->mnt_stat);
310 vfs_unbusy(mp, false, NULL);
311 setrootfstime((time_t)fs->fs_time);
312 return (0);
313 }
314
315 /*
316 * VFS Operations.
317 *
318 * mount system call
319 */
320 int
321 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
322 {
323 struct lwp *l = curlwp;
324 struct vnode *devvp = NULL;
325 struct ufs_args *args = data;
326 struct ufsmount *ump = NULL;
327 struct fs *fs;
328 int error = 0, flags, update;
329 mode_t accessmode;
330
331 if (*data_len < sizeof *args)
332 return EINVAL;
333
334 if (mp->mnt_flag & MNT_GETARGS) {
335 ump = VFSTOUFS(mp);
336 if (ump == NULL)
337 return EIO;
338 args->fspec = NULL;
339 *data_len = sizeof *args;
340 return 0;
341 }
342
343 update = mp->mnt_flag & MNT_UPDATE;
344
345 /* Check arguments */
346 if (args->fspec != NULL) {
347 /*
348 * Look up the name and verify that it's sane.
349 */
350 error = namei_simple_user(args->fspec,
351 NSM_FOLLOW_NOEMULROOT, &devvp);
352 if (error != 0)
353 return (error);
354
355 if (!update) {
356 /*
357 * Be sure this is a valid block device
358 */
359 if (devvp->v_type != VBLK)
360 error = ENOTBLK;
361 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
362 error = ENXIO;
363 } else {
364 /*
365 * Be sure we're still naming the same device
366 * used for our initial mount
367 */
368 ump = VFSTOUFS(mp);
369 if (devvp != ump->um_devvp) {
370 if (devvp->v_rdev != ump->um_devvp->v_rdev)
371 error = EINVAL;
372 else {
373 vrele(devvp);
374 devvp = ump->um_devvp;
375 vref(devvp);
376 }
377 }
378 }
379 } else {
380 if (!update) {
381 /* New mounts must have a filename for the device */
382 return (EINVAL);
383 } else {
384 /* Use the extant mount */
385 ump = VFSTOUFS(mp);
386 devvp = ump->um_devvp;
387 vref(devvp);
388 }
389 }
390
391 /*
392 * If mount by non-root, then verify that user has necessary
393 * permissions on the device.
394 *
395 * Permission to update a mount is checked higher, so here we presume
396 * updating the mount is okay (for example, as far as securelevel goes)
397 * which leaves us with the normal check.
398 */
399 if (error == 0) {
400 accessmode = VREAD;
401 if (update ?
402 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
403 (mp->mnt_flag & MNT_RDONLY) == 0)
404 accessmode |= VWRITE;
405 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
406 error = genfs_can_mount(devvp, accessmode, l->l_cred);
407 VOP_UNLOCK(devvp);
408 }
409
410 if (error) {
411 vrele(devvp);
412 return (error);
413 }
414
415 #ifdef WAPBL
416 /* WAPBL can only be enabled on a r/w mount. */
417 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
418 mp->mnt_flag &= ~MNT_LOG;
419 }
420 #else /* !WAPBL */
421 mp->mnt_flag &= ~MNT_LOG;
422 #endif /* !WAPBL */
423
424 if (!update) {
425 int xflags;
426
427 if (mp->mnt_flag & MNT_RDONLY)
428 xflags = FREAD;
429 else
430 xflags = FREAD | FWRITE;
431 error = VOP_OPEN(devvp, xflags, FSCRED);
432 if (error)
433 goto fail;
434 error = ffs_mountfs(devvp, mp, l);
435 if (error) {
436 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
437 (void)VOP_CLOSE(devvp, xflags, NOCRED);
438 VOP_UNLOCK(devvp);
439 goto fail;
440 }
441
442 ump = VFSTOUFS(mp);
443 fs = ump->um_fs;
444 } else {
445 /*
446 * Update the mount.
447 */
448
449 /*
450 * The initial mount got a reference on this
451 * device, so drop the one obtained via
452 * namei(), above.
453 */
454 vrele(devvp);
455
456 ump = VFSTOUFS(mp);
457 fs = ump->um_fs;
458 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
459 /*
460 * Changing from r/w to r/o
461 */
462 flags = WRITECLOSE;
463 if (mp->mnt_flag & MNT_FORCE)
464 flags |= FORCECLOSE;
465 error = ffs_flushfiles(mp, flags, l);
466 if (error == 0)
467 error = UFS_WAPBL_BEGIN(mp);
468 if (error == 0 &&
469 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
470 fs->fs_clean & FS_WASCLEAN) {
471 if (mp->mnt_flag & MNT_SOFTDEP)
472 fs->fs_flags &= ~FS_DOSOFTDEP;
473 fs->fs_clean = FS_ISCLEAN;
474 (void) ffs_sbupdate(ump, MNT_WAIT);
475 }
476 if (error == 0)
477 UFS_WAPBL_END(mp);
478 if (error)
479 return (error);
480 }
481
482 #ifdef WAPBL
483 if ((mp->mnt_flag & MNT_LOG) == 0) {
484 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
485 if (error)
486 return error;
487 }
488 #endif /* WAPBL */
489
490 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
491 /*
492 * Finish change from r/w to r/o
493 */
494 fs->fs_ronly = 1;
495 fs->fs_fmod = 0;
496 }
497
498 if (mp->mnt_flag & MNT_RELOAD) {
499 error = ffs_reload(mp, l->l_cred, l);
500 if (error)
501 return (error);
502 }
503
504 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
505 /*
506 * Changing from read-only to read/write
507 */
508 #ifndef QUOTA2
509 if (fs->fs_flags & FS_DOQUOTA2) {
510 ump->um_flags |= UFS_QUOTA2;
511 uprintf("%s: options QUOTA2 not enabled%s\n",
512 mp->mnt_stat.f_mntonname,
513 (mp->mnt_flag & MNT_FORCE) ? "" :
514 ", not mounting");
515 return EINVAL;
516 }
517 #endif
518 fs->fs_ronly = 0;
519 fs->fs_clean <<= 1;
520 fs->fs_fmod = 1;
521 #ifdef WAPBL
522 if (fs->fs_flags & FS_DOWAPBL) {
523 printf("%s: replaying log to disk\n",
524 fs->fs_fsmnt);
525 KDASSERT(mp->mnt_wapbl_replay);
526 error = wapbl_replay_write(mp->mnt_wapbl_replay,
527 devvp);
528 if (error) {
529 return error;
530 }
531 wapbl_replay_stop(mp->mnt_wapbl_replay);
532 fs->fs_clean = FS_WASCLEAN;
533 }
534 #endif /* WAPBL */
535 if (fs->fs_snapinum[0] != 0)
536 ffs_snapshot_mount(mp);
537 }
538
539 #ifdef WAPBL
540 error = ffs_wapbl_start(mp);
541 if (error)
542 return error;
543 #endif /* WAPBL */
544
545 #ifdef QUOTA2
546 if (!fs->fs_ronly) {
547 error = ffs_quota2_mount(mp);
548 if (error) {
549 return error;
550 }
551 }
552 #endif
553 if (args->fspec == NULL)
554 return 0;
555 }
556
557 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
558 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
559 if (error == 0)
560 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
561 sizeof(fs->fs_fsmnt));
562 fs->fs_flags &= ~FS_DOSOFTDEP;
563 if (fs->fs_fmod != 0) { /* XXX */
564 int err;
565
566 fs->fs_fmod = 0;
567 if (fs->fs_clean & FS_WASCLEAN)
568 fs->fs_time = time_second;
569 else {
570 printf("%s: file system not clean (fs_clean=%#x); "
571 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
572 fs->fs_clean);
573 printf("%s: lost blocks %" PRId64 " files %d\n",
574 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
575 fs->fs_pendinginodes);
576 }
577 err = UFS_WAPBL_BEGIN(mp);
578 if (err == 0) {
579 (void) ffs_cgupdate(ump, MNT_WAIT);
580 UFS_WAPBL_END(mp);
581 }
582 }
583 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
584 printf("%s: `-o softdep' is no longer supported, "
585 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
586 mp->mnt_flag &= ~MNT_SOFTDEP;
587 }
588
589 return (error);
590
591 fail:
592 vrele(devvp);
593 return (error);
594 }
595
596 /*
597 * Reload all incore data for a filesystem (used after running fsck on
598 * the root filesystem and finding things to fix). The filesystem must
599 * be mounted read-only.
600 *
601 * Things to do to update the mount:
602 * 1) invalidate all cached meta-data.
603 * 2) re-read superblock from disk.
604 * 3) re-read summary information from disk.
605 * 4) invalidate all inactive vnodes.
606 * 5) invalidate all cached file data.
607 * 6) re-read inode data for all active vnodes.
608 */
609 int
610 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
611 {
612 struct vnode *vp, *mvp, *devvp;
613 struct inode *ip;
614 void *space;
615 struct buf *bp;
616 struct fs *fs, *newfs;
617 struct partinfo dpart;
618 int i, bsize, blks, error;
619 int32_t *lp;
620 struct ufsmount *ump;
621 daddr_t sblockloc;
622
623 if ((mp->mnt_flag & MNT_RDONLY) == 0)
624 return (EINVAL);
625
626 ump = VFSTOUFS(mp);
627 /*
628 * Step 1: invalidate all cached meta-data.
629 */
630 devvp = ump->um_devvp;
631 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
632 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
633 VOP_UNLOCK(devvp);
634 if (error)
635 panic("ffs_reload: dirty1");
636 /*
637 * Step 2: re-read superblock from disk.
638 */
639 fs = ump->um_fs;
640
641 /* XXX we don't handle possibility that superblock moved. */
642 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
643 NOCRED, 0, &bp);
644 if (error) {
645 brelse(bp, 0);
646 return (error);
647 }
648 newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
649 memcpy(newfs, bp->b_data, fs->fs_sbsize);
650 #ifdef FFS_EI
651 if (ump->um_flags & UFS_NEEDSWAP) {
652 ffs_sb_swap((struct fs*)bp->b_data, newfs);
653 fs->fs_flags |= FS_SWAPPED;
654 } else
655 #endif
656 fs->fs_flags &= ~FS_SWAPPED;
657 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
658 newfs->fs_magic != FS_UFS2_MAGIC)||
659 newfs->fs_bsize > MAXBSIZE ||
660 newfs->fs_bsize < sizeof(struct fs)) {
661 brelse(bp, 0);
662 free(newfs, M_UFSMNT);
663 return (EIO); /* XXX needs translation */
664 }
665 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
666 sblockloc = fs->fs_sblockloc;
667 /*
668 * Copy pointer fields back into superblock before copying in XXX
669 * new superblock. These should really be in the ufsmount. XXX
670 * Note that important parameters (eg fs_ncg) are unchanged.
671 */
672 newfs->fs_csp = fs->fs_csp;
673 newfs->fs_maxcluster = fs->fs_maxcluster;
674 newfs->fs_contigdirs = fs->fs_contigdirs;
675 newfs->fs_ronly = fs->fs_ronly;
676 newfs->fs_active = fs->fs_active;
677 memcpy(fs, newfs, (u_int)fs->fs_sbsize);
678 brelse(bp, 0);
679 free(newfs, M_UFSMNT);
680
681 /* Recheck for apple UFS filesystem */
682 ump->um_flags &= ~UFS_ISAPPLEUFS;
683 /* First check to see if this is tagged as an Apple UFS filesystem
684 * in the disklabel
685 */
686 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
687 (dpart.part->p_fstype == FS_APPLEUFS)) {
688 ump->um_flags |= UFS_ISAPPLEUFS;
689 }
690 #ifdef APPLE_UFS
691 else {
692 /* Manually look for an apple ufs label, and if a valid one
693 * is found, then treat it like an Apple UFS filesystem anyway
694 *
695 * EINVAL is most probably a blocksize or alignment problem,
696 * it is unlikely that this is an Apple UFS filesystem then.
697 */
698 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
699 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
700 if (error && error != EINVAL) {
701 brelse(bp, 0);
702 return (error);
703 }
704 if (error == 0) {
705 error = ffs_appleufs_validate(fs->fs_fsmnt,
706 (struct appleufslabel *)bp->b_data, NULL);
707 if (error == 0)
708 ump->um_flags |= UFS_ISAPPLEUFS;
709 }
710 brelse(bp, 0);
711 bp = NULL;
712 }
713 #else
714 if (ump->um_flags & UFS_ISAPPLEUFS)
715 return (EIO);
716 #endif
717
718 if (UFS_MPISAPPLEUFS(ump)) {
719 /* see comment about NeXT below */
720 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
721 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
722 mp->mnt_iflag |= IMNT_DTYPE;
723 } else {
724 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
725 ump->um_dirblksiz = DIRBLKSIZ;
726 if (ump->um_maxsymlinklen > 0)
727 mp->mnt_iflag |= IMNT_DTYPE;
728 else
729 mp->mnt_iflag &= ~IMNT_DTYPE;
730 }
731 ffs_oldfscompat_read(fs, ump, sblockloc);
732
733 mutex_enter(&ump->um_lock);
734 ump->um_maxfilesize = fs->fs_maxfilesize;
735 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
736 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
737 mp->mnt_stat.f_mntonname, fs->fs_flags,
738 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
739 if ((mp->mnt_flag & MNT_FORCE) == 0) {
740 mutex_exit(&ump->um_lock);
741 return (EINVAL);
742 }
743 }
744 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
745 fs->fs_pendingblocks = 0;
746 fs->fs_pendinginodes = 0;
747 }
748 mutex_exit(&ump->um_lock);
749
750 ffs_statvfs(mp, &mp->mnt_stat);
751 /*
752 * Step 3: re-read summary information from disk.
753 */
754 blks = howmany(fs->fs_cssize, fs->fs_fsize);
755 space = fs->fs_csp;
756 for (i = 0; i < blks; i += fs->fs_frag) {
757 bsize = fs->fs_bsize;
758 if (i + fs->fs_frag > blks)
759 bsize = (blks - i) * fs->fs_fsize;
760 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
761 NOCRED, 0, &bp);
762 if (error) {
763 brelse(bp, 0);
764 return (error);
765 }
766 #ifdef FFS_EI
767 if (UFS_FSNEEDSWAP(fs))
768 ffs_csum_swap((struct csum *)bp->b_data,
769 (struct csum *)space, bsize);
770 else
771 #endif
772 memcpy(space, bp->b_data, (size_t)bsize);
773 space = (char *)space + bsize;
774 brelse(bp, 0);
775 }
776 if (fs->fs_snapinum[0] != 0)
777 ffs_snapshot_mount(mp);
778 /*
779 * We no longer know anything about clusters per cylinder group.
780 */
781 if (fs->fs_contigsumsize > 0) {
782 lp = fs->fs_maxcluster;
783 for (i = 0; i < fs->fs_ncg; i++)
784 *lp++ = fs->fs_contigsumsize;
785 }
786
787 /* Allocate a marker vnode. */
788 if ((mvp = vnalloc(mp)) == NULL)
789 return ENOMEM;
790 /*
791 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
792 * and vclean() can be called indirectly
793 */
794 mutex_enter(&mntvnode_lock);
795 loop:
796 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
797 vmark(mvp, vp);
798 if (vp->v_mount != mp || vismarker(vp))
799 continue;
800 /*
801 * Step 4: invalidate all inactive vnodes.
802 */
803 if (vrecycle(vp, &mntvnode_lock, l)) {
804 mutex_enter(&mntvnode_lock);
805 (void)vunmark(mvp);
806 goto loop;
807 }
808 /*
809 * Step 5: invalidate all cached file data.
810 */
811 mutex_enter(vp->v_interlock);
812 mutex_exit(&mntvnode_lock);
813 if (vget(vp, LK_EXCLUSIVE)) {
814 (void)vunmark(mvp);
815 goto loop;
816 }
817 if (vinvalbuf(vp, 0, cred, l, 0, 0))
818 panic("ffs_reload: dirty2");
819 /*
820 * Step 6: re-read inode data for all active vnodes.
821 */
822 ip = VTOI(vp);
823 error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
824 (int)fs->fs_bsize, NOCRED, 0, &bp);
825 if (error) {
826 brelse(bp, 0);
827 vput(vp);
828 (void)vunmark(mvp);
829 break;
830 }
831 ffs_load_inode(bp, ip, fs, ip->i_number);
832 brelse(bp, 0);
833 vput(vp);
834 mutex_enter(&mntvnode_lock);
835 }
836 mutex_exit(&mntvnode_lock);
837 vnfree(mvp);
838 return (error);
839 }
840
841 /*
842 * Possible superblock locations ordered from most to least likely.
843 */
844 static const int sblock_try[] = SBLOCKSEARCH;
845
846 /*
847 * Common code for mount and mountroot
848 */
849 int
850 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
851 {
852 struct ufsmount *ump;
853 struct buf *bp;
854 struct fs *fs;
855 dev_t dev;
856 struct partinfo dpart;
857 void *space;
858 daddr_t sblockloc, fsblockloc;
859 int blks, fstype;
860 int error, i, bsize, ronly, bset = 0;
861 #ifdef FFS_EI
862 int needswap = 0; /* keep gcc happy */
863 #endif
864 int32_t *lp;
865 kauth_cred_t cred;
866 u_int32_t sbsize = 8192; /* keep gcc happy*/
867 int32_t fsbsize;
868
869 dev = devvp->v_rdev;
870 cred = l ? l->l_cred : NOCRED;
871
872 /* Flush out any old buffers remaining from a previous use. */
873 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
874 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
875 VOP_UNLOCK(devvp);
876 if (error)
877 return (error);
878
879 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
880
881 bp = NULL;
882 ump = NULL;
883 fs = NULL;
884 sblockloc = 0;
885 fstype = 0;
886
887 error = fstrans_mount(mp);
888 if (error)
889 return error;
890
891 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
892 memset(ump, 0, sizeof *ump);
893 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
894 error = ffs_snapshot_init(ump);
895 if (error)
896 goto out;
897 ump->um_ops = &ffs_ufsops;
898
899 #ifdef WAPBL
900 sbagain:
901 #endif
902 /*
903 * Try reading the superblock in each of its possible locations.
904 */
905 for (i = 0; ; i++) {
906 if (bp != NULL) {
907 brelse(bp, BC_NOCACHE);
908 bp = NULL;
909 }
910 if (sblock_try[i] == -1) {
911 error = EINVAL;
912 fs = NULL;
913 goto out;
914 }
915 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
916 0, &bp);
917 if (error) {
918 fs = NULL;
919 goto out;
920 }
921 fs = (struct fs*)bp->b_data;
922 fsblockloc = sblockloc = sblock_try[i];
923 if (fs->fs_magic == FS_UFS1_MAGIC) {
924 sbsize = fs->fs_sbsize;
925 fstype = UFS1;
926 fsbsize = fs->fs_bsize;
927 #ifdef FFS_EI
928 needswap = 0;
929 } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
930 sbsize = bswap32(fs->fs_sbsize);
931 fstype = UFS1;
932 fsbsize = bswap32(fs->fs_bsize);
933 needswap = 1;
934 #endif
935 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
936 sbsize = fs->fs_sbsize;
937 fstype = UFS2;
938 fsbsize = fs->fs_bsize;
939 #ifdef FFS_EI
940 needswap = 0;
941 } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
942 sbsize = bswap32(fs->fs_sbsize);
943 fstype = UFS2;
944 fsbsize = bswap32(fs->fs_bsize);
945 needswap = 1;
946 #endif
947 } else
948 continue;
949
950
951 /* fs->fs_sblockloc isn't defined for old filesystems */
952 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
953 if (sblockloc == SBLOCK_UFS2)
954 /*
955 * This is likely to be the first alternate
956 * in a filesystem with 64k blocks.
957 * Don't use it.
958 */
959 continue;
960 fsblockloc = sblockloc;
961 } else {
962 fsblockloc = fs->fs_sblockloc;
963 #ifdef FFS_EI
964 if (needswap)
965 fsblockloc = bswap64(fsblockloc);
966 #endif
967 }
968
969 /* Check we haven't found an alternate superblock */
970 if (fsblockloc != sblockloc)
971 continue;
972
973 /* Validate size of superblock */
974 if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
975 continue;
976
977 /* Check that we can handle the file system blocksize */
978 if (fsbsize > MAXBSIZE) {
979 printf("ffs_mountfs: block size (%d) > MAXBSIZE (%d)\n",
980 fsbsize, MAXBSIZE);
981 continue;
982 }
983
984 /* Ok seems to be a good superblock */
985 break;
986 }
987
988 fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
989 memcpy(fs, bp->b_data, sbsize);
990 ump->um_fs = fs;
991
992 #ifdef FFS_EI
993 if (needswap) {
994 ffs_sb_swap((struct fs*)bp->b_data, fs);
995 fs->fs_flags |= FS_SWAPPED;
996 } else
997 #endif
998 fs->fs_flags &= ~FS_SWAPPED;
999
1000 #ifdef WAPBL
1001 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1002 error = ffs_wapbl_replay_start(mp, fs, devvp);
1003 if (error && (mp->mnt_flag & MNT_FORCE) == 0)
1004 goto out;
1005 if (!error) {
1006 if (!ronly) {
1007 /* XXX fsmnt may be stale. */
1008 printf("%s: replaying log to disk\n",
1009 fs->fs_fsmnt);
1010 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1011 devvp);
1012 if (error)
1013 goto out;
1014 wapbl_replay_stop(mp->mnt_wapbl_replay);
1015 fs->fs_clean = FS_WASCLEAN;
1016 } else {
1017 /* XXX fsmnt may be stale */
1018 printf("%s: replaying log to memory\n",
1019 fs->fs_fsmnt);
1020 }
1021
1022 /* Force a re-read of the superblock */
1023 brelse(bp, BC_INVAL);
1024 bp = NULL;
1025 free(fs, M_UFSMNT);
1026 fs = NULL;
1027 goto sbagain;
1028 }
1029 }
1030 #else /* !WAPBL */
1031 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1032 error = EPERM;
1033 goto out;
1034 }
1035 #endif /* !WAPBL */
1036
1037 ffs_oldfscompat_read(fs, ump, sblockloc);
1038 ump->um_maxfilesize = fs->fs_maxfilesize;
1039
1040 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1041 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1042 mp->mnt_stat.f_mntonname, fs->fs_flags,
1043 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1044 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1045 error = EINVAL;
1046 goto out;
1047 }
1048 }
1049
1050 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1051 fs->fs_pendingblocks = 0;
1052 fs->fs_pendinginodes = 0;
1053 }
1054
1055 ump->um_fstype = fstype;
1056 if (fs->fs_sbsize < SBLOCKSIZE)
1057 brelse(bp, BC_INVAL);
1058 else
1059 brelse(bp, 0);
1060 bp = NULL;
1061
1062 /* First check to see if this is tagged as an Apple UFS filesystem
1063 * in the disklabel
1064 */
1065 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
1066 (dpart.part->p_fstype == FS_APPLEUFS)) {
1067 ump->um_flags |= UFS_ISAPPLEUFS;
1068 }
1069 #ifdef APPLE_UFS
1070 else {
1071 /* Manually look for an apple ufs label, and if a valid one
1072 * is found, then treat it like an Apple UFS filesystem anyway
1073 */
1074 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1075 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1076 if (error)
1077 goto out;
1078 error = ffs_appleufs_validate(fs->fs_fsmnt,
1079 (struct appleufslabel *)bp->b_data, NULL);
1080 if (error == 0) {
1081 ump->um_flags |= UFS_ISAPPLEUFS;
1082 }
1083 brelse(bp, 0);
1084 bp = NULL;
1085 }
1086 #else
1087 if (ump->um_flags & UFS_ISAPPLEUFS) {
1088 error = EINVAL;
1089 goto out;
1090 }
1091 #endif
1092
1093 #if 0
1094 /*
1095 * XXX This code changes the behaviour of mounting dirty filesystems, to
1096 * XXX require "mount -f ..." to mount them. This doesn't match what
1097 * XXX mount(8) describes and is disabled for now.
1098 */
1099 /*
1100 * If the file system is not clean, don't allow it to be mounted
1101 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1102 * for the root file system.)
1103 */
1104 if (fs->fs_flags & FS_DOWAPBL) {
1105 /*
1106 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1107 * bit is set, although there's a window in unmount where it
1108 * could be FS_ISCLEAN
1109 */
1110 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1111 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1112 error = EPERM;
1113 goto out;
1114 }
1115 } else
1116 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1117 (mp->mnt_flag & MNT_FORCE) == 0) {
1118 error = EPERM;
1119 goto out;
1120 }
1121 #endif
1122
1123 /*
1124 * verify that we can access the last block in the fs
1125 * if we're mounting read/write.
1126 */
1127
1128 if (!ronly) {
1129 error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
1130 cred, 0, &bp);
1131 if (bp->b_bcount != fs->fs_fsize)
1132 error = EINVAL;
1133 if (error) {
1134 bset = BC_INVAL;
1135 goto out;
1136 }
1137 brelse(bp, BC_INVAL);
1138 bp = NULL;
1139 }
1140
1141 fs->fs_ronly = ronly;
1142 /* Don't bump fs_clean if we're replaying journal */
1143 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
1144 if (ronly == 0) {
1145 fs->fs_clean <<= 1;
1146 fs->fs_fmod = 1;
1147 }
1148 bsize = fs->fs_cssize;
1149 blks = howmany(bsize, fs->fs_fsize);
1150 if (fs->fs_contigsumsize > 0)
1151 bsize += fs->fs_ncg * sizeof(int32_t);
1152 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1153 space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
1154 fs->fs_csp = space;
1155 for (i = 0; i < blks; i += fs->fs_frag) {
1156 bsize = fs->fs_bsize;
1157 if (i + fs->fs_frag > blks)
1158 bsize = (blks - i) * fs->fs_fsize;
1159 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
1160 cred, 0, &bp);
1161 if (error) {
1162 free(fs->fs_csp, M_UFSMNT);
1163 goto out;
1164 }
1165 #ifdef FFS_EI
1166 if (needswap)
1167 ffs_csum_swap((struct csum *)bp->b_data,
1168 (struct csum *)space, bsize);
1169 else
1170 #endif
1171 memcpy(space, bp->b_data, (u_int)bsize);
1172
1173 space = (char *)space + bsize;
1174 brelse(bp, 0);
1175 bp = NULL;
1176 }
1177 if (fs->fs_contigsumsize > 0) {
1178 fs->fs_maxcluster = lp = space;
1179 for (i = 0; i < fs->fs_ncg; i++)
1180 *lp++ = fs->fs_contigsumsize;
1181 space = lp;
1182 }
1183 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1184 fs->fs_contigdirs = space;
1185 space = (char *)space + bsize;
1186 memset(fs->fs_contigdirs, 0, bsize);
1187 /* Compatibility for old filesystems - XXX */
1188 if (fs->fs_avgfilesize <= 0)
1189 fs->fs_avgfilesize = AVFILESIZ;
1190 if (fs->fs_avgfpdir <= 0)
1191 fs->fs_avgfpdir = AFPDIR;
1192 fs->fs_active = NULL;
1193 mp->mnt_data = ump;
1194 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1195 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1196 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1197 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1198 if (UFS_MPISAPPLEUFS(ump)) {
1199 /* NeXT used to keep short symlinks in the inode even
1200 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1201 * is probably -1, but we still need to be able to identify
1202 * short symlinks.
1203 */
1204 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1205 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1206 mp->mnt_iflag |= IMNT_DTYPE;
1207 } else {
1208 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1209 ump->um_dirblksiz = DIRBLKSIZ;
1210 if (ump->um_maxsymlinklen > 0)
1211 mp->mnt_iflag |= IMNT_DTYPE;
1212 else
1213 mp->mnt_iflag &= ~IMNT_DTYPE;
1214 }
1215 mp->mnt_fs_bshift = fs->fs_bshift;
1216 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1217 mp->mnt_flag |= MNT_LOCAL;
1218 mp->mnt_iflag |= IMNT_MPSAFE;
1219 #ifdef FFS_EI
1220 if (needswap)
1221 ump->um_flags |= UFS_NEEDSWAP;
1222 #endif
1223 ump->um_mountp = mp;
1224 ump->um_dev = dev;
1225 ump->um_devvp = devvp;
1226 ump->um_nindir = fs->fs_nindir;
1227 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1228 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1229 ump->um_seqinc = fs->fs_frag;
1230 for (i = 0; i < MAXQUOTAS; i++)
1231 ump->um_quotas[i] = NULLVP;
1232 devvp->v_specmountpoint = mp;
1233 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1234 ffs_snapshot_mount(mp);
1235 #ifdef WAPBL
1236 if (!ronly) {
1237 KDASSERT(fs->fs_ronly == 0);
1238 /*
1239 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1240 * needs to create a new log file in-filesystem.
1241 */
1242 ffs_statvfs(mp, &mp->mnt_stat);
1243
1244 error = ffs_wapbl_start(mp);
1245 if (error) {
1246 free(fs->fs_csp, M_UFSMNT);
1247 goto out;
1248 }
1249 }
1250 #endif /* WAPBL */
1251 if (ronly == 0) {
1252 #ifdef QUOTA2
1253 error = ffs_quota2_mount(mp);
1254 if (error) {
1255 free(fs->fs_csp, M_UFSMNT);
1256 goto out;
1257 }
1258 #else
1259 if (fs->fs_flags & FS_DOQUOTA2) {
1260 ump->um_flags |= UFS_QUOTA2;
1261 uprintf("%s: options QUOTA2 not enabled%s\n",
1262 mp->mnt_stat.f_mntonname,
1263 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1264 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1265 error = EINVAL;
1266 free(fs->fs_csp, M_UFSMNT);
1267 goto out;
1268 }
1269 }
1270 #endif
1271 }
1272 #ifdef UFS_EXTATTR
1273 /*
1274 * Initialize file-backed extended attributes on UFS1 file
1275 * systems.
1276 */
1277 if (ump->um_fstype == UFS1)
1278 ufs_extattr_uepm_init(&ump->um_extattr);
1279 #endif /* UFS_EXTATTR */
1280
1281 return (0);
1282 out:
1283 #ifdef WAPBL
1284 if (mp->mnt_wapbl_replay) {
1285 wapbl_replay_stop(mp->mnt_wapbl_replay);
1286 wapbl_replay_free(mp->mnt_wapbl_replay);
1287 mp->mnt_wapbl_replay = 0;
1288 }
1289 #endif
1290
1291 fstrans_unmount(mp);
1292 if (fs)
1293 free(fs, M_UFSMNT);
1294 devvp->v_specmountpoint = NULL;
1295 if (bp)
1296 brelse(bp, bset);
1297 if (ump) {
1298 if (ump->um_oldfscompat)
1299 free(ump->um_oldfscompat, M_UFSMNT);
1300 mutex_destroy(&ump->um_lock);
1301 free(ump, M_UFSMNT);
1302 mp->mnt_data = NULL;
1303 }
1304 return (error);
1305 }
1306
1307 /*
1308 * Sanity checks for loading old filesystem superblocks.
1309 * See ffs_oldfscompat_write below for unwound actions.
1310 *
1311 * XXX - Parts get retired eventually.
1312 * Unfortunately new bits get added.
1313 */
1314 static void
1315 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1316 {
1317 off_t maxfilesize;
1318 int32_t *extrasave;
1319
1320 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1321 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1322 return;
1323
1324 if (!ump->um_oldfscompat)
1325 ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
1326 M_UFSMNT, M_WAITOK);
1327
1328 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1329 extrasave = ump->um_oldfscompat;
1330 extrasave += 512/sizeof(int32_t);
1331 extrasave[0] = fs->fs_old_npsect;
1332 extrasave[1] = fs->fs_old_interleave;
1333 extrasave[2] = fs->fs_old_trackskew;
1334
1335 /* These fields will be overwritten by their
1336 * original values in fs_oldfscompat_write, so it is harmless
1337 * to modify them here.
1338 */
1339 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1340 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1341 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1342 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1343
1344 fs->fs_maxbsize = fs->fs_bsize;
1345 fs->fs_time = fs->fs_old_time;
1346 fs->fs_size = fs->fs_old_size;
1347 fs->fs_dsize = fs->fs_old_dsize;
1348 fs->fs_csaddr = fs->fs_old_csaddr;
1349 fs->fs_sblockloc = sblockloc;
1350
1351 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1352
1353 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1354 fs->fs_old_nrpos = 8;
1355 fs->fs_old_npsect = fs->fs_old_nsect;
1356 fs->fs_old_interleave = 1;
1357 fs->fs_old_trackskew = 0;
1358 }
1359
1360 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1361 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1362 fs->fs_qbmask = ~fs->fs_bmask;
1363 fs->fs_qfmask = ~fs->fs_fmask;
1364 }
1365
1366 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1367 if (fs->fs_maxfilesize > maxfilesize)
1368 fs->fs_maxfilesize = maxfilesize;
1369
1370 /* Compatibility for old filesystems */
1371 if (fs->fs_avgfilesize <= 0)
1372 fs->fs_avgfilesize = AVFILESIZ;
1373 if (fs->fs_avgfpdir <= 0)
1374 fs->fs_avgfpdir = AFPDIR;
1375
1376 #if 0
1377 if (bigcgs) {
1378 fs->fs_save_cgsize = fs->fs_cgsize;
1379 fs->fs_cgsize = fs->fs_bsize;
1380 }
1381 #endif
1382 }
1383
1384 /*
1385 * Unwinding superblock updates for old filesystems.
1386 * See ffs_oldfscompat_read above for details.
1387 *
1388 * XXX - Parts get retired eventually.
1389 * Unfortunately new bits get added.
1390 */
1391 static void
1392 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1393 {
1394 int32_t *extrasave;
1395
1396 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1397 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1398 return;
1399
1400 fs->fs_old_time = fs->fs_time;
1401 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1402 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1403 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1404 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1405 fs->fs_old_flags = fs->fs_flags;
1406
1407 #if 0
1408 if (bigcgs) {
1409 fs->fs_cgsize = fs->fs_save_cgsize;
1410 }
1411 #endif
1412
1413 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1414 extrasave = ump->um_oldfscompat;
1415 extrasave += 512/sizeof(int32_t);
1416 fs->fs_old_npsect = extrasave[0];
1417 fs->fs_old_interleave = extrasave[1];
1418 fs->fs_old_trackskew = extrasave[2];
1419
1420 }
1421
1422 /*
1423 * unmount vfs operation
1424 */
1425 int
1426 ffs_unmount(struct mount *mp, int mntflags)
1427 {
1428 struct lwp *l = curlwp;
1429 struct ufsmount *ump = VFSTOUFS(mp);
1430 struct fs *fs = ump->um_fs;
1431 int error, flags;
1432 #ifdef WAPBL
1433 extern int doforce;
1434 #endif
1435
1436 flags = 0;
1437 if (mntflags & MNT_FORCE)
1438 flags |= FORCECLOSE;
1439 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1440 return (error);
1441 error = UFS_WAPBL_BEGIN(mp);
1442 if (error == 0)
1443 if (fs->fs_ronly == 0 &&
1444 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1445 fs->fs_clean & FS_WASCLEAN) {
1446 fs->fs_clean = FS_ISCLEAN;
1447 fs->fs_fmod = 0;
1448 (void) ffs_sbupdate(ump, MNT_WAIT);
1449 }
1450 if (error == 0)
1451 UFS_WAPBL_END(mp);
1452 #ifdef WAPBL
1453 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1454 if (mp->mnt_wapbl_replay) {
1455 KDASSERT(fs->fs_ronly);
1456 wapbl_replay_stop(mp->mnt_wapbl_replay);
1457 wapbl_replay_free(mp->mnt_wapbl_replay);
1458 mp->mnt_wapbl_replay = 0;
1459 }
1460 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1461 if (error) {
1462 return error;
1463 }
1464 #endif /* WAPBL */
1465 #ifdef UFS_EXTATTR
1466 if (ump->um_fstype == UFS1) {
1467 ufs_extattr_stop(mp, l);
1468 ufs_extattr_uepm_destroy(&ump->um_extattr);
1469 }
1470 #endif /* UFS_EXTATTR */
1471
1472 if (ump->um_devvp->v_type != VBAD)
1473 ump->um_devvp->v_specmountpoint = NULL;
1474 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1475 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1476 NOCRED);
1477 vput(ump->um_devvp);
1478 free(fs->fs_csp, M_UFSMNT);
1479 free(fs, M_UFSMNT);
1480 if (ump->um_oldfscompat != NULL)
1481 free(ump->um_oldfscompat, M_UFSMNT);
1482 mutex_destroy(&ump->um_lock);
1483 ffs_snapshot_fini(ump);
1484 free(ump, M_UFSMNT);
1485 mp->mnt_data = NULL;
1486 mp->mnt_flag &= ~MNT_LOCAL;
1487 fstrans_unmount(mp);
1488 return (0);
1489 }
1490
1491 /*
1492 * Flush out all the files in a filesystem.
1493 */
1494 int
1495 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1496 {
1497 extern int doforce;
1498 struct ufsmount *ump;
1499 int error;
1500
1501 if (!doforce)
1502 flags &= ~FORCECLOSE;
1503 ump = VFSTOUFS(mp);
1504 #ifdef QUOTA
1505 if ((error = quota1_umount(mp, flags)) != 0)
1506 return (error);
1507 #endif
1508 #ifdef QUOTA2
1509 if ((error = quota2_umount(mp, flags)) != 0)
1510 return (error);
1511 #endif
1512 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1513 return (error);
1514 ffs_snapshot_unmount(mp);
1515 /*
1516 * Flush all the files.
1517 */
1518 error = vflush(mp, NULLVP, flags);
1519 if (error)
1520 return (error);
1521 /*
1522 * Flush filesystem metadata.
1523 */
1524 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1525 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1526 VOP_UNLOCK(ump->um_devvp);
1527 if (flags & FORCECLOSE) /* XXXDBJ */
1528 error = 0;
1529
1530 #ifdef WAPBL
1531 if (error)
1532 return error;
1533 if (mp->mnt_wapbl) {
1534 error = wapbl_flush(mp->mnt_wapbl, 1);
1535 if (flags & FORCECLOSE)
1536 error = 0;
1537 }
1538 #endif
1539
1540 return (error);
1541 }
1542
1543 /*
1544 * Get file system statistics.
1545 */
1546 int
1547 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1548 {
1549 struct ufsmount *ump;
1550 struct fs *fs;
1551
1552 ump = VFSTOUFS(mp);
1553 fs = ump->um_fs;
1554 mutex_enter(&ump->um_lock);
1555 sbp->f_bsize = fs->fs_bsize;
1556 sbp->f_frsize = fs->fs_fsize;
1557 sbp->f_iosize = fs->fs_bsize;
1558 sbp->f_blocks = fs->fs_dsize;
1559 sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1560 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1561 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1562 fs->fs_minfree) / (u_int64_t) 100;
1563 if (sbp->f_bfree > sbp->f_bresvd)
1564 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1565 else
1566 sbp->f_bavail = 0;
1567 sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
1568 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1569 sbp->f_favail = sbp->f_ffree;
1570 sbp->f_fresvd = 0;
1571 mutex_exit(&ump->um_lock);
1572 copy_statvfs_info(sbp, mp);
1573
1574 return (0);
1575 }
1576
1577 /*
1578 * Go through the disk queues to initiate sandbagged IO;
1579 * go through the inodes to write those that have been modified;
1580 * initiate the writing of the super block if it has been modified.
1581 *
1582 * Note: we are always called with the filesystem marked `MPBUSY'.
1583 */
1584 int
1585 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1586 {
1587 struct vnode *vp, *mvp, *nvp;
1588 struct inode *ip;
1589 struct ufsmount *ump = VFSTOUFS(mp);
1590 struct fs *fs;
1591 int error, allerror = 0;
1592 bool is_suspending;
1593
1594 fs = ump->um_fs;
1595 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1596 printf("fs = %s\n", fs->fs_fsmnt);
1597 panic("update: rofs mod");
1598 }
1599
1600 /* Allocate a marker vnode. */
1601 if ((mvp = vnalloc(mp)) == NULL)
1602 return (ENOMEM);
1603
1604 fstrans_start(mp, FSTRANS_SHARED);
1605 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1606 /*
1607 * Write back each (modified) inode.
1608 */
1609 mutex_enter(&mntvnode_lock);
1610 loop:
1611 /*
1612 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1613 * and vclean() can be called indirectly
1614 */
1615 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1616 nvp = TAILQ_NEXT(vp, v_mntvnodes);
1617 /*
1618 * If the vnode that we are about to sync is no longer
1619 * associated with this mount point, start over.
1620 */
1621 if (vp->v_mount != mp)
1622 goto loop;
1623 /*
1624 * Don't interfere with concurrent scans of this FS.
1625 */
1626 if (vismarker(vp))
1627 continue;
1628 mutex_enter(vp->v_interlock);
1629 ip = VTOI(vp);
1630
1631 /*
1632 * Skip the vnode/inode if inaccessible.
1633 */
1634 if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
1635 vp->v_type == VNON) {
1636 mutex_exit(vp->v_interlock);
1637 continue;
1638 }
1639
1640 /*
1641 * We deliberately update inode times here. This will
1642 * prevent a massive queue of updates accumulating, only
1643 * to be handled by a call to unmount.
1644 *
1645 * XXX It would be better to have the syncer trickle these
1646 * out. Adjustment needed to allow registering vnodes for
1647 * sync when the vnode is clean, but the inode dirty. Or
1648 * have ufs itself trickle out inode updates.
1649 *
1650 * If doing a lazy sync, we don't care about metadata or
1651 * data updates, because they are handled by each vnode's
1652 * synclist entry. In this case we are only interested in
1653 * writing back modified inodes.
1654 */
1655 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1656 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1657 (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1658 UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
1659 mutex_exit(vp->v_interlock);
1660 continue;
1661 }
1662 if (vp->v_type == VBLK && is_suspending) {
1663 mutex_exit(vp->v_interlock);
1664 continue;
1665 }
1666 vmark(mvp, vp);
1667 mutex_exit(&mntvnode_lock);
1668 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
1669 if (error) {
1670 mutex_enter(&mntvnode_lock);
1671 nvp = vunmark(mvp);
1672 if (error == ENOENT) {
1673 goto loop;
1674 }
1675 continue;
1676 }
1677 if (waitfor == MNT_LAZY) {
1678 error = UFS_WAPBL_BEGIN(vp->v_mount);
1679 if (!error) {
1680 error = ffs_update(vp, NULL, NULL,
1681 UPDATE_CLOSE);
1682 UFS_WAPBL_END(vp->v_mount);
1683 }
1684 } else {
1685 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1686 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1687 }
1688 if (error)
1689 allerror = error;
1690 vput(vp);
1691 mutex_enter(&mntvnode_lock);
1692 nvp = vunmark(mvp);
1693 }
1694 mutex_exit(&mntvnode_lock);
1695 /*
1696 * Force stale file system control information to be flushed.
1697 */
1698 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1699 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1700 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1701 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1702 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1703 0, 0)) != 0)
1704 allerror = error;
1705 VOP_UNLOCK(ump->um_devvp);
1706 if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
1707 mutex_enter(&mntvnode_lock);
1708 goto loop;
1709 }
1710 }
1711 #if defined(QUOTA) || defined(QUOTA2)
1712 qsync(mp);
1713 #endif
1714 /*
1715 * Write back modified superblock.
1716 */
1717 if (fs->fs_fmod != 0) {
1718 fs->fs_fmod = 0;
1719 fs->fs_time = time_second;
1720 error = UFS_WAPBL_BEGIN(mp);
1721 if (error)
1722 allerror = error;
1723 else {
1724 if ((error = ffs_cgupdate(ump, waitfor)))
1725 allerror = error;
1726 UFS_WAPBL_END(mp);
1727 }
1728 }
1729
1730 #ifdef WAPBL
1731 if (mp->mnt_wapbl) {
1732 error = wapbl_flush(mp->mnt_wapbl, 0);
1733 if (error)
1734 allerror = error;
1735 }
1736 #endif
1737
1738 fstrans_done(mp);
1739 vnfree(mvp);
1740 return (allerror);
1741 }
1742
1743 /*
1744 * Look up a FFS dinode number to find its incore vnode, otherwise read it
1745 * in from disk. If it is in core, wait for the lock bit to clear, then
1746 * return the inode locked. Detection and handling of mount points must be
1747 * done by the calling routine.
1748 */
1749 int
1750 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1751 {
1752 struct fs *fs;
1753 struct inode *ip;
1754 struct ufsmount *ump;
1755 struct buf *bp;
1756 struct vnode *vp;
1757 dev_t dev;
1758 int error;
1759
1760 ump = VFSTOUFS(mp);
1761 dev = ump->um_dev;
1762
1763 retry:
1764 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1765 return (0);
1766
1767 /* Allocate a new vnode/inode. */
1768 error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, NULL, &vp);
1769 if (error) {
1770 *vpp = NULL;
1771 return (error);
1772 }
1773 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1774
1775 /*
1776 * If someone beat us to it, put back the freshly allocated
1777 * vnode/inode pair and retry.
1778 */
1779 mutex_enter(&ufs_hashlock);
1780 if (ufs_ihashget(dev, ino, 0) != NULL) {
1781 mutex_exit(&ufs_hashlock);
1782 ungetnewvnode(vp);
1783 pool_cache_put(ffs_inode_cache, ip);
1784 goto retry;
1785 }
1786
1787 vp->v_vflag |= VV_LOCKSWORK;
1788
1789 /*
1790 * XXX MFS ends up here, too, to allocate an inode. Should we
1791 * XXX create another pool for MFS inodes?
1792 */
1793
1794 memset(ip, 0, sizeof(struct inode));
1795 vp->v_data = ip;
1796 ip->i_vnode = vp;
1797 ip->i_ump = ump;
1798 ip->i_fs = fs = ump->um_fs;
1799 ip->i_dev = dev;
1800 ip->i_number = ino;
1801 #if defined(QUOTA) || defined(QUOTA2)
1802 ufsquota_init(ip);
1803 #endif
1804
1805 /*
1806 * Initialize genfs node, we might proceed to destroy it in
1807 * error branches.
1808 */
1809 genfs_node_init(vp, &ffs_genfsops);
1810
1811 /*
1812 * Put it onto its hash chain and lock it so that other requests for
1813 * this inode will block if they arrive while we are sleeping waiting
1814 * for old data structures to be purged or for the contents of the
1815 * disk portion of this inode to be read.
1816 */
1817
1818 ufs_ihashins(ip);
1819 mutex_exit(&ufs_hashlock);
1820
1821 /* Read in the disk contents for the inode, copy into the inode. */
1822 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
1823 (int)fs->fs_bsize, NOCRED, 0, &bp);
1824 if (error) {
1825
1826 /*
1827 * The inode does not contain anything useful, so it would
1828 * be misleading to leave it on its hash chain. With mode
1829 * still zero, it will be unlinked and returned to the free
1830 * list by vput().
1831 */
1832
1833 vput(vp);
1834 brelse(bp, 0);
1835 *vpp = NULL;
1836 return (error);
1837 }
1838 if (ip->i_ump->um_fstype == UFS1)
1839 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1840 PR_WAITOK);
1841 else
1842 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1843 PR_WAITOK);
1844 ffs_load_inode(bp, ip, fs, ino);
1845 brelse(bp, 0);
1846
1847 /*
1848 * Initialize the vnode from the inode, check for aliases.
1849 * Note that the underlying vnode may have changed.
1850 */
1851
1852 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1853
1854 /*
1855 * Finish inode initialization now that aliasing has been resolved.
1856 */
1857
1858 ip->i_devvp = ump->um_devvp;
1859 vref(ip->i_devvp);
1860
1861 /*
1862 * Ensure that uid and gid are correct. This is a temporary
1863 * fix until fsck has been changed to do the update.
1864 */
1865
1866 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1867 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1868 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1869 } /* XXX */
1870 uvm_vnp_setsize(vp, ip->i_size);
1871 *vpp = vp;
1872 return (0);
1873 }
1874
1875 /*
1876 * File handle to vnode
1877 *
1878 * Have to be really careful about stale file handles:
1879 * - check that the inode number is valid
1880 * - call ffs_vget() to get the locked inode
1881 * - check for an unallocated inode (i_mode == 0)
1882 * - check that the given client host has export rights and return
1883 * those rights via. exflagsp and credanonp
1884 */
1885 int
1886 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1887 {
1888 struct ufid ufh;
1889 struct fs *fs;
1890
1891 if (fhp->fid_len != sizeof(struct ufid))
1892 return EINVAL;
1893
1894 memcpy(&ufh, fhp, sizeof(ufh));
1895 fs = VFSTOUFS(mp)->um_fs;
1896 if (ufh.ufid_ino < ROOTINO ||
1897 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1898 return (ESTALE);
1899 return (ufs_fhtovp(mp, &ufh, vpp));
1900 }
1901
1902 /*
1903 * Vnode pointer to File handle
1904 */
1905 /* ARGSUSED */
1906 int
1907 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1908 {
1909 struct inode *ip;
1910 struct ufid ufh;
1911
1912 if (*fh_size < sizeof(struct ufid)) {
1913 *fh_size = sizeof(struct ufid);
1914 return E2BIG;
1915 }
1916 ip = VTOI(vp);
1917 *fh_size = sizeof(struct ufid);
1918 memset(&ufh, 0, sizeof(ufh));
1919 ufh.ufid_len = sizeof(struct ufid);
1920 ufh.ufid_ino = ip->i_number;
1921 ufh.ufid_gen = ip->i_gen;
1922 memcpy(fhp, &ufh, sizeof(ufh));
1923 return (0);
1924 }
1925
1926 void
1927 ffs_init(void)
1928 {
1929 if (ffs_initcount++ > 0)
1930 return;
1931
1932 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
1933 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
1934 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
1935 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
1936 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
1937 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
1938 ufs_init();
1939 }
1940
1941 void
1942 ffs_reinit(void)
1943 {
1944
1945 ufs_reinit();
1946 }
1947
1948 void
1949 ffs_done(void)
1950 {
1951 if (--ffs_initcount > 0)
1952 return;
1953
1954 ufs_done();
1955 pool_cache_destroy(ffs_dinode2_cache);
1956 pool_cache_destroy(ffs_dinode1_cache);
1957 pool_cache_destroy(ffs_inode_cache);
1958 }
1959
1960 /*
1961 * Write a superblock and associated information back to disk.
1962 */
1963 int
1964 ffs_sbupdate(struct ufsmount *mp, int waitfor)
1965 {
1966 struct fs *fs = mp->um_fs;
1967 struct buf *bp;
1968 int error = 0;
1969 u_int32_t saveflag;
1970
1971 error = ffs_getblk(mp->um_devvp,
1972 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
1973 fs->fs_sbsize, false, &bp);
1974 if (error)
1975 return error;
1976 saveflag = fs->fs_flags & FS_INTERNAL;
1977 fs->fs_flags &= ~FS_INTERNAL;
1978
1979 memcpy(bp->b_data, fs, fs->fs_sbsize);
1980
1981 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
1982 #ifdef FFS_EI
1983 if (mp->um_flags & UFS_NEEDSWAP)
1984 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
1985 #endif
1986 fs->fs_flags |= saveflag;
1987
1988 if (waitfor == MNT_WAIT)
1989 error = bwrite(bp);
1990 else
1991 bawrite(bp);
1992 return (error);
1993 }
1994
1995 int
1996 ffs_cgupdate(struct ufsmount *mp, int waitfor)
1997 {
1998 struct fs *fs = mp->um_fs;
1999 struct buf *bp;
2000 int blks;
2001 void *space;
2002 int i, size, error = 0, allerror = 0;
2003
2004 allerror = ffs_sbupdate(mp, waitfor);
2005 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2006 space = fs->fs_csp;
2007 for (i = 0; i < blks; i += fs->fs_frag) {
2008 size = fs->fs_bsize;
2009 if (i + fs->fs_frag > blks)
2010 size = (blks - i) * fs->fs_fsize;
2011 error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
2012 FFS_NOBLK, size, false, &bp);
2013 if (error)
2014 break;
2015 #ifdef FFS_EI
2016 if (mp->um_flags & UFS_NEEDSWAP)
2017 ffs_csum_swap((struct csum*)space,
2018 (struct csum*)bp->b_data, size);
2019 else
2020 #endif
2021 memcpy(bp->b_data, space, (u_int)size);
2022 space = (char *)space + size;
2023 if (waitfor == MNT_WAIT)
2024 error = bwrite(bp);
2025 else
2026 bawrite(bp);
2027 }
2028 if (!allerror && error)
2029 allerror = error;
2030 return (allerror);
2031 }
2032
2033 int
2034 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2035 int attrnamespace, const char *attrname)
2036 {
2037 #ifdef UFS_EXTATTR
2038 /*
2039 * File-backed extended attributes are only supported on UFS1.
2040 * UFS2 has native extended attributes.
2041 */
2042 if (VFSTOUFS(mp)->um_fstype == UFS1)
2043 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2044 #endif
2045 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2046 }
2047
2048 int
2049 ffs_suspendctl(struct mount *mp, int cmd)
2050 {
2051 int error;
2052 struct lwp *l = curlwp;
2053
2054 switch (cmd) {
2055 case SUSPEND_SUSPEND:
2056 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2057 return error;
2058 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2059 if (error == 0)
2060 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2061 #ifdef WAPBL
2062 if (error == 0 && mp->mnt_wapbl)
2063 error = wapbl_flush(mp->mnt_wapbl, 1);
2064 #endif
2065 if (error != 0) {
2066 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2067 return error;
2068 }
2069 return 0;
2070
2071 case SUSPEND_RESUME:
2072 return fstrans_setstate(mp, FSTRANS_NORMAL);
2073
2074 default:
2075 return EINVAL;
2076 }
2077 }
2078
2079 /*
2080 * Synch vnode for a mounted file system.
2081 */
2082 static int
2083 ffs_vfs_fsync(vnode_t *vp, int flags)
2084 {
2085 int error, i, pflags;
2086 #ifdef WAPBL
2087 struct mount *mp;
2088 #endif
2089
2090 KASSERT(vp->v_type == VBLK);
2091 KASSERT(vp->v_specmountpoint != NULL);
2092
2093 /*
2094 * Flush all dirty data associated with the vnode.
2095 */
2096 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2097 if ((flags & FSYNC_WAIT) != 0)
2098 pflags |= PGO_SYNCIO;
2099 mutex_enter(vp->v_interlock);
2100 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2101 if (error)
2102 return error;
2103
2104 #ifdef WAPBL
2105 mp = vp->v_specmountpoint;
2106 if (mp && mp->mnt_wapbl) {
2107 /*
2108 * Don't bother writing out metadata if the syncer is
2109 * making the request. We will let the sync vnode
2110 * write it out in a single burst through a call to
2111 * VFS_SYNC().
2112 */
2113 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2114 return 0;
2115
2116 /*
2117 * Don't flush the log if the vnode being flushed
2118 * contains no dirty buffers that could be in the log.
2119 */
2120 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2121 error = wapbl_flush(mp->mnt_wapbl, 0);
2122 if (error)
2123 return error;
2124 }
2125
2126 if ((flags & FSYNC_WAIT) != 0) {
2127 mutex_enter(vp->v_interlock);
2128 while (vp->v_numoutput)
2129 cv_wait(&vp->v_cv, vp->v_interlock);
2130 mutex_exit(vp->v_interlock);
2131 }
2132
2133 return 0;
2134 }
2135 #endif /* WAPBL */
2136
2137 error = vflushbuf(vp, (flags & FSYNC_WAIT) != 0);
2138 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2139 i = 1;
2140 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2141 kauth_cred_get());
2142 }
2143
2144 return error;
2145 }
2146