ffs_vfsops.c revision 1.314 1 /* $NetBSD: ffs_vfsops.c,v 1.314 2015/02/14 09:55:53 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.314 2015/02/14 09:55:53 maxv Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/disk.h>
83 #include <sys/mbuf.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/fstrans.h>
96 #include <sys/module.h>
97
98 #include <miscfs/genfs/genfs.h>
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufs_extern.h>
106 #include <ufs/ufs/ufs_bswap.h>
107 #include <ufs/ufs/ufs_wapbl.h>
108
109 #include <ufs/ffs/fs.h>
110 #include <ufs/ffs/ffs_extern.h>
111
112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
113
114 static int
115 ffs_vfs_fsync(vnode_t *, int);
116
117 static int
118 ffs_superblock_validate(struct fs *fs);
119
120 static struct sysctllog *ffs_sysctl_log;
121
122 static kauth_listener_t ffs_snapshot_listener;
123
124 /* how many times ffs_init() was called */
125 int ffs_initcount = 0;
126
127 #ifdef DEBUG_FFS_MOUNT
128 #define DPRINTF(a) printf a
129 #else
130 #define DPRINTF(a) do {} while (/*CONSTCOND*/0)
131 #endif
132
133 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
134 extern const struct vnodeopv_desc ffs_specop_opv_desc;
135 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
136
137 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
138 &ffs_vnodeop_opv_desc,
139 &ffs_specop_opv_desc,
140 &ffs_fifoop_opv_desc,
141 NULL,
142 };
143
144 struct vfsops ffs_vfsops = {
145 .vfs_name = MOUNT_FFS,
146 .vfs_min_mount_data = sizeof (struct ufs_args),
147 .vfs_mount = ffs_mount,
148 .vfs_start = ufs_start,
149 .vfs_unmount = ffs_unmount,
150 .vfs_root = ufs_root,
151 .vfs_quotactl = ufs_quotactl,
152 .vfs_statvfs = ffs_statvfs,
153 .vfs_sync = ffs_sync,
154 .vfs_vget = ufs_vget,
155 .vfs_loadvnode = ffs_loadvnode,
156 .vfs_fhtovp = ffs_fhtovp,
157 .vfs_vptofh = ffs_vptofh,
158 .vfs_init = ffs_init,
159 .vfs_reinit = ffs_reinit,
160 .vfs_done = ffs_done,
161 .vfs_mountroot = ffs_mountroot,
162 .vfs_snapshot = ffs_snapshot,
163 .vfs_extattrctl = ffs_extattrctl,
164 .vfs_suspendctl = ffs_suspendctl,
165 .vfs_renamelock_enter = genfs_renamelock_enter,
166 .vfs_renamelock_exit = genfs_renamelock_exit,
167 .vfs_fsync = ffs_vfs_fsync,
168 .vfs_opv_descs = ffs_vnodeopv_descs
169 };
170
171 static const struct genfs_ops ffs_genfsops = {
172 .gop_size = ffs_gop_size,
173 .gop_alloc = ufs_gop_alloc,
174 .gop_write = genfs_gop_write,
175 .gop_markupdate = ufs_gop_markupdate,
176 };
177
178 static const struct ufs_ops ffs_ufsops = {
179 .uo_itimes = ffs_itimes,
180 .uo_update = ffs_update,
181 .uo_truncate = ffs_truncate,
182 .uo_valloc = ffs_valloc,
183 .uo_vfree = ffs_vfree,
184 .uo_balloc = ffs_balloc,
185 .uo_snapgone = ffs_snapgone,
186 };
187
188 static int
189 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
190 void *arg0, void *arg1, void *arg2, void *arg3)
191 {
192 vnode_t *vp = arg2;
193 int result = KAUTH_RESULT_DEFER;
194
195 if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
196 return result;
197
198 if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
199 result = KAUTH_RESULT_ALLOW;
200
201 return result;
202 }
203
204 static int
205 ffs_modcmd(modcmd_t cmd, void *arg)
206 {
207 int error;
208
209 #if 0
210 extern int doasyncfree;
211 #endif
212 #ifdef UFS_EXTATTR
213 extern int ufs_extattr_autocreate;
214 #endif
215 extern int ffs_log_changeopt;
216
217 switch (cmd) {
218 case MODULE_CMD_INIT:
219 error = vfs_attach(&ffs_vfsops);
220 if (error != 0)
221 break;
222
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "ffs",
226 SYSCTL_DESCR("Berkeley Fast File System"),
227 NULL, 0, NULL, 0,
228 CTL_VFS, 1, CTL_EOL);
229 /*
230 * @@@ should we even bother with these first three?
231 */
232 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
233 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
234 CTLTYPE_INT, "doclusterread", NULL,
235 sysctl_notavail, 0, NULL, 0,
236 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
237 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
239 CTLTYPE_INT, "doclusterwrite", NULL,
240 sysctl_notavail, 0, NULL, 0,
241 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
242 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
244 CTLTYPE_INT, "doreallocblks", NULL,
245 sysctl_notavail, 0, NULL, 0,
246 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
247 #if 0
248 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
250 CTLTYPE_INT, "doasyncfree",
251 SYSCTL_DESCR("Release dirty blocks asynchronously"),
252 NULL, 0, &doasyncfree, 0,
253 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
254 #endif
255 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 CTLTYPE_INT, "log_changeopt",
258 SYSCTL_DESCR("Log changes in optimization strategy"),
259 NULL, 0, &ffs_log_changeopt, 0,
260 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
261 #ifdef UFS_EXTATTR
262 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 CTLTYPE_INT, "extattr_autocreate",
265 SYSCTL_DESCR("Size of attribute for "
266 "backing file autocreation"),
267 NULL, 0, &ufs_extattr_autocreate, 0,
268 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
269
270 #endif /* UFS_EXTATTR */
271
272 ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
273 ffs_snapshot_cb, NULL);
274 if (ffs_snapshot_listener == NULL)
275 printf("ffs_modcmd: can't listen on system scope.\n");
276
277 break;
278 case MODULE_CMD_FINI:
279 error = vfs_detach(&ffs_vfsops);
280 if (error != 0)
281 break;
282 sysctl_teardown(&ffs_sysctl_log);
283 if (ffs_snapshot_listener != NULL)
284 kauth_unlisten_scope(ffs_snapshot_listener);
285 break;
286 default:
287 error = ENOTTY;
288 break;
289 }
290
291 return (error);
292 }
293
294 pool_cache_t ffs_inode_cache;
295 pool_cache_t ffs_dinode1_cache;
296 pool_cache_t ffs_dinode2_cache;
297
298 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
299 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
300
301 /*
302 * Called by main() when ffs is going to be mounted as root.
303 */
304
305 int
306 ffs_mountroot(void)
307 {
308 struct fs *fs;
309 struct mount *mp;
310 struct lwp *l = curlwp; /* XXX */
311 struct ufsmount *ump;
312 int error;
313
314 if (device_class(root_device) != DV_DISK)
315 return (ENODEV);
316
317 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
318 vrele(rootvp);
319 return (error);
320 }
321
322 /*
323 * We always need to be able to mount the root file system.
324 */
325 mp->mnt_flag |= MNT_FORCE;
326 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
327 vfs_unbusy(mp, false, NULL);
328 vfs_destroy(mp);
329 return (error);
330 }
331 mp->mnt_flag &= ~MNT_FORCE;
332 mountlist_append(mp);
333 ump = VFSTOUFS(mp);
334 fs = ump->um_fs;
335 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
336 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
337 (void)ffs_statvfs(mp, &mp->mnt_stat);
338 vfs_unbusy(mp, false, NULL);
339 setrootfstime((time_t)fs->fs_time);
340 return (0);
341 }
342
343 /*
344 * VFS Operations.
345 *
346 * mount system call
347 */
348 int
349 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
350 {
351 struct lwp *l = curlwp;
352 struct vnode *devvp = NULL;
353 struct ufs_args *args = data;
354 struct ufsmount *ump = NULL;
355 struct fs *fs;
356 int error = 0, flags, update;
357 mode_t accessmode;
358
359 if (args == NULL) {
360 DPRINTF(("%s: NULL args\n", __func__));
361 return EINVAL;
362 }
363 if (*data_len < sizeof(*args)) {
364 DPRINTF(("%s: bad size args %zu != %zu\n",
365 __func__, *data_len, sizeof(*args)));
366 return EINVAL;
367 }
368
369 if (mp->mnt_flag & MNT_GETARGS) {
370 ump = VFSTOUFS(mp);
371 if (ump == NULL) {
372 DPRINTF(("%s: no ump\n", __func__));
373 return EIO;
374 }
375 args->fspec = NULL;
376 *data_len = sizeof *args;
377 return 0;
378 }
379
380 update = mp->mnt_flag & MNT_UPDATE;
381
382 /* Check arguments */
383 if (args->fspec != NULL) {
384 /*
385 * Look up the name and verify that it's sane.
386 */
387 error = namei_simple_user(args->fspec,
388 NSM_FOLLOW_NOEMULROOT, &devvp);
389 if (error != 0) {
390 DPRINTF(("%s: namei_simple_user %d\n", __func__,
391 error));
392 return error;
393 }
394
395 if (!update) {
396 /*
397 * Be sure this is a valid block device
398 */
399 if (devvp->v_type != VBLK) {
400 DPRINTF(("%s: non block device %d\n",
401 __func__, devvp->v_type));
402 error = ENOTBLK;
403 } else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
404 DPRINTF(("%s: can't find block device 0x%jx\n",
405 __func__, devvp->v_rdev));
406 error = ENXIO;
407 }
408 } else {
409 /*
410 * Be sure we're still naming the same device
411 * used for our initial mount
412 */
413 ump = VFSTOUFS(mp);
414 if (devvp != ump->um_devvp) {
415 if (devvp->v_rdev != ump->um_devvp->v_rdev) {
416 DPRINTF(("%s: wrong device 0x%jx"
417 " != 0x%jx\n", __func__,
418 (uintmax_t)devvp->v_rdev,
419 (uintmax_t)ump->um_devvp->v_rdev));
420 error = EINVAL;
421 } else {
422 vrele(devvp);
423 devvp = ump->um_devvp;
424 vref(devvp);
425 }
426 }
427 }
428 } else {
429 if (!update) {
430 /* New mounts must have a filename for the device */
431 DPRINTF(("%s: no filename for mount\n", __func__));
432 return EINVAL;
433 } else {
434 /* Use the extant mount */
435 ump = VFSTOUFS(mp);
436 devvp = ump->um_devvp;
437 vref(devvp);
438 }
439 }
440
441 /*
442 * If mount by non-root, then verify that user has necessary
443 * permissions on the device.
444 *
445 * Permission to update a mount is checked higher, so here we presume
446 * updating the mount is okay (for example, as far as securelevel goes)
447 * which leaves us with the normal check.
448 */
449 if (error == 0) {
450 accessmode = VREAD;
451 if (update ?
452 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
453 (mp->mnt_flag & MNT_RDONLY) == 0)
454 accessmode |= VWRITE;
455 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
456 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
457 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
458 KAUTH_ARG(accessmode));
459 if (error) {
460 DPRINTF(("%s: kauth %d\n", __func__, error));
461 }
462 VOP_UNLOCK(devvp);
463 }
464
465 if (error) {
466 vrele(devvp);
467 return (error);
468 }
469
470 #ifdef WAPBL
471 /* WAPBL can only be enabled on a r/w mount. */
472 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
473 mp->mnt_flag &= ~MNT_LOG;
474 }
475 #else /* !WAPBL */
476 mp->mnt_flag &= ~MNT_LOG;
477 #endif /* !WAPBL */
478
479 if (!update) {
480 int xflags;
481
482 if (mp->mnt_flag & MNT_RDONLY)
483 xflags = FREAD;
484 else
485 xflags = FREAD | FWRITE;
486 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
487 error = VOP_OPEN(devvp, xflags, FSCRED);
488 VOP_UNLOCK(devvp);
489 if (error) {
490 DPRINTF(("%s: VOP_OPEN %d\n", __func__, error));
491 goto fail;
492 }
493 error = ffs_mountfs(devvp, mp, l);
494 if (error) {
495 DPRINTF(("%s: ffs_mountfs %d\n", __func__, error));
496 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
497 (void)VOP_CLOSE(devvp, xflags, NOCRED);
498 VOP_UNLOCK(devvp);
499 goto fail;
500 }
501
502 ump = VFSTOUFS(mp);
503 fs = ump->um_fs;
504 } else {
505 /*
506 * Update the mount.
507 */
508
509 /*
510 * The initial mount got a reference on this
511 * device, so drop the one obtained via
512 * namei(), above.
513 */
514 vrele(devvp);
515
516 ump = VFSTOUFS(mp);
517 fs = ump->um_fs;
518 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
519 /*
520 * Changing from r/w to r/o
521 */
522 flags = WRITECLOSE;
523 if (mp->mnt_flag & MNT_FORCE)
524 flags |= FORCECLOSE;
525 error = ffs_flushfiles(mp, flags, l);
526 if (error == 0)
527 error = UFS_WAPBL_BEGIN(mp);
528 if (error == 0 &&
529 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
530 fs->fs_clean & FS_WASCLEAN) {
531 if (mp->mnt_flag & MNT_SOFTDEP)
532 fs->fs_flags &= ~FS_DOSOFTDEP;
533 fs->fs_clean = FS_ISCLEAN;
534 (void) ffs_sbupdate(ump, MNT_WAIT);
535 }
536 if (error) {
537 DPRINTF(("%s: wapbl %d\n", __func__, error));
538 return error;
539 }
540 UFS_WAPBL_END(mp);
541 }
542
543 #ifdef WAPBL
544 if ((mp->mnt_flag & MNT_LOG) == 0) {
545 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
546 if (error) {
547 DPRINTF(("%s: ffs_wapbl_stop %d\n",
548 __func__, error));
549 return error;
550 }
551 }
552 #endif /* WAPBL */
553
554 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
555 /*
556 * Finish change from r/w to r/o
557 */
558 fs->fs_ronly = 1;
559 fs->fs_fmod = 0;
560 }
561
562 if (mp->mnt_flag & MNT_RELOAD) {
563 error = ffs_reload(mp, l->l_cred, l);
564 if (error) {
565 DPRINTF(("%s: ffs_reload %d\n",
566 __func__, error));
567 return error;
568 }
569 }
570
571 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
572 /*
573 * Changing from read-only to read/write
574 */
575 #ifndef QUOTA2
576 if (fs->fs_flags & FS_DOQUOTA2) {
577 ump->um_flags |= UFS_QUOTA2;
578 uprintf("%s: options QUOTA2 not enabled%s\n",
579 mp->mnt_stat.f_mntonname,
580 (mp->mnt_flag & MNT_FORCE) ? "" :
581 ", not mounting");
582 DPRINTF(("%s: ffs_quota2 %d\n",
583 __func__, EINVAL));
584 return EINVAL;
585 }
586 #endif
587 fs->fs_ronly = 0;
588 fs->fs_clean <<= 1;
589 fs->fs_fmod = 1;
590 #ifdef WAPBL
591 if (fs->fs_flags & FS_DOWAPBL) {
592 const char *nm = mp->mnt_stat.f_mntonname;
593 if (!mp->mnt_wapbl_replay) {
594 printf("%s: log corrupted;"
595 " replay cancelled\n", nm);
596 return EFTYPE;
597 }
598 printf("%s: replaying log to disk\n", nm);
599 error = wapbl_replay_write(mp->mnt_wapbl_replay,
600 devvp);
601 if (error) {
602 DPRINTF((
603 "%s: %s: wapbl_replay_write %d\n",
604 __func__, nm, error));
605 return error;
606 }
607 wapbl_replay_stop(mp->mnt_wapbl_replay);
608 fs->fs_clean = FS_WASCLEAN;
609 }
610 #endif /* WAPBL */
611 if (fs->fs_snapinum[0] != 0)
612 ffs_snapshot_mount(mp);
613 }
614
615 #ifdef WAPBL
616 error = ffs_wapbl_start(mp);
617 if (error) {
618 DPRINTF(("%s: ffs_wapbl_start %d\n",
619 __func__, error));
620 return error;
621 }
622 #endif /* WAPBL */
623
624 #ifdef QUOTA2
625 if (!fs->fs_ronly) {
626 error = ffs_quota2_mount(mp);
627 if (error) {
628 DPRINTF(("%s: ffs_quota2_mount %d\n",
629 __func__, error));
630 return error;
631 }
632 }
633 #endif
634
635 if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
636 ump->um_discarddata = ffs_discard_init(devvp, fs);
637
638 if (args->fspec == NULL)
639 return 0;
640 }
641
642 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
643 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
644 if (error == 0)
645 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
646 sizeof(fs->fs_fsmnt));
647 else {
648 DPRINTF(("%s: set_statvfs_info %d\n", __func__, error));
649 }
650 fs->fs_flags &= ~FS_DOSOFTDEP;
651 if (fs->fs_fmod != 0) { /* XXX */
652 int err;
653
654 fs->fs_fmod = 0;
655 if (fs->fs_clean & FS_WASCLEAN)
656 fs->fs_time = time_second;
657 else {
658 printf("%s: file system not clean (fs_clean=%#x); "
659 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
660 fs->fs_clean);
661 printf("%s: lost blocks %" PRId64 " files %d\n",
662 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
663 fs->fs_pendinginodes);
664 }
665 err = UFS_WAPBL_BEGIN(mp);
666 if (err == 0) {
667 (void) ffs_cgupdate(ump, MNT_WAIT);
668 UFS_WAPBL_END(mp);
669 }
670 }
671 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
672 printf("%s: `-o softdep' is no longer supported, "
673 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
674 mp->mnt_flag &= ~MNT_SOFTDEP;
675 }
676
677 return (error);
678
679 fail:
680 vrele(devvp);
681 return (error);
682 }
683
684 /*
685 * Reload all incore data for a filesystem (used after running fsck on
686 * the root filesystem and finding things to fix). The filesystem must
687 * be mounted read-only.
688 *
689 * Things to do to update the mount:
690 * 1) invalidate all cached meta-data.
691 * 2) re-read superblock from disk.
692 * 3) re-read summary information from disk.
693 * 4) invalidate all inactive vnodes.
694 * 5) invalidate all cached file data.
695 * 6) re-read inode data for all active vnodes.
696 */
697 int
698 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
699 {
700 struct vnode *vp, *devvp;
701 struct inode *ip;
702 void *space;
703 struct buf *bp;
704 struct fs *fs, *newfs;
705 struct dkwedge_info dkw;
706 int i, bsize, blks, error;
707 int32_t *lp, fs_sbsize;
708 struct ufsmount *ump;
709 daddr_t sblockloc;
710 struct vnode_iterator *marker;
711
712 if ((mp->mnt_flag & MNT_RDONLY) == 0)
713 return (EINVAL);
714
715 ump = VFSTOUFS(mp);
716
717 /*
718 * Step 1: invalidate all cached meta-data.
719 */
720 devvp = ump->um_devvp;
721 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
722 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
723 VOP_UNLOCK(devvp);
724 if (error)
725 panic("ffs_reload: dirty1");
726
727 /*
728 * Step 2: re-read superblock from disk. XXX: We don't handle
729 * possibility that superblock moved. Which implies that we don't
730 * want its size to change either.
731 */
732 fs = ump->um_fs;
733 fs_sbsize = fs->fs_sbsize;
734 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
735 NOCRED, 0, &bp);
736 if (error)
737 return (error);
738 newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
739 memcpy(newfs, bp->b_data, fs_sbsize);
740
741 #ifdef FFS_EI
742 if (ump->um_flags & UFS_NEEDSWAP) {
743 ffs_sb_swap((struct fs*)bp->b_data, newfs);
744 fs->fs_flags |= FS_SWAPPED;
745 } else
746 #endif
747 fs->fs_flags &= ~FS_SWAPPED;
748
749 /* We don't want the superblock size to change. */
750 if (newfs->fs_sbsize != fs_sbsize) {
751 brelse(bp, 0);
752 kmem_free(newfs, fs_sbsize);
753 return (EINVAL);
754 }
755 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
756 newfs->fs_magic != FS_UFS2_MAGIC)) {
757 brelse(bp, 0);
758 kmem_free(newfs, fs_sbsize);
759 return (EIO); /* XXX needs translation */
760 }
761 if (!ffs_superblock_validate(newfs)) {
762 brelse(bp, 0);
763 kmem_free(newfs, fs_sbsize);
764 return (EINVAL);
765 }
766
767 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
768 sblockloc = fs->fs_sblockloc;
769 /*
770 * Copy pointer fields back into superblock before copying in XXX
771 * new superblock. These should really be in the ufsmount. XXX
772 * Note that important parameters (eg fs_ncg) are unchanged.
773 */
774 newfs->fs_csp = fs->fs_csp;
775 newfs->fs_maxcluster = fs->fs_maxcluster;
776 newfs->fs_contigdirs = fs->fs_contigdirs;
777 newfs->fs_ronly = fs->fs_ronly;
778 newfs->fs_active = fs->fs_active;
779 memcpy(fs, newfs, (u_int)fs_sbsize);
780 brelse(bp, 0);
781 kmem_free(newfs, fs_sbsize);
782
783 /* Recheck for apple UFS filesystem */
784 ump->um_flags &= ~UFS_ISAPPLEUFS;
785 /* First check to see if this is tagged as an Apple UFS filesystem
786 * in the disklabel
787 */
788 if (getdiskinfo(devvp, &dkw) == 0 &&
789 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
790 ump->um_flags |= UFS_ISAPPLEUFS;
791 #ifdef APPLE_UFS
792 else {
793 /* Manually look for an apple ufs label, and if a valid one
794 * is found, then treat it like an Apple UFS filesystem anyway
795 *
796 * EINVAL is most probably a blocksize or alignment problem,
797 * it is unlikely that this is an Apple UFS filesystem then.
798 */
799 error = bread(devvp,
800 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
801 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
802 if (error && error != EINVAL) {
803 return error;
804 }
805 if (error == 0) {
806 error = ffs_appleufs_validate(fs->fs_fsmnt,
807 (struct appleufslabel *)bp->b_data, NULL);
808 if (error == 0)
809 ump->um_flags |= UFS_ISAPPLEUFS;
810 brelse(bp, 0);
811 }
812 bp = NULL;
813 }
814 #else
815 if (ump->um_flags & UFS_ISAPPLEUFS)
816 return (EIO);
817 #endif
818
819 if (UFS_MPISAPPLEUFS(ump)) {
820 /* see comment about NeXT below */
821 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
822 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
823 mp->mnt_iflag |= IMNT_DTYPE;
824 } else {
825 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
826 ump->um_dirblksiz = UFS_DIRBLKSIZ;
827 if (ump->um_maxsymlinklen > 0)
828 mp->mnt_iflag |= IMNT_DTYPE;
829 else
830 mp->mnt_iflag &= ~IMNT_DTYPE;
831 }
832 ffs_oldfscompat_read(fs, ump, sblockloc);
833
834 mutex_enter(&ump->um_lock);
835 ump->um_maxfilesize = fs->fs_maxfilesize;
836 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
837 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
838 mp->mnt_stat.f_mntonname, fs->fs_flags,
839 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
840 if ((mp->mnt_flag & MNT_FORCE) == 0) {
841 mutex_exit(&ump->um_lock);
842 return (EINVAL);
843 }
844 }
845 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
846 fs->fs_pendingblocks = 0;
847 fs->fs_pendinginodes = 0;
848 }
849 mutex_exit(&ump->um_lock);
850
851 ffs_statvfs(mp, &mp->mnt_stat);
852 /*
853 * Step 3: re-read summary information from disk.
854 */
855 blks = howmany(fs->fs_cssize, fs->fs_fsize);
856 space = fs->fs_csp;
857 for (i = 0; i < blks; i += fs->fs_frag) {
858 bsize = fs->fs_bsize;
859 if (i + fs->fs_frag > blks)
860 bsize = (blks - i) * fs->fs_fsize;
861 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
862 NOCRED, 0, &bp);
863 if (error) {
864 return (error);
865 }
866 #ifdef FFS_EI
867 if (UFS_FSNEEDSWAP(fs))
868 ffs_csum_swap((struct csum *)bp->b_data,
869 (struct csum *)space, bsize);
870 else
871 #endif
872 memcpy(space, bp->b_data, (size_t)bsize);
873 space = (char *)space + bsize;
874 brelse(bp, 0);
875 }
876 /*
877 * We no longer know anything about clusters per cylinder group.
878 */
879 if (fs->fs_contigsumsize > 0) {
880 lp = fs->fs_maxcluster;
881 for (i = 0; i < fs->fs_ncg; i++)
882 *lp++ = fs->fs_contigsumsize;
883 }
884
885 vfs_vnode_iterator_init(mp, &marker);
886 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
887 /*
888 * Step 4: invalidate all inactive vnodes.
889 */
890 if (vrecycle(vp))
891 continue;
892 /*
893 * Step 5: invalidate all cached file data.
894 */
895 if (vn_lock(vp, LK_EXCLUSIVE)) {
896 vrele(vp);
897 continue;
898 }
899 if (vinvalbuf(vp, 0, cred, l, 0, 0))
900 panic("ffs_reload: dirty2");
901 /*
902 * Step 6: re-read inode data for all active vnodes.
903 */
904 ip = VTOI(vp);
905 error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
906 (int)fs->fs_bsize, NOCRED, 0, &bp);
907 if (error) {
908 vput(vp);
909 break;
910 }
911 ffs_load_inode(bp, ip, fs, ip->i_number);
912 brelse(bp, 0);
913 vput(vp);
914 }
915 vfs_vnode_iterator_destroy(marker);
916 return (error);
917 }
918
919 /*
920 * Possible superblock locations ordered from most to least likely.
921 */
922 static const int sblock_try[] = SBLOCKSEARCH;
923
924
925 static int
926 ffs_superblock_validate(struct fs *fs)
927 {
928 /* Check the superblock size */
929 if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
930 return 0;
931
932 /* Check the file system blocksize */
933 if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
934 return 0;
935 if (!powerof2(fs->fs_bsize))
936 return 0;
937
938 /* Check the size of frag blocks */
939 if (!powerof2(fs->fs_fsize))
940 return 0;
941
942 if (fs->fs_size == 0)
943 return 0;
944 if (fs->fs_cssize == 0)
945 return 0;
946
947 /* Block size cannot be smaller than fragment size */
948 if (fs->fs_bsize < fs->fs_fsize)
949 return 0;
950
951 /* Check the number of frag blocks */
952 if ((fs->fs_bsize / fs->fs_fsize) > MAXFRAG)
953 return 0;
954
955 return 1;
956 }
957
958 /*
959 * Common code for mount and mountroot
960 */
961 int
962 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
963 {
964 struct ufsmount *ump = NULL;
965 struct buf *bp = NULL;
966 struct fs *fs = NULL;
967 dev_t dev;
968 struct dkwedge_info dkw;
969 void *space;
970 daddr_t sblockloc = 0;
971 int blks, fstype = 0;
972 int error, i, bsize, ronly, bset = 0;
973 #ifdef FFS_EI
974 int needswap = 0; /* keep gcc happy */
975 #endif
976 int32_t *lp;
977 kauth_cred_t cred;
978 u_int32_t fs_sbsize = 8192; /* keep gcc happy*/
979 u_int32_t allocsbsize;
980
981 dev = devvp->v_rdev;
982 cred = l ? l->l_cred : NOCRED;
983
984 /* Flush out any old buffers remaining from a previous use. */
985 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
986 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
987 VOP_UNLOCK(devvp);
988 if (error) {
989 DPRINTF(("%s: vinvalbuf %d\n", __func__, error));
990 return error;
991 }
992
993 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
994
995 error = fstrans_mount(mp);
996 if (error) {
997 DPRINTF(("%s: fstrans_mount %d\n", __func__, error));
998 return error;
999 }
1000
1001 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1002 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1003 error = ffs_snapshot_init(ump);
1004 if (error) {
1005 DPRINTF(("%s: ffs_snapshot_init %d\n", __func__, error));
1006 goto out;
1007 }
1008 ump->um_ops = &ffs_ufsops;
1009
1010 #ifdef WAPBL
1011 sbagain:
1012 #endif
1013 /*
1014 * Try reading the superblock in each of its possible locations.
1015 */
1016 for (i = 0; ; i++) {
1017 daddr_t fsblockloc;
1018
1019 if (bp != NULL) {
1020 brelse(bp, BC_NOCACHE);
1021 bp = NULL;
1022 }
1023 if (sblock_try[i] == -1) {
1024 DPRINTF(("%s: sblock_try\n", __func__));
1025 error = EINVAL;
1026 fs = NULL;
1027 goto out;
1028 }
1029
1030 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1031 cred, 0, &bp);
1032 if (error) {
1033 DPRINTF(("%s: bread@0x%x %d\n", __func__,
1034 sblock_try[i] / DEV_BSIZE, error));
1035 fs = NULL;
1036 goto out;
1037 }
1038 fs = (struct fs*)bp->b_data;
1039
1040 fsblockloc = sblockloc = sblock_try[i];
1041 DPRINTF(("%s: fs_magic 0x%x\n", __func__, fs->fs_magic));
1042
1043 /*
1044 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1045 * size to read the superblock. Once read, we swap the whole
1046 * superblock structure.
1047 */
1048 if (fs->fs_magic == FS_UFS1_MAGIC) {
1049 fs_sbsize = fs->fs_sbsize;
1050 fstype = UFS1;
1051 #ifdef FFS_EI
1052 needswap = 0;
1053 } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1054 fs_sbsize = bswap32(fs->fs_sbsize);
1055 fstype = UFS1;
1056 needswap = 1;
1057 #endif
1058 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
1059 fs_sbsize = fs->fs_sbsize;
1060 fstype = UFS2;
1061 #ifdef FFS_EI
1062 needswap = 0;
1063 } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1064 fs_sbsize = bswap32(fs->fs_sbsize);
1065 fstype = UFS2;
1066 needswap = 1;
1067 #endif
1068 } else
1069 continue;
1070
1071 /* fs->fs_sblockloc isn't defined for old filesystems */
1072 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1073 if (sblockloc == SBLOCK_UFS2)
1074 /*
1075 * This is likely to be the first alternate
1076 * in a filesystem with 64k blocks.
1077 * Don't use it.
1078 */
1079 continue;
1080 fsblockloc = sblockloc;
1081 } else {
1082 fsblockloc = fs->fs_sblockloc;
1083 #ifdef FFS_EI
1084 if (needswap)
1085 fsblockloc = bswap64(fsblockloc);
1086 #endif
1087 }
1088
1089 /* Check we haven't found an alternate superblock */
1090 if (fsblockloc != sblockloc)
1091 continue;
1092
1093 /* Check the superblock size */
1094 if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1095 continue;
1096 fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1097 memcpy(fs, bp->b_data, fs_sbsize);
1098
1099 /* Swap the whole superblock structure, if necessary. */
1100 #ifdef FFS_EI
1101 if (needswap) {
1102 ffs_sb_swap((struct fs*)bp->b_data, fs);
1103 fs->fs_flags |= FS_SWAPPED;
1104 } else
1105 #endif
1106 fs->fs_flags &= ~FS_SWAPPED;
1107
1108 /*
1109 * Now that everything is swapped, the superblock is ready to
1110 * be sanitized.
1111 */
1112 if (!ffs_superblock_validate(fs)) {
1113 kmem_free(fs, fs_sbsize);
1114 continue;
1115 }
1116
1117 /* Ok seems to be a good superblock */
1118 break;
1119 }
1120
1121 ump->um_fs = fs;
1122
1123 #ifdef WAPBL
1124 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1125 error = ffs_wapbl_replay_start(mp, fs, devvp);
1126 if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1127 DPRINTF(("%s: ffs_wapbl_replay_start %d\n", __func__,
1128 error));
1129 goto out;
1130 }
1131 if (!error) {
1132 if (!ronly) {
1133 /* XXX fsmnt may be stale. */
1134 printf("%s: replaying log to disk\n",
1135 fs->fs_fsmnt);
1136 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1137 devvp);
1138 if (error) {
1139 DPRINTF(("%s: wapbl_replay_write %d\n",
1140 __func__, error));
1141 goto out;
1142 }
1143 wapbl_replay_stop(mp->mnt_wapbl_replay);
1144 fs->fs_clean = FS_WASCLEAN;
1145 } else {
1146 /* XXX fsmnt may be stale */
1147 printf("%s: replaying log to memory\n",
1148 fs->fs_fsmnt);
1149 }
1150
1151 /* Force a re-read of the superblock */
1152 brelse(bp, BC_INVAL);
1153 bp = NULL;
1154 kmem_free(fs, fs_sbsize);
1155 fs = NULL;
1156 goto sbagain;
1157 }
1158 }
1159 #else /* !WAPBL */
1160 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1161 error = EPERM;
1162 DPRINTF(("%s: no force %d\n", __func__, error));
1163 goto out;
1164 }
1165 #endif /* !WAPBL */
1166
1167 ffs_oldfscompat_read(fs, ump, sblockloc);
1168 ump->um_maxfilesize = fs->fs_maxfilesize;
1169
1170 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1171 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1172 mp->mnt_stat.f_mntonname, fs->fs_flags,
1173 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1174 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1175 error = EINVAL;
1176 DPRINTF(("%s: no force %d\n", __func__, error));
1177 goto out;
1178 }
1179 }
1180
1181 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1182 fs->fs_pendingblocks = 0;
1183 fs->fs_pendinginodes = 0;
1184 }
1185
1186 ump->um_fstype = fstype;
1187 if (fs->fs_sbsize < SBLOCKSIZE)
1188 brelse(bp, BC_INVAL);
1189 else
1190 brelse(bp, 0);
1191 bp = NULL;
1192
1193 /* First check to see if this is tagged as an Apple UFS filesystem
1194 * in the disklabel
1195 */
1196 if (getdiskinfo(devvp, &dkw) == 0 &&
1197 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1198 ump->um_flags |= UFS_ISAPPLEUFS;
1199 #ifdef APPLE_UFS
1200 else {
1201 /* Manually look for an apple ufs label, and if a valid one
1202 * is found, then treat it like an Apple UFS filesystem anyway
1203 */
1204 error = bread(devvp,
1205 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1206 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1207 if (error) {
1208 DPRINTF(("%s: apple bread@0x%jx %d\n", __func__,
1209 (intmax_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1210 error));
1211 goto out;
1212 }
1213 error = ffs_appleufs_validate(fs->fs_fsmnt,
1214 (struct appleufslabel *)bp->b_data, NULL);
1215 if (error == 0)
1216 ump->um_flags |= UFS_ISAPPLEUFS;
1217 brelse(bp, 0);
1218 bp = NULL;
1219 }
1220 #else
1221 if (ump->um_flags & UFS_ISAPPLEUFS) {
1222 DPRINTF(("%s: bad apple\n", __func__));
1223 error = EINVAL;
1224 goto out;
1225 }
1226 #endif
1227
1228 #if 0
1229 /*
1230 * XXX This code changes the behaviour of mounting dirty filesystems, to
1231 * XXX require "mount -f ..." to mount them. This doesn't match what
1232 * XXX mount(8) describes and is disabled for now.
1233 */
1234 /*
1235 * If the file system is not clean, don't allow it to be mounted
1236 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1237 * for the root file system.)
1238 */
1239 if (fs->fs_flags & FS_DOWAPBL) {
1240 /*
1241 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1242 * bit is set, although there's a window in unmount where it
1243 * could be FS_ISCLEAN
1244 */
1245 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1246 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1247 error = EPERM;
1248 goto out;
1249 }
1250 } else
1251 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1252 (mp->mnt_flag & MNT_FORCE) == 0) {
1253 error = EPERM;
1254 goto out;
1255 }
1256 #endif
1257
1258 /*
1259 * Verify that we can access the last block in the fs
1260 * if we're mounting read/write.
1261 */
1262
1263 if (!ronly) {
1264 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1265 fs->fs_fsize, cred, 0, &bp);
1266 if (error) {
1267 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1268 (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1269 error));
1270 bset = BC_INVAL;
1271 goto out;
1272 }
1273 if (bp->b_bcount != fs->fs_fsize) {
1274 DPRINTF(("%s: bcount %x != fsize %x\n", __func__,
1275 bp->b_bcount, fs->fs_fsize));
1276 error = EINVAL;
1277 }
1278 brelse(bp, BC_INVAL);
1279 bp = NULL;
1280 }
1281
1282 fs->fs_ronly = ronly;
1283 /* Don't bump fs_clean if we're replaying journal */
1284 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1285 if (ronly == 0) {
1286 fs->fs_clean <<= 1;
1287 fs->fs_fmod = 1;
1288 }
1289 }
1290
1291 bsize = fs->fs_cssize;
1292 blks = howmany(bsize, fs->fs_fsize);
1293 if (fs->fs_contigsumsize > 0)
1294 bsize += fs->fs_ncg * sizeof(int32_t);
1295 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1296 allocsbsize = bsize;
1297 space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1298 fs->fs_csp = space;
1299
1300 for (i = 0; i < blks; i += fs->fs_frag) {
1301 bsize = fs->fs_bsize;
1302 if (i + fs->fs_frag > blks)
1303 bsize = (blks - i) * fs->fs_fsize;
1304 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1305 cred, 0, &bp);
1306 if (error) {
1307 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1308 (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1309 error));
1310 goto out1;
1311 }
1312 #ifdef FFS_EI
1313 if (needswap)
1314 ffs_csum_swap((struct csum *)bp->b_data,
1315 (struct csum *)space, bsize);
1316 else
1317 #endif
1318 memcpy(space, bp->b_data, (u_int)bsize);
1319
1320 space = (char *)space + bsize;
1321 brelse(bp, 0);
1322 bp = NULL;
1323 }
1324 if (fs->fs_contigsumsize > 0) {
1325 fs->fs_maxcluster = lp = space;
1326 for (i = 0; i < fs->fs_ncg; i++)
1327 *lp++ = fs->fs_contigsumsize;
1328 space = lp;
1329 }
1330 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1331 fs->fs_contigdirs = space;
1332 space = (char *)space + bsize;
1333 memset(fs->fs_contigdirs, 0, bsize);
1334 /* Compatibility for old filesystems - XXX */
1335 if (fs->fs_avgfilesize <= 0)
1336 fs->fs_avgfilesize = AVFILESIZ;
1337 if (fs->fs_avgfpdir <= 0)
1338 fs->fs_avgfpdir = AFPDIR;
1339 fs->fs_active = NULL;
1340 mp->mnt_data = ump;
1341 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1342 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1343 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1344 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1345 if (UFS_MPISAPPLEUFS(ump)) {
1346 /* NeXT used to keep short symlinks in the inode even
1347 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1348 * is probably -1, but we still need to be able to identify
1349 * short symlinks.
1350 */
1351 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1352 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1353 mp->mnt_iflag |= IMNT_DTYPE;
1354 } else {
1355 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1356 ump->um_dirblksiz = UFS_DIRBLKSIZ;
1357 if (ump->um_maxsymlinklen > 0)
1358 mp->mnt_iflag |= IMNT_DTYPE;
1359 else
1360 mp->mnt_iflag &= ~IMNT_DTYPE;
1361 }
1362 mp->mnt_fs_bshift = fs->fs_bshift;
1363 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1364 mp->mnt_flag |= MNT_LOCAL;
1365 mp->mnt_iflag |= IMNT_MPSAFE;
1366 #ifdef FFS_EI
1367 if (needswap)
1368 ump->um_flags |= UFS_NEEDSWAP;
1369 #endif
1370 ump->um_mountp = mp;
1371 ump->um_dev = dev;
1372 ump->um_devvp = devvp;
1373 ump->um_nindir = fs->fs_nindir;
1374 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1375 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1376 ump->um_seqinc = fs->fs_frag;
1377 for (i = 0; i < MAXQUOTAS; i++)
1378 ump->um_quotas[i] = NULLVP;
1379 spec_node_setmountedfs(devvp, mp);
1380 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1381 ffs_snapshot_mount(mp);
1382 #ifdef WAPBL
1383 if (!ronly) {
1384 KDASSERT(fs->fs_ronly == 0);
1385 /*
1386 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1387 * needs to create a new log file in-filesystem.
1388 */
1389 error = ffs_statvfs(mp, &mp->mnt_stat);
1390 if (error) {
1391 DPRINTF(("%s: ffs_statvfs %d\n", __func__, error));
1392 goto out1;
1393 }
1394
1395 error = ffs_wapbl_start(mp);
1396 if (error) {
1397 DPRINTF(("%s: ffs_wapbl_start %d\n", __func__, error));
1398 goto out1;
1399 }
1400 }
1401 #endif /* WAPBL */
1402 if (ronly == 0) {
1403 #ifdef QUOTA2
1404 error = ffs_quota2_mount(mp);
1405 if (error) {
1406 DPRINTF(("%s: ffs_quota2_mount %d\n", __func__, error));
1407 goto out1;
1408 }
1409 #else
1410 if (fs->fs_flags & FS_DOQUOTA2) {
1411 ump->um_flags |= UFS_QUOTA2;
1412 uprintf("%s: options QUOTA2 not enabled%s\n",
1413 mp->mnt_stat.f_mntonname,
1414 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1415 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1416 error = EINVAL;
1417 DPRINTF(("%s: quota disabled %d\n", __func__,
1418 error));
1419 goto out1;
1420 }
1421 }
1422 #endif
1423 }
1424
1425 if (mp->mnt_flag & MNT_DISCARD)
1426 ump->um_discarddata = ffs_discard_init(devvp, fs);
1427
1428 return (0);
1429 out1:
1430 kmem_free(fs->fs_csp, allocsbsize);
1431 out:
1432 #ifdef WAPBL
1433 if (mp->mnt_wapbl_replay) {
1434 wapbl_replay_stop(mp->mnt_wapbl_replay);
1435 wapbl_replay_free(mp->mnt_wapbl_replay);
1436 mp->mnt_wapbl_replay = 0;
1437 }
1438 #endif
1439
1440 fstrans_unmount(mp);
1441 if (fs)
1442 kmem_free(fs, fs->fs_sbsize);
1443 spec_node_setmountedfs(devvp, NULL);
1444 if (bp)
1445 brelse(bp, bset);
1446 if (ump) {
1447 if (ump->um_oldfscompat)
1448 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1449 mutex_destroy(&ump->um_lock);
1450 kmem_free(ump, sizeof(*ump));
1451 mp->mnt_data = NULL;
1452 }
1453 return (error);
1454 }
1455
1456 /*
1457 * Sanity checks for loading old filesystem superblocks.
1458 * See ffs_oldfscompat_write below for unwound actions.
1459 *
1460 * XXX - Parts get retired eventually.
1461 * Unfortunately new bits get added.
1462 */
1463 static void
1464 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1465 {
1466 off_t maxfilesize;
1467 int32_t *extrasave;
1468
1469 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1470 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1471 return;
1472
1473 if (!ump->um_oldfscompat)
1474 ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1475 KM_SLEEP);
1476
1477 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1478 extrasave = ump->um_oldfscompat;
1479 extrasave += 512/sizeof(int32_t);
1480 extrasave[0] = fs->fs_old_npsect;
1481 extrasave[1] = fs->fs_old_interleave;
1482 extrasave[2] = fs->fs_old_trackskew;
1483
1484 /* These fields will be overwritten by their
1485 * original values in fs_oldfscompat_write, so it is harmless
1486 * to modify them here.
1487 */
1488 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1489 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1490 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1491 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1492
1493 fs->fs_maxbsize = fs->fs_bsize;
1494 fs->fs_time = fs->fs_old_time;
1495 fs->fs_size = fs->fs_old_size;
1496 fs->fs_dsize = fs->fs_old_dsize;
1497 fs->fs_csaddr = fs->fs_old_csaddr;
1498 fs->fs_sblockloc = sblockloc;
1499
1500 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1501
1502 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1503 fs->fs_old_nrpos = 8;
1504 fs->fs_old_npsect = fs->fs_old_nsect;
1505 fs->fs_old_interleave = 1;
1506 fs->fs_old_trackskew = 0;
1507 }
1508
1509 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1510 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1511 fs->fs_qbmask = ~fs->fs_bmask;
1512 fs->fs_qfmask = ~fs->fs_fmask;
1513 }
1514
1515 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1516 if (fs->fs_maxfilesize > maxfilesize)
1517 fs->fs_maxfilesize = maxfilesize;
1518
1519 /* Compatibility for old filesystems */
1520 if (fs->fs_avgfilesize <= 0)
1521 fs->fs_avgfilesize = AVFILESIZ;
1522 if (fs->fs_avgfpdir <= 0)
1523 fs->fs_avgfpdir = AFPDIR;
1524
1525 #if 0
1526 if (bigcgs) {
1527 fs->fs_save_cgsize = fs->fs_cgsize;
1528 fs->fs_cgsize = fs->fs_bsize;
1529 }
1530 #endif
1531 }
1532
1533 /*
1534 * Unwinding superblock updates for old filesystems.
1535 * See ffs_oldfscompat_read above for details.
1536 *
1537 * XXX - Parts get retired eventually.
1538 * Unfortunately new bits get added.
1539 */
1540 static void
1541 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1542 {
1543 int32_t *extrasave;
1544
1545 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1546 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1547 return;
1548
1549 fs->fs_old_time = fs->fs_time;
1550 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1551 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1552 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1553 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1554 fs->fs_old_flags = fs->fs_flags;
1555
1556 #if 0
1557 if (bigcgs) {
1558 fs->fs_cgsize = fs->fs_save_cgsize;
1559 }
1560 #endif
1561
1562 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1563 extrasave = ump->um_oldfscompat;
1564 extrasave += 512/sizeof(int32_t);
1565 fs->fs_old_npsect = extrasave[0];
1566 fs->fs_old_interleave = extrasave[1];
1567 fs->fs_old_trackskew = extrasave[2];
1568
1569 }
1570
1571 /*
1572 * unmount vfs operation
1573 */
1574 int
1575 ffs_unmount(struct mount *mp, int mntflags)
1576 {
1577 struct lwp *l = curlwp;
1578 struct ufsmount *ump = VFSTOUFS(mp);
1579 struct fs *fs = ump->um_fs;
1580 int error, flags;
1581 u_int32_t bsize;
1582 #ifdef WAPBL
1583 extern int doforce;
1584 #endif
1585
1586 if (ump->um_discarddata) {
1587 ffs_discard_finish(ump->um_discarddata, mntflags);
1588 ump->um_discarddata = NULL;
1589 }
1590
1591 flags = 0;
1592 if (mntflags & MNT_FORCE)
1593 flags |= FORCECLOSE;
1594 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1595 return (error);
1596 error = UFS_WAPBL_BEGIN(mp);
1597 if (error == 0)
1598 if (fs->fs_ronly == 0 &&
1599 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1600 fs->fs_clean & FS_WASCLEAN) {
1601 fs->fs_clean = FS_ISCLEAN;
1602 fs->fs_fmod = 0;
1603 (void) ffs_sbupdate(ump, MNT_WAIT);
1604 }
1605 if (error == 0)
1606 UFS_WAPBL_END(mp);
1607 #ifdef WAPBL
1608 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1609 if (mp->mnt_wapbl_replay) {
1610 KDASSERT(fs->fs_ronly);
1611 wapbl_replay_stop(mp->mnt_wapbl_replay);
1612 wapbl_replay_free(mp->mnt_wapbl_replay);
1613 mp->mnt_wapbl_replay = 0;
1614 }
1615 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1616 if (error) {
1617 return error;
1618 }
1619 #endif /* WAPBL */
1620
1621 if (ump->um_devvp->v_type != VBAD)
1622 spec_node_setmountedfs(ump->um_devvp, NULL);
1623 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1624 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1625 NOCRED);
1626 vput(ump->um_devvp);
1627
1628 bsize = fs->fs_cssize;
1629 if (fs->fs_contigsumsize > 0)
1630 bsize += fs->fs_ncg * sizeof(int32_t);
1631 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1632 kmem_free(fs->fs_csp, bsize);
1633
1634 kmem_free(fs, fs->fs_sbsize);
1635 if (ump->um_oldfscompat != NULL)
1636 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1637 mutex_destroy(&ump->um_lock);
1638 ffs_snapshot_fini(ump);
1639 kmem_free(ump, sizeof(*ump));
1640 mp->mnt_data = NULL;
1641 mp->mnt_flag &= ~MNT_LOCAL;
1642 fstrans_unmount(mp);
1643 return (0);
1644 }
1645
1646 /*
1647 * Flush out all the files in a filesystem.
1648 */
1649 int
1650 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1651 {
1652 extern int doforce;
1653 struct ufsmount *ump;
1654 int error;
1655
1656 if (!doforce)
1657 flags &= ~FORCECLOSE;
1658 ump = VFSTOUFS(mp);
1659 #ifdef QUOTA
1660 if ((error = quota1_umount(mp, flags)) != 0)
1661 return (error);
1662 #endif
1663 #ifdef QUOTA2
1664 if ((error = quota2_umount(mp, flags)) != 0)
1665 return (error);
1666 #endif
1667 #ifdef UFS_EXTATTR
1668 if (ump->um_fstype == UFS1) {
1669 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1670 ufs_extattr_stop(mp, l);
1671 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1672 ufs_extattr_uepm_destroy(&ump->um_extattr);
1673 mp->mnt_flag &= ~MNT_EXTATTR;
1674 }
1675 #endif
1676 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1677 return (error);
1678 ffs_snapshot_unmount(mp);
1679 /*
1680 * Flush all the files.
1681 */
1682 error = vflush(mp, NULLVP, flags);
1683 if (error)
1684 return (error);
1685 /*
1686 * Flush filesystem metadata.
1687 */
1688 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1689 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1690 VOP_UNLOCK(ump->um_devvp);
1691 if (flags & FORCECLOSE) /* XXXDBJ */
1692 error = 0;
1693
1694 #ifdef WAPBL
1695 if (error)
1696 return error;
1697 if (mp->mnt_wapbl) {
1698 error = wapbl_flush(mp->mnt_wapbl, 1);
1699 if (flags & FORCECLOSE)
1700 error = 0;
1701 }
1702 #endif
1703
1704 return (error);
1705 }
1706
1707 /*
1708 * Get file system statistics.
1709 */
1710 int
1711 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1712 {
1713 struct ufsmount *ump;
1714 struct fs *fs;
1715
1716 ump = VFSTOUFS(mp);
1717 fs = ump->um_fs;
1718 mutex_enter(&ump->um_lock);
1719 sbp->f_bsize = fs->fs_bsize;
1720 sbp->f_frsize = fs->fs_fsize;
1721 sbp->f_iosize = fs->fs_bsize;
1722 sbp->f_blocks = fs->fs_dsize;
1723 sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1724 fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1725 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1726 fs->fs_minfree) / (u_int64_t) 100;
1727 if (sbp->f_bfree > sbp->f_bresvd)
1728 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1729 else
1730 sbp->f_bavail = 0;
1731 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1732 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1733 sbp->f_favail = sbp->f_ffree;
1734 sbp->f_fresvd = 0;
1735 mutex_exit(&ump->um_lock);
1736 copy_statvfs_info(sbp, mp);
1737
1738 return (0);
1739 }
1740
1741 struct ffs_sync_ctx {
1742 int waitfor;
1743 bool is_suspending;
1744 };
1745
1746 static bool
1747 ffs_sync_selector(void *cl, struct vnode *vp)
1748 {
1749 struct ffs_sync_ctx *c = cl;
1750 struct inode *ip;
1751
1752 ip = VTOI(vp);
1753 /*
1754 * Skip the vnode/inode if inaccessible.
1755 */
1756 if (ip == NULL || vp->v_type == VNON)
1757 return false;
1758
1759 /*
1760 * We deliberately update inode times here. This will
1761 * prevent a massive queue of updates accumulating, only
1762 * to be handled by a call to unmount.
1763 *
1764 * XXX It would be better to have the syncer trickle these
1765 * out. Adjustment needed to allow registering vnodes for
1766 * sync when the vnode is clean, but the inode dirty. Or
1767 * have ufs itself trickle out inode updates.
1768 *
1769 * If doing a lazy sync, we don't care about metadata or
1770 * data updates, because they are handled by each vnode's
1771 * synclist entry. In this case we are only interested in
1772 * writing back modified inodes.
1773 */
1774 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1775 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1776 (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1777 UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
1778 return false;
1779
1780 if (vp->v_type == VBLK && c->is_suspending)
1781 return false;
1782
1783 return true;
1784 }
1785
1786 /*
1787 * Go through the disk queues to initiate sandbagged IO;
1788 * go through the inodes to write those that have been modified;
1789 * initiate the writing of the super block if it has been modified.
1790 *
1791 * Note: we are always called with the filesystem marked `MPBUSY'.
1792 */
1793 int
1794 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1795 {
1796 struct vnode *vp;
1797 struct ufsmount *ump = VFSTOUFS(mp);
1798 struct fs *fs;
1799 struct vnode_iterator *marker;
1800 int error, allerror = 0;
1801 bool is_suspending;
1802 struct ffs_sync_ctx ctx;
1803
1804 fs = ump->um_fs;
1805 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1806 printf("fs = %s\n", fs->fs_fsmnt);
1807 panic("update: rofs mod");
1808 }
1809
1810 fstrans_start(mp, FSTRANS_SHARED);
1811 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1812 /*
1813 * Write back each (modified) inode.
1814 */
1815 vfs_vnode_iterator_init(mp, &marker);
1816
1817 ctx.waitfor = waitfor;
1818 ctx.is_suspending = is_suspending;
1819 while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
1820 {
1821 error = vn_lock(vp, LK_EXCLUSIVE);
1822 if (error) {
1823 vrele(vp);
1824 continue;
1825 }
1826 if (waitfor == MNT_LAZY) {
1827 error = UFS_WAPBL_BEGIN(vp->v_mount);
1828 if (!error) {
1829 error = ffs_update(vp, NULL, NULL,
1830 UPDATE_CLOSE);
1831 UFS_WAPBL_END(vp->v_mount);
1832 }
1833 } else {
1834 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1835 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1836 }
1837 if (error)
1838 allerror = error;
1839 vput(vp);
1840 }
1841 vfs_vnode_iterator_destroy(marker);
1842
1843 /*
1844 * Force stale file system control information to be flushed.
1845 */
1846 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1847 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1848 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1849 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1850 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1851 0, 0)) != 0)
1852 allerror = error;
1853 VOP_UNLOCK(ump->um_devvp);
1854 }
1855 #if defined(QUOTA) || defined(QUOTA2)
1856 qsync(mp);
1857 #endif
1858 /*
1859 * Write back modified superblock.
1860 */
1861 if (fs->fs_fmod != 0) {
1862 fs->fs_fmod = 0;
1863 fs->fs_time = time_second;
1864 error = UFS_WAPBL_BEGIN(mp);
1865 if (error)
1866 allerror = error;
1867 else {
1868 if ((error = ffs_cgupdate(ump, waitfor)))
1869 allerror = error;
1870 UFS_WAPBL_END(mp);
1871 }
1872 }
1873
1874 #ifdef WAPBL
1875 if (mp->mnt_wapbl) {
1876 error = wapbl_flush(mp->mnt_wapbl, 0);
1877 if (error)
1878 allerror = error;
1879 }
1880 #endif
1881
1882 fstrans_done(mp);
1883 return (allerror);
1884 }
1885
1886 /*
1887 * Read an inode from disk and initialize this vnode / inode pair.
1888 * Caller assures no other thread will try to load this inode.
1889 */
1890 int
1891 ffs_loadvnode(struct mount *mp, struct vnode *vp,
1892 const void *key, size_t key_len, const void **new_key)
1893 {
1894 ino_t ino;
1895 struct fs *fs;
1896 struct inode *ip;
1897 struct ufsmount *ump;
1898 struct buf *bp;
1899 dev_t dev;
1900 int error;
1901
1902 KASSERT(key_len == sizeof(ino));
1903 memcpy(&ino, key, key_len);
1904 ump = VFSTOUFS(mp);
1905 dev = ump->um_dev;
1906 fs = ump->um_fs;
1907
1908 /* Read in the disk contents for the inode. */
1909 error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
1910 (int)fs->fs_bsize, NOCRED, 0, &bp);
1911 if (error)
1912 return error;
1913
1914 /* Allocate and initialize inode. */
1915 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1916 memset(ip, 0, sizeof(struct inode));
1917 vp->v_tag = VT_UFS;
1918 vp->v_op = ffs_vnodeop_p;
1919 vp->v_vflag |= VV_LOCKSWORK;
1920 vp->v_data = ip;
1921 ip->i_vnode = vp;
1922 ip->i_ump = ump;
1923 ip->i_fs = fs;
1924 ip->i_dev = dev;
1925 ip->i_number = ino;
1926 #if defined(QUOTA) || defined(QUOTA2)
1927 ufsquota_init(ip);
1928 #endif
1929
1930 /* Initialize genfs node. */
1931 genfs_node_init(vp, &ffs_genfsops);
1932
1933 if (ip->i_ump->um_fstype == UFS1)
1934 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1935 PR_WAITOK);
1936 else
1937 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1938 PR_WAITOK);
1939 ffs_load_inode(bp, ip, fs, ino);
1940 brelse(bp, 0);
1941
1942 /* Initialize the vnode from the inode. */
1943 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1944
1945 /* Finish inode initialization. */
1946 ip->i_devvp = ump->um_devvp;
1947 vref(ip->i_devvp);
1948
1949 /*
1950 * Ensure that uid and gid are correct. This is a temporary
1951 * fix until fsck has been changed to do the update.
1952 */
1953
1954 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1955 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1956 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1957 } /* XXX */
1958 uvm_vnp_setsize(vp, ip->i_size);
1959 *new_key = &ip->i_number;
1960 return 0;
1961 }
1962
1963 /*
1964 * File handle to vnode
1965 *
1966 * Have to be really careful about stale file handles:
1967 * - check that the inode number is valid
1968 * - call ffs_vget() to get the locked inode
1969 * - check for an unallocated inode (i_mode == 0)
1970 * - check that the given client host has export rights and return
1971 * those rights via. exflagsp and credanonp
1972 */
1973 int
1974 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1975 {
1976 struct ufid ufh;
1977 struct fs *fs;
1978
1979 if (fhp->fid_len != sizeof(struct ufid))
1980 return EINVAL;
1981
1982 memcpy(&ufh, fhp, sizeof(ufh));
1983 fs = VFSTOUFS(mp)->um_fs;
1984 if (ufh.ufid_ino < UFS_ROOTINO ||
1985 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1986 return (ESTALE);
1987 return (ufs_fhtovp(mp, &ufh, vpp));
1988 }
1989
1990 /*
1991 * Vnode pointer to File handle
1992 */
1993 /* ARGSUSED */
1994 int
1995 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1996 {
1997 struct inode *ip;
1998 struct ufid ufh;
1999
2000 if (*fh_size < sizeof(struct ufid)) {
2001 *fh_size = sizeof(struct ufid);
2002 return E2BIG;
2003 }
2004 ip = VTOI(vp);
2005 *fh_size = sizeof(struct ufid);
2006 memset(&ufh, 0, sizeof(ufh));
2007 ufh.ufid_len = sizeof(struct ufid);
2008 ufh.ufid_ino = ip->i_number;
2009 ufh.ufid_gen = ip->i_gen;
2010 memcpy(fhp, &ufh, sizeof(ufh));
2011 return (0);
2012 }
2013
2014 void
2015 ffs_init(void)
2016 {
2017 if (ffs_initcount++ > 0)
2018 return;
2019
2020 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2021 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2022 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2023 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2024 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2025 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2026 ufs_init();
2027 }
2028
2029 void
2030 ffs_reinit(void)
2031 {
2032
2033 ufs_reinit();
2034 }
2035
2036 void
2037 ffs_done(void)
2038 {
2039 if (--ffs_initcount > 0)
2040 return;
2041
2042 ufs_done();
2043 pool_cache_destroy(ffs_dinode2_cache);
2044 pool_cache_destroy(ffs_dinode1_cache);
2045 pool_cache_destroy(ffs_inode_cache);
2046 }
2047
2048 /*
2049 * Write a superblock and associated information back to disk.
2050 */
2051 int
2052 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2053 {
2054 struct fs *fs = mp->um_fs;
2055 struct buf *bp;
2056 int error = 0;
2057 u_int32_t saveflag;
2058
2059 error = ffs_getblk(mp->um_devvp,
2060 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2061 fs->fs_sbsize, false, &bp);
2062 if (error)
2063 return error;
2064 saveflag = fs->fs_flags & FS_INTERNAL;
2065 fs->fs_flags &= ~FS_INTERNAL;
2066
2067 memcpy(bp->b_data, fs, fs->fs_sbsize);
2068
2069 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2070 #ifdef FFS_EI
2071 if (mp->um_flags & UFS_NEEDSWAP)
2072 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
2073 #endif
2074 fs->fs_flags |= saveflag;
2075
2076 if (waitfor == MNT_WAIT)
2077 error = bwrite(bp);
2078 else
2079 bawrite(bp);
2080 return (error);
2081 }
2082
2083 int
2084 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2085 {
2086 struct fs *fs = mp->um_fs;
2087 struct buf *bp;
2088 int blks;
2089 void *space;
2090 int i, size, error = 0, allerror = 0;
2091
2092 allerror = ffs_sbupdate(mp, waitfor);
2093 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2094 space = fs->fs_csp;
2095 for (i = 0; i < blks; i += fs->fs_frag) {
2096 size = fs->fs_bsize;
2097 if (i + fs->fs_frag > blks)
2098 size = (blks - i) * fs->fs_fsize;
2099 error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2100 FFS_NOBLK, size, false, &bp);
2101 if (error)
2102 break;
2103 #ifdef FFS_EI
2104 if (mp->um_flags & UFS_NEEDSWAP)
2105 ffs_csum_swap((struct csum*)space,
2106 (struct csum*)bp->b_data, size);
2107 else
2108 #endif
2109 memcpy(bp->b_data, space, (u_int)size);
2110 space = (char *)space + size;
2111 if (waitfor == MNT_WAIT)
2112 error = bwrite(bp);
2113 else
2114 bawrite(bp);
2115 }
2116 if (!allerror && error)
2117 allerror = error;
2118 return (allerror);
2119 }
2120
2121 int
2122 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2123 int attrnamespace, const char *attrname)
2124 {
2125 #ifdef UFS_EXTATTR
2126 /*
2127 * File-backed extended attributes are only supported on UFS1.
2128 * UFS2 has native extended attributes.
2129 */
2130 if (VFSTOUFS(mp)->um_fstype == UFS1)
2131 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2132 #endif
2133 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2134 }
2135
2136 int
2137 ffs_suspendctl(struct mount *mp, int cmd)
2138 {
2139 int error;
2140 struct lwp *l = curlwp;
2141
2142 switch (cmd) {
2143 case SUSPEND_SUSPEND:
2144 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2145 return error;
2146 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2147 if (error == 0)
2148 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2149 #ifdef WAPBL
2150 if (error == 0 && mp->mnt_wapbl)
2151 error = wapbl_flush(mp->mnt_wapbl, 1);
2152 #endif
2153 if (error != 0) {
2154 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2155 return error;
2156 }
2157 return 0;
2158
2159 case SUSPEND_RESUME:
2160 return fstrans_setstate(mp, FSTRANS_NORMAL);
2161
2162 default:
2163 return EINVAL;
2164 }
2165 }
2166
2167 /*
2168 * Synch vnode for a mounted file system.
2169 */
2170 static int
2171 ffs_vfs_fsync(vnode_t *vp, int flags)
2172 {
2173 int error, i, pflags;
2174 #ifdef WAPBL
2175 struct mount *mp;
2176 #endif
2177
2178 KASSERT(vp->v_type == VBLK);
2179 KASSERT(spec_node_getmountedfs(vp) != NULL);
2180
2181 /*
2182 * Flush all dirty data associated with the vnode.
2183 */
2184 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2185 if ((flags & FSYNC_WAIT) != 0)
2186 pflags |= PGO_SYNCIO;
2187 mutex_enter(vp->v_interlock);
2188 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2189 if (error)
2190 return error;
2191
2192 #ifdef WAPBL
2193 mp = spec_node_getmountedfs(vp);
2194 if (mp && mp->mnt_wapbl) {
2195 /*
2196 * Don't bother writing out metadata if the syncer is
2197 * making the request. We will let the sync vnode
2198 * write it out in a single burst through a call to
2199 * VFS_SYNC().
2200 */
2201 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2202 return 0;
2203
2204 /*
2205 * Don't flush the log if the vnode being flushed
2206 * contains no dirty buffers that could be in the log.
2207 */
2208 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2209 error = wapbl_flush(mp->mnt_wapbl, 0);
2210 if (error)
2211 return error;
2212 }
2213
2214 if ((flags & FSYNC_WAIT) != 0) {
2215 mutex_enter(vp->v_interlock);
2216 while (vp->v_numoutput)
2217 cv_wait(&vp->v_cv, vp->v_interlock);
2218 mutex_exit(vp->v_interlock);
2219 }
2220
2221 return 0;
2222 }
2223 #endif /* WAPBL */
2224
2225 error = vflushbuf(vp, flags);
2226 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2227 i = 1;
2228 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2229 kauth_cred_get());
2230 }
2231
2232 return error;
2233 }
2234