ffs_vfsops.c revision 1.315 1 /* $NetBSD: ffs_vfsops.c,v 1.315 2015/02/14 10:21:29 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.315 2015/02/14 10:21:29 maxv Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/disk.h>
83 #include <sys/mbuf.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/fstrans.h>
96 #include <sys/module.h>
97
98 #include <miscfs/genfs/genfs.h>
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufs_extern.h>
106 #include <ufs/ufs/ufs_bswap.h>
107 #include <ufs/ufs/ufs_wapbl.h>
108
109 #include <ufs/ffs/fs.h>
110 #include <ufs/ffs/ffs_extern.h>
111
112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
113
114 static int
115 ffs_vfs_fsync(vnode_t *, int);
116
117 static int
118 ffs_superblock_validate(struct fs *fs);
119
120 static struct sysctllog *ffs_sysctl_log;
121
122 static kauth_listener_t ffs_snapshot_listener;
123
124 /* how many times ffs_init() was called */
125 int ffs_initcount = 0;
126
127 #ifdef DEBUG_FFS_MOUNT
128 #define DPRINTF(a) printf a
129 #else
130 #define DPRINTF(a) do {} while (/*CONSTCOND*/0)
131 #endif
132
133 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
134 extern const struct vnodeopv_desc ffs_specop_opv_desc;
135 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
136
137 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
138 &ffs_vnodeop_opv_desc,
139 &ffs_specop_opv_desc,
140 &ffs_fifoop_opv_desc,
141 NULL,
142 };
143
144 struct vfsops ffs_vfsops = {
145 .vfs_name = MOUNT_FFS,
146 .vfs_min_mount_data = sizeof (struct ufs_args),
147 .vfs_mount = ffs_mount,
148 .vfs_start = ufs_start,
149 .vfs_unmount = ffs_unmount,
150 .vfs_root = ufs_root,
151 .vfs_quotactl = ufs_quotactl,
152 .vfs_statvfs = ffs_statvfs,
153 .vfs_sync = ffs_sync,
154 .vfs_vget = ufs_vget,
155 .vfs_loadvnode = ffs_loadvnode,
156 .vfs_fhtovp = ffs_fhtovp,
157 .vfs_vptofh = ffs_vptofh,
158 .vfs_init = ffs_init,
159 .vfs_reinit = ffs_reinit,
160 .vfs_done = ffs_done,
161 .vfs_mountroot = ffs_mountroot,
162 .vfs_snapshot = ffs_snapshot,
163 .vfs_extattrctl = ffs_extattrctl,
164 .vfs_suspendctl = ffs_suspendctl,
165 .vfs_renamelock_enter = genfs_renamelock_enter,
166 .vfs_renamelock_exit = genfs_renamelock_exit,
167 .vfs_fsync = ffs_vfs_fsync,
168 .vfs_opv_descs = ffs_vnodeopv_descs
169 };
170
171 static const struct genfs_ops ffs_genfsops = {
172 .gop_size = ffs_gop_size,
173 .gop_alloc = ufs_gop_alloc,
174 .gop_write = genfs_gop_write,
175 .gop_markupdate = ufs_gop_markupdate,
176 };
177
178 static const struct ufs_ops ffs_ufsops = {
179 .uo_itimes = ffs_itimes,
180 .uo_update = ffs_update,
181 .uo_truncate = ffs_truncate,
182 .uo_valloc = ffs_valloc,
183 .uo_vfree = ffs_vfree,
184 .uo_balloc = ffs_balloc,
185 .uo_snapgone = ffs_snapgone,
186 };
187
188 static int
189 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
190 void *arg0, void *arg1, void *arg2, void *arg3)
191 {
192 vnode_t *vp = arg2;
193 int result = KAUTH_RESULT_DEFER;
194
195 if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
196 return result;
197
198 if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
199 result = KAUTH_RESULT_ALLOW;
200
201 return result;
202 }
203
204 static int
205 ffs_modcmd(modcmd_t cmd, void *arg)
206 {
207 int error;
208
209 #if 0
210 extern int doasyncfree;
211 #endif
212 #ifdef UFS_EXTATTR
213 extern int ufs_extattr_autocreate;
214 #endif
215 extern int ffs_log_changeopt;
216
217 switch (cmd) {
218 case MODULE_CMD_INIT:
219 error = vfs_attach(&ffs_vfsops);
220 if (error != 0)
221 break;
222
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "ffs",
226 SYSCTL_DESCR("Berkeley Fast File System"),
227 NULL, 0, NULL, 0,
228 CTL_VFS, 1, CTL_EOL);
229 /*
230 * @@@ should we even bother with these first three?
231 */
232 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
233 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
234 CTLTYPE_INT, "doclusterread", NULL,
235 sysctl_notavail, 0, NULL, 0,
236 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
237 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
239 CTLTYPE_INT, "doclusterwrite", NULL,
240 sysctl_notavail, 0, NULL, 0,
241 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
242 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
244 CTLTYPE_INT, "doreallocblks", NULL,
245 sysctl_notavail, 0, NULL, 0,
246 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
247 #if 0
248 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
250 CTLTYPE_INT, "doasyncfree",
251 SYSCTL_DESCR("Release dirty blocks asynchronously"),
252 NULL, 0, &doasyncfree, 0,
253 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
254 #endif
255 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 CTLTYPE_INT, "log_changeopt",
258 SYSCTL_DESCR("Log changes in optimization strategy"),
259 NULL, 0, &ffs_log_changeopt, 0,
260 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
261 #ifdef UFS_EXTATTR
262 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 CTLTYPE_INT, "extattr_autocreate",
265 SYSCTL_DESCR("Size of attribute for "
266 "backing file autocreation"),
267 NULL, 0, &ufs_extattr_autocreate, 0,
268 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
269
270 #endif /* UFS_EXTATTR */
271
272 ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
273 ffs_snapshot_cb, NULL);
274 if (ffs_snapshot_listener == NULL)
275 printf("ffs_modcmd: can't listen on system scope.\n");
276
277 break;
278 case MODULE_CMD_FINI:
279 error = vfs_detach(&ffs_vfsops);
280 if (error != 0)
281 break;
282 sysctl_teardown(&ffs_sysctl_log);
283 if (ffs_snapshot_listener != NULL)
284 kauth_unlisten_scope(ffs_snapshot_listener);
285 break;
286 default:
287 error = ENOTTY;
288 break;
289 }
290
291 return (error);
292 }
293
294 pool_cache_t ffs_inode_cache;
295 pool_cache_t ffs_dinode1_cache;
296 pool_cache_t ffs_dinode2_cache;
297
298 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
299 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
300
301 /*
302 * Called by main() when ffs is going to be mounted as root.
303 */
304
305 int
306 ffs_mountroot(void)
307 {
308 struct fs *fs;
309 struct mount *mp;
310 struct lwp *l = curlwp; /* XXX */
311 struct ufsmount *ump;
312 int error;
313
314 if (device_class(root_device) != DV_DISK)
315 return (ENODEV);
316
317 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
318 vrele(rootvp);
319 return (error);
320 }
321
322 /*
323 * We always need to be able to mount the root file system.
324 */
325 mp->mnt_flag |= MNT_FORCE;
326 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
327 vfs_unbusy(mp, false, NULL);
328 vfs_destroy(mp);
329 return (error);
330 }
331 mp->mnt_flag &= ~MNT_FORCE;
332 mountlist_append(mp);
333 ump = VFSTOUFS(mp);
334 fs = ump->um_fs;
335 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
336 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
337 (void)ffs_statvfs(mp, &mp->mnt_stat);
338 vfs_unbusy(mp, false, NULL);
339 setrootfstime((time_t)fs->fs_time);
340 return (0);
341 }
342
343 /*
344 * VFS Operations.
345 *
346 * mount system call
347 */
348 int
349 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
350 {
351 struct lwp *l = curlwp;
352 struct vnode *devvp = NULL;
353 struct ufs_args *args = data;
354 struct ufsmount *ump = NULL;
355 struct fs *fs;
356 int error = 0, flags, update;
357 mode_t accessmode;
358
359 if (args == NULL) {
360 DPRINTF(("%s: NULL args\n", __func__));
361 return EINVAL;
362 }
363 if (*data_len < sizeof(*args)) {
364 DPRINTF(("%s: bad size args %zu != %zu\n",
365 __func__, *data_len, sizeof(*args)));
366 return EINVAL;
367 }
368
369 if (mp->mnt_flag & MNT_GETARGS) {
370 ump = VFSTOUFS(mp);
371 if (ump == NULL) {
372 DPRINTF(("%s: no ump\n", __func__));
373 return EIO;
374 }
375 args->fspec = NULL;
376 *data_len = sizeof *args;
377 return 0;
378 }
379
380 update = mp->mnt_flag & MNT_UPDATE;
381
382 /* Check arguments */
383 if (args->fspec != NULL) {
384 /*
385 * Look up the name and verify that it's sane.
386 */
387 error = namei_simple_user(args->fspec,
388 NSM_FOLLOW_NOEMULROOT, &devvp);
389 if (error != 0) {
390 DPRINTF(("%s: namei_simple_user %d\n", __func__,
391 error));
392 return error;
393 }
394
395 if (!update) {
396 /*
397 * Be sure this is a valid block device
398 */
399 if (devvp->v_type != VBLK) {
400 DPRINTF(("%s: non block device %d\n",
401 __func__, devvp->v_type));
402 error = ENOTBLK;
403 } else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
404 DPRINTF(("%s: can't find block device 0x%jx\n",
405 __func__, devvp->v_rdev));
406 error = ENXIO;
407 }
408 } else {
409 /*
410 * Be sure we're still naming the same device
411 * used for our initial mount
412 */
413 ump = VFSTOUFS(mp);
414 if (devvp != ump->um_devvp) {
415 if (devvp->v_rdev != ump->um_devvp->v_rdev) {
416 DPRINTF(("%s: wrong device 0x%jx"
417 " != 0x%jx\n", __func__,
418 (uintmax_t)devvp->v_rdev,
419 (uintmax_t)ump->um_devvp->v_rdev));
420 error = EINVAL;
421 } else {
422 vrele(devvp);
423 devvp = ump->um_devvp;
424 vref(devvp);
425 }
426 }
427 }
428 } else {
429 if (!update) {
430 /* New mounts must have a filename for the device */
431 DPRINTF(("%s: no filename for mount\n", __func__));
432 return EINVAL;
433 } else {
434 /* Use the extant mount */
435 ump = VFSTOUFS(mp);
436 devvp = ump->um_devvp;
437 vref(devvp);
438 }
439 }
440
441 /*
442 * If mount by non-root, then verify that user has necessary
443 * permissions on the device.
444 *
445 * Permission to update a mount is checked higher, so here we presume
446 * updating the mount is okay (for example, as far as securelevel goes)
447 * which leaves us with the normal check.
448 */
449 if (error == 0) {
450 accessmode = VREAD;
451 if (update ?
452 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
453 (mp->mnt_flag & MNT_RDONLY) == 0)
454 accessmode |= VWRITE;
455 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
456 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
457 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
458 KAUTH_ARG(accessmode));
459 if (error) {
460 DPRINTF(("%s: kauth %d\n", __func__, error));
461 }
462 VOP_UNLOCK(devvp);
463 }
464
465 if (error) {
466 vrele(devvp);
467 return (error);
468 }
469
470 #ifdef WAPBL
471 /* WAPBL can only be enabled on a r/w mount. */
472 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
473 mp->mnt_flag &= ~MNT_LOG;
474 }
475 #else /* !WAPBL */
476 mp->mnt_flag &= ~MNT_LOG;
477 #endif /* !WAPBL */
478
479 if (!update) {
480 int xflags;
481
482 if (mp->mnt_flag & MNT_RDONLY)
483 xflags = FREAD;
484 else
485 xflags = FREAD | FWRITE;
486 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
487 error = VOP_OPEN(devvp, xflags, FSCRED);
488 VOP_UNLOCK(devvp);
489 if (error) {
490 DPRINTF(("%s: VOP_OPEN %d\n", __func__, error));
491 goto fail;
492 }
493 error = ffs_mountfs(devvp, mp, l);
494 if (error) {
495 DPRINTF(("%s: ffs_mountfs %d\n", __func__, error));
496 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
497 (void)VOP_CLOSE(devvp, xflags, NOCRED);
498 VOP_UNLOCK(devvp);
499 goto fail;
500 }
501
502 ump = VFSTOUFS(mp);
503 fs = ump->um_fs;
504 } else {
505 /*
506 * Update the mount.
507 */
508
509 /*
510 * The initial mount got a reference on this
511 * device, so drop the one obtained via
512 * namei(), above.
513 */
514 vrele(devvp);
515
516 ump = VFSTOUFS(mp);
517 fs = ump->um_fs;
518 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
519 /*
520 * Changing from r/w to r/o
521 */
522 flags = WRITECLOSE;
523 if (mp->mnt_flag & MNT_FORCE)
524 flags |= FORCECLOSE;
525 error = ffs_flushfiles(mp, flags, l);
526 if (error == 0)
527 error = UFS_WAPBL_BEGIN(mp);
528 if (error == 0 &&
529 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
530 fs->fs_clean & FS_WASCLEAN) {
531 if (mp->mnt_flag & MNT_SOFTDEP)
532 fs->fs_flags &= ~FS_DOSOFTDEP;
533 fs->fs_clean = FS_ISCLEAN;
534 (void) ffs_sbupdate(ump, MNT_WAIT);
535 }
536 if (error) {
537 DPRINTF(("%s: wapbl %d\n", __func__, error));
538 return error;
539 }
540 UFS_WAPBL_END(mp);
541 }
542
543 #ifdef WAPBL
544 if ((mp->mnt_flag & MNT_LOG) == 0) {
545 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
546 if (error) {
547 DPRINTF(("%s: ffs_wapbl_stop %d\n",
548 __func__, error));
549 return error;
550 }
551 }
552 #endif /* WAPBL */
553
554 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
555 /*
556 * Finish change from r/w to r/o
557 */
558 fs->fs_ronly = 1;
559 fs->fs_fmod = 0;
560 }
561
562 if (mp->mnt_flag & MNT_RELOAD) {
563 error = ffs_reload(mp, l->l_cred, l);
564 if (error) {
565 DPRINTF(("%s: ffs_reload %d\n",
566 __func__, error));
567 return error;
568 }
569 }
570
571 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
572 /*
573 * Changing from read-only to read/write
574 */
575 #ifndef QUOTA2
576 if (fs->fs_flags & FS_DOQUOTA2) {
577 ump->um_flags |= UFS_QUOTA2;
578 uprintf("%s: options QUOTA2 not enabled%s\n",
579 mp->mnt_stat.f_mntonname,
580 (mp->mnt_flag & MNT_FORCE) ? "" :
581 ", not mounting");
582 DPRINTF(("%s: ffs_quota2 %d\n",
583 __func__, EINVAL));
584 return EINVAL;
585 }
586 #endif
587 fs->fs_ronly = 0;
588 fs->fs_clean <<= 1;
589 fs->fs_fmod = 1;
590 #ifdef WAPBL
591 if (fs->fs_flags & FS_DOWAPBL) {
592 const char *nm = mp->mnt_stat.f_mntonname;
593 if (!mp->mnt_wapbl_replay) {
594 printf("%s: log corrupted;"
595 " replay cancelled\n", nm);
596 return EFTYPE;
597 }
598 printf("%s: replaying log to disk\n", nm);
599 error = wapbl_replay_write(mp->mnt_wapbl_replay,
600 devvp);
601 if (error) {
602 DPRINTF((
603 "%s: %s: wapbl_replay_write %d\n",
604 __func__, nm, error));
605 return error;
606 }
607 wapbl_replay_stop(mp->mnt_wapbl_replay);
608 fs->fs_clean = FS_WASCLEAN;
609 }
610 #endif /* WAPBL */
611 if (fs->fs_snapinum[0] != 0)
612 ffs_snapshot_mount(mp);
613 }
614
615 #ifdef WAPBL
616 error = ffs_wapbl_start(mp);
617 if (error) {
618 DPRINTF(("%s: ffs_wapbl_start %d\n",
619 __func__, error));
620 return error;
621 }
622 #endif /* WAPBL */
623
624 #ifdef QUOTA2
625 if (!fs->fs_ronly) {
626 error = ffs_quota2_mount(mp);
627 if (error) {
628 DPRINTF(("%s: ffs_quota2_mount %d\n",
629 __func__, error));
630 return error;
631 }
632 }
633 #endif
634
635 if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
636 ump->um_discarddata = ffs_discard_init(devvp, fs);
637
638 if (args->fspec == NULL)
639 return 0;
640 }
641
642 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
643 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
644 if (error == 0)
645 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
646 sizeof(fs->fs_fsmnt));
647 else {
648 DPRINTF(("%s: set_statvfs_info %d\n", __func__, error));
649 }
650 fs->fs_flags &= ~FS_DOSOFTDEP;
651 if (fs->fs_fmod != 0) { /* XXX */
652 int err;
653
654 fs->fs_fmod = 0;
655 if (fs->fs_clean & FS_WASCLEAN)
656 fs->fs_time = time_second;
657 else {
658 printf("%s: file system not clean (fs_clean=%#x); "
659 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
660 fs->fs_clean);
661 printf("%s: lost blocks %" PRId64 " files %d\n",
662 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
663 fs->fs_pendinginodes);
664 }
665 err = UFS_WAPBL_BEGIN(mp);
666 if (err == 0) {
667 (void) ffs_cgupdate(ump, MNT_WAIT);
668 UFS_WAPBL_END(mp);
669 }
670 }
671 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
672 printf("%s: `-o softdep' is no longer supported, "
673 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
674 mp->mnt_flag &= ~MNT_SOFTDEP;
675 }
676
677 return (error);
678
679 fail:
680 vrele(devvp);
681 return (error);
682 }
683
684 /*
685 * Reload all incore data for a filesystem (used after running fsck on
686 * the root filesystem and finding things to fix). The filesystem must
687 * be mounted read-only.
688 *
689 * Things to do to update the mount:
690 * 1) invalidate all cached meta-data.
691 * 2) re-read superblock from disk.
692 * 3) re-read summary information from disk.
693 * 4) invalidate all inactive vnodes.
694 * 5) invalidate all cached file data.
695 * 6) re-read inode data for all active vnodes.
696 */
697 int
698 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
699 {
700 struct vnode *vp, *devvp;
701 struct inode *ip;
702 void *space;
703 struct buf *bp;
704 struct fs *fs, *newfs;
705 struct dkwedge_info dkw;
706 int i, bsize, blks, error;
707 int32_t *lp, fs_sbsize;
708 struct ufsmount *ump;
709 daddr_t sblockloc;
710 struct vnode_iterator *marker;
711
712 if ((mp->mnt_flag & MNT_RDONLY) == 0)
713 return (EINVAL);
714
715 ump = VFSTOUFS(mp);
716
717 /*
718 * Step 1: invalidate all cached meta-data.
719 */
720 devvp = ump->um_devvp;
721 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
722 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
723 VOP_UNLOCK(devvp);
724 if (error)
725 panic("ffs_reload: dirty1");
726
727 /*
728 * Step 2: re-read superblock from disk. XXX: We don't handle
729 * possibility that superblock moved. Which implies that we don't
730 * want its size to change either.
731 */
732 fs = ump->um_fs;
733 fs_sbsize = fs->fs_sbsize;
734 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
735 NOCRED, 0, &bp);
736 if (error)
737 return (error);
738 newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
739 memcpy(newfs, bp->b_data, fs_sbsize);
740
741 #ifdef FFS_EI
742 if (ump->um_flags & UFS_NEEDSWAP) {
743 ffs_sb_swap((struct fs*)bp->b_data, newfs);
744 fs->fs_flags |= FS_SWAPPED;
745 } else
746 #endif
747 fs->fs_flags &= ~FS_SWAPPED;
748
749 /* We don't want the superblock size to change. */
750 if (newfs->fs_sbsize != fs_sbsize) {
751 brelse(bp, 0);
752 kmem_free(newfs, fs_sbsize);
753 return (EINVAL);
754 }
755 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
756 newfs->fs_magic != FS_UFS2_MAGIC)) {
757 brelse(bp, 0);
758 kmem_free(newfs, fs_sbsize);
759 return (EIO); /* XXX needs translation */
760 }
761 if (!ffs_superblock_validate(newfs)) {
762 brelse(bp, 0);
763 kmem_free(newfs, fs_sbsize);
764 return (EINVAL);
765 }
766
767 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
768 sblockloc = fs->fs_sblockloc;
769 /*
770 * Copy pointer fields back into superblock before copying in XXX
771 * new superblock. These should really be in the ufsmount. XXX
772 * Note that important parameters (eg fs_ncg) are unchanged.
773 */
774 newfs->fs_csp = fs->fs_csp;
775 newfs->fs_maxcluster = fs->fs_maxcluster;
776 newfs->fs_contigdirs = fs->fs_contigdirs;
777 newfs->fs_ronly = fs->fs_ronly;
778 newfs->fs_active = fs->fs_active;
779 memcpy(fs, newfs, (u_int)fs_sbsize);
780 brelse(bp, 0);
781 kmem_free(newfs, fs_sbsize);
782
783 /* Recheck for apple UFS filesystem */
784 ump->um_flags &= ~UFS_ISAPPLEUFS;
785 /* First check to see if this is tagged as an Apple UFS filesystem
786 * in the disklabel
787 */
788 if (getdiskinfo(devvp, &dkw) == 0 &&
789 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
790 ump->um_flags |= UFS_ISAPPLEUFS;
791 #ifdef APPLE_UFS
792 else {
793 /* Manually look for an apple ufs label, and if a valid one
794 * is found, then treat it like an Apple UFS filesystem anyway
795 *
796 * EINVAL is most probably a blocksize or alignment problem,
797 * it is unlikely that this is an Apple UFS filesystem then.
798 */
799 error = bread(devvp,
800 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
801 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
802 if (error && error != EINVAL) {
803 return error;
804 }
805 if (error == 0) {
806 error = ffs_appleufs_validate(fs->fs_fsmnt,
807 (struct appleufslabel *)bp->b_data, NULL);
808 if (error == 0)
809 ump->um_flags |= UFS_ISAPPLEUFS;
810 brelse(bp, 0);
811 }
812 bp = NULL;
813 }
814 #else
815 if (ump->um_flags & UFS_ISAPPLEUFS)
816 return (EIO);
817 #endif
818
819 if (UFS_MPISAPPLEUFS(ump)) {
820 /* see comment about NeXT below */
821 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
822 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
823 mp->mnt_iflag |= IMNT_DTYPE;
824 } else {
825 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
826 ump->um_dirblksiz = UFS_DIRBLKSIZ;
827 if (ump->um_maxsymlinklen > 0)
828 mp->mnt_iflag |= IMNT_DTYPE;
829 else
830 mp->mnt_iflag &= ~IMNT_DTYPE;
831 }
832 ffs_oldfscompat_read(fs, ump, sblockloc);
833
834 mutex_enter(&ump->um_lock);
835 ump->um_maxfilesize = fs->fs_maxfilesize;
836 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
837 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
838 mp->mnt_stat.f_mntonname, fs->fs_flags,
839 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
840 if ((mp->mnt_flag & MNT_FORCE) == 0) {
841 mutex_exit(&ump->um_lock);
842 return (EINVAL);
843 }
844 }
845 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
846 fs->fs_pendingblocks = 0;
847 fs->fs_pendinginodes = 0;
848 }
849 mutex_exit(&ump->um_lock);
850
851 ffs_statvfs(mp, &mp->mnt_stat);
852 /*
853 * Step 3: re-read summary information from disk.
854 */
855 blks = howmany(fs->fs_cssize, fs->fs_fsize);
856 space = fs->fs_csp;
857 for (i = 0; i < blks; i += fs->fs_frag) {
858 bsize = fs->fs_bsize;
859 if (i + fs->fs_frag > blks)
860 bsize = (blks - i) * fs->fs_fsize;
861 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
862 NOCRED, 0, &bp);
863 if (error) {
864 return (error);
865 }
866 #ifdef FFS_EI
867 if (UFS_FSNEEDSWAP(fs))
868 ffs_csum_swap((struct csum *)bp->b_data,
869 (struct csum *)space, bsize);
870 else
871 #endif
872 memcpy(space, bp->b_data, (size_t)bsize);
873 space = (char *)space + bsize;
874 brelse(bp, 0);
875 }
876 /*
877 * We no longer know anything about clusters per cylinder group.
878 */
879 if (fs->fs_contigsumsize > 0) {
880 lp = fs->fs_maxcluster;
881 for (i = 0; i < fs->fs_ncg; i++)
882 *lp++ = fs->fs_contigsumsize;
883 }
884
885 vfs_vnode_iterator_init(mp, &marker);
886 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
887 /*
888 * Step 4: invalidate all inactive vnodes.
889 */
890 if (vrecycle(vp))
891 continue;
892 /*
893 * Step 5: invalidate all cached file data.
894 */
895 if (vn_lock(vp, LK_EXCLUSIVE)) {
896 vrele(vp);
897 continue;
898 }
899 if (vinvalbuf(vp, 0, cred, l, 0, 0))
900 panic("ffs_reload: dirty2");
901 /*
902 * Step 6: re-read inode data for all active vnodes.
903 */
904 ip = VTOI(vp);
905 error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
906 (int)fs->fs_bsize, NOCRED, 0, &bp);
907 if (error) {
908 vput(vp);
909 break;
910 }
911 ffs_load_inode(bp, ip, fs, ip->i_number);
912 brelse(bp, 0);
913 vput(vp);
914 }
915 vfs_vnode_iterator_destroy(marker);
916 return (error);
917 }
918
919 /*
920 * Possible superblock locations ordered from most to least likely.
921 */
922 static const int sblock_try[] = SBLOCKSEARCH;
923
924
925 static int
926 ffs_superblock_validate(struct fs *fs)
927 {
928 int32_t i, fs_bshift = 0, fs_fshift = 0;
929
930 /* Check the superblock size */
931 if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
932 return 0;
933
934 /* Check the file system blocksize */
935 if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
936 return 0;
937 if (!powerof2(fs->fs_bsize))
938 return 0;
939
940 /* Check the size of frag blocks */
941 if (!powerof2(fs->fs_fsize))
942 return 0;
943
944 if (fs->fs_size == 0)
945 return 0;
946 if (fs->fs_cssize == 0)
947 return 0;
948
949 /* Block size cannot be smaller than fragment size */
950 if (fs->fs_bsize < fs->fs_fsize)
951 return 0;
952
953 /* Compute fs_bshift and ensure it is consistent */
954 for (i = fs->fs_bsize; i > 1; i >>= 1)
955 fs_bshift++;
956 if (fs->fs_bshift != fs_bshift)
957 return 0;
958
959 /* Compute fs_fshift and ensure it is consistent */
960 for (i = fs->fs_fsize; i > 1; i >>= 1)
961 fs_fshift++;
962 if (fs->fs_fshift != fs_fshift)
963 return 0;
964
965 /* Now that the shifts are sanitized, we can use the ffs_ API */
966
967 /* Check the number of frag blocks */
968 if (ffs_numfrags(fs, fs->fs_bsize) > MAXFRAG)
969 return 0;
970
971 return 1;
972 }
973
974 /*
975 * Common code for mount and mountroot
976 */
977 int
978 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
979 {
980 struct ufsmount *ump = NULL;
981 struct buf *bp = NULL;
982 struct fs *fs = NULL;
983 dev_t dev;
984 struct dkwedge_info dkw;
985 void *space;
986 daddr_t sblockloc = 0;
987 int blks, fstype = 0;
988 int error, i, bsize, ronly, bset = 0;
989 #ifdef FFS_EI
990 int needswap = 0; /* keep gcc happy */
991 #endif
992 int32_t *lp;
993 kauth_cred_t cred;
994 u_int32_t fs_sbsize = 8192; /* keep gcc happy*/
995 u_int32_t allocsbsize;
996
997 dev = devvp->v_rdev;
998 cred = l ? l->l_cred : NOCRED;
999
1000 /* Flush out any old buffers remaining from a previous use. */
1001 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1002 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
1003 VOP_UNLOCK(devvp);
1004 if (error) {
1005 DPRINTF(("%s: vinvalbuf %d\n", __func__, error));
1006 return error;
1007 }
1008
1009 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
1010
1011 error = fstrans_mount(mp);
1012 if (error) {
1013 DPRINTF(("%s: fstrans_mount %d\n", __func__, error));
1014 return error;
1015 }
1016
1017 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1018 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1019 error = ffs_snapshot_init(ump);
1020 if (error) {
1021 DPRINTF(("%s: ffs_snapshot_init %d\n", __func__, error));
1022 goto out;
1023 }
1024 ump->um_ops = &ffs_ufsops;
1025
1026 #ifdef WAPBL
1027 sbagain:
1028 #endif
1029 /*
1030 * Try reading the superblock in each of its possible locations.
1031 */
1032 for (i = 0; ; i++) {
1033 daddr_t fsblockloc;
1034
1035 if (bp != NULL) {
1036 brelse(bp, BC_NOCACHE);
1037 bp = NULL;
1038 }
1039 if (sblock_try[i] == -1) {
1040 DPRINTF(("%s: sblock_try\n", __func__));
1041 error = EINVAL;
1042 fs = NULL;
1043 goto out;
1044 }
1045
1046 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1047 cred, 0, &bp);
1048 if (error) {
1049 DPRINTF(("%s: bread@0x%x %d\n", __func__,
1050 sblock_try[i] / DEV_BSIZE, error));
1051 fs = NULL;
1052 goto out;
1053 }
1054 fs = (struct fs*)bp->b_data;
1055
1056 fsblockloc = sblockloc = sblock_try[i];
1057 DPRINTF(("%s: fs_magic 0x%x\n", __func__, fs->fs_magic));
1058
1059 /*
1060 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1061 * size to read the superblock. Once read, we swap the whole
1062 * superblock structure.
1063 */
1064 if (fs->fs_magic == FS_UFS1_MAGIC) {
1065 fs_sbsize = fs->fs_sbsize;
1066 fstype = UFS1;
1067 #ifdef FFS_EI
1068 needswap = 0;
1069 } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1070 fs_sbsize = bswap32(fs->fs_sbsize);
1071 fstype = UFS1;
1072 needswap = 1;
1073 #endif
1074 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
1075 fs_sbsize = fs->fs_sbsize;
1076 fstype = UFS2;
1077 #ifdef FFS_EI
1078 needswap = 0;
1079 } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1080 fs_sbsize = bswap32(fs->fs_sbsize);
1081 fstype = UFS2;
1082 needswap = 1;
1083 #endif
1084 } else
1085 continue;
1086
1087 /* fs->fs_sblockloc isn't defined for old filesystems */
1088 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1089 if (sblockloc == SBLOCK_UFS2)
1090 /*
1091 * This is likely to be the first alternate
1092 * in a filesystem with 64k blocks.
1093 * Don't use it.
1094 */
1095 continue;
1096 fsblockloc = sblockloc;
1097 } else {
1098 fsblockloc = fs->fs_sblockloc;
1099 #ifdef FFS_EI
1100 if (needswap)
1101 fsblockloc = bswap64(fsblockloc);
1102 #endif
1103 }
1104
1105 /* Check we haven't found an alternate superblock */
1106 if (fsblockloc != sblockloc)
1107 continue;
1108
1109 /* Check the superblock size */
1110 if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1111 continue;
1112 fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1113 memcpy(fs, bp->b_data, fs_sbsize);
1114
1115 /* Swap the whole superblock structure, if necessary. */
1116 #ifdef FFS_EI
1117 if (needswap) {
1118 ffs_sb_swap((struct fs*)bp->b_data, fs);
1119 fs->fs_flags |= FS_SWAPPED;
1120 } else
1121 #endif
1122 fs->fs_flags &= ~FS_SWAPPED;
1123
1124 /*
1125 * Now that everything is swapped, the superblock is ready to
1126 * be sanitized.
1127 */
1128 if (!ffs_superblock_validate(fs)) {
1129 kmem_free(fs, fs_sbsize);
1130 continue;
1131 }
1132
1133 /* Ok seems to be a good superblock */
1134 break;
1135 }
1136
1137 ump->um_fs = fs;
1138
1139 #ifdef WAPBL
1140 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1141 error = ffs_wapbl_replay_start(mp, fs, devvp);
1142 if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1143 DPRINTF(("%s: ffs_wapbl_replay_start %d\n", __func__,
1144 error));
1145 goto out;
1146 }
1147 if (!error) {
1148 if (!ronly) {
1149 /* XXX fsmnt may be stale. */
1150 printf("%s: replaying log to disk\n",
1151 fs->fs_fsmnt);
1152 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1153 devvp);
1154 if (error) {
1155 DPRINTF(("%s: wapbl_replay_write %d\n",
1156 __func__, error));
1157 goto out;
1158 }
1159 wapbl_replay_stop(mp->mnt_wapbl_replay);
1160 fs->fs_clean = FS_WASCLEAN;
1161 } else {
1162 /* XXX fsmnt may be stale */
1163 printf("%s: replaying log to memory\n",
1164 fs->fs_fsmnt);
1165 }
1166
1167 /* Force a re-read of the superblock */
1168 brelse(bp, BC_INVAL);
1169 bp = NULL;
1170 kmem_free(fs, fs_sbsize);
1171 fs = NULL;
1172 goto sbagain;
1173 }
1174 }
1175 #else /* !WAPBL */
1176 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1177 error = EPERM;
1178 DPRINTF(("%s: no force %d\n", __func__, error));
1179 goto out;
1180 }
1181 #endif /* !WAPBL */
1182
1183 ffs_oldfscompat_read(fs, ump, sblockloc);
1184 ump->um_maxfilesize = fs->fs_maxfilesize;
1185
1186 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1187 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1188 mp->mnt_stat.f_mntonname, fs->fs_flags,
1189 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1190 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1191 error = EINVAL;
1192 DPRINTF(("%s: no force %d\n", __func__, error));
1193 goto out;
1194 }
1195 }
1196
1197 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1198 fs->fs_pendingblocks = 0;
1199 fs->fs_pendinginodes = 0;
1200 }
1201
1202 ump->um_fstype = fstype;
1203 if (fs->fs_sbsize < SBLOCKSIZE)
1204 brelse(bp, BC_INVAL);
1205 else
1206 brelse(bp, 0);
1207 bp = NULL;
1208
1209 /* First check to see if this is tagged as an Apple UFS filesystem
1210 * in the disklabel
1211 */
1212 if (getdiskinfo(devvp, &dkw) == 0 &&
1213 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1214 ump->um_flags |= UFS_ISAPPLEUFS;
1215 #ifdef APPLE_UFS
1216 else {
1217 /* Manually look for an apple ufs label, and if a valid one
1218 * is found, then treat it like an Apple UFS filesystem anyway
1219 */
1220 error = bread(devvp,
1221 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1222 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1223 if (error) {
1224 DPRINTF(("%s: apple bread@0x%jx %d\n", __func__,
1225 (intmax_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1226 error));
1227 goto out;
1228 }
1229 error = ffs_appleufs_validate(fs->fs_fsmnt,
1230 (struct appleufslabel *)bp->b_data, NULL);
1231 if (error == 0)
1232 ump->um_flags |= UFS_ISAPPLEUFS;
1233 brelse(bp, 0);
1234 bp = NULL;
1235 }
1236 #else
1237 if (ump->um_flags & UFS_ISAPPLEUFS) {
1238 DPRINTF(("%s: bad apple\n", __func__));
1239 error = EINVAL;
1240 goto out;
1241 }
1242 #endif
1243
1244 #if 0
1245 /*
1246 * XXX This code changes the behaviour of mounting dirty filesystems, to
1247 * XXX require "mount -f ..." to mount them. This doesn't match what
1248 * XXX mount(8) describes and is disabled for now.
1249 */
1250 /*
1251 * If the file system is not clean, don't allow it to be mounted
1252 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1253 * for the root file system.)
1254 */
1255 if (fs->fs_flags & FS_DOWAPBL) {
1256 /*
1257 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1258 * bit is set, although there's a window in unmount where it
1259 * could be FS_ISCLEAN
1260 */
1261 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1262 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1263 error = EPERM;
1264 goto out;
1265 }
1266 } else
1267 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1268 (mp->mnt_flag & MNT_FORCE) == 0) {
1269 error = EPERM;
1270 goto out;
1271 }
1272 #endif
1273
1274 /*
1275 * Verify that we can access the last block in the fs
1276 * if we're mounting read/write.
1277 */
1278
1279 if (!ronly) {
1280 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1281 fs->fs_fsize, cred, 0, &bp);
1282 if (error) {
1283 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1284 (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1285 error));
1286 bset = BC_INVAL;
1287 goto out;
1288 }
1289 if (bp->b_bcount != fs->fs_fsize) {
1290 DPRINTF(("%s: bcount %x != fsize %x\n", __func__,
1291 bp->b_bcount, fs->fs_fsize));
1292 error = EINVAL;
1293 }
1294 brelse(bp, BC_INVAL);
1295 bp = NULL;
1296 }
1297
1298 fs->fs_ronly = ronly;
1299 /* Don't bump fs_clean if we're replaying journal */
1300 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1301 if (ronly == 0) {
1302 fs->fs_clean <<= 1;
1303 fs->fs_fmod = 1;
1304 }
1305 }
1306
1307 bsize = fs->fs_cssize;
1308 blks = howmany(bsize, fs->fs_fsize);
1309 if (fs->fs_contigsumsize > 0)
1310 bsize += fs->fs_ncg * sizeof(int32_t);
1311 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1312 allocsbsize = bsize;
1313 space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1314 fs->fs_csp = space;
1315
1316 for (i = 0; i < blks; i += fs->fs_frag) {
1317 bsize = fs->fs_bsize;
1318 if (i + fs->fs_frag > blks)
1319 bsize = (blks - i) * fs->fs_fsize;
1320 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1321 cred, 0, &bp);
1322 if (error) {
1323 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1324 (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1325 error));
1326 goto out1;
1327 }
1328 #ifdef FFS_EI
1329 if (needswap)
1330 ffs_csum_swap((struct csum *)bp->b_data,
1331 (struct csum *)space, bsize);
1332 else
1333 #endif
1334 memcpy(space, bp->b_data, (u_int)bsize);
1335
1336 space = (char *)space + bsize;
1337 brelse(bp, 0);
1338 bp = NULL;
1339 }
1340 if (fs->fs_contigsumsize > 0) {
1341 fs->fs_maxcluster = lp = space;
1342 for (i = 0; i < fs->fs_ncg; i++)
1343 *lp++ = fs->fs_contigsumsize;
1344 space = lp;
1345 }
1346 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1347 fs->fs_contigdirs = space;
1348 space = (char *)space + bsize;
1349 memset(fs->fs_contigdirs, 0, bsize);
1350 /* Compatibility for old filesystems - XXX */
1351 if (fs->fs_avgfilesize <= 0)
1352 fs->fs_avgfilesize = AVFILESIZ;
1353 if (fs->fs_avgfpdir <= 0)
1354 fs->fs_avgfpdir = AFPDIR;
1355 fs->fs_active = NULL;
1356 mp->mnt_data = ump;
1357 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1358 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1359 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1360 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1361 if (UFS_MPISAPPLEUFS(ump)) {
1362 /* NeXT used to keep short symlinks in the inode even
1363 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1364 * is probably -1, but we still need to be able to identify
1365 * short symlinks.
1366 */
1367 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1368 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1369 mp->mnt_iflag |= IMNT_DTYPE;
1370 } else {
1371 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1372 ump->um_dirblksiz = UFS_DIRBLKSIZ;
1373 if (ump->um_maxsymlinklen > 0)
1374 mp->mnt_iflag |= IMNT_DTYPE;
1375 else
1376 mp->mnt_iflag &= ~IMNT_DTYPE;
1377 }
1378 mp->mnt_fs_bshift = fs->fs_bshift;
1379 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1380 mp->mnt_flag |= MNT_LOCAL;
1381 mp->mnt_iflag |= IMNT_MPSAFE;
1382 #ifdef FFS_EI
1383 if (needswap)
1384 ump->um_flags |= UFS_NEEDSWAP;
1385 #endif
1386 ump->um_mountp = mp;
1387 ump->um_dev = dev;
1388 ump->um_devvp = devvp;
1389 ump->um_nindir = fs->fs_nindir;
1390 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1391 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1392 ump->um_seqinc = fs->fs_frag;
1393 for (i = 0; i < MAXQUOTAS; i++)
1394 ump->um_quotas[i] = NULLVP;
1395 spec_node_setmountedfs(devvp, mp);
1396 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1397 ffs_snapshot_mount(mp);
1398 #ifdef WAPBL
1399 if (!ronly) {
1400 KDASSERT(fs->fs_ronly == 0);
1401 /*
1402 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1403 * needs to create a new log file in-filesystem.
1404 */
1405 error = ffs_statvfs(mp, &mp->mnt_stat);
1406 if (error) {
1407 DPRINTF(("%s: ffs_statvfs %d\n", __func__, error));
1408 goto out1;
1409 }
1410
1411 error = ffs_wapbl_start(mp);
1412 if (error) {
1413 DPRINTF(("%s: ffs_wapbl_start %d\n", __func__, error));
1414 goto out1;
1415 }
1416 }
1417 #endif /* WAPBL */
1418 if (ronly == 0) {
1419 #ifdef QUOTA2
1420 error = ffs_quota2_mount(mp);
1421 if (error) {
1422 DPRINTF(("%s: ffs_quota2_mount %d\n", __func__, error));
1423 goto out1;
1424 }
1425 #else
1426 if (fs->fs_flags & FS_DOQUOTA2) {
1427 ump->um_flags |= UFS_QUOTA2;
1428 uprintf("%s: options QUOTA2 not enabled%s\n",
1429 mp->mnt_stat.f_mntonname,
1430 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1431 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1432 error = EINVAL;
1433 DPRINTF(("%s: quota disabled %d\n", __func__,
1434 error));
1435 goto out1;
1436 }
1437 }
1438 #endif
1439 }
1440
1441 if (mp->mnt_flag & MNT_DISCARD)
1442 ump->um_discarddata = ffs_discard_init(devvp, fs);
1443
1444 return (0);
1445 out1:
1446 kmem_free(fs->fs_csp, allocsbsize);
1447 out:
1448 #ifdef WAPBL
1449 if (mp->mnt_wapbl_replay) {
1450 wapbl_replay_stop(mp->mnt_wapbl_replay);
1451 wapbl_replay_free(mp->mnt_wapbl_replay);
1452 mp->mnt_wapbl_replay = 0;
1453 }
1454 #endif
1455
1456 fstrans_unmount(mp);
1457 if (fs)
1458 kmem_free(fs, fs->fs_sbsize);
1459 spec_node_setmountedfs(devvp, NULL);
1460 if (bp)
1461 brelse(bp, bset);
1462 if (ump) {
1463 if (ump->um_oldfscompat)
1464 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1465 mutex_destroy(&ump->um_lock);
1466 kmem_free(ump, sizeof(*ump));
1467 mp->mnt_data = NULL;
1468 }
1469 return (error);
1470 }
1471
1472 /*
1473 * Sanity checks for loading old filesystem superblocks.
1474 * See ffs_oldfscompat_write below for unwound actions.
1475 *
1476 * XXX - Parts get retired eventually.
1477 * Unfortunately new bits get added.
1478 */
1479 static void
1480 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1481 {
1482 off_t maxfilesize;
1483 int32_t *extrasave;
1484
1485 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1486 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1487 return;
1488
1489 if (!ump->um_oldfscompat)
1490 ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1491 KM_SLEEP);
1492
1493 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1494 extrasave = ump->um_oldfscompat;
1495 extrasave += 512/sizeof(int32_t);
1496 extrasave[0] = fs->fs_old_npsect;
1497 extrasave[1] = fs->fs_old_interleave;
1498 extrasave[2] = fs->fs_old_trackskew;
1499
1500 /* These fields will be overwritten by their
1501 * original values in fs_oldfscompat_write, so it is harmless
1502 * to modify them here.
1503 */
1504 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1505 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1506 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1507 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1508
1509 fs->fs_maxbsize = fs->fs_bsize;
1510 fs->fs_time = fs->fs_old_time;
1511 fs->fs_size = fs->fs_old_size;
1512 fs->fs_dsize = fs->fs_old_dsize;
1513 fs->fs_csaddr = fs->fs_old_csaddr;
1514 fs->fs_sblockloc = sblockloc;
1515
1516 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1517
1518 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1519 fs->fs_old_nrpos = 8;
1520 fs->fs_old_npsect = fs->fs_old_nsect;
1521 fs->fs_old_interleave = 1;
1522 fs->fs_old_trackskew = 0;
1523 }
1524
1525 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1526 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1527 fs->fs_qbmask = ~fs->fs_bmask;
1528 fs->fs_qfmask = ~fs->fs_fmask;
1529 }
1530
1531 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1532 if (fs->fs_maxfilesize > maxfilesize)
1533 fs->fs_maxfilesize = maxfilesize;
1534
1535 /* Compatibility for old filesystems */
1536 if (fs->fs_avgfilesize <= 0)
1537 fs->fs_avgfilesize = AVFILESIZ;
1538 if (fs->fs_avgfpdir <= 0)
1539 fs->fs_avgfpdir = AFPDIR;
1540
1541 #if 0
1542 if (bigcgs) {
1543 fs->fs_save_cgsize = fs->fs_cgsize;
1544 fs->fs_cgsize = fs->fs_bsize;
1545 }
1546 #endif
1547 }
1548
1549 /*
1550 * Unwinding superblock updates for old filesystems.
1551 * See ffs_oldfscompat_read above for details.
1552 *
1553 * XXX - Parts get retired eventually.
1554 * Unfortunately new bits get added.
1555 */
1556 static void
1557 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1558 {
1559 int32_t *extrasave;
1560
1561 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1562 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1563 return;
1564
1565 fs->fs_old_time = fs->fs_time;
1566 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1567 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1568 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1569 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1570 fs->fs_old_flags = fs->fs_flags;
1571
1572 #if 0
1573 if (bigcgs) {
1574 fs->fs_cgsize = fs->fs_save_cgsize;
1575 }
1576 #endif
1577
1578 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1579 extrasave = ump->um_oldfscompat;
1580 extrasave += 512/sizeof(int32_t);
1581 fs->fs_old_npsect = extrasave[0];
1582 fs->fs_old_interleave = extrasave[1];
1583 fs->fs_old_trackskew = extrasave[2];
1584
1585 }
1586
1587 /*
1588 * unmount vfs operation
1589 */
1590 int
1591 ffs_unmount(struct mount *mp, int mntflags)
1592 {
1593 struct lwp *l = curlwp;
1594 struct ufsmount *ump = VFSTOUFS(mp);
1595 struct fs *fs = ump->um_fs;
1596 int error, flags;
1597 u_int32_t bsize;
1598 #ifdef WAPBL
1599 extern int doforce;
1600 #endif
1601
1602 if (ump->um_discarddata) {
1603 ffs_discard_finish(ump->um_discarddata, mntflags);
1604 ump->um_discarddata = NULL;
1605 }
1606
1607 flags = 0;
1608 if (mntflags & MNT_FORCE)
1609 flags |= FORCECLOSE;
1610 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1611 return (error);
1612 error = UFS_WAPBL_BEGIN(mp);
1613 if (error == 0)
1614 if (fs->fs_ronly == 0 &&
1615 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1616 fs->fs_clean & FS_WASCLEAN) {
1617 fs->fs_clean = FS_ISCLEAN;
1618 fs->fs_fmod = 0;
1619 (void) ffs_sbupdate(ump, MNT_WAIT);
1620 }
1621 if (error == 0)
1622 UFS_WAPBL_END(mp);
1623 #ifdef WAPBL
1624 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1625 if (mp->mnt_wapbl_replay) {
1626 KDASSERT(fs->fs_ronly);
1627 wapbl_replay_stop(mp->mnt_wapbl_replay);
1628 wapbl_replay_free(mp->mnt_wapbl_replay);
1629 mp->mnt_wapbl_replay = 0;
1630 }
1631 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1632 if (error) {
1633 return error;
1634 }
1635 #endif /* WAPBL */
1636
1637 if (ump->um_devvp->v_type != VBAD)
1638 spec_node_setmountedfs(ump->um_devvp, NULL);
1639 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1640 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1641 NOCRED);
1642 vput(ump->um_devvp);
1643
1644 bsize = fs->fs_cssize;
1645 if (fs->fs_contigsumsize > 0)
1646 bsize += fs->fs_ncg * sizeof(int32_t);
1647 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1648 kmem_free(fs->fs_csp, bsize);
1649
1650 kmem_free(fs, fs->fs_sbsize);
1651 if (ump->um_oldfscompat != NULL)
1652 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1653 mutex_destroy(&ump->um_lock);
1654 ffs_snapshot_fini(ump);
1655 kmem_free(ump, sizeof(*ump));
1656 mp->mnt_data = NULL;
1657 mp->mnt_flag &= ~MNT_LOCAL;
1658 fstrans_unmount(mp);
1659 return (0);
1660 }
1661
1662 /*
1663 * Flush out all the files in a filesystem.
1664 */
1665 int
1666 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1667 {
1668 extern int doforce;
1669 struct ufsmount *ump;
1670 int error;
1671
1672 if (!doforce)
1673 flags &= ~FORCECLOSE;
1674 ump = VFSTOUFS(mp);
1675 #ifdef QUOTA
1676 if ((error = quota1_umount(mp, flags)) != 0)
1677 return (error);
1678 #endif
1679 #ifdef QUOTA2
1680 if ((error = quota2_umount(mp, flags)) != 0)
1681 return (error);
1682 #endif
1683 #ifdef UFS_EXTATTR
1684 if (ump->um_fstype == UFS1) {
1685 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1686 ufs_extattr_stop(mp, l);
1687 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1688 ufs_extattr_uepm_destroy(&ump->um_extattr);
1689 mp->mnt_flag &= ~MNT_EXTATTR;
1690 }
1691 #endif
1692 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1693 return (error);
1694 ffs_snapshot_unmount(mp);
1695 /*
1696 * Flush all the files.
1697 */
1698 error = vflush(mp, NULLVP, flags);
1699 if (error)
1700 return (error);
1701 /*
1702 * Flush filesystem metadata.
1703 */
1704 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1705 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1706 VOP_UNLOCK(ump->um_devvp);
1707 if (flags & FORCECLOSE) /* XXXDBJ */
1708 error = 0;
1709
1710 #ifdef WAPBL
1711 if (error)
1712 return error;
1713 if (mp->mnt_wapbl) {
1714 error = wapbl_flush(mp->mnt_wapbl, 1);
1715 if (flags & FORCECLOSE)
1716 error = 0;
1717 }
1718 #endif
1719
1720 return (error);
1721 }
1722
1723 /*
1724 * Get file system statistics.
1725 */
1726 int
1727 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1728 {
1729 struct ufsmount *ump;
1730 struct fs *fs;
1731
1732 ump = VFSTOUFS(mp);
1733 fs = ump->um_fs;
1734 mutex_enter(&ump->um_lock);
1735 sbp->f_bsize = fs->fs_bsize;
1736 sbp->f_frsize = fs->fs_fsize;
1737 sbp->f_iosize = fs->fs_bsize;
1738 sbp->f_blocks = fs->fs_dsize;
1739 sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1740 fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1741 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1742 fs->fs_minfree) / (u_int64_t) 100;
1743 if (sbp->f_bfree > sbp->f_bresvd)
1744 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1745 else
1746 sbp->f_bavail = 0;
1747 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1748 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1749 sbp->f_favail = sbp->f_ffree;
1750 sbp->f_fresvd = 0;
1751 mutex_exit(&ump->um_lock);
1752 copy_statvfs_info(sbp, mp);
1753
1754 return (0);
1755 }
1756
1757 struct ffs_sync_ctx {
1758 int waitfor;
1759 bool is_suspending;
1760 };
1761
1762 static bool
1763 ffs_sync_selector(void *cl, struct vnode *vp)
1764 {
1765 struct ffs_sync_ctx *c = cl;
1766 struct inode *ip;
1767
1768 ip = VTOI(vp);
1769 /*
1770 * Skip the vnode/inode if inaccessible.
1771 */
1772 if (ip == NULL || vp->v_type == VNON)
1773 return false;
1774
1775 /*
1776 * We deliberately update inode times here. This will
1777 * prevent a massive queue of updates accumulating, only
1778 * to be handled by a call to unmount.
1779 *
1780 * XXX It would be better to have the syncer trickle these
1781 * out. Adjustment needed to allow registering vnodes for
1782 * sync when the vnode is clean, but the inode dirty. Or
1783 * have ufs itself trickle out inode updates.
1784 *
1785 * If doing a lazy sync, we don't care about metadata or
1786 * data updates, because they are handled by each vnode's
1787 * synclist entry. In this case we are only interested in
1788 * writing back modified inodes.
1789 */
1790 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1791 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1792 (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1793 UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
1794 return false;
1795
1796 if (vp->v_type == VBLK && c->is_suspending)
1797 return false;
1798
1799 return true;
1800 }
1801
1802 /*
1803 * Go through the disk queues to initiate sandbagged IO;
1804 * go through the inodes to write those that have been modified;
1805 * initiate the writing of the super block if it has been modified.
1806 *
1807 * Note: we are always called with the filesystem marked `MPBUSY'.
1808 */
1809 int
1810 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1811 {
1812 struct vnode *vp;
1813 struct ufsmount *ump = VFSTOUFS(mp);
1814 struct fs *fs;
1815 struct vnode_iterator *marker;
1816 int error, allerror = 0;
1817 bool is_suspending;
1818 struct ffs_sync_ctx ctx;
1819
1820 fs = ump->um_fs;
1821 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1822 printf("fs = %s\n", fs->fs_fsmnt);
1823 panic("update: rofs mod");
1824 }
1825
1826 fstrans_start(mp, FSTRANS_SHARED);
1827 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1828 /*
1829 * Write back each (modified) inode.
1830 */
1831 vfs_vnode_iterator_init(mp, &marker);
1832
1833 ctx.waitfor = waitfor;
1834 ctx.is_suspending = is_suspending;
1835 while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
1836 {
1837 error = vn_lock(vp, LK_EXCLUSIVE);
1838 if (error) {
1839 vrele(vp);
1840 continue;
1841 }
1842 if (waitfor == MNT_LAZY) {
1843 error = UFS_WAPBL_BEGIN(vp->v_mount);
1844 if (!error) {
1845 error = ffs_update(vp, NULL, NULL,
1846 UPDATE_CLOSE);
1847 UFS_WAPBL_END(vp->v_mount);
1848 }
1849 } else {
1850 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1851 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1852 }
1853 if (error)
1854 allerror = error;
1855 vput(vp);
1856 }
1857 vfs_vnode_iterator_destroy(marker);
1858
1859 /*
1860 * Force stale file system control information to be flushed.
1861 */
1862 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1863 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1864 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1865 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1866 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1867 0, 0)) != 0)
1868 allerror = error;
1869 VOP_UNLOCK(ump->um_devvp);
1870 }
1871 #if defined(QUOTA) || defined(QUOTA2)
1872 qsync(mp);
1873 #endif
1874 /*
1875 * Write back modified superblock.
1876 */
1877 if (fs->fs_fmod != 0) {
1878 fs->fs_fmod = 0;
1879 fs->fs_time = time_second;
1880 error = UFS_WAPBL_BEGIN(mp);
1881 if (error)
1882 allerror = error;
1883 else {
1884 if ((error = ffs_cgupdate(ump, waitfor)))
1885 allerror = error;
1886 UFS_WAPBL_END(mp);
1887 }
1888 }
1889
1890 #ifdef WAPBL
1891 if (mp->mnt_wapbl) {
1892 error = wapbl_flush(mp->mnt_wapbl, 0);
1893 if (error)
1894 allerror = error;
1895 }
1896 #endif
1897
1898 fstrans_done(mp);
1899 return (allerror);
1900 }
1901
1902 /*
1903 * Read an inode from disk and initialize this vnode / inode pair.
1904 * Caller assures no other thread will try to load this inode.
1905 */
1906 int
1907 ffs_loadvnode(struct mount *mp, struct vnode *vp,
1908 const void *key, size_t key_len, const void **new_key)
1909 {
1910 ino_t ino;
1911 struct fs *fs;
1912 struct inode *ip;
1913 struct ufsmount *ump;
1914 struct buf *bp;
1915 dev_t dev;
1916 int error;
1917
1918 KASSERT(key_len == sizeof(ino));
1919 memcpy(&ino, key, key_len);
1920 ump = VFSTOUFS(mp);
1921 dev = ump->um_dev;
1922 fs = ump->um_fs;
1923
1924 /* Read in the disk contents for the inode. */
1925 error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
1926 (int)fs->fs_bsize, NOCRED, 0, &bp);
1927 if (error)
1928 return error;
1929
1930 /* Allocate and initialize inode. */
1931 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1932 memset(ip, 0, sizeof(struct inode));
1933 vp->v_tag = VT_UFS;
1934 vp->v_op = ffs_vnodeop_p;
1935 vp->v_vflag |= VV_LOCKSWORK;
1936 vp->v_data = ip;
1937 ip->i_vnode = vp;
1938 ip->i_ump = ump;
1939 ip->i_fs = fs;
1940 ip->i_dev = dev;
1941 ip->i_number = ino;
1942 #if defined(QUOTA) || defined(QUOTA2)
1943 ufsquota_init(ip);
1944 #endif
1945
1946 /* Initialize genfs node. */
1947 genfs_node_init(vp, &ffs_genfsops);
1948
1949 if (ip->i_ump->um_fstype == UFS1)
1950 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1951 PR_WAITOK);
1952 else
1953 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1954 PR_WAITOK);
1955 ffs_load_inode(bp, ip, fs, ino);
1956 brelse(bp, 0);
1957
1958 /* Initialize the vnode from the inode. */
1959 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1960
1961 /* Finish inode initialization. */
1962 ip->i_devvp = ump->um_devvp;
1963 vref(ip->i_devvp);
1964
1965 /*
1966 * Ensure that uid and gid are correct. This is a temporary
1967 * fix until fsck has been changed to do the update.
1968 */
1969
1970 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1971 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1972 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1973 } /* XXX */
1974 uvm_vnp_setsize(vp, ip->i_size);
1975 *new_key = &ip->i_number;
1976 return 0;
1977 }
1978
1979 /*
1980 * File handle to vnode
1981 *
1982 * Have to be really careful about stale file handles:
1983 * - check that the inode number is valid
1984 * - call ffs_vget() to get the locked inode
1985 * - check for an unallocated inode (i_mode == 0)
1986 * - check that the given client host has export rights and return
1987 * those rights via. exflagsp and credanonp
1988 */
1989 int
1990 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1991 {
1992 struct ufid ufh;
1993 struct fs *fs;
1994
1995 if (fhp->fid_len != sizeof(struct ufid))
1996 return EINVAL;
1997
1998 memcpy(&ufh, fhp, sizeof(ufh));
1999 fs = VFSTOUFS(mp)->um_fs;
2000 if (ufh.ufid_ino < UFS_ROOTINO ||
2001 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
2002 return (ESTALE);
2003 return (ufs_fhtovp(mp, &ufh, vpp));
2004 }
2005
2006 /*
2007 * Vnode pointer to File handle
2008 */
2009 /* ARGSUSED */
2010 int
2011 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
2012 {
2013 struct inode *ip;
2014 struct ufid ufh;
2015
2016 if (*fh_size < sizeof(struct ufid)) {
2017 *fh_size = sizeof(struct ufid);
2018 return E2BIG;
2019 }
2020 ip = VTOI(vp);
2021 *fh_size = sizeof(struct ufid);
2022 memset(&ufh, 0, sizeof(ufh));
2023 ufh.ufid_len = sizeof(struct ufid);
2024 ufh.ufid_ino = ip->i_number;
2025 ufh.ufid_gen = ip->i_gen;
2026 memcpy(fhp, &ufh, sizeof(ufh));
2027 return (0);
2028 }
2029
2030 void
2031 ffs_init(void)
2032 {
2033 if (ffs_initcount++ > 0)
2034 return;
2035
2036 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2037 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2038 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2039 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2040 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2041 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2042 ufs_init();
2043 }
2044
2045 void
2046 ffs_reinit(void)
2047 {
2048
2049 ufs_reinit();
2050 }
2051
2052 void
2053 ffs_done(void)
2054 {
2055 if (--ffs_initcount > 0)
2056 return;
2057
2058 ufs_done();
2059 pool_cache_destroy(ffs_dinode2_cache);
2060 pool_cache_destroy(ffs_dinode1_cache);
2061 pool_cache_destroy(ffs_inode_cache);
2062 }
2063
2064 /*
2065 * Write a superblock and associated information back to disk.
2066 */
2067 int
2068 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2069 {
2070 struct fs *fs = mp->um_fs;
2071 struct buf *bp;
2072 int error = 0;
2073 u_int32_t saveflag;
2074
2075 error = ffs_getblk(mp->um_devvp,
2076 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2077 fs->fs_sbsize, false, &bp);
2078 if (error)
2079 return error;
2080 saveflag = fs->fs_flags & FS_INTERNAL;
2081 fs->fs_flags &= ~FS_INTERNAL;
2082
2083 memcpy(bp->b_data, fs, fs->fs_sbsize);
2084
2085 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2086 #ifdef FFS_EI
2087 if (mp->um_flags & UFS_NEEDSWAP)
2088 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
2089 #endif
2090 fs->fs_flags |= saveflag;
2091
2092 if (waitfor == MNT_WAIT)
2093 error = bwrite(bp);
2094 else
2095 bawrite(bp);
2096 return (error);
2097 }
2098
2099 int
2100 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2101 {
2102 struct fs *fs = mp->um_fs;
2103 struct buf *bp;
2104 int blks;
2105 void *space;
2106 int i, size, error = 0, allerror = 0;
2107
2108 allerror = ffs_sbupdate(mp, waitfor);
2109 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2110 space = fs->fs_csp;
2111 for (i = 0; i < blks; i += fs->fs_frag) {
2112 size = fs->fs_bsize;
2113 if (i + fs->fs_frag > blks)
2114 size = (blks - i) * fs->fs_fsize;
2115 error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2116 FFS_NOBLK, size, false, &bp);
2117 if (error)
2118 break;
2119 #ifdef FFS_EI
2120 if (mp->um_flags & UFS_NEEDSWAP)
2121 ffs_csum_swap((struct csum*)space,
2122 (struct csum*)bp->b_data, size);
2123 else
2124 #endif
2125 memcpy(bp->b_data, space, (u_int)size);
2126 space = (char *)space + size;
2127 if (waitfor == MNT_WAIT)
2128 error = bwrite(bp);
2129 else
2130 bawrite(bp);
2131 }
2132 if (!allerror && error)
2133 allerror = error;
2134 return (allerror);
2135 }
2136
2137 int
2138 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2139 int attrnamespace, const char *attrname)
2140 {
2141 #ifdef UFS_EXTATTR
2142 /*
2143 * File-backed extended attributes are only supported on UFS1.
2144 * UFS2 has native extended attributes.
2145 */
2146 if (VFSTOUFS(mp)->um_fstype == UFS1)
2147 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2148 #endif
2149 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2150 }
2151
2152 int
2153 ffs_suspendctl(struct mount *mp, int cmd)
2154 {
2155 int error;
2156 struct lwp *l = curlwp;
2157
2158 switch (cmd) {
2159 case SUSPEND_SUSPEND:
2160 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2161 return error;
2162 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2163 if (error == 0)
2164 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2165 #ifdef WAPBL
2166 if (error == 0 && mp->mnt_wapbl)
2167 error = wapbl_flush(mp->mnt_wapbl, 1);
2168 #endif
2169 if (error != 0) {
2170 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2171 return error;
2172 }
2173 return 0;
2174
2175 case SUSPEND_RESUME:
2176 return fstrans_setstate(mp, FSTRANS_NORMAL);
2177
2178 default:
2179 return EINVAL;
2180 }
2181 }
2182
2183 /*
2184 * Synch vnode for a mounted file system.
2185 */
2186 static int
2187 ffs_vfs_fsync(vnode_t *vp, int flags)
2188 {
2189 int error, i, pflags;
2190 #ifdef WAPBL
2191 struct mount *mp;
2192 #endif
2193
2194 KASSERT(vp->v_type == VBLK);
2195 KASSERT(spec_node_getmountedfs(vp) != NULL);
2196
2197 /*
2198 * Flush all dirty data associated with the vnode.
2199 */
2200 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2201 if ((flags & FSYNC_WAIT) != 0)
2202 pflags |= PGO_SYNCIO;
2203 mutex_enter(vp->v_interlock);
2204 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2205 if (error)
2206 return error;
2207
2208 #ifdef WAPBL
2209 mp = spec_node_getmountedfs(vp);
2210 if (mp && mp->mnt_wapbl) {
2211 /*
2212 * Don't bother writing out metadata if the syncer is
2213 * making the request. We will let the sync vnode
2214 * write it out in a single burst through a call to
2215 * VFS_SYNC().
2216 */
2217 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2218 return 0;
2219
2220 /*
2221 * Don't flush the log if the vnode being flushed
2222 * contains no dirty buffers that could be in the log.
2223 */
2224 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2225 error = wapbl_flush(mp->mnt_wapbl, 0);
2226 if (error)
2227 return error;
2228 }
2229
2230 if ((flags & FSYNC_WAIT) != 0) {
2231 mutex_enter(vp->v_interlock);
2232 while (vp->v_numoutput)
2233 cv_wait(&vp->v_cv, vp->v_interlock);
2234 mutex_exit(vp->v_interlock);
2235 }
2236
2237 return 0;
2238 }
2239 #endif /* WAPBL */
2240
2241 error = vflushbuf(vp, flags);
2242 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2243 i = 1;
2244 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2245 kauth_cred_get());
2246 }
2247
2248 return error;
2249 }
2250