ffs_vfsops.c revision 1.316 1 /* $NetBSD: ffs_vfsops.c,v 1.316 2015/02/14 13:43:28 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.316 2015/02/14 13:43:28 maxv Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/disk.h>
83 #include <sys/mbuf.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/fstrans.h>
96 #include <sys/module.h>
97
98 #include <miscfs/genfs/genfs.h>
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufs_extern.h>
106 #include <ufs/ufs/ufs_bswap.h>
107 #include <ufs/ufs/ufs_wapbl.h>
108
109 #include <ufs/ffs/fs.h>
110 #include <ufs/ffs/ffs_extern.h>
111
112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
113
114 static int
115 ffs_vfs_fsync(vnode_t *, int);
116
117 static int
118 ffs_superblock_validate(struct fs *fs);
119
120 static struct sysctllog *ffs_sysctl_log;
121
122 static kauth_listener_t ffs_snapshot_listener;
123
124 /* how many times ffs_init() was called */
125 int ffs_initcount = 0;
126
127 #ifdef DEBUG_FFS_MOUNT
128 #define DPRINTF(a) printf a
129 #else
130 #define DPRINTF(a) do {} while (/*CONSTCOND*/0)
131 #endif
132
133 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
134 extern const struct vnodeopv_desc ffs_specop_opv_desc;
135 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
136
137 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
138 &ffs_vnodeop_opv_desc,
139 &ffs_specop_opv_desc,
140 &ffs_fifoop_opv_desc,
141 NULL,
142 };
143
144 struct vfsops ffs_vfsops = {
145 .vfs_name = MOUNT_FFS,
146 .vfs_min_mount_data = sizeof (struct ufs_args),
147 .vfs_mount = ffs_mount,
148 .vfs_start = ufs_start,
149 .vfs_unmount = ffs_unmount,
150 .vfs_root = ufs_root,
151 .vfs_quotactl = ufs_quotactl,
152 .vfs_statvfs = ffs_statvfs,
153 .vfs_sync = ffs_sync,
154 .vfs_vget = ufs_vget,
155 .vfs_loadvnode = ffs_loadvnode,
156 .vfs_fhtovp = ffs_fhtovp,
157 .vfs_vptofh = ffs_vptofh,
158 .vfs_init = ffs_init,
159 .vfs_reinit = ffs_reinit,
160 .vfs_done = ffs_done,
161 .vfs_mountroot = ffs_mountroot,
162 .vfs_snapshot = ffs_snapshot,
163 .vfs_extattrctl = ffs_extattrctl,
164 .vfs_suspendctl = ffs_suspendctl,
165 .vfs_renamelock_enter = genfs_renamelock_enter,
166 .vfs_renamelock_exit = genfs_renamelock_exit,
167 .vfs_fsync = ffs_vfs_fsync,
168 .vfs_opv_descs = ffs_vnodeopv_descs
169 };
170
171 static const struct genfs_ops ffs_genfsops = {
172 .gop_size = ffs_gop_size,
173 .gop_alloc = ufs_gop_alloc,
174 .gop_write = genfs_gop_write,
175 .gop_markupdate = ufs_gop_markupdate,
176 };
177
178 static const struct ufs_ops ffs_ufsops = {
179 .uo_itimes = ffs_itimes,
180 .uo_update = ffs_update,
181 .uo_truncate = ffs_truncate,
182 .uo_valloc = ffs_valloc,
183 .uo_vfree = ffs_vfree,
184 .uo_balloc = ffs_balloc,
185 .uo_snapgone = ffs_snapgone,
186 };
187
188 static int
189 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
190 void *arg0, void *arg1, void *arg2, void *arg3)
191 {
192 vnode_t *vp = arg2;
193 int result = KAUTH_RESULT_DEFER;
194
195 if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
196 return result;
197
198 if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
199 result = KAUTH_RESULT_ALLOW;
200
201 return result;
202 }
203
204 static int
205 ffs_modcmd(modcmd_t cmd, void *arg)
206 {
207 int error;
208
209 #if 0
210 extern int doasyncfree;
211 #endif
212 #ifdef UFS_EXTATTR
213 extern int ufs_extattr_autocreate;
214 #endif
215 extern int ffs_log_changeopt;
216
217 switch (cmd) {
218 case MODULE_CMD_INIT:
219 error = vfs_attach(&ffs_vfsops);
220 if (error != 0)
221 break;
222
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "ffs",
226 SYSCTL_DESCR("Berkeley Fast File System"),
227 NULL, 0, NULL, 0,
228 CTL_VFS, 1, CTL_EOL);
229 /*
230 * @@@ should we even bother with these first three?
231 */
232 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
233 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
234 CTLTYPE_INT, "doclusterread", NULL,
235 sysctl_notavail, 0, NULL, 0,
236 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
237 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
239 CTLTYPE_INT, "doclusterwrite", NULL,
240 sysctl_notavail, 0, NULL, 0,
241 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
242 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
244 CTLTYPE_INT, "doreallocblks", NULL,
245 sysctl_notavail, 0, NULL, 0,
246 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
247 #if 0
248 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
250 CTLTYPE_INT, "doasyncfree",
251 SYSCTL_DESCR("Release dirty blocks asynchronously"),
252 NULL, 0, &doasyncfree, 0,
253 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
254 #endif
255 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 CTLTYPE_INT, "log_changeopt",
258 SYSCTL_DESCR("Log changes in optimization strategy"),
259 NULL, 0, &ffs_log_changeopt, 0,
260 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
261 #ifdef UFS_EXTATTR
262 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 CTLTYPE_INT, "extattr_autocreate",
265 SYSCTL_DESCR("Size of attribute for "
266 "backing file autocreation"),
267 NULL, 0, &ufs_extattr_autocreate, 0,
268 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
269
270 #endif /* UFS_EXTATTR */
271
272 ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
273 ffs_snapshot_cb, NULL);
274 if (ffs_snapshot_listener == NULL)
275 printf("ffs_modcmd: can't listen on system scope.\n");
276
277 break;
278 case MODULE_CMD_FINI:
279 error = vfs_detach(&ffs_vfsops);
280 if (error != 0)
281 break;
282 sysctl_teardown(&ffs_sysctl_log);
283 if (ffs_snapshot_listener != NULL)
284 kauth_unlisten_scope(ffs_snapshot_listener);
285 break;
286 default:
287 error = ENOTTY;
288 break;
289 }
290
291 return (error);
292 }
293
294 pool_cache_t ffs_inode_cache;
295 pool_cache_t ffs_dinode1_cache;
296 pool_cache_t ffs_dinode2_cache;
297
298 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
299 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
300
301 /*
302 * Called by main() when ffs is going to be mounted as root.
303 */
304
305 int
306 ffs_mountroot(void)
307 {
308 struct fs *fs;
309 struct mount *mp;
310 struct lwp *l = curlwp; /* XXX */
311 struct ufsmount *ump;
312 int error;
313
314 if (device_class(root_device) != DV_DISK)
315 return (ENODEV);
316
317 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
318 vrele(rootvp);
319 return (error);
320 }
321
322 /*
323 * We always need to be able to mount the root file system.
324 */
325 mp->mnt_flag |= MNT_FORCE;
326 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
327 vfs_unbusy(mp, false, NULL);
328 vfs_destroy(mp);
329 return (error);
330 }
331 mp->mnt_flag &= ~MNT_FORCE;
332 mountlist_append(mp);
333 ump = VFSTOUFS(mp);
334 fs = ump->um_fs;
335 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
336 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
337 (void)ffs_statvfs(mp, &mp->mnt_stat);
338 vfs_unbusy(mp, false, NULL);
339 setrootfstime((time_t)fs->fs_time);
340 return (0);
341 }
342
343 /*
344 * VFS Operations.
345 *
346 * mount system call
347 */
348 int
349 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
350 {
351 struct lwp *l = curlwp;
352 struct vnode *devvp = NULL;
353 struct ufs_args *args = data;
354 struct ufsmount *ump = NULL;
355 struct fs *fs;
356 int error = 0, flags, update;
357 mode_t accessmode;
358
359 if (args == NULL) {
360 DPRINTF(("%s: NULL args\n", __func__));
361 return EINVAL;
362 }
363 if (*data_len < sizeof(*args)) {
364 DPRINTF(("%s: bad size args %zu != %zu\n",
365 __func__, *data_len, sizeof(*args)));
366 return EINVAL;
367 }
368
369 if (mp->mnt_flag & MNT_GETARGS) {
370 ump = VFSTOUFS(mp);
371 if (ump == NULL) {
372 DPRINTF(("%s: no ump\n", __func__));
373 return EIO;
374 }
375 args->fspec = NULL;
376 *data_len = sizeof *args;
377 return 0;
378 }
379
380 update = mp->mnt_flag & MNT_UPDATE;
381
382 /* Check arguments */
383 if (args->fspec != NULL) {
384 /*
385 * Look up the name and verify that it's sane.
386 */
387 error = namei_simple_user(args->fspec,
388 NSM_FOLLOW_NOEMULROOT, &devvp);
389 if (error != 0) {
390 DPRINTF(("%s: namei_simple_user %d\n", __func__,
391 error));
392 return error;
393 }
394
395 if (!update) {
396 /*
397 * Be sure this is a valid block device
398 */
399 if (devvp->v_type != VBLK) {
400 DPRINTF(("%s: non block device %d\n",
401 __func__, devvp->v_type));
402 error = ENOTBLK;
403 } else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
404 DPRINTF(("%s: can't find block device 0x%jx\n",
405 __func__, devvp->v_rdev));
406 error = ENXIO;
407 }
408 } else {
409 /*
410 * Be sure we're still naming the same device
411 * used for our initial mount
412 */
413 ump = VFSTOUFS(mp);
414 if (devvp != ump->um_devvp) {
415 if (devvp->v_rdev != ump->um_devvp->v_rdev) {
416 DPRINTF(("%s: wrong device 0x%jx"
417 " != 0x%jx\n", __func__,
418 (uintmax_t)devvp->v_rdev,
419 (uintmax_t)ump->um_devvp->v_rdev));
420 error = EINVAL;
421 } else {
422 vrele(devvp);
423 devvp = ump->um_devvp;
424 vref(devvp);
425 }
426 }
427 }
428 } else {
429 if (!update) {
430 /* New mounts must have a filename for the device */
431 DPRINTF(("%s: no filename for mount\n", __func__));
432 return EINVAL;
433 } else {
434 /* Use the extant mount */
435 ump = VFSTOUFS(mp);
436 devvp = ump->um_devvp;
437 vref(devvp);
438 }
439 }
440
441 /*
442 * If mount by non-root, then verify that user has necessary
443 * permissions on the device.
444 *
445 * Permission to update a mount is checked higher, so here we presume
446 * updating the mount is okay (for example, as far as securelevel goes)
447 * which leaves us with the normal check.
448 */
449 if (error == 0) {
450 accessmode = VREAD;
451 if (update ?
452 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
453 (mp->mnt_flag & MNT_RDONLY) == 0)
454 accessmode |= VWRITE;
455 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
456 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
457 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
458 KAUTH_ARG(accessmode));
459 if (error) {
460 DPRINTF(("%s: kauth %d\n", __func__, error));
461 }
462 VOP_UNLOCK(devvp);
463 }
464
465 if (error) {
466 vrele(devvp);
467 return (error);
468 }
469
470 #ifdef WAPBL
471 /* WAPBL can only be enabled on a r/w mount. */
472 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
473 mp->mnt_flag &= ~MNT_LOG;
474 }
475 #else /* !WAPBL */
476 mp->mnt_flag &= ~MNT_LOG;
477 #endif /* !WAPBL */
478
479 if (!update) {
480 int xflags;
481
482 if (mp->mnt_flag & MNT_RDONLY)
483 xflags = FREAD;
484 else
485 xflags = FREAD | FWRITE;
486 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
487 error = VOP_OPEN(devvp, xflags, FSCRED);
488 VOP_UNLOCK(devvp);
489 if (error) {
490 DPRINTF(("%s: VOP_OPEN %d\n", __func__, error));
491 goto fail;
492 }
493 error = ffs_mountfs(devvp, mp, l);
494 if (error) {
495 DPRINTF(("%s: ffs_mountfs %d\n", __func__, error));
496 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
497 (void)VOP_CLOSE(devvp, xflags, NOCRED);
498 VOP_UNLOCK(devvp);
499 goto fail;
500 }
501
502 ump = VFSTOUFS(mp);
503 fs = ump->um_fs;
504 } else {
505 /*
506 * Update the mount.
507 */
508
509 /*
510 * The initial mount got a reference on this
511 * device, so drop the one obtained via
512 * namei(), above.
513 */
514 vrele(devvp);
515
516 ump = VFSTOUFS(mp);
517 fs = ump->um_fs;
518 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
519 /*
520 * Changing from r/w to r/o
521 */
522 flags = WRITECLOSE;
523 if (mp->mnt_flag & MNT_FORCE)
524 flags |= FORCECLOSE;
525 error = ffs_flushfiles(mp, flags, l);
526 if (error == 0)
527 error = UFS_WAPBL_BEGIN(mp);
528 if (error == 0 &&
529 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
530 fs->fs_clean & FS_WASCLEAN) {
531 if (mp->mnt_flag & MNT_SOFTDEP)
532 fs->fs_flags &= ~FS_DOSOFTDEP;
533 fs->fs_clean = FS_ISCLEAN;
534 (void) ffs_sbupdate(ump, MNT_WAIT);
535 }
536 if (error) {
537 DPRINTF(("%s: wapbl %d\n", __func__, error));
538 return error;
539 }
540 UFS_WAPBL_END(mp);
541 }
542
543 #ifdef WAPBL
544 if ((mp->mnt_flag & MNT_LOG) == 0) {
545 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
546 if (error) {
547 DPRINTF(("%s: ffs_wapbl_stop %d\n",
548 __func__, error));
549 return error;
550 }
551 }
552 #endif /* WAPBL */
553
554 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
555 /*
556 * Finish change from r/w to r/o
557 */
558 fs->fs_ronly = 1;
559 fs->fs_fmod = 0;
560 }
561
562 if (mp->mnt_flag & MNT_RELOAD) {
563 error = ffs_reload(mp, l->l_cred, l);
564 if (error) {
565 DPRINTF(("%s: ffs_reload %d\n",
566 __func__, error));
567 return error;
568 }
569 }
570
571 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
572 /*
573 * Changing from read-only to read/write
574 */
575 #ifndef QUOTA2
576 if (fs->fs_flags & FS_DOQUOTA2) {
577 ump->um_flags |= UFS_QUOTA2;
578 uprintf("%s: options QUOTA2 not enabled%s\n",
579 mp->mnt_stat.f_mntonname,
580 (mp->mnt_flag & MNT_FORCE) ? "" :
581 ", not mounting");
582 DPRINTF(("%s: ffs_quota2 %d\n",
583 __func__, EINVAL));
584 return EINVAL;
585 }
586 #endif
587 fs->fs_ronly = 0;
588 fs->fs_clean <<= 1;
589 fs->fs_fmod = 1;
590 #ifdef WAPBL
591 if (fs->fs_flags & FS_DOWAPBL) {
592 const char *nm = mp->mnt_stat.f_mntonname;
593 if (!mp->mnt_wapbl_replay) {
594 printf("%s: log corrupted;"
595 " replay cancelled\n", nm);
596 return EFTYPE;
597 }
598 printf("%s: replaying log to disk\n", nm);
599 error = wapbl_replay_write(mp->mnt_wapbl_replay,
600 devvp);
601 if (error) {
602 DPRINTF((
603 "%s: %s: wapbl_replay_write %d\n",
604 __func__, nm, error));
605 return error;
606 }
607 wapbl_replay_stop(mp->mnt_wapbl_replay);
608 fs->fs_clean = FS_WASCLEAN;
609 }
610 #endif /* WAPBL */
611 if (fs->fs_snapinum[0] != 0)
612 ffs_snapshot_mount(mp);
613 }
614
615 #ifdef WAPBL
616 error = ffs_wapbl_start(mp);
617 if (error) {
618 DPRINTF(("%s: ffs_wapbl_start %d\n",
619 __func__, error));
620 return error;
621 }
622 #endif /* WAPBL */
623
624 #ifdef QUOTA2
625 if (!fs->fs_ronly) {
626 error = ffs_quota2_mount(mp);
627 if (error) {
628 DPRINTF(("%s: ffs_quota2_mount %d\n",
629 __func__, error));
630 return error;
631 }
632 }
633 #endif
634
635 if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
636 ump->um_discarddata = ffs_discard_init(devvp, fs);
637
638 if (args->fspec == NULL)
639 return 0;
640 }
641
642 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
643 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
644 if (error == 0)
645 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
646 sizeof(fs->fs_fsmnt));
647 else {
648 DPRINTF(("%s: set_statvfs_info %d\n", __func__, error));
649 }
650 fs->fs_flags &= ~FS_DOSOFTDEP;
651 if (fs->fs_fmod != 0) { /* XXX */
652 int err;
653
654 fs->fs_fmod = 0;
655 if (fs->fs_clean & FS_WASCLEAN)
656 fs->fs_time = time_second;
657 else {
658 printf("%s: file system not clean (fs_clean=%#x); "
659 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
660 fs->fs_clean);
661 printf("%s: lost blocks %" PRId64 " files %d\n",
662 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
663 fs->fs_pendinginodes);
664 }
665 err = UFS_WAPBL_BEGIN(mp);
666 if (err == 0) {
667 (void) ffs_cgupdate(ump, MNT_WAIT);
668 UFS_WAPBL_END(mp);
669 }
670 }
671 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
672 printf("%s: `-o softdep' is no longer supported, "
673 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
674 mp->mnt_flag &= ~MNT_SOFTDEP;
675 }
676
677 return (error);
678
679 fail:
680 vrele(devvp);
681 return (error);
682 }
683
684 /*
685 * Reload all incore data for a filesystem (used after running fsck on
686 * the root filesystem and finding things to fix). The filesystem must
687 * be mounted read-only.
688 *
689 * Things to do to update the mount:
690 * 1) invalidate all cached meta-data.
691 * 2) re-read superblock from disk.
692 * 3) re-read summary information from disk.
693 * 4) invalidate all inactive vnodes.
694 * 5) invalidate all cached file data.
695 * 6) re-read inode data for all active vnodes.
696 */
697 int
698 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
699 {
700 struct vnode *vp, *devvp;
701 struct inode *ip;
702 void *space;
703 struct buf *bp;
704 struct fs *fs, *newfs;
705 struct dkwedge_info dkw;
706 int i, bsize, blks, error;
707 int32_t *lp, fs_sbsize;
708 struct ufsmount *ump;
709 daddr_t sblockloc;
710 struct vnode_iterator *marker;
711
712 if ((mp->mnt_flag & MNT_RDONLY) == 0)
713 return (EINVAL);
714
715 ump = VFSTOUFS(mp);
716
717 /*
718 * Step 1: invalidate all cached meta-data.
719 */
720 devvp = ump->um_devvp;
721 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
722 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
723 VOP_UNLOCK(devvp);
724 if (error)
725 panic("ffs_reload: dirty1");
726
727 /*
728 * Step 2: re-read superblock from disk. XXX: We don't handle
729 * possibility that superblock moved. Which implies that we don't
730 * want its size to change either.
731 */
732 fs = ump->um_fs;
733 fs_sbsize = fs->fs_sbsize;
734 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
735 NOCRED, 0, &bp);
736 if (error)
737 return (error);
738 newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
739 memcpy(newfs, bp->b_data, fs_sbsize);
740
741 #ifdef FFS_EI
742 if (ump->um_flags & UFS_NEEDSWAP) {
743 ffs_sb_swap((struct fs*)bp->b_data, newfs);
744 fs->fs_flags |= FS_SWAPPED;
745 } else
746 #endif
747 fs->fs_flags &= ~FS_SWAPPED;
748
749 /* We don't want the superblock size to change. */
750 if (newfs->fs_sbsize != fs_sbsize) {
751 brelse(bp, 0);
752 kmem_free(newfs, fs_sbsize);
753 return (EINVAL);
754 }
755 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
756 newfs->fs_magic != FS_UFS2_MAGIC)) {
757 brelse(bp, 0);
758 kmem_free(newfs, fs_sbsize);
759 return (EIO); /* XXX needs translation */
760 }
761 if (!ffs_superblock_validate(newfs)) {
762 brelse(bp, 0);
763 kmem_free(newfs, fs_sbsize);
764 return (EINVAL);
765 }
766
767 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
768 sblockloc = fs->fs_sblockloc;
769 /*
770 * Copy pointer fields back into superblock before copying in XXX
771 * new superblock. These should really be in the ufsmount. XXX
772 * Note that important parameters (eg fs_ncg) are unchanged.
773 */
774 newfs->fs_csp = fs->fs_csp;
775 newfs->fs_maxcluster = fs->fs_maxcluster;
776 newfs->fs_contigdirs = fs->fs_contigdirs;
777 newfs->fs_ronly = fs->fs_ronly;
778 newfs->fs_active = fs->fs_active;
779 memcpy(fs, newfs, (u_int)fs_sbsize);
780 brelse(bp, 0);
781 kmem_free(newfs, fs_sbsize);
782
783 /* Recheck for apple UFS filesystem */
784 ump->um_flags &= ~UFS_ISAPPLEUFS;
785 /* First check to see if this is tagged as an Apple UFS filesystem
786 * in the disklabel
787 */
788 if (getdiskinfo(devvp, &dkw) == 0 &&
789 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
790 ump->um_flags |= UFS_ISAPPLEUFS;
791 #ifdef APPLE_UFS
792 else {
793 /* Manually look for an apple ufs label, and if a valid one
794 * is found, then treat it like an Apple UFS filesystem anyway
795 *
796 * EINVAL is most probably a blocksize or alignment problem,
797 * it is unlikely that this is an Apple UFS filesystem then.
798 */
799 error = bread(devvp,
800 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
801 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
802 if (error && error != EINVAL) {
803 return error;
804 }
805 if (error == 0) {
806 error = ffs_appleufs_validate(fs->fs_fsmnt,
807 (struct appleufslabel *)bp->b_data, NULL);
808 if (error == 0)
809 ump->um_flags |= UFS_ISAPPLEUFS;
810 brelse(bp, 0);
811 }
812 bp = NULL;
813 }
814 #else
815 if (ump->um_flags & UFS_ISAPPLEUFS)
816 return (EIO);
817 #endif
818
819 if (UFS_MPISAPPLEUFS(ump)) {
820 /* see comment about NeXT below */
821 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
822 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
823 mp->mnt_iflag |= IMNT_DTYPE;
824 } else {
825 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
826 ump->um_dirblksiz = UFS_DIRBLKSIZ;
827 if (ump->um_maxsymlinklen > 0)
828 mp->mnt_iflag |= IMNT_DTYPE;
829 else
830 mp->mnt_iflag &= ~IMNT_DTYPE;
831 }
832 ffs_oldfscompat_read(fs, ump, sblockloc);
833
834 mutex_enter(&ump->um_lock);
835 ump->um_maxfilesize = fs->fs_maxfilesize;
836 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
837 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
838 mp->mnt_stat.f_mntonname, fs->fs_flags,
839 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
840 if ((mp->mnt_flag & MNT_FORCE) == 0) {
841 mutex_exit(&ump->um_lock);
842 return (EINVAL);
843 }
844 }
845 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
846 fs->fs_pendingblocks = 0;
847 fs->fs_pendinginodes = 0;
848 }
849 mutex_exit(&ump->um_lock);
850
851 ffs_statvfs(mp, &mp->mnt_stat);
852 /*
853 * Step 3: re-read summary information from disk.
854 */
855 blks = howmany(fs->fs_cssize, fs->fs_fsize);
856 space = fs->fs_csp;
857 for (i = 0; i < blks; i += fs->fs_frag) {
858 bsize = fs->fs_bsize;
859 if (i + fs->fs_frag > blks)
860 bsize = (blks - i) * fs->fs_fsize;
861 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
862 NOCRED, 0, &bp);
863 if (error) {
864 return (error);
865 }
866 #ifdef FFS_EI
867 if (UFS_FSNEEDSWAP(fs))
868 ffs_csum_swap((struct csum *)bp->b_data,
869 (struct csum *)space, bsize);
870 else
871 #endif
872 memcpy(space, bp->b_data, (size_t)bsize);
873 space = (char *)space + bsize;
874 brelse(bp, 0);
875 }
876 /*
877 * We no longer know anything about clusters per cylinder group.
878 */
879 if (fs->fs_contigsumsize > 0) {
880 lp = fs->fs_maxcluster;
881 for (i = 0; i < fs->fs_ncg; i++)
882 *lp++ = fs->fs_contigsumsize;
883 }
884
885 vfs_vnode_iterator_init(mp, &marker);
886 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
887 /*
888 * Step 4: invalidate all inactive vnodes.
889 */
890 if (vrecycle(vp))
891 continue;
892 /*
893 * Step 5: invalidate all cached file data.
894 */
895 if (vn_lock(vp, LK_EXCLUSIVE)) {
896 vrele(vp);
897 continue;
898 }
899 if (vinvalbuf(vp, 0, cred, l, 0, 0))
900 panic("ffs_reload: dirty2");
901 /*
902 * Step 6: re-read inode data for all active vnodes.
903 */
904 ip = VTOI(vp);
905 error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
906 (int)fs->fs_bsize, NOCRED, 0, &bp);
907 if (error) {
908 vput(vp);
909 break;
910 }
911 ffs_load_inode(bp, ip, fs, ip->i_number);
912 brelse(bp, 0);
913 vput(vp);
914 }
915 vfs_vnode_iterator_destroy(marker);
916 return (error);
917 }
918
919 /*
920 * Possible superblock locations ordered from most to least likely.
921 */
922 static const int sblock_try[] = SBLOCKSEARCH;
923
924
925 static int
926 ffs_superblock_validate(struct fs *fs)
927 {
928 int32_t i, fs_bshift = 0, fs_fshift = 0, fs_frag;
929
930 /* Check the superblock size */
931 if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
932 return 0;
933
934 /* Check the file system blocksize */
935 if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
936 return 0;
937 if (!powerof2(fs->fs_bsize))
938 return 0;
939
940 /* Check the size of frag blocks */
941 if (!powerof2(fs->fs_fsize))
942 return 0;
943
944 if (fs->fs_size == 0)
945 return 0;
946 if (fs->fs_cssize == 0)
947 return 0;
948
949 /* Block size cannot be smaller than fragment size */
950 if (fs->fs_bsize < fs->fs_fsize)
951 return 0;
952
953 /* Compute fs_bshift and ensure it is consistent */
954 for (i = fs->fs_bsize; i > 1; i >>= 1)
955 fs_bshift++;
956 if (fs->fs_bshift != fs_bshift)
957 return 0;
958
959 /* Compute fs_fshift and ensure it is consistent */
960 for (i = fs->fs_fsize; i > 1; i >>= 1)
961 fs_fshift++;
962 if (fs->fs_fshift != fs_fshift)
963 return 0;
964
965 /* Now that the shifts are sanitized, we can use the ffs_ API */
966
967 /* Check the number of frag blocks */
968 if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
969 return 0;
970 if (fs->fs_frag != fs_frag)
971 return 0;
972
973 return 1;
974 }
975
976 /*
977 * Common code for mount and mountroot
978 */
979 int
980 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
981 {
982 struct ufsmount *ump = NULL;
983 struct buf *bp = NULL;
984 struct fs *fs = NULL;
985 dev_t dev;
986 struct dkwedge_info dkw;
987 void *space;
988 daddr_t sblockloc = 0;
989 int blks, fstype = 0;
990 int error, i, bsize, ronly, bset = 0;
991 #ifdef FFS_EI
992 int needswap = 0; /* keep gcc happy */
993 #endif
994 int32_t *lp;
995 kauth_cred_t cred;
996 u_int32_t fs_sbsize = 8192; /* keep gcc happy*/
997 u_int32_t allocsbsize;
998
999 dev = devvp->v_rdev;
1000 cred = l ? l->l_cred : NOCRED;
1001
1002 /* Flush out any old buffers remaining from a previous use. */
1003 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1004 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
1005 VOP_UNLOCK(devvp);
1006 if (error) {
1007 DPRINTF(("%s: vinvalbuf %d\n", __func__, error));
1008 return error;
1009 }
1010
1011 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
1012
1013 error = fstrans_mount(mp);
1014 if (error) {
1015 DPRINTF(("%s: fstrans_mount %d\n", __func__, error));
1016 return error;
1017 }
1018
1019 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1020 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1021 error = ffs_snapshot_init(ump);
1022 if (error) {
1023 DPRINTF(("%s: ffs_snapshot_init %d\n", __func__, error));
1024 goto out;
1025 }
1026 ump->um_ops = &ffs_ufsops;
1027
1028 #ifdef WAPBL
1029 sbagain:
1030 #endif
1031 /*
1032 * Try reading the superblock in each of its possible locations.
1033 */
1034 for (i = 0; ; i++) {
1035 daddr_t fsblockloc;
1036
1037 if (bp != NULL) {
1038 brelse(bp, BC_NOCACHE);
1039 bp = NULL;
1040 }
1041 if (sblock_try[i] == -1) {
1042 DPRINTF(("%s: sblock_try\n", __func__));
1043 error = EINVAL;
1044 fs = NULL;
1045 goto out;
1046 }
1047
1048 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1049 cred, 0, &bp);
1050 if (error) {
1051 DPRINTF(("%s: bread@0x%x %d\n", __func__,
1052 sblock_try[i] / DEV_BSIZE, error));
1053 fs = NULL;
1054 goto out;
1055 }
1056 fs = (struct fs*)bp->b_data;
1057
1058 fsblockloc = sblockloc = sblock_try[i];
1059 DPRINTF(("%s: fs_magic 0x%x\n", __func__, fs->fs_magic));
1060
1061 /*
1062 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1063 * size to read the superblock. Once read, we swap the whole
1064 * superblock structure.
1065 */
1066 if (fs->fs_magic == FS_UFS1_MAGIC) {
1067 fs_sbsize = fs->fs_sbsize;
1068 fstype = UFS1;
1069 #ifdef FFS_EI
1070 needswap = 0;
1071 } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1072 fs_sbsize = bswap32(fs->fs_sbsize);
1073 fstype = UFS1;
1074 needswap = 1;
1075 #endif
1076 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
1077 fs_sbsize = fs->fs_sbsize;
1078 fstype = UFS2;
1079 #ifdef FFS_EI
1080 needswap = 0;
1081 } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1082 fs_sbsize = bswap32(fs->fs_sbsize);
1083 fstype = UFS2;
1084 needswap = 1;
1085 #endif
1086 } else
1087 continue;
1088
1089 /* fs->fs_sblockloc isn't defined for old filesystems */
1090 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1091 if (sblockloc == SBLOCK_UFS2)
1092 /*
1093 * This is likely to be the first alternate
1094 * in a filesystem with 64k blocks.
1095 * Don't use it.
1096 */
1097 continue;
1098 fsblockloc = sblockloc;
1099 } else {
1100 fsblockloc = fs->fs_sblockloc;
1101 #ifdef FFS_EI
1102 if (needswap)
1103 fsblockloc = bswap64(fsblockloc);
1104 #endif
1105 }
1106
1107 /* Check we haven't found an alternate superblock */
1108 if (fsblockloc != sblockloc)
1109 continue;
1110
1111 /* Check the superblock size */
1112 if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1113 continue;
1114 fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1115 memcpy(fs, bp->b_data, fs_sbsize);
1116
1117 /* Swap the whole superblock structure, if necessary. */
1118 #ifdef FFS_EI
1119 if (needswap) {
1120 ffs_sb_swap((struct fs*)bp->b_data, fs);
1121 fs->fs_flags |= FS_SWAPPED;
1122 } else
1123 #endif
1124 fs->fs_flags &= ~FS_SWAPPED;
1125
1126 /*
1127 * Now that everything is swapped, the superblock is ready to
1128 * be sanitized.
1129 */
1130 if (!ffs_superblock_validate(fs)) {
1131 kmem_free(fs, fs_sbsize);
1132 continue;
1133 }
1134
1135 /* Ok seems to be a good superblock */
1136 break;
1137 }
1138
1139 ump->um_fs = fs;
1140
1141 #ifdef WAPBL
1142 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1143 error = ffs_wapbl_replay_start(mp, fs, devvp);
1144 if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1145 DPRINTF(("%s: ffs_wapbl_replay_start %d\n", __func__,
1146 error));
1147 goto out;
1148 }
1149 if (!error) {
1150 if (!ronly) {
1151 /* XXX fsmnt may be stale. */
1152 printf("%s: replaying log to disk\n",
1153 fs->fs_fsmnt);
1154 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1155 devvp);
1156 if (error) {
1157 DPRINTF(("%s: wapbl_replay_write %d\n",
1158 __func__, error));
1159 goto out;
1160 }
1161 wapbl_replay_stop(mp->mnt_wapbl_replay);
1162 fs->fs_clean = FS_WASCLEAN;
1163 } else {
1164 /* XXX fsmnt may be stale */
1165 printf("%s: replaying log to memory\n",
1166 fs->fs_fsmnt);
1167 }
1168
1169 /* Force a re-read of the superblock */
1170 brelse(bp, BC_INVAL);
1171 bp = NULL;
1172 kmem_free(fs, fs_sbsize);
1173 fs = NULL;
1174 goto sbagain;
1175 }
1176 }
1177 #else /* !WAPBL */
1178 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1179 error = EPERM;
1180 DPRINTF(("%s: no force %d\n", __func__, error));
1181 goto out;
1182 }
1183 #endif /* !WAPBL */
1184
1185 ffs_oldfscompat_read(fs, ump, sblockloc);
1186 ump->um_maxfilesize = fs->fs_maxfilesize;
1187
1188 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1189 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1190 mp->mnt_stat.f_mntonname, fs->fs_flags,
1191 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1192 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1193 error = EINVAL;
1194 DPRINTF(("%s: no force %d\n", __func__, error));
1195 goto out;
1196 }
1197 }
1198
1199 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1200 fs->fs_pendingblocks = 0;
1201 fs->fs_pendinginodes = 0;
1202 }
1203
1204 ump->um_fstype = fstype;
1205 if (fs->fs_sbsize < SBLOCKSIZE)
1206 brelse(bp, BC_INVAL);
1207 else
1208 brelse(bp, 0);
1209 bp = NULL;
1210
1211 /* First check to see if this is tagged as an Apple UFS filesystem
1212 * in the disklabel
1213 */
1214 if (getdiskinfo(devvp, &dkw) == 0 &&
1215 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1216 ump->um_flags |= UFS_ISAPPLEUFS;
1217 #ifdef APPLE_UFS
1218 else {
1219 /* Manually look for an apple ufs label, and if a valid one
1220 * is found, then treat it like an Apple UFS filesystem anyway
1221 */
1222 error = bread(devvp,
1223 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1224 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1225 if (error) {
1226 DPRINTF(("%s: apple bread@0x%jx %d\n", __func__,
1227 (intmax_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1228 error));
1229 goto out;
1230 }
1231 error = ffs_appleufs_validate(fs->fs_fsmnt,
1232 (struct appleufslabel *)bp->b_data, NULL);
1233 if (error == 0)
1234 ump->um_flags |= UFS_ISAPPLEUFS;
1235 brelse(bp, 0);
1236 bp = NULL;
1237 }
1238 #else
1239 if (ump->um_flags & UFS_ISAPPLEUFS) {
1240 DPRINTF(("%s: bad apple\n", __func__));
1241 error = EINVAL;
1242 goto out;
1243 }
1244 #endif
1245
1246 #if 0
1247 /*
1248 * XXX This code changes the behaviour of mounting dirty filesystems, to
1249 * XXX require "mount -f ..." to mount them. This doesn't match what
1250 * XXX mount(8) describes and is disabled for now.
1251 */
1252 /*
1253 * If the file system is not clean, don't allow it to be mounted
1254 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1255 * for the root file system.)
1256 */
1257 if (fs->fs_flags & FS_DOWAPBL) {
1258 /*
1259 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1260 * bit is set, although there's a window in unmount where it
1261 * could be FS_ISCLEAN
1262 */
1263 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1264 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1265 error = EPERM;
1266 goto out;
1267 }
1268 } else
1269 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1270 (mp->mnt_flag & MNT_FORCE) == 0) {
1271 error = EPERM;
1272 goto out;
1273 }
1274 #endif
1275
1276 /*
1277 * Verify that we can access the last block in the fs
1278 * if we're mounting read/write.
1279 */
1280
1281 if (!ronly) {
1282 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1283 fs->fs_fsize, cred, 0, &bp);
1284 if (error) {
1285 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1286 (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1287 error));
1288 bset = BC_INVAL;
1289 goto out;
1290 }
1291 if (bp->b_bcount != fs->fs_fsize) {
1292 DPRINTF(("%s: bcount %x != fsize %x\n", __func__,
1293 bp->b_bcount, fs->fs_fsize));
1294 error = EINVAL;
1295 }
1296 brelse(bp, BC_INVAL);
1297 bp = NULL;
1298 }
1299
1300 fs->fs_ronly = ronly;
1301 /* Don't bump fs_clean if we're replaying journal */
1302 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1303 if (ronly == 0) {
1304 fs->fs_clean <<= 1;
1305 fs->fs_fmod = 1;
1306 }
1307 }
1308
1309 bsize = fs->fs_cssize;
1310 blks = howmany(bsize, fs->fs_fsize);
1311 if (fs->fs_contigsumsize > 0)
1312 bsize += fs->fs_ncg * sizeof(int32_t);
1313 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1314 allocsbsize = bsize;
1315 space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1316 fs->fs_csp = space;
1317
1318 for (i = 0; i < blks; i += fs->fs_frag) {
1319 bsize = fs->fs_bsize;
1320 if (i + fs->fs_frag > blks)
1321 bsize = (blks - i) * fs->fs_fsize;
1322 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1323 cred, 0, &bp);
1324 if (error) {
1325 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1326 (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1327 error));
1328 goto out1;
1329 }
1330 #ifdef FFS_EI
1331 if (needswap)
1332 ffs_csum_swap((struct csum *)bp->b_data,
1333 (struct csum *)space, bsize);
1334 else
1335 #endif
1336 memcpy(space, bp->b_data, (u_int)bsize);
1337
1338 space = (char *)space + bsize;
1339 brelse(bp, 0);
1340 bp = NULL;
1341 }
1342 if (fs->fs_contigsumsize > 0) {
1343 fs->fs_maxcluster = lp = space;
1344 for (i = 0; i < fs->fs_ncg; i++)
1345 *lp++ = fs->fs_contigsumsize;
1346 space = lp;
1347 }
1348 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1349 fs->fs_contigdirs = space;
1350 space = (char *)space + bsize;
1351 memset(fs->fs_contigdirs, 0, bsize);
1352 /* Compatibility for old filesystems - XXX */
1353 if (fs->fs_avgfilesize <= 0)
1354 fs->fs_avgfilesize = AVFILESIZ;
1355 if (fs->fs_avgfpdir <= 0)
1356 fs->fs_avgfpdir = AFPDIR;
1357 fs->fs_active = NULL;
1358 mp->mnt_data = ump;
1359 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1360 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1361 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1362 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1363 if (UFS_MPISAPPLEUFS(ump)) {
1364 /* NeXT used to keep short symlinks in the inode even
1365 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1366 * is probably -1, but we still need to be able to identify
1367 * short symlinks.
1368 */
1369 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1370 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1371 mp->mnt_iflag |= IMNT_DTYPE;
1372 } else {
1373 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1374 ump->um_dirblksiz = UFS_DIRBLKSIZ;
1375 if (ump->um_maxsymlinklen > 0)
1376 mp->mnt_iflag |= IMNT_DTYPE;
1377 else
1378 mp->mnt_iflag &= ~IMNT_DTYPE;
1379 }
1380 mp->mnt_fs_bshift = fs->fs_bshift;
1381 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1382 mp->mnt_flag |= MNT_LOCAL;
1383 mp->mnt_iflag |= IMNT_MPSAFE;
1384 #ifdef FFS_EI
1385 if (needswap)
1386 ump->um_flags |= UFS_NEEDSWAP;
1387 #endif
1388 ump->um_mountp = mp;
1389 ump->um_dev = dev;
1390 ump->um_devvp = devvp;
1391 ump->um_nindir = fs->fs_nindir;
1392 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1393 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1394 ump->um_seqinc = fs->fs_frag;
1395 for (i = 0; i < MAXQUOTAS; i++)
1396 ump->um_quotas[i] = NULLVP;
1397 spec_node_setmountedfs(devvp, mp);
1398 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1399 ffs_snapshot_mount(mp);
1400 #ifdef WAPBL
1401 if (!ronly) {
1402 KDASSERT(fs->fs_ronly == 0);
1403 /*
1404 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1405 * needs to create a new log file in-filesystem.
1406 */
1407 error = ffs_statvfs(mp, &mp->mnt_stat);
1408 if (error) {
1409 DPRINTF(("%s: ffs_statvfs %d\n", __func__, error));
1410 goto out1;
1411 }
1412
1413 error = ffs_wapbl_start(mp);
1414 if (error) {
1415 DPRINTF(("%s: ffs_wapbl_start %d\n", __func__, error));
1416 goto out1;
1417 }
1418 }
1419 #endif /* WAPBL */
1420 if (ronly == 0) {
1421 #ifdef QUOTA2
1422 error = ffs_quota2_mount(mp);
1423 if (error) {
1424 DPRINTF(("%s: ffs_quota2_mount %d\n", __func__, error));
1425 goto out1;
1426 }
1427 #else
1428 if (fs->fs_flags & FS_DOQUOTA2) {
1429 ump->um_flags |= UFS_QUOTA2;
1430 uprintf("%s: options QUOTA2 not enabled%s\n",
1431 mp->mnt_stat.f_mntonname,
1432 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1433 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1434 error = EINVAL;
1435 DPRINTF(("%s: quota disabled %d\n", __func__,
1436 error));
1437 goto out1;
1438 }
1439 }
1440 #endif
1441 }
1442
1443 if (mp->mnt_flag & MNT_DISCARD)
1444 ump->um_discarddata = ffs_discard_init(devvp, fs);
1445
1446 return (0);
1447 out1:
1448 kmem_free(fs->fs_csp, allocsbsize);
1449 out:
1450 #ifdef WAPBL
1451 if (mp->mnt_wapbl_replay) {
1452 wapbl_replay_stop(mp->mnt_wapbl_replay);
1453 wapbl_replay_free(mp->mnt_wapbl_replay);
1454 mp->mnt_wapbl_replay = 0;
1455 }
1456 #endif
1457
1458 fstrans_unmount(mp);
1459 if (fs)
1460 kmem_free(fs, fs->fs_sbsize);
1461 spec_node_setmountedfs(devvp, NULL);
1462 if (bp)
1463 brelse(bp, bset);
1464 if (ump) {
1465 if (ump->um_oldfscompat)
1466 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1467 mutex_destroy(&ump->um_lock);
1468 kmem_free(ump, sizeof(*ump));
1469 mp->mnt_data = NULL;
1470 }
1471 return (error);
1472 }
1473
1474 /*
1475 * Sanity checks for loading old filesystem superblocks.
1476 * See ffs_oldfscompat_write below for unwound actions.
1477 *
1478 * XXX - Parts get retired eventually.
1479 * Unfortunately new bits get added.
1480 */
1481 static void
1482 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1483 {
1484 off_t maxfilesize;
1485 int32_t *extrasave;
1486
1487 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1488 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1489 return;
1490
1491 if (!ump->um_oldfscompat)
1492 ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1493 KM_SLEEP);
1494
1495 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1496 extrasave = ump->um_oldfscompat;
1497 extrasave += 512/sizeof(int32_t);
1498 extrasave[0] = fs->fs_old_npsect;
1499 extrasave[1] = fs->fs_old_interleave;
1500 extrasave[2] = fs->fs_old_trackskew;
1501
1502 /* These fields will be overwritten by their
1503 * original values in fs_oldfscompat_write, so it is harmless
1504 * to modify them here.
1505 */
1506 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1507 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1508 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1509 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1510
1511 fs->fs_maxbsize = fs->fs_bsize;
1512 fs->fs_time = fs->fs_old_time;
1513 fs->fs_size = fs->fs_old_size;
1514 fs->fs_dsize = fs->fs_old_dsize;
1515 fs->fs_csaddr = fs->fs_old_csaddr;
1516 fs->fs_sblockloc = sblockloc;
1517
1518 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1519
1520 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1521 fs->fs_old_nrpos = 8;
1522 fs->fs_old_npsect = fs->fs_old_nsect;
1523 fs->fs_old_interleave = 1;
1524 fs->fs_old_trackskew = 0;
1525 }
1526
1527 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1528 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1529 fs->fs_qbmask = ~fs->fs_bmask;
1530 fs->fs_qfmask = ~fs->fs_fmask;
1531 }
1532
1533 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1534 if (fs->fs_maxfilesize > maxfilesize)
1535 fs->fs_maxfilesize = maxfilesize;
1536
1537 /* Compatibility for old filesystems */
1538 if (fs->fs_avgfilesize <= 0)
1539 fs->fs_avgfilesize = AVFILESIZ;
1540 if (fs->fs_avgfpdir <= 0)
1541 fs->fs_avgfpdir = AFPDIR;
1542
1543 #if 0
1544 if (bigcgs) {
1545 fs->fs_save_cgsize = fs->fs_cgsize;
1546 fs->fs_cgsize = fs->fs_bsize;
1547 }
1548 #endif
1549 }
1550
1551 /*
1552 * Unwinding superblock updates for old filesystems.
1553 * See ffs_oldfscompat_read above for details.
1554 *
1555 * XXX - Parts get retired eventually.
1556 * Unfortunately new bits get added.
1557 */
1558 static void
1559 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1560 {
1561 int32_t *extrasave;
1562
1563 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1564 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1565 return;
1566
1567 fs->fs_old_time = fs->fs_time;
1568 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1569 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1570 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1571 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1572 fs->fs_old_flags = fs->fs_flags;
1573
1574 #if 0
1575 if (bigcgs) {
1576 fs->fs_cgsize = fs->fs_save_cgsize;
1577 }
1578 #endif
1579
1580 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1581 extrasave = ump->um_oldfscompat;
1582 extrasave += 512/sizeof(int32_t);
1583 fs->fs_old_npsect = extrasave[0];
1584 fs->fs_old_interleave = extrasave[1];
1585 fs->fs_old_trackskew = extrasave[2];
1586
1587 }
1588
1589 /*
1590 * unmount vfs operation
1591 */
1592 int
1593 ffs_unmount(struct mount *mp, int mntflags)
1594 {
1595 struct lwp *l = curlwp;
1596 struct ufsmount *ump = VFSTOUFS(mp);
1597 struct fs *fs = ump->um_fs;
1598 int error, flags;
1599 u_int32_t bsize;
1600 #ifdef WAPBL
1601 extern int doforce;
1602 #endif
1603
1604 if (ump->um_discarddata) {
1605 ffs_discard_finish(ump->um_discarddata, mntflags);
1606 ump->um_discarddata = NULL;
1607 }
1608
1609 flags = 0;
1610 if (mntflags & MNT_FORCE)
1611 flags |= FORCECLOSE;
1612 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1613 return (error);
1614 error = UFS_WAPBL_BEGIN(mp);
1615 if (error == 0)
1616 if (fs->fs_ronly == 0 &&
1617 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1618 fs->fs_clean & FS_WASCLEAN) {
1619 fs->fs_clean = FS_ISCLEAN;
1620 fs->fs_fmod = 0;
1621 (void) ffs_sbupdate(ump, MNT_WAIT);
1622 }
1623 if (error == 0)
1624 UFS_WAPBL_END(mp);
1625 #ifdef WAPBL
1626 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1627 if (mp->mnt_wapbl_replay) {
1628 KDASSERT(fs->fs_ronly);
1629 wapbl_replay_stop(mp->mnt_wapbl_replay);
1630 wapbl_replay_free(mp->mnt_wapbl_replay);
1631 mp->mnt_wapbl_replay = 0;
1632 }
1633 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1634 if (error) {
1635 return error;
1636 }
1637 #endif /* WAPBL */
1638
1639 if (ump->um_devvp->v_type != VBAD)
1640 spec_node_setmountedfs(ump->um_devvp, NULL);
1641 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1642 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1643 NOCRED);
1644 vput(ump->um_devvp);
1645
1646 bsize = fs->fs_cssize;
1647 if (fs->fs_contigsumsize > 0)
1648 bsize += fs->fs_ncg * sizeof(int32_t);
1649 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1650 kmem_free(fs->fs_csp, bsize);
1651
1652 kmem_free(fs, fs->fs_sbsize);
1653 if (ump->um_oldfscompat != NULL)
1654 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1655 mutex_destroy(&ump->um_lock);
1656 ffs_snapshot_fini(ump);
1657 kmem_free(ump, sizeof(*ump));
1658 mp->mnt_data = NULL;
1659 mp->mnt_flag &= ~MNT_LOCAL;
1660 fstrans_unmount(mp);
1661 return (0);
1662 }
1663
1664 /*
1665 * Flush out all the files in a filesystem.
1666 */
1667 int
1668 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1669 {
1670 extern int doforce;
1671 struct ufsmount *ump;
1672 int error;
1673
1674 if (!doforce)
1675 flags &= ~FORCECLOSE;
1676 ump = VFSTOUFS(mp);
1677 #ifdef QUOTA
1678 if ((error = quota1_umount(mp, flags)) != 0)
1679 return (error);
1680 #endif
1681 #ifdef QUOTA2
1682 if ((error = quota2_umount(mp, flags)) != 0)
1683 return (error);
1684 #endif
1685 #ifdef UFS_EXTATTR
1686 if (ump->um_fstype == UFS1) {
1687 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1688 ufs_extattr_stop(mp, l);
1689 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1690 ufs_extattr_uepm_destroy(&ump->um_extattr);
1691 mp->mnt_flag &= ~MNT_EXTATTR;
1692 }
1693 #endif
1694 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1695 return (error);
1696 ffs_snapshot_unmount(mp);
1697 /*
1698 * Flush all the files.
1699 */
1700 error = vflush(mp, NULLVP, flags);
1701 if (error)
1702 return (error);
1703 /*
1704 * Flush filesystem metadata.
1705 */
1706 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1707 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1708 VOP_UNLOCK(ump->um_devvp);
1709 if (flags & FORCECLOSE) /* XXXDBJ */
1710 error = 0;
1711
1712 #ifdef WAPBL
1713 if (error)
1714 return error;
1715 if (mp->mnt_wapbl) {
1716 error = wapbl_flush(mp->mnt_wapbl, 1);
1717 if (flags & FORCECLOSE)
1718 error = 0;
1719 }
1720 #endif
1721
1722 return (error);
1723 }
1724
1725 /*
1726 * Get file system statistics.
1727 */
1728 int
1729 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1730 {
1731 struct ufsmount *ump;
1732 struct fs *fs;
1733
1734 ump = VFSTOUFS(mp);
1735 fs = ump->um_fs;
1736 mutex_enter(&ump->um_lock);
1737 sbp->f_bsize = fs->fs_bsize;
1738 sbp->f_frsize = fs->fs_fsize;
1739 sbp->f_iosize = fs->fs_bsize;
1740 sbp->f_blocks = fs->fs_dsize;
1741 sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1742 fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1743 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1744 fs->fs_minfree) / (u_int64_t) 100;
1745 if (sbp->f_bfree > sbp->f_bresvd)
1746 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1747 else
1748 sbp->f_bavail = 0;
1749 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1750 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1751 sbp->f_favail = sbp->f_ffree;
1752 sbp->f_fresvd = 0;
1753 mutex_exit(&ump->um_lock);
1754 copy_statvfs_info(sbp, mp);
1755
1756 return (0);
1757 }
1758
1759 struct ffs_sync_ctx {
1760 int waitfor;
1761 bool is_suspending;
1762 };
1763
1764 static bool
1765 ffs_sync_selector(void *cl, struct vnode *vp)
1766 {
1767 struct ffs_sync_ctx *c = cl;
1768 struct inode *ip;
1769
1770 ip = VTOI(vp);
1771 /*
1772 * Skip the vnode/inode if inaccessible.
1773 */
1774 if (ip == NULL || vp->v_type == VNON)
1775 return false;
1776
1777 /*
1778 * We deliberately update inode times here. This will
1779 * prevent a massive queue of updates accumulating, only
1780 * to be handled by a call to unmount.
1781 *
1782 * XXX It would be better to have the syncer trickle these
1783 * out. Adjustment needed to allow registering vnodes for
1784 * sync when the vnode is clean, but the inode dirty. Or
1785 * have ufs itself trickle out inode updates.
1786 *
1787 * If doing a lazy sync, we don't care about metadata or
1788 * data updates, because they are handled by each vnode's
1789 * synclist entry. In this case we are only interested in
1790 * writing back modified inodes.
1791 */
1792 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1793 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1794 (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1795 UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
1796 return false;
1797
1798 if (vp->v_type == VBLK && c->is_suspending)
1799 return false;
1800
1801 return true;
1802 }
1803
1804 /*
1805 * Go through the disk queues to initiate sandbagged IO;
1806 * go through the inodes to write those that have been modified;
1807 * initiate the writing of the super block if it has been modified.
1808 *
1809 * Note: we are always called with the filesystem marked `MPBUSY'.
1810 */
1811 int
1812 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1813 {
1814 struct vnode *vp;
1815 struct ufsmount *ump = VFSTOUFS(mp);
1816 struct fs *fs;
1817 struct vnode_iterator *marker;
1818 int error, allerror = 0;
1819 bool is_suspending;
1820 struct ffs_sync_ctx ctx;
1821
1822 fs = ump->um_fs;
1823 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1824 printf("fs = %s\n", fs->fs_fsmnt);
1825 panic("update: rofs mod");
1826 }
1827
1828 fstrans_start(mp, FSTRANS_SHARED);
1829 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1830 /*
1831 * Write back each (modified) inode.
1832 */
1833 vfs_vnode_iterator_init(mp, &marker);
1834
1835 ctx.waitfor = waitfor;
1836 ctx.is_suspending = is_suspending;
1837 while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
1838 {
1839 error = vn_lock(vp, LK_EXCLUSIVE);
1840 if (error) {
1841 vrele(vp);
1842 continue;
1843 }
1844 if (waitfor == MNT_LAZY) {
1845 error = UFS_WAPBL_BEGIN(vp->v_mount);
1846 if (!error) {
1847 error = ffs_update(vp, NULL, NULL,
1848 UPDATE_CLOSE);
1849 UFS_WAPBL_END(vp->v_mount);
1850 }
1851 } else {
1852 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1853 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1854 }
1855 if (error)
1856 allerror = error;
1857 vput(vp);
1858 }
1859 vfs_vnode_iterator_destroy(marker);
1860
1861 /*
1862 * Force stale file system control information to be flushed.
1863 */
1864 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1865 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1866 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1867 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1868 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1869 0, 0)) != 0)
1870 allerror = error;
1871 VOP_UNLOCK(ump->um_devvp);
1872 }
1873 #if defined(QUOTA) || defined(QUOTA2)
1874 qsync(mp);
1875 #endif
1876 /*
1877 * Write back modified superblock.
1878 */
1879 if (fs->fs_fmod != 0) {
1880 fs->fs_fmod = 0;
1881 fs->fs_time = time_second;
1882 error = UFS_WAPBL_BEGIN(mp);
1883 if (error)
1884 allerror = error;
1885 else {
1886 if ((error = ffs_cgupdate(ump, waitfor)))
1887 allerror = error;
1888 UFS_WAPBL_END(mp);
1889 }
1890 }
1891
1892 #ifdef WAPBL
1893 if (mp->mnt_wapbl) {
1894 error = wapbl_flush(mp->mnt_wapbl, 0);
1895 if (error)
1896 allerror = error;
1897 }
1898 #endif
1899
1900 fstrans_done(mp);
1901 return (allerror);
1902 }
1903
1904 /*
1905 * Read an inode from disk and initialize this vnode / inode pair.
1906 * Caller assures no other thread will try to load this inode.
1907 */
1908 int
1909 ffs_loadvnode(struct mount *mp, struct vnode *vp,
1910 const void *key, size_t key_len, const void **new_key)
1911 {
1912 ino_t ino;
1913 struct fs *fs;
1914 struct inode *ip;
1915 struct ufsmount *ump;
1916 struct buf *bp;
1917 dev_t dev;
1918 int error;
1919
1920 KASSERT(key_len == sizeof(ino));
1921 memcpy(&ino, key, key_len);
1922 ump = VFSTOUFS(mp);
1923 dev = ump->um_dev;
1924 fs = ump->um_fs;
1925
1926 /* Read in the disk contents for the inode. */
1927 error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
1928 (int)fs->fs_bsize, NOCRED, 0, &bp);
1929 if (error)
1930 return error;
1931
1932 /* Allocate and initialize inode. */
1933 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1934 memset(ip, 0, sizeof(struct inode));
1935 vp->v_tag = VT_UFS;
1936 vp->v_op = ffs_vnodeop_p;
1937 vp->v_vflag |= VV_LOCKSWORK;
1938 vp->v_data = ip;
1939 ip->i_vnode = vp;
1940 ip->i_ump = ump;
1941 ip->i_fs = fs;
1942 ip->i_dev = dev;
1943 ip->i_number = ino;
1944 #if defined(QUOTA) || defined(QUOTA2)
1945 ufsquota_init(ip);
1946 #endif
1947
1948 /* Initialize genfs node. */
1949 genfs_node_init(vp, &ffs_genfsops);
1950
1951 if (ip->i_ump->um_fstype == UFS1)
1952 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1953 PR_WAITOK);
1954 else
1955 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1956 PR_WAITOK);
1957 ffs_load_inode(bp, ip, fs, ino);
1958 brelse(bp, 0);
1959
1960 /* Initialize the vnode from the inode. */
1961 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1962
1963 /* Finish inode initialization. */
1964 ip->i_devvp = ump->um_devvp;
1965 vref(ip->i_devvp);
1966
1967 /*
1968 * Ensure that uid and gid are correct. This is a temporary
1969 * fix until fsck has been changed to do the update.
1970 */
1971
1972 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1973 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1974 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1975 } /* XXX */
1976 uvm_vnp_setsize(vp, ip->i_size);
1977 *new_key = &ip->i_number;
1978 return 0;
1979 }
1980
1981 /*
1982 * File handle to vnode
1983 *
1984 * Have to be really careful about stale file handles:
1985 * - check that the inode number is valid
1986 * - call ffs_vget() to get the locked inode
1987 * - check for an unallocated inode (i_mode == 0)
1988 * - check that the given client host has export rights and return
1989 * those rights via. exflagsp and credanonp
1990 */
1991 int
1992 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1993 {
1994 struct ufid ufh;
1995 struct fs *fs;
1996
1997 if (fhp->fid_len != sizeof(struct ufid))
1998 return EINVAL;
1999
2000 memcpy(&ufh, fhp, sizeof(ufh));
2001 fs = VFSTOUFS(mp)->um_fs;
2002 if (ufh.ufid_ino < UFS_ROOTINO ||
2003 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
2004 return (ESTALE);
2005 return (ufs_fhtovp(mp, &ufh, vpp));
2006 }
2007
2008 /*
2009 * Vnode pointer to File handle
2010 */
2011 /* ARGSUSED */
2012 int
2013 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
2014 {
2015 struct inode *ip;
2016 struct ufid ufh;
2017
2018 if (*fh_size < sizeof(struct ufid)) {
2019 *fh_size = sizeof(struct ufid);
2020 return E2BIG;
2021 }
2022 ip = VTOI(vp);
2023 *fh_size = sizeof(struct ufid);
2024 memset(&ufh, 0, sizeof(ufh));
2025 ufh.ufid_len = sizeof(struct ufid);
2026 ufh.ufid_ino = ip->i_number;
2027 ufh.ufid_gen = ip->i_gen;
2028 memcpy(fhp, &ufh, sizeof(ufh));
2029 return (0);
2030 }
2031
2032 void
2033 ffs_init(void)
2034 {
2035 if (ffs_initcount++ > 0)
2036 return;
2037
2038 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2039 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2040 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2041 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2042 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2043 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2044 ufs_init();
2045 }
2046
2047 void
2048 ffs_reinit(void)
2049 {
2050
2051 ufs_reinit();
2052 }
2053
2054 void
2055 ffs_done(void)
2056 {
2057 if (--ffs_initcount > 0)
2058 return;
2059
2060 ufs_done();
2061 pool_cache_destroy(ffs_dinode2_cache);
2062 pool_cache_destroy(ffs_dinode1_cache);
2063 pool_cache_destroy(ffs_inode_cache);
2064 }
2065
2066 /*
2067 * Write a superblock and associated information back to disk.
2068 */
2069 int
2070 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2071 {
2072 struct fs *fs = mp->um_fs;
2073 struct buf *bp;
2074 int error = 0;
2075 u_int32_t saveflag;
2076
2077 error = ffs_getblk(mp->um_devvp,
2078 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2079 fs->fs_sbsize, false, &bp);
2080 if (error)
2081 return error;
2082 saveflag = fs->fs_flags & FS_INTERNAL;
2083 fs->fs_flags &= ~FS_INTERNAL;
2084
2085 memcpy(bp->b_data, fs, fs->fs_sbsize);
2086
2087 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2088 #ifdef FFS_EI
2089 if (mp->um_flags & UFS_NEEDSWAP)
2090 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
2091 #endif
2092 fs->fs_flags |= saveflag;
2093
2094 if (waitfor == MNT_WAIT)
2095 error = bwrite(bp);
2096 else
2097 bawrite(bp);
2098 return (error);
2099 }
2100
2101 int
2102 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2103 {
2104 struct fs *fs = mp->um_fs;
2105 struct buf *bp;
2106 int blks;
2107 void *space;
2108 int i, size, error = 0, allerror = 0;
2109
2110 allerror = ffs_sbupdate(mp, waitfor);
2111 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2112 space = fs->fs_csp;
2113 for (i = 0; i < blks; i += fs->fs_frag) {
2114 size = fs->fs_bsize;
2115 if (i + fs->fs_frag > blks)
2116 size = (blks - i) * fs->fs_fsize;
2117 error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2118 FFS_NOBLK, size, false, &bp);
2119 if (error)
2120 break;
2121 #ifdef FFS_EI
2122 if (mp->um_flags & UFS_NEEDSWAP)
2123 ffs_csum_swap((struct csum*)space,
2124 (struct csum*)bp->b_data, size);
2125 else
2126 #endif
2127 memcpy(bp->b_data, space, (u_int)size);
2128 space = (char *)space + size;
2129 if (waitfor == MNT_WAIT)
2130 error = bwrite(bp);
2131 else
2132 bawrite(bp);
2133 }
2134 if (!allerror && error)
2135 allerror = error;
2136 return (allerror);
2137 }
2138
2139 int
2140 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2141 int attrnamespace, const char *attrname)
2142 {
2143 #ifdef UFS_EXTATTR
2144 /*
2145 * File-backed extended attributes are only supported on UFS1.
2146 * UFS2 has native extended attributes.
2147 */
2148 if (VFSTOUFS(mp)->um_fstype == UFS1)
2149 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2150 #endif
2151 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2152 }
2153
2154 int
2155 ffs_suspendctl(struct mount *mp, int cmd)
2156 {
2157 int error;
2158 struct lwp *l = curlwp;
2159
2160 switch (cmd) {
2161 case SUSPEND_SUSPEND:
2162 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2163 return error;
2164 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2165 if (error == 0)
2166 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2167 #ifdef WAPBL
2168 if (error == 0 && mp->mnt_wapbl)
2169 error = wapbl_flush(mp->mnt_wapbl, 1);
2170 #endif
2171 if (error != 0) {
2172 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2173 return error;
2174 }
2175 return 0;
2176
2177 case SUSPEND_RESUME:
2178 return fstrans_setstate(mp, FSTRANS_NORMAL);
2179
2180 default:
2181 return EINVAL;
2182 }
2183 }
2184
2185 /*
2186 * Synch vnode for a mounted file system.
2187 */
2188 static int
2189 ffs_vfs_fsync(vnode_t *vp, int flags)
2190 {
2191 int error, i, pflags;
2192 #ifdef WAPBL
2193 struct mount *mp;
2194 #endif
2195
2196 KASSERT(vp->v_type == VBLK);
2197 KASSERT(spec_node_getmountedfs(vp) != NULL);
2198
2199 /*
2200 * Flush all dirty data associated with the vnode.
2201 */
2202 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2203 if ((flags & FSYNC_WAIT) != 0)
2204 pflags |= PGO_SYNCIO;
2205 mutex_enter(vp->v_interlock);
2206 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2207 if (error)
2208 return error;
2209
2210 #ifdef WAPBL
2211 mp = spec_node_getmountedfs(vp);
2212 if (mp && mp->mnt_wapbl) {
2213 /*
2214 * Don't bother writing out metadata if the syncer is
2215 * making the request. We will let the sync vnode
2216 * write it out in a single burst through a call to
2217 * VFS_SYNC().
2218 */
2219 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2220 return 0;
2221
2222 /*
2223 * Don't flush the log if the vnode being flushed
2224 * contains no dirty buffers that could be in the log.
2225 */
2226 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2227 error = wapbl_flush(mp->mnt_wapbl, 0);
2228 if (error)
2229 return error;
2230 }
2231
2232 if ((flags & FSYNC_WAIT) != 0) {
2233 mutex_enter(vp->v_interlock);
2234 while (vp->v_numoutput)
2235 cv_wait(&vp->v_cv, vp->v_interlock);
2236 mutex_exit(vp->v_interlock);
2237 }
2238
2239 return 0;
2240 }
2241 #endif /* WAPBL */
2242
2243 error = vflushbuf(vp, flags);
2244 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2245 i = 1;
2246 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2247 kauth_cred_get());
2248 }
2249
2250 return error;
2251 }
2252