ffs_vfsops.c revision 1.317 1 /* $NetBSD: ffs_vfsops.c,v 1.317 2015/02/20 17:10:17 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.317 2015/02/20 17:10:17 maxv Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/disk.h>
83 #include <sys/mbuf.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/fstrans.h>
96 #include <sys/module.h>
97
98 #include <miscfs/genfs/genfs.h>
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufs_extern.h>
106 #include <ufs/ufs/ufs_bswap.h>
107 #include <ufs/ufs/ufs_wapbl.h>
108
109 #include <ufs/ffs/fs.h>
110 #include <ufs/ffs/ffs_extern.h>
111
112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
113
114 static int ffs_vfs_fsync(vnode_t *, int);
115 static int ffs_superblock_validate(struct fs *);
116
117 static struct sysctllog *ffs_sysctl_log;
118
119 static kauth_listener_t ffs_snapshot_listener;
120
121 /* how many times ffs_init() was called */
122 int ffs_initcount = 0;
123
124 #ifdef DEBUG_FFS_MOUNT
125 #define DPRINTF(a) printf a
126 #else
127 #define DPRINTF(a) do {} while (/*CONSTCOND*/0)
128 #endif
129
130 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
131 extern const struct vnodeopv_desc ffs_specop_opv_desc;
132 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
133
134 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
135 &ffs_vnodeop_opv_desc,
136 &ffs_specop_opv_desc,
137 &ffs_fifoop_opv_desc,
138 NULL,
139 };
140
141 struct vfsops ffs_vfsops = {
142 .vfs_name = MOUNT_FFS,
143 .vfs_min_mount_data = sizeof (struct ufs_args),
144 .vfs_mount = ffs_mount,
145 .vfs_start = ufs_start,
146 .vfs_unmount = ffs_unmount,
147 .vfs_root = ufs_root,
148 .vfs_quotactl = ufs_quotactl,
149 .vfs_statvfs = ffs_statvfs,
150 .vfs_sync = ffs_sync,
151 .vfs_vget = ufs_vget,
152 .vfs_loadvnode = ffs_loadvnode,
153 .vfs_fhtovp = ffs_fhtovp,
154 .vfs_vptofh = ffs_vptofh,
155 .vfs_init = ffs_init,
156 .vfs_reinit = ffs_reinit,
157 .vfs_done = ffs_done,
158 .vfs_mountroot = ffs_mountroot,
159 .vfs_snapshot = ffs_snapshot,
160 .vfs_extattrctl = ffs_extattrctl,
161 .vfs_suspendctl = ffs_suspendctl,
162 .vfs_renamelock_enter = genfs_renamelock_enter,
163 .vfs_renamelock_exit = genfs_renamelock_exit,
164 .vfs_fsync = ffs_vfs_fsync,
165 .vfs_opv_descs = ffs_vnodeopv_descs
166 };
167
168 static const struct genfs_ops ffs_genfsops = {
169 .gop_size = ffs_gop_size,
170 .gop_alloc = ufs_gop_alloc,
171 .gop_write = genfs_gop_write,
172 .gop_markupdate = ufs_gop_markupdate,
173 };
174
175 static const struct ufs_ops ffs_ufsops = {
176 .uo_itimes = ffs_itimes,
177 .uo_update = ffs_update,
178 .uo_truncate = ffs_truncate,
179 .uo_valloc = ffs_valloc,
180 .uo_vfree = ffs_vfree,
181 .uo_balloc = ffs_balloc,
182 .uo_snapgone = ffs_snapgone,
183 };
184
185 static int
186 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
187 void *arg0, void *arg1, void *arg2, void *arg3)
188 {
189 vnode_t *vp = arg2;
190 int result = KAUTH_RESULT_DEFER;
191
192 if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
193 return result;
194
195 if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
196 result = KAUTH_RESULT_ALLOW;
197
198 return result;
199 }
200
201 static int
202 ffs_modcmd(modcmd_t cmd, void *arg)
203 {
204 int error;
205
206 #if 0
207 extern int doasyncfree;
208 #endif
209 #ifdef UFS_EXTATTR
210 extern int ufs_extattr_autocreate;
211 #endif
212 extern int ffs_log_changeopt;
213
214 switch (cmd) {
215 case MODULE_CMD_INIT:
216 error = vfs_attach(&ffs_vfsops);
217 if (error != 0)
218 break;
219
220 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
221 CTLFLAG_PERMANENT,
222 CTLTYPE_NODE, "ffs",
223 SYSCTL_DESCR("Berkeley Fast File System"),
224 NULL, 0, NULL, 0,
225 CTL_VFS, 1, CTL_EOL);
226 /*
227 * @@@ should we even bother with these first three?
228 */
229 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 CTLTYPE_INT, "doclusterread", NULL,
232 sysctl_notavail, 0, NULL, 0,
233 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
234 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
236 CTLTYPE_INT, "doclusterwrite", NULL,
237 sysctl_notavail, 0, NULL, 0,
238 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
239 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
241 CTLTYPE_INT, "doreallocblks", NULL,
242 sysctl_notavail, 0, NULL, 0,
243 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
244 #if 0
245 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
246 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
247 CTLTYPE_INT, "doasyncfree",
248 SYSCTL_DESCR("Release dirty blocks asynchronously"),
249 NULL, 0, &doasyncfree, 0,
250 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
251 #endif
252 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
253 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
254 CTLTYPE_INT, "log_changeopt",
255 SYSCTL_DESCR("Log changes in optimization strategy"),
256 NULL, 0, &ffs_log_changeopt, 0,
257 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
258 #ifdef UFS_EXTATTR
259 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
261 CTLTYPE_INT, "extattr_autocreate",
262 SYSCTL_DESCR("Size of attribute for "
263 "backing file autocreation"),
264 NULL, 0, &ufs_extattr_autocreate, 0,
265 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
266
267 #endif /* UFS_EXTATTR */
268
269 ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
270 ffs_snapshot_cb, NULL);
271 if (ffs_snapshot_listener == NULL)
272 printf("ffs_modcmd: can't listen on system scope.\n");
273
274 break;
275 case MODULE_CMD_FINI:
276 error = vfs_detach(&ffs_vfsops);
277 if (error != 0)
278 break;
279 sysctl_teardown(&ffs_sysctl_log);
280 if (ffs_snapshot_listener != NULL)
281 kauth_unlisten_scope(ffs_snapshot_listener);
282 break;
283 default:
284 error = ENOTTY;
285 break;
286 }
287
288 return (error);
289 }
290
291 pool_cache_t ffs_inode_cache;
292 pool_cache_t ffs_dinode1_cache;
293 pool_cache_t ffs_dinode2_cache;
294
295 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
296 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
297
298 /*
299 * Called by main() when ffs is going to be mounted as root.
300 */
301
302 int
303 ffs_mountroot(void)
304 {
305 struct fs *fs;
306 struct mount *mp;
307 struct lwp *l = curlwp; /* XXX */
308 struct ufsmount *ump;
309 int error;
310
311 if (device_class(root_device) != DV_DISK)
312 return (ENODEV);
313
314 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
315 vrele(rootvp);
316 return (error);
317 }
318
319 /*
320 * We always need to be able to mount the root file system.
321 */
322 mp->mnt_flag |= MNT_FORCE;
323 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
324 vfs_unbusy(mp, false, NULL);
325 vfs_destroy(mp);
326 return (error);
327 }
328 mp->mnt_flag &= ~MNT_FORCE;
329 mountlist_append(mp);
330 ump = VFSTOUFS(mp);
331 fs = ump->um_fs;
332 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
333 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
334 (void)ffs_statvfs(mp, &mp->mnt_stat);
335 vfs_unbusy(mp, false, NULL);
336 setrootfstime((time_t)fs->fs_time);
337 return (0);
338 }
339
340 /*
341 * VFS Operations.
342 *
343 * mount system call
344 */
345 int
346 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
347 {
348 struct lwp *l = curlwp;
349 struct vnode *devvp = NULL;
350 struct ufs_args *args = data;
351 struct ufsmount *ump = NULL;
352 struct fs *fs;
353 int error = 0, flags, update;
354 mode_t accessmode;
355
356 if (args == NULL) {
357 DPRINTF(("%s: NULL args\n", __func__));
358 return EINVAL;
359 }
360 if (*data_len < sizeof(*args)) {
361 DPRINTF(("%s: bad size args %zu != %zu\n",
362 __func__, *data_len, sizeof(*args)));
363 return EINVAL;
364 }
365
366 if (mp->mnt_flag & MNT_GETARGS) {
367 ump = VFSTOUFS(mp);
368 if (ump == NULL) {
369 DPRINTF(("%s: no ump\n", __func__));
370 return EIO;
371 }
372 args->fspec = NULL;
373 *data_len = sizeof *args;
374 return 0;
375 }
376
377 update = mp->mnt_flag & MNT_UPDATE;
378
379 /* Check arguments */
380 if (args->fspec != NULL) {
381 /*
382 * Look up the name and verify that it's sane.
383 */
384 error = namei_simple_user(args->fspec,
385 NSM_FOLLOW_NOEMULROOT, &devvp);
386 if (error != 0) {
387 DPRINTF(("%s: namei_simple_user %d\n", __func__,
388 error));
389 return error;
390 }
391
392 if (!update) {
393 /*
394 * Be sure this is a valid block device
395 */
396 if (devvp->v_type != VBLK) {
397 DPRINTF(("%s: non block device %d\n",
398 __func__, devvp->v_type));
399 error = ENOTBLK;
400 } else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
401 DPRINTF(("%s: can't find block device 0x%jx\n",
402 __func__, devvp->v_rdev));
403 error = ENXIO;
404 }
405 } else {
406 /*
407 * Be sure we're still naming the same device
408 * used for our initial mount
409 */
410 ump = VFSTOUFS(mp);
411 if (devvp != ump->um_devvp) {
412 if (devvp->v_rdev != ump->um_devvp->v_rdev) {
413 DPRINTF(("%s: wrong device 0x%jx"
414 " != 0x%jx\n", __func__,
415 (uintmax_t)devvp->v_rdev,
416 (uintmax_t)ump->um_devvp->v_rdev));
417 error = EINVAL;
418 } else {
419 vrele(devvp);
420 devvp = ump->um_devvp;
421 vref(devvp);
422 }
423 }
424 }
425 } else {
426 if (!update) {
427 /* New mounts must have a filename for the device */
428 DPRINTF(("%s: no filename for mount\n", __func__));
429 return EINVAL;
430 } else {
431 /* Use the extant mount */
432 ump = VFSTOUFS(mp);
433 devvp = ump->um_devvp;
434 vref(devvp);
435 }
436 }
437
438 /*
439 * If mount by non-root, then verify that user has necessary
440 * permissions on the device.
441 *
442 * Permission to update a mount is checked higher, so here we presume
443 * updating the mount is okay (for example, as far as securelevel goes)
444 * which leaves us with the normal check.
445 */
446 if (error == 0) {
447 accessmode = VREAD;
448 if (update ?
449 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
450 (mp->mnt_flag & MNT_RDONLY) == 0)
451 accessmode |= VWRITE;
452 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
453 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
454 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
455 KAUTH_ARG(accessmode));
456 if (error) {
457 DPRINTF(("%s: kauth %d\n", __func__, error));
458 }
459 VOP_UNLOCK(devvp);
460 }
461
462 if (error) {
463 vrele(devvp);
464 return (error);
465 }
466
467 #ifdef WAPBL
468 /* WAPBL can only be enabled on a r/w mount. */
469 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
470 mp->mnt_flag &= ~MNT_LOG;
471 }
472 #else /* !WAPBL */
473 mp->mnt_flag &= ~MNT_LOG;
474 #endif /* !WAPBL */
475
476 if (!update) {
477 int xflags;
478
479 if (mp->mnt_flag & MNT_RDONLY)
480 xflags = FREAD;
481 else
482 xflags = FREAD | FWRITE;
483 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
484 error = VOP_OPEN(devvp, xflags, FSCRED);
485 VOP_UNLOCK(devvp);
486 if (error) {
487 DPRINTF(("%s: VOP_OPEN %d\n", __func__, error));
488 goto fail;
489 }
490 error = ffs_mountfs(devvp, mp, l);
491 if (error) {
492 DPRINTF(("%s: ffs_mountfs %d\n", __func__, error));
493 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
494 (void)VOP_CLOSE(devvp, xflags, NOCRED);
495 VOP_UNLOCK(devvp);
496 goto fail;
497 }
498
499 ump = VFSTOUFS(mp);
500 fs = ump->um_fs;
501 } else {
502 /*
503 * Update the mount.
504 */
505
506 /*
507 * The initial mount got a reference on this
508 * device, so drop the one obtained via
509 * namei(), above.
510 */
511 vrele(devvp);
512
513 ump = VFSTOUFS(mp);
514 fs = ump->um_fs;
515 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
516 /*
517 * Changing from r/w to r/o
518 */
519 flags = WRITECLOSE;
520 if (mp->mnt_flag & MNT_FORCE)
521 flags |= FORCECLOSE;
522 error = ffs_flushfiles(mp, flags, l);
523 if (error == 0)
524 error = UFS_WAPBL_BEGIN(mp);
525 if (error == 0 &&
526 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
527 fs->fs_clean & FS_WASCLEAN) {
528 if (mp->mnt_flag & MNT_SOFTDEP)
529 fs->fs_flags &= ~FS_DOSOFTDEP;
530 fs->fs_clean = FS_ISCLEAN;
531 (void) ffs_sbupdate(ump, MNT_WAIT);
532 }
533 if (error) {
534 DPRINTF(("%s: wapbl %d\n", __func__, error));
535 return error;
536 }
537 UFS_WAPBL_END(mp);
538 }
539
540 #ifdef WAPBL
541 if ((mp->mnt_flag & MNT_LOG) == 0) {
542 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
543 if (error) {
544 DPRINTF(("%s: ffs_wapbl_stop %d\n",
545 __func__, error));
546 return error;
547 }
548 }
549 #endif /* WAPBL */
550
551 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
552 /*
553 * Finish change from r/w to r/o
554 */
555 fs->fs_ronly = 1;
556 fs->fs_fmod = 0;
557 }
558
559 if (mp->mnt_flag & MNT_RELOAD) {
560 error = ffs_reload(mp, l->l_cred, l);
561 if (error) {
562 DPRINTF(("%s: ffs_reload %d\n",
563 __func__, error));
564 return error;
565 }
566 }
567
568 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
569 /*
570 * Changing from read-only to read/write
571 */
572 #ifndef QUOTA2
573 if (fs->fs_flags & FS_DOQUOTA2) {
574 ump->um_flags |= UFS_QUOTA2;
575 uprintf("%s: options QUOTA2 not enabled%s\n",
576 mp->mnt_stat.f_mntonname,
577 (mp->mnt_flag & MNT_FORCE) ? "" :
578 ", not mounting");
579 DPRINTF(("%s: ffs_quota2 %d\n",
580 __func__, EINVAL));
581 return EINVAL;
582 }
583 #endif
584 fs->fs_ronly = 0;
585 fs->fs_clean <<= 1;
586 fs->fs_fmod = 1;
587 #ifdef WAPBL
588 if (fs->fs_flags & FS_DOWAPBL) {
589 const char *nm = mp->mnt_stat.f_mntonname;
590 if (!mp->mnt_wapbl_replay) {
591 printf("%s: log corrupted;"
592 " replay cancelled\n", nm);
593 return EFTYPE;
594 }
595 printf("%s: replaying log to disk\n", nm);
596 error = wapbl_replay_write(mp->mnt_wapbl_replay,
597 devvp);
598 if (error) {
599 DPRINTF((
600 "%s: %s: wapbl_replay_write %d\n",
601 __func__, nm, error));
602 return error;
603 }
604 wapbl_replay_stop(mp->mnt_wapbl_replay);
605 fs->fs_clean = FS_WASCLEAN;
606 }
607 #endif /* WAPBL */
608 if (fs->fs_snapinum[0] != 0)
609 ffs_snapshot_mount(mp);
610 }
611
612 #ifdef WAPBL
613 error = ffs_wapbl_start(mp);
614 if (error) {
615 DPRINTF(("%s: ffs_wapbl_start %d\n",
616 __func__, error));
617 return error;
618 }
619 #endif /* WAPBL */
620
621 #ifdef QUOTA2
622 if (!fs->fs_ronly) {
623 error = ffs_quota2_mount(mp);
624 if (error) {
625 DPRINTF(("%s: ffs_quota2_mount %d\n",
626 __func__, error));
627 return error;
628 }
629 }
630 #endif
631
632 if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
633 ump->um_discarddata = ffs_discard_init(devvp, fs);
634
635 if (args->fspec == NULL)
636 return 0;
637 }
638
639 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
640 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
641 if (error == 0)
642 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
643 sizeof(fs->fs_fsmnt));
644 else {
645 DPRINTF(("%s: set_statvfs_info %d\n", __func__, error));
646 }
647 fs->fs_flags &= ~FS_DOSOFTDEP;
648 if (fs->fs_fmod != 0) { /* XXX */
649 int err;
650
651 fs->fs_fmod = 0;
652 if (fs->fs_clean & FS_WASCLEAN)
653 fs->fs_time = time_second;
654 else {
655 printf("%s: file system not clean (fs_clean=%#x); "
656 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
657 fs->fs_clean);
658 printf("%s: lost blocks %" PRId64 " files %d\n",
659 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
660 fs->fs_pendinginodes);
661 }
662 err = UFS_WAPBL_BEGIN(mp);
663 if (err == 0) {
664 (void) ffs_cgupdate(ump, MNT_WAIT);
665 UFS_WAPBL_END(mp);
666 }
667 }
668 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
669 printf("%s: `-o softdep' is no longer supported, "
670 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
671 mp->mnt_flag &= ~MNT_SOFTDEP;
672 }
673
674 return (error);
675
676 fail:
677 vrele(devvp);
678 return (error);
679 }
680
681 /*
682 * Reload all incore data for a filesystem (used after running fsck on
683 * the root filesystem and finding things to fix). The filesystem must
684 * be mounted read-only.
685 *
686 * Things to do to update the mount:
687 * 1) invalidate all cached meta-data.
688 * 2) re-read superblock from disk.
689 * 3) re-read summary information from disk.
690 * 4) invalidate all inactive vnodes.
691 * 5) invalidate all cached file data.
692 * 6) re-read inode data for all active vnodes.
693 */
694 int
695 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
696 {
697 struct vnode *vp, *devvp;
698 struct inode *ip;
699 void *space;
700 struct buf *bp;
701 struct fs *fs, *newfs;
702 struct dkwedge_info dkw;
703 int i, bsize, blks, error;
704 int32_t *lp, fs_sbsize;
705 struct ufsmount *ump;
706 daddr_t sblockloc;
707 struct vnode_iterator *marker;
708
709 if ((mp->mnt_flag & MNT_RDONLY) == 0)
710 return (EINVAL);
711
712 ump = VFSTOUFS(mp);
713
714 /*
715 * Step 1: invalidate all cached meta-data.
716 */
717 devvp = ump->um_devvp;
718 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
719 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
720 VOP_UNLOCK(devvp);
721 if (error)
722 panic("ffs_reload: dirty1");
723
724 /*
725 * Step 2: re-read superblock from disk. XXX: We don't handle
726 * possibility that superblock moved. Which implies that we don't
727 * want its size to change either.
728 */
729 fs = ump->um_fs;
730 fs_sbsize = fs->fs_sbsize;
731 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
732 NOCRED, 0, &bp);
733 if (error)
734 return (error);
735 newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
736 memcpy(newfs, bp->b_data, fs_sbsize);
737
738 #ifdef FFS_EI
739 if (ump->um_flags & UFS_NEEDSWAP) {
740 ffs_sb_swap((struct fs*)bp->b_data, newfs);
741 fs->fs_flags |= FS_SWAPPED;
742 } else
743 #endif
744 fs->fs_flags &= ~FS_SWAPPED;
745
746 /* We don't want the superblock size to change. */
747 if (newfs->fs_sbsize != fs_sbsize) {
748 brelse(bp, 0);
749 kmem_free(newfs, fs_sbsize);
750 return (EINVAL);
751 }
752 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
753 newfs->fs_magic != FS_UFS2_MAGIC)) {
754 brelse(bp, 0);
755 kmem_free(newfs, fs_sbsize);
756 return (EIO); /* XXX needs translation */
757 }
758 if (!ffs_superblock_validate(newfs)) {
759 brelse(bp, 0);
760 kmem_free(newfs, fs_sbsize);
761 return (EINVAL);
762 }
763
764 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
765 sblockloc = fs->fs_sblockloc;
766 /*
767 * Copy pointer fields back into superblock before copying in XXX
768 * new superblock. These should really be in the ufsmount. XXX
769 * Note that important parameters (eg fs_ncg) are unchanged.
770 */
771 newfs->fs_csp = fs->fs_csp;
772 newfs->fs_maxcluster = fs->fs_maxcluster;
773 newfs->fs_contigdirs = fs->fs_contigdirs;
774 newfs->fs_ronly = fs->fs_ronly;
775 newfs->fs_active = fs->fs_active;
776 memcpy(fs, newfs, (u_int)fs_sbsize);
777 brelse(bp, 0);
778 kmem_free(newfs, fs_sbsize);
779
780 /* Recheck for apple UFS filesystem */
781 ump->um_flags &= ~UFS_ISAPPLEUFS;
782 /* First check to see if this is tagged as an Apple UFS filesystem
783 * in the disklabel
784 */
785 if (getdiskinfo(devvp, &dkw) == 0 &&
786 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
787 ump->um_flags |= UFS_ISAPPLEUFS;
788 #ifdef APPLE_UFS
789 else {
790 /* Manually look for an apple ufs label, and if a valid one
791 * is found, then treat it like an Apple UFS filesystem anyway
792 *
793 * EINVAL is most probably a blocksize or alignment problem,
794 * it is unlikely that this is an Apple UFS filesystem then.
795 */
796 error = bread(devvp,
797 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
798 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
799 if (error && error != EINVAL) {
800 return error;
801 }
802 if (error == 0) {
803 error = ffs_appleufs_validate(fs->fs_fsmnt,
804 (struct appleufslabel *)bp->b_data, NULL);
805 if (error == 0)
806 ump->um_flags |= UFS_ISAPPLEUFS;
807 brelse(bp, 0);
808 }
809 bp = NULL;
810 }
811 #else
812 if (ump->um_flags & UFS_ISAPPLEUFS)
813 return (EIO);
814 #endif
815
816 if (UFS_MPISAPPLEUFS(ump)) {
817 /* see comment about NeXT below */
818 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
819 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
820 mp->mnt_iflag |= IMNT_DTYPE;
821 } else {
822 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
823 ump->um_dirblksiz = UFS_DIRBLKSIZ;
824 if (ump->um_maxsymlinklen > 0)
825 mp->mnt_iflag |= IMNT_DTYPE;
826 else
827 mp->mnt_iflag &= ~IMNT_DTYPE;
828 }
829 ffs_oldfscompat_read(fs, ump, sblockloc);
830
831 mutex_enter(&ump->um_lock);
832 ump->um_maxfilesize = fs->fs_maxfilesize;
833 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
834 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
835 mp->mnt_stat.f_mntonname, fs->fs_flags,
836 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
837 if ((mp->mnt_flag & MNT_FORCE) == 0) {
838 mutex_exit(&ump->um_lock);
839 return (EINVAL);
840 }
841 }
842 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
843 fs->fs_pendingblocks = 0;
844 fs->fs_pendinginodes = 0;
845 }
846 mutex_exit(&ump->um_lock);
847
848 ffs_statvfs(mp, &mp->mnt_stat);
849 /*
850 * Step 3: re-read summary information from disk.
851 */
852 blks = howmany(fs->fs_cssize, fs->fs_fsize);
853 space = fs->fs_csp;
854 for (i = 0; i < blks; i += fs->fs_frag) {
855 bsize = fs->fs_bsize;
856 if (i + fs->fs_frag > blks)
857 bsize = (blks - i) * fs->fs_fsize;
858 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
859 NOCRED, 0, &bp);
860 if (error) {
861 return (error);
862 }
863 #ifdef FFS_EI
864 if (UFS_FSNEEDSWAP(fs))
865 ffs_csum_swap((struct csum *)bp->b_data,
866 (struct csum *)space, bsize);
867 else
868 #endif
869 memcpy(space, bp->b_data, (size_t)bsize);
870 space = (char *)space + bsize;
871 brelse(bp, 0);
872 }
873 /*
874 * We no longer know anything about clusters per cylinder group.
875 */
876 if (fs->fs_contigsumsize > 0) {
877 lp = fs->fs_maxcluster;
878 for (i = 0; i < fs->fs_ncg; i++)
879 *lp++ = fs->fs_contigsumsize;
880 }
881
882 vfs_vnode_iterator_init(mp, &marker);
883 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
884 /*
885 * Step 4: invalidate all inactive vnodes.
886 */
887 if (vrecycle(vp))
888 continue;
889 /*
890 * Step 5: invalidate all cached file data.
891 */
892 if (vn_lock(vp, LK_EXCLUSIVE)) {
893 vrele(vp);
894 continue;
895 }
896 if (vinvalbuf(vp, 0, cred, l, 0, 0))
897 panic("ffs_reload: dirty2");
898 /*
899 * Step 6: re-read inode data for all active vnodes.
900 */
901 ip = VTOI(vp);
902 error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
903 (int)fs->fs_bsize, NOCRED, 0, &bp);
904 if (error) {
905 vput(vp);
906 break;
907 }
908 ffs_load_inode(bp, ip, fs, ip->i_number);
909 brelse(bp, 0);
910 vput(vp);
911 }
912 vfs_vnode_iterator_destroy(marker);
913 return (error);
914 }
915
916 /*
917 * Possible superblock locations ordered from most to least likely.
918 */
919 static const int sblock_try[] = SBLOCKSEARCH;
920
921
922 static int
923 ffs_superblock_validate(struct fs *fs)
924 {
925 int32_t i, fs_bshift = 0, fs_fshift = 0, fs_frag;
926
927 /* Check the superblock size */
928 if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
929 return 0;
930
931 /* Check the file system blocksize */
932 if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
933 return 0;
934 if (!powerof2(fs->fs_bsize))
935 return 0;
936
937 /* Check the size of frag blocks */
938 if (!powerof2(fs->fs_fsize))
939 return 0;
940
941 if (fs->fs_size == 0)
942 return 0;
943 if (fs->fs_cssize == 0)
944 return 0;
945
946 /* Block size cannot be smaller than fragment size */
947 if (fs->fs_bsize < fs->fs_fsize)
948 return 0;
949
950 /* Compute fs_bshift and ensure it is consistent */
951 for (i = fs->fs_bsize; i > 1; i >>= 1)
952 fs_bshift++;
953 if (fs->fs_bshift != fs_bshift)
954 return 0;
955
956 /* Compute fs_fshift and ensure it is consistent */
957 for (i = fs->fs_fsize; i > 1; i >>= 1)
958 fs_fshift++;
959 if (fs->fs_fshift != fs_fshift)
960 return 0;
961
962 /* Now that the shifts are sanitized, we can use the ffs_ API */
963
964 /* Check the number of frag blocks */
965 if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
966 return 0;
967 if (fs->fs_frag != fs_frag)
968 return 0;
969
970 return 1;
971 }
972
973 /*
974 * Common code for mount and mountroot
975 */
976 int
977 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
978 {
979 struct ufsmount *ump = NULL;
980 struct buf *bp = NULL;
981 struct fs *fs = NULL;
982 dev_t dev;
983 struct dkwedge_info dkw;
984 void *space;
985 daddr_t sblockloc = 0;
986 int blks, fstype = 0;
987 int error, i, bsize, ronly, bset = 0;
988 #ifdef FFS_EI
989 int needswap = 0; /* keep gcc happy */
990 #endif
991 int32_t *lp;
992 kauth_cred_t cred;
993 u_int32_t fs_sbsize = 8192; /* keep gcc happy*/
994 u_int32_t allocsbsize;
995
996 dev = devvp->v_rdev;
997 cred = l ? l->l_cred : NOCRED;
998
999 /* Flush out any old buffers remaining from a previous use. */
1000 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1001 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
1002 VOP_UNLOCK(devvp);
1003 if (error) {
1004 DPRINTF(("%s: vinvalbuf %d\n", __func__, error));
1005 return error;
1006 }
1007
1008 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
1009
1010 error = fstrans_mount(mp);
1011 if (error) {
1012 DPRINTF(("%s: fstrans_mount %d\n", __func__, error));
1013 return error;
1014 }
1015
1016 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1017 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1018 error = ffs_snapshot_init(ump);
1019 if (error) {
1020 DPRINTF(("%s: ffs_snapshot_init %d\n", __func__, error));
1021 goto out;
1022 }
1023 ump->um_ops = &ffs_ufsops;
1024
1025 #ifdef WAPBL
1026 sbagain:
1027 #endif
1028 /*
1029 * Try reading the superblock in each of its possible locations.
1030 */
1031 for (i = 0; ; i++) {
1032 daddr_t fsblockloc;
1033
1034 if (bp != NULL) {
1035 brelse(bp, BC_NOCACHE);
1036 bp = NULL;
1037 }
1038 if (sblock_try[i] == -1) {
1039 DPRINTF(("%s: no superblock found\n", __func__));
1040 error = EINVAL;
1041 fs = NULL;
1042 goto out;
1043 }
1044
1045 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1046 cred, 0, &bp);
1047 if (error) {
1048 DPRINTF(("%s: bread@0x%x %d\n", __func__,
1049 sblock_try[i] / DEV_BSIZE, error));
1050 fs = NULL;
1051 goto out;
1052 }
1053 fs = (struct fs*)bp->b_data;
1054
1055 fsblockloc = sblockloc = sblock_try[i];
1056 DPRINTF(("%s: fs_magic 0x%x\n", __func__, fs->fs_magic));
1057
1058 /*
1059 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1060 * size to read the superblock. Once read, we swap the whole
1061 * superblock structure.
1062 */
1063 if (fs->fs_magic == FS_UFS1_MAGIC) {
1064 fs_sbsize = fs->fs_sbsize;
1065 fstype = UFS1;
1066 #ifdef FFS_EI
1067 needswap = 0;
1068 } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1069 fs_sbsize = bswap32(fs->fs_sbsize);
1070 fstype = UFS1;
1071 needswap = 1;
1072 #endif
1073 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
1074 fs_sbsize = fs->fs_sbsize;
1075 fstype = UFS2;
1076 #ifdef FFS_EI
1077 needswap = 0;
1078 } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1079 fs_sbsize = bswap32(fs->fs_sbsize);
1080 fstype = UFS2;
1081 needswap = 1;
1082 #endif
1083 } else
1084 continue;
1085
1086 /* fs->fs_sblockloc isn't defined for old filesystems */
1087 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1088 if (sblockloc == SBLOCK_UFS2)
1089 /*
1090 * This is likely to be the first alternate
1091 * in a filesystem with 64k blocks.
1092 * Don't use it.
1093 */
1094 continue;
1095 fsblockloc = sblockloc;
1096 } else {
1097 fsblockloc = fs->fs_sblockloc;
1098 #ifdef FFS_EI
1099 if (needswap)
1100 fsblockloc = bswap64(fsblockloc);
1101 #endif
1102 }
1103
1104 /* Check we haven't found an alternate superblock */
1105 if (fsblockloc != sblockloc)
1106 continue;
1107
1108 /* Check the superblock size */
1109 if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1110 continue;
1111 fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1112 memcpy(fs, bp->b_data, fs_sbsize);
1113
1114 /* Swap the whole superblock structure, if necessary. */
1115 #ifdef FFS_EI
1116 if (needswap) {
1117 ffs_sb_swap((struct fs*)bp->b_data, fs);
1118 fs->fs_flags |= FS_SWAPPED;
1119 } else
1120 #endif
1121 fs->fs_flags &= ~FS_SWAPPED;
1122
1123 /*
1124 * Now that everything is swapped, the superblock is ready to
1125 * be sanitized.
1126 */
1127 if (!ffs_superblock_validate(fs)) {
1128 kmem_free(fs, fs_sbsize);
1129 continue;
1130 }
1131
1132 /* Ok seems to be a good superblock */
1133 break;
1134 }
1135
1136 ump->um_fs = fs;
1137
1138 #ifdef WAPBL
1139 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1140 error = ffs_wapbl_replay_start(mp, fs, devvp);
1141 if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1142 DPRINTF(("%s: ffs_wapbl_replay_start %d\n", __func__,
1143 error));
1144 goto out;
1145 }
1146 if (!error) {
1147 if (!ronly) {
1148 /* XXX fsmnt may be stale. */
1149 printf("%s: replaying log to disk\n",
1150 fs->fs_fsmnt);
1151 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1152 devvp);
1153 if (error) {
1154 DPRINTF(("%s: wapbl_replay_write %d\n",
1155 __func__, error));
1156 goto out;
1157 }
1158 wapbl_replay_stop(mp->mnt_wapbl_replay);
1159 fs->fs_clean = FS_WASCLEAN;
1160 } else {
1161 /* XXX fsmnt may be stale */
1162 printf("%s: replaying log to memory\n",
1163 fs->fs_fsmnt);
1164 }
1165
1166 /* Force a re-read of the superblock */
1167 brelse(bp, BC_INVAL);
1168 bp = NULL;
1169 kmem_free(fs, fs_sbsize);
1170 fs = NULL;
1171 goto sbagain;
1172 }
1173 }
1174 #else /* !WAPBL */
1175 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1176 error = EPERM;
1177 DPRINTF(("%s: no force %d\n", __func__, error));
1178 goto out;
1179 }
1180 #endif /* !WAPBL */
1181
1182 ffs_oldfscompat_read(fs, ump, sblockloc);
1183 ump->um_maxfilesize = fs->fs_maxfilesize;
1184
1185 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1186 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1187 mp->mnt_stat.f_mntonname, fs->fs_flags,
1188 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1189 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1190 error = EINVAL;
1191 DPRINTF(("%s: no force %d\n", __func__, error));
1192 goto out;
1193 }
1194 }
1195
1196 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1197 fs->fs_pendingblocks = 0;
1198 fs->fs_pendinginodes = 0;
1199 }
1200
1201 ump->um_fstype = fstype;
1202 if (fs->fs_sbsize < SBLOCKSIZE)
1203 brelse(bp, BC_INVAL);
1204 else
1205 brelse(bp, 0);
1206 bp = NULL;
1207
1208 /* First check to see if this is tagged as an Apple UFS filesystem
1209 * in the disklabel
1210 */
1211 if (getdiskinfo(devvp, &dkw) == 0 &&
1212 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1213 ump->um_flags |= UFS_ISAPPLEUFS;
1214 #ifdef APPLE_UFS
1215 else {
1216 /* Manually look for an apple ufs label, and if a valid one
1217 * is found, then treat it like an Apple UFS filesystem anyway
1218 */
1219 error = bread(devvp,
1220 (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1221 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1222 if (error) {
1223 DPRINTF(("%s: apple bread@0x%jx %d\n", __func__,
1224 (intmax_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1225 error));
1226 goto out;
1227 }
1228 error = ffs_appleufs_validate(fs->fs_fsmnt,
1229 (struct appleufslabel *)bp->b_data, NULL);
1230 if (error == 0)
1231 ump->um_flags |= UFS_ISAPPLEUFS;
1232 brelse(bp, 0);
1233 bp = NULL;
1234 }
1235 #else
1236 if (ump->um_flags & UFS_ISAPPLEUFS) {
1237 DPRINTF(("%s: bad apple\n", __func__));
1238 error = EINVAL;
1239 goto out;
1240 }
1241 #endif
1242
1243 #if 0
1244 /*
1245 * XXX This code changes the behaviour of mounting dirty filesystems, to
1246 * XXX require "mount -f ..." to mount them. This doesn't match what
1247 * XXX mount(8) describes and is disabled for now.
1248 */
1249 /*
1250 * If the file system is not clean, don't allow it to be mounted
1251 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1252 * for the root file system.)
1253 */
1254 if (fs->fs_flags & FS_DOWAPBL) {
1255 /*
1256 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1257 * bit is set, although there's a window in unmount where it
1258 * could be FS_ISCLEAN
1259 */
1260 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1261 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1262 error = EPERM;
1263 goto out;
1264 }
1265 } else
1266 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1267 (mp->mnt_flag & MNT_FORCE) == 0) {
1268 error = EPERM;
1269 goto out;
1270 }
1271 #endif
1272
1273 /*
1274 * Verify that we can access the last block in the fs
1275 * if we're mounting read/write.
1276 */
1277
1278 if (!ronly) {
1279 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1280 fs->fs_fsize, cred, 0, &bp);
1281 if (error) {
1282 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1283 (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1284 error));
1285 bset = BC_INVAL;
1286 goto out;
1287 }
1288 if (bp->b_bcount != fs->fs_fsize) {
1289 DPRINTF(("%s: bcount %x != fsize %x\n", __func__,
1290 bp->b_bcount, fs->fs_fsize));
1291 error = EINVAL;
1292 }
1293 brelse(bp, BC_INVAL);
1294 bp = NULL;
1295 }
1296
1297 fs->fs_ronly = ronly;
1298 /* Don't bump fs_clean if we're replaying journal */
1299 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1300 if (ronly == 0) {
1301 fs->fs_clean <<= 1;
1302 fs->fs_fmod = 1;
1303 }
1304 }
1305
1306 bsize = fs->fs_cssize;
1307 blks = howmany(bsize, fs->fs_fsize);
1308 if (fs->fs_contigsumsize > 0)
1309 bsize += fs->fs_ncg * sizeof(int32_t);
1310 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1311 allocsbsize = bsize;
1312 space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1313 fs->fs_csp = space;
1314
1315 for (i = 0; i < blks; i += fs->fs_frag) {
1316 bsize = fs->fs_bsize;
1317 if (i + fs->fs_frag > blks)
1318 bsize = (blks - i) * fs->fs_fsize;
1319 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1320 cred, 0, &bp);
1321 if (error) {
1322 DPRINTF(("%s: bread@0x%jx %d\n", __func__,
1323 (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1324 error));
1325 goto out1;
1326 }
1327 #ifdef FFS_EI
1328 if (needswap)
1329 ffs_csum_swap((struct csum *)bp->b_data,
1330 (struct csum *)space, bsize);
1331 else
1332 #endif
1333 memcpy(space, bp->b_data, (u_int)bsize);
1334
1335 space = (char *)space + bsize;
1336 brelse(bp, 0);
1337 bp = NULL;
1338 }
1339 if (fs->fs_contigsumsize > 0) {
1340 fs->fs_maxcluster = lp = space;
1341 for (i = 0; i < fs->fs_ncg; i++)
1342 *lp++ = fs->fs_contigsumsize;
1343 space = lp;
1344 }
1345 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1346 fs->fs_contigdirs = space;
1347 space = (char *)space + bsize;
1348 memset(fs->fs_contigdirs, 0, bsize);
1349 /* Compatibility for old filesystems - XXX */
1350 if (fs->fs_avgfilesize <= 0)
1351 fs->fs_avgfilesize = AVFILESIZ;
1352 if (fs->fs_avgfpdir <= 0)
1353 fs->fs_avgfpdir = AFPDIR;
1354 fs->fs_active = NULL;
1355 mp->mnt_data = ump;
1356 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1357 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1358 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1359 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1360 if (UFS_MPISAPPLEUFS(ump)) {
1361 /* NeXT used to keep short symlinks in the inode even
1362 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1363 * is probably -1, but we still need to be able to identify
1364 * short symlinks.
1365 */
1366 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1367 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1368 mp->mnt_iflag |= IMNT_DTYPE;
1369 } else {
1370 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1371 ump->um_dirblksiz = UFS_DIRBLKSIZ;
1372 if (ump->um_maxsymlinklen > 0)
1373 mp->mnt_iflag |= IMNT_DTYPE;
1374 else
1375 mp->mnt_iflag &= ~IMNT_DTYPE;
1376 }
1377 mp->mnt_fs_bshift = fs->fs_bshift;
1378 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1379 mp->mnt_flag |= MNT_LOCAL;
1380 mp->mnt_iflag |= IMNT_MPSAFE;
1381 #ifdef FFS_EI
1382 if (needswap)
1383 ump->um_flags |= UFS_NEEDSWAP;
1384 #endif
1385 ump->um_mountp = mp;
1386 ump->um_dev = dev;
1387 ump->um_devvp = devvp;
1388 ump->um_nindir = fs->fs_nindir;
1389 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1390 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1391 ump->um_seqinc = fs->fs_frag;
1392 for (i = 0; i < MAXQUOTAS; i++)
1393 ump->um_quotas[i] = NULLVP;
1394 spec_node_setmountedfs(devvp, mp);
1395 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1396 ffs_snapshot_mount(mp);
1397 #ifdef WAPBL
1398 if (!ronly) {
1399 KDASSERT(fs->fs_ronly == 0);
1400 /*
1401 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1402 * needs to create a new log file in-filesystem.
1403 */
1404 error = ffs_statvfs(mp, &mp->mnt_stat);
1405 if (error) {
1406 DPRINTF(("%s: ffs_statvfs %d\n", __func__, error));
1407 goto out1;
1408 }
1409
1410 error = ffs_wapbl_start(mp);
1411 if (error) {
1412 DPRINTF(("%s: ffs_wapbl_start %d\n", __func__, error));
1413 goto out1;
1414 }
1415 }
1416 #endif /* WAPBL */
1417 if (ronly == 0) {
1418 #ifdef QUOTA2
1419 error = ffs_quota2_mount(mp);
1420 if (error) {
1421 DPRINTF(("%s: ffs_quota2_mount %d\n", __func__, error));
1422 goto out1;
1423 }
1424 #else
1425 if (fs->fs_flags & FS_DOQUOTA2) {
1426 ump->um_flags |= UFS_QUOTA2;
1427 uprintf("%s: options QUOTA2 not enabled%s\n",
1428 mp->mnt_stat.f_mntonname,
1429 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1430 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1431 error = EINVAL;
1432 DPRINTF(("%s: quota disabled %d\n", __func__,
1433 error));
1434 goto out1;
1435 }
1436 }
1437 #endif
1438 }
1439
1440 if (mp->mnt_flag & MNT_DISCARD)
1441 ump->um_discarddata = ffs_discard_init(devvp, fs);
1442
1443 return (0);
1444 out1:
1445 kmem_free(fs->fs_csp, allocsbsize);
1446 out:
1447 #ifdef WAPBL
1448 if (mp->mnt_wapbl_replay) {
1449 wapbl_replay_stop(mp->mnt_wapbl_replay);
1450 wapbl_replay_free(mp->mnt_wapbl_replay);
1451 mp->mnt_wapbl_replay = 0;
1452 }
1453 #endif
1454
1455 fstrans_unmount(mp);
1456 if (fs)
1457 kmem_free(fs, fs->fs_sbsize);
1458 spec_node_setmountedfs(devvp, NULL);
1459 if (bp)
1460 brelse(bp, bset);
1461 if (ump) {
1462 if (ump->um_oldfscompat)
1463 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1464 mutex_destroy(&ump->um_lock);
1465 kmem_free(ump, sizeof(*ump));
1466 mp->mnt_data = NULL;
1467 }
1468 return (error);
1469 }
1470
1471 /*
1472 * Sanity checks for loading old filesystem superblocks.
1473 * See ffs_oldfscompat_write below for unwound actions.
1474 *
1475 * XXX - Parts get retired eventually.
1476 * Unfortunately new bits get added.
1477 */
1478 static void
1479 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1480 {
1481 off_t maxfilesize;
1482 int32_t *extrasave;
1483
1484 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1485 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1486 return;
1487
1488 if (!ump->um_oldfscompat)
1489 ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1490 KM_SLEEP);
1491
1492 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1493 extrasave = ump->um_oldfscompat;
1494 extrasave += 512/sizeof(int32_t);
1495 extrasave[0] = fs->fs_old_npsect;
1496 extrasave[1] = fs->fs_old_interleave;
1497 extrasave[2] = fs->fs_old_trackskew;
1498
1499 /* These fields will be overwritten by their
1500 * original values in fs_oldfscompat_write, so it is harmless
1501 * to modify them here.
1502 */
1503 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1504 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1505 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1506 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1507
1508 fs->fs_maxbsize = fs->fs_bsize;
1509 fs->fs_time = fs->fs_old_time;
1510 fs->fs_size = fs->fs_old_size;
1511 fs->fs_dsize = fs->fs_old_dsize;
1512 fs->fs_csaddr = fs->fs_old_csaddr;
1513 fs->fs_sblockloc = sblockloc;
1514
1515 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1516
1517 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1518 fs->fs_old_nrpos = 8;
1519 fs->fs_old_npsect = fs->fs_old_nsect;
1520 fs->fs_old_interleave = 1;
1521 fs->fs_old_trackskew = 0;
1522 }
1523
1524 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1525 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1526 fs->fs_qbmask = ~fs->fs_bmask;
1527 fs->fs_qfmask = ~fs->fs_fmask;
1528 }
1529
1530 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1531 if (fs->fs_maxfilesize > maxfilesize)
1532 fs->fs_maxfilesize = maxfilesize;
1533
1534 /* Compatibility for old filesystems */
1535 if (fs->fs_avgfilesize <= 0)
1536 fs->fs_avgfilesize = AVFILESIZ;
1537 if (fs->fs_avgfpdir <= 0)
1538 fs->fs_avgfpdir = AFPDIR;
1539
1540 #if 0
1541 if (bigcgs) {
1542 fs->fs_save_cgsize = fs->fs_cgsize;
1543 fs->fs_cgsize = fs->fs_bsize;
1544 }
1545 #endif
1546 }
1547
1548 /*
1549 * Unwinding superblock updates for old filesystems.
1550 * See ffs_oldfscompat_read above for details.
1551 *
1552 * XXX - Parts get retired eventually.
1553 * Unfortunately new bits get added.
1554 */
1555 static void
1556 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1557 {
1558 int32_t *extrasave;
1559
1560 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1561 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1562 return;
1563
1564 fs->fs_old_time = fs->fs_time;
1565 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1566 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1567 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1568 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1569 fs->fs_old_flags = fs->fs_flags;
1570
1571 #if 0
1572 if (bigcgs) {
1573 fs->fs_cgsize = fs->fs_save_cgsize;
1574 }
1575 #endif
1576
1577 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1578 extrasave = ump->um_oldfscompat;
1579 extrasave += 512/sizeof(int32_t);
1580 fs->fs_old_npsect = extrasave[0];
1581 fs->fs_old_interleave = extrasave[1];
1582 fs->fs_old_trackskew = extrasave[2];
1583
1584 }
1585
1586 /*
1587 * unmount vfs operation
1588 */
1589 int
1590 ffs_unmount(struct mount *mp, int mntflags)
1591 {
1592 struct lwp *l = curlwp;
1593 struct ufsmount *ump = VFSTOUFS(mp);
1594 struct fs *fs = ump->um_fs;
1595 int error, flags;
1596 u_int32_t bsize;
1597 #ifdef WAPBL
1598 extern int doforce;
1599 #endif
1600
1601 if (ump->um_discarddata) {
1602 ffs_discard_finish(ump->um_discarddata, mntflags);
1603 ump->um_discarddata = NULL;
1604 }
1605
1606 flags = 0;
1607 if (mntflags & MNT_FORCE)
1608 flags |= FORCECLOSE;
1609 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1610 return (error);
1611 error = UFS_WAPBL_BEGIN(mp);
1612 if (error == 0)
1613 if (fs->fs_ronly == 0 &&
1614 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1615 fs->fs_clean & FS_WASCLEAN) {
1616 fs->fs_clean = FS_ISCLEAN;
1617 fs->fs_fmod = 0;
1618 (void) ffs_sbupdate(ump, MNT_WAIT);
1619 }
1620 if (error == 0)
1621 UFS_WAPBL_END(mp);
1622 #ifdef WAPBL
1623 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1624 if (mp->mnt_wapbl_replay) {
1625 KDASSERT(fs->fs_ronly);
1626 wapbl_replay_stop(mp->mnt_wapbl_replay);
1627 wapbl_replay_free(mp->mnt_wapbl_replay);
1628 mp->mnt_wapbl_replay = 0;
1629 }
1630 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1631 if (error) {
1632 return error;
1633 }
1634 #endif /* WAPBL */
1635
1636 if (ump->um_devvp->v_type != VBAD)
1637 spec_node_setmountedfs(ump->um_devvp, NULL);
1638 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1639 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1640 NOCRED);
1641 vput(ump->um_devvp);
1642
1643 bsize = fs->fs_cssize;
1644 if (fs->fs_contigsumsize > 0)
1645 bsize += fs->fs_ncg * sizeof(int32_t);
1646 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1647 kmem_free(fs->fs_csp, bsize);
1648
1649 kmem_free(fs, fs->fs_sbsize);
1650 if (ump->um_oldfscompat != NULL)
1651 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1652 mutex_destroy(&ump->um_lock);
1653 ffs_snapshot_fini(ump);
1654 kmem_free(ump, sizeof(*ump));
1655 mp->mnt_data = NULL;
1656 mp->mnt_flag &= ~MNT_LOCAL;
1657 fstrans_unmount(mp);
1658 return (0);
1659 }
1660
1661 /*
1662 * Flush out all the files in a filesystem.
1663 */
1664 int
1665 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1666 {
1667 extern int doforce;
1668 struct ufsmount *ump;
1669 int error;
1670
1671 if (!doforce)
1672 flags &= ~FORCECLOSE;
1673 ump = VFSTOUFS(mp);
1674 #ifdef QUOTA
1675 if ((error = quota1_umount(mp, flags)) != 0)
1676 return (error);
1677 #endif
1678 #ifdef QUOTA2
1679 if ((error = quota2_umount(mp, flags)) != 0)
1680 return (error);
1681 #endif
1682 #ifdef UFS_EXTATTR
1683 if (ump->um_fstype == UFS1) {
1684 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1685 ufs_extattr_stop(mp, l);
1686 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1687 ufs_extattr_uepm_destroy(&ump->um_extattr);
1688 mp->mnt_flag &= ~MNT_EXTATTR;
1689 }
1690 #endif
1691 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1692 return (error);
1693 ffs_snapshot_unmount(mp);
1694 /*
1695 * Flush all the files.
1696 */
1697 error = vflush(mp, NULLVP, flags);
1698 if (error)
1699 return (error);
1700 /*
1701 * Flush filesystem metadata.
1702 */
1703 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1704 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1705 VOP_UNLOCK(ump->um_devvp);
1706 if (flags & FORCECLOSE) /* XXXDBJ */
1707 error = 0;
1708
1709 #ifdef WAPBL
1710 if (error)
1711 return error;
1712 if (mp->mnt_wapbl) {
1713 error = wapbl_flush(mp->mnt_wapbl, 1);
1714 if (flags & FORCECLOSE)
1715 error = 0;
1716 }
1717 #endif
1718
1719 return (error);
1720 }
1721
1722 /*
1723 * Get file system statistics.
1724 */
1725 int
1726 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1727 {
1728 struct ufsmount *ump;
1729 struct fs *fs;
1730
1731 ump = VFSTOUFS(mp);
1732 fs = ump->um_fs;
1733 mutex_enter(&ump->um_lock);
1734 sbp->f_bsize = fs->fs_bsize;
1735 sbp->f_frsize = fs->fs_fsize;
1736 sbp->f_iosize = fs->fs_bsize;
1737 sbp->f_blocks = fs->fs_dsize;
1738 sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1739 fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1740 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1741 fs->fs_minfree) / (u_int64_t) 100;
1742 if (sbp->f_bfree > sbp->f_bresvd)
1743 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1744 else
1745 sbp->f_bavail = 0;
1746 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1747 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1748 sbp->f_favail = sbp->f_ffree;
1749 sbp->f_fresvd = 0;
1750 mutex_exit(&ump->um_lock);
1751 copy_statvfs_info(sbp, mp);
1752
1753 return (0);
1754 }
1755
1756 struct ffs_sync_ctx {
1757 int waitfor;
1758 bool is_suspending;
1759 };
1760
1761 static bool
1762 ffs_sync_selector(void *cl, struct vnode *vp)
1763 {
1764 struct ffs_sync_ctx *c = cl;
1765 struct inode *ip;
1766
1767 ip = VTOI(vp);
1768 /*
1769 * Skip the vnode/inode if inaccessible.
1770 */
1771 if (ip == NULL || vp->v_type == VNON)
1772 return false;
1773
1774 /*
1775 * We deliberately update inode times here. This will
1776 * prevent a massive queue of updates accumulating, only
1777 * to be handled by a call to unmount.
1778 *
1779 * XXX It would be better to have the syncer trickle these
1780 * out. Adjustment needed to allow registering vnodes for
1781 * sync when the vnode is clean, but the inode dirty. Or
1782 * have ufs itself trickle out inode updates.
1783 *
1784 * If doing a lazy sync, we don't care about metadata or
1785 * data updates, because they are handled by each vnode's
1786 * synclist entry. In this case we are only interested in
1787 * writing back modified inodes.
1788 */
1789 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1790 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1791 (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1792 UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
1793 return false;
1794
1795 if (vp->v_type == VBLK && c->is_suspending)
1796 return false;
1797
1798 return true;
1799 }
1800
1801 /*
1802 * Go through the disk queues to initiate sandbagged IO;
1803 * go through the inodes to write those that have been modified;
1804 * initiate the writing of the super block if it has been modified.
1805 *
1806 * Note: we are always called with the filesystem marked `MPBUSY'.
1807 */
1808 int
1809 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1810 {
1811 struct vnode *vp;
1812 struct ufsmount *ump = VFSTOUFS(mp);
1813 struct fs *fs;
1814 struct vnode_iterator *marker;
1815 int error, allerror = 0;
1816 bool is_suspending;
1817 struct ffs_sync_ctx ctx;
1818
1819 fs = ump->um_fs;
1820 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1821 printf("fs = %s\n", fs->fs_fsmnt);
1822 panic("update: rofs mod");
1823 }
1824
1825 fstrans_start(mp, FSTRANS_SHARED);
1826 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1827 /*
1828 * Write back each (modified) inode.
1829 */
1830 vfs_vnode_iterator_init(mp, &marker);
1831
1832 ctx.waitfor = waitfor;
1833 ctx.is_suspending = is_suspending;
1834 while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
1835 {
1836 error = vn_lock(vp, LK_EXCLUSIVE);
1837 if (error) {
1838 vrele(vp);
1839 continue;
1840 }
1841 if (waitfor == MNT_LAZY) {
1842 error = UFS_WAPBL_BEGIN(vp->v_mount);
1843 if (!error) {
1844 error = ffs_update(vp, NULL, NULL,
1845 UPDATE_CLOSE);
1846 UFS_WAPBL_END(vp->v_mount);
1847 }
1848 } else {
1849 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1850 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1851 }
1852 if (error)
1853 allerror = error;
1854 vput(vp);
1855 }
1856 vfs_vnode_iterator_destroy(marker);
1857
1858 /*
1859 * Force stale file system control information to be flushed.
1860 */
1861 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1862 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1863 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1864 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1865 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1866 0, 0)) != 0)
1867 allerror = error;
1868 VOP_UNLOCK(ump->um_devvp);
1869 }
1870 #if defined(QUOTA) || defined(QUOTA2)
1871 qsync(mp);
1872 #endif
1873 /*
1874 * Write back modified superblock.
1875 */
1876 if (fs->fs_fmod != 0) {
1877 fs->fs_fmod = 0;
1878 fs->fs_time = time_second;
1879 error = UFS_WAPBL_BEGIN(mp);
1880 if (error)
1881 allerror = error;
1882 else {
1883 if ((error = ffs_cgupdate(ump, waitfor)))
1884 allerror = error;
1885 UFS_WAPBL_END(mp);
1886 }
1887 }
1888
1889 #ifdef WAPBL
1890 if (mp->mnt_wapbl) {
1891 error = wapbl_flush(mp->mnt_wapbl, 0);
1892 if (error)
1893 allerror = error;
1894 }
1895 #endif
1896
1897 fstrans_done(mp);
1898 return (allerror);
1899 }
1900
1901 /*
1902 * Read an inode from disk and initialize this vnode / inode pair.
1903 * Caller assures no other thread will try to load this inode.
1904 */
1905 int
1906 ffs_loadvnode(struct mount *mp, struct vnode *vp,
1907 const void *key, size_t key_len, const void **new_key)
1908 {
1909 ino_t ino;
1910 struct fs *fs;
1911 struct inode *ip;
1912 struct ufsmount *ump;
1913 struct buf *bp;
1914 dev_t dev;
1915 int error;
1916
1917 KASSERT(key_len == sizeof(ino));
1918 memcpy(&ino, key, key_len);
1919 ump = VFSTOUFS(mp);
1920 dev = ump->um_dev;
1921 fs = ump->um_fs;
1922
1923 /* Read in the disk contents for the inode. */
1924 error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
1925 (int)fs->fs_bsize, NOCRED, 0, &bp);
1926 if (error)
1927 return error;
1928
1929 /* Allocate and initialize inode. */
1930 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1931 memset(ip, 0, sizeof(struct inode));
1932 vp->v_tag = VT_UFS;
1933 vp->v_op = ffs_vnodeop_p;
1934 vp->v_vflag |= VV_LOCKSWORK;
1935 vp->v_data = ip;
1936 ip->i_vnode = vp;
1937 ip->i_ump = ump;
1938 ip->i_fs = fs;
1939 ip->i_dev = dev;
1940 ip->i_number = ino;
1941 #if defined(QUOTA) || defined(QUOTA2)
1942 ufsquota_init(ip);
1943 #endif
1944
1945 /* Initialize genfs node. */
1946 genfs_node_init(vp, &ffs_genfsops);
1947
1948 if (ip->i_ump->um_fstype == UFS1)
1949 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1950 PR_WAITOK);
1951 else
1952 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1953 PR_WAITOK);
1954 ffs_load_inode(bp, ip, fs, ino);
1955 brelse(bp, 0);
1956
1957 /* Initialize the vnode from the inode. */
1958 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1959
1960 /* Finish inode initialization. */
1961 ip->i_devvp = ump->um_devvp;
1962 vref(ip->i_devvp);
1963
1964 /*
1965 * Ensure that uid and gid are correct. This is a temporary
1966 * fix until fsck has been changed to do the update.
1967 */
1968
1969 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1970 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1971 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1972 } /* XXX */
1973 uvm_vnp_setsize(vp, ip->i_size);
1974 *new_key = &ip->i_number;
1975 return 0;
1976 }
1977
1978 /*
1979 * File handle to vnode
1980 *
1981 * Have to be really careful about stale file handles:
1982 * - check that the inode number is valid
1983 * - call ffs_vget() to get the locked inode
1984 * - check for an unallocated inode (i_mode == 0)
1985 * - check that the given client host has export rights and return
1986 * those rights via. exflagsp and credanonp
1987 */
1988 int
1989 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1990 {
1991 struct ufid ufh;
1992 struct fs *fs;
1993
1994 if (fhp->fid_len != sizeof(struct ufid))
1995 return EINVAL;
1996
1997 memcpy(&ufh, fhp, sizeof(ufh));
1998 fs = VFSTOUFS(mp)->um_fs;
1999 if (ufh.ufid_ino < UFS_ROOTINO ||
2000 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
2001 return (ESTALE);
2002 return (ufs_fhtovp(mp, &ufh, vpp));
2003 }
2004
2005 /*
2006 * Vnode pointer to File handle
2007 */
2008 /* ARGSUSED */
2009 int
2010 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
2011 {
2012 struct inode *ip;
2013 struct ufid ufh;
2014
2015 if (*fh_size < sizeof(struct ufid)) {
2016 *fh_size = sizeof(struct ufid);
2017 return E2BIG;
2018 }
2019 ip = VTOI(vp);
2020 *fh_size = sizeof(struct ufid);
2021 memset(&ufh, 0, sizeof(ufh));
2022 ufh.ufid_len = sizeof(struct ufid);
2023 ufh.ufid_ino = ip->i_number;
2024 ufh.ufid_gen = ip->i_gen;
2025 memcpy(fhp, &ufh, sizeof(ufh));
2026 return (0);
2027 }
2028
2029 void
2030 ffs_init(void)
2031 {
2032 if (ffs_initcount++ > 0)
2033 return;
2034
2035 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2036 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2037 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2038 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2039 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2040 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2041 ufs_init();
2042 }
2043
2044 void
2045 ffs_reinit(void)
2046 {
2047
2048 ufs_reinit();
2049 }
2050
2051 void
2052 ffs_done(void)
2053 {
2054 if (--ffs_initcount > 0)
2055 return;
2056
2057 ufs_done();
2058 pool_cache_destroy(ffs_dinode2_cache);
2059 pool_cache_destroy(ffs_dinode1_cache);
2060 pool_cache_destroy(ffs_inode_cache);
2061 }
2062
2063 /*
2064 * Write a superblock and associated information back to disk.
2065 */
2066 int
2067 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2068 {
2069 struct fs *fs = mp->um_fs;
2070 struct buf *bp;
2071 int error = 0;
2072 u_int32_t saveflag;
2073
2074 error = ffs_getblk(mp->um_devvp,
2075 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2076 fs->fs_sbsize, false, &bp);
2077 if (error)
2078 return error;
2079 saveflag = fs->fs_flags & FS_INTERNAL;
2080 fs->fs_flags &= ~FS_INTERNAL;
2081
2082 memcpy(bp->b_data, fs, fs->fs_sbsize);
2083
2084 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2085 #ifdef FFS_EI
2086 if (mp->um_flags & UFS_NEEDSWAP)
2087 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
2088 #endif
2089 fs->fs_flags |= saveflag;
2090
2091 if (waitfor == MNT_WAIT)
2092 error = bwrite(bp);
2093 else
2094 bawrite(bp);
2095 return (error);
2096 }
2097
2098 int
2099 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2100 {
2101 struct fs *fs = mp->um_fs;
2102 struct buf *bp;
2103 int blks;
2104 void *space;
2105 int i, size, error = 0, allerror = 0;
2106
2107 allerror = ffs_sbupdate(mp, waitfor);
2108 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2109 space = fs->fs_csp;
2110 for (i = 0; i < blks; i += fs->fs_frag) {
2111 size = fs->fs_bsize;
2112 if (i + fs->fs_frag > blks)
2113 size = (blks - i) * fs->fs_fsize;
2114 error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2115 FFS_NOBLK, size, false, &bp);
2116 if (error)
2117 break;
2118 #ifdef FFS_EI
2119 if (mp->um_flags & UFS_NEEDSWAP)
2120 ffs_csum_swap((struct csum*)space,
2121 (struct csum*)bp->b_data, size);
2122 else
2123 #endif
2124 memcpy(bp->b_data, space, (u_int)size);
2125 space = (char *)space + size;
2126 if (waitfor == MNT_WAIT)
2127 error = bwrite(bp);
2128 else
2129 bawrite(bp);
2130 }
2131 if (!allerror && error)
2132 allerror = error;
2133 return (allerror);
2134 }
2135
2136 int
2137 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2138 int attrnamespace, const char *attrname)
2139 {
2140 #ifdef UFS_EXTATTR
2141 /*
2142 * File-backed extended attributes are only supported on UFS1.
2143 * UFS2 has native extended attributes.
2144 */
2145 if (VFSTOUFS(mp)->um_fstype == UFS1)
2146 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2147 #endif
2148 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2149 }
2150
2151 int
2152 ffs_suspendctl(struct mount *mp, int cmd)
2153 {
2154 int error;
2155 struct lwp *l = curlwp;
2156
2157 switch (cmd) {
2158 case SUSPEND_SUSPEND:
2159 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2160 return error;
2161 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2162 if (error == 0)
2163 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2164 #ifdef WAPBL
2165 if (error == 0 && mp->mnt_wapbl)
2166 error = wapbl_flush(mp->mnt_wapbl, 1);
2167 #endif
2168 if (error != 0) {
2169 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2170 return error;
2171 }
2172 return 0;
2173
2174 case SUSPEND_RESUME:
2175 return fstrans_setstate(mp, FSTRANS_NORMAL);
2176
2177 default:
2178 return EINVAL;
2179 }
2180 }
2181
2182 /*
2183 * Synch vnode for a mounted file system.
2184 */
2185 static int
2186 ffs_vfs_fsync(vnode_t *vp, int flags)
2187 {
2188 int error, i, pflags;
2189 #ifdef WAPBL
2190 struct mount *mp;
2191 #endif
2192
2193 KASSERT(vp->v_type == VBLK);
2194 KASSERT(spec_node_getmountedfs(vp) != NULL);
2195
2196 /*
2197 * Flush all dirty data associated with the vnode.
2198 */
2199 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2200 if ((flags & FSYNC_WAIT) != 0)
2201 pflags |= PGO_SYNCIO;
2202 mutex_enter(vp->v_interlock);
2203 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2204 if (error)
2205 return error;
2206
2207 #ifdef WAPBL
2208 mp = spec_node_getmountedfs(vp);
2209 if (mp && mp->mnt_wapbl) {
2210 /*
2211 * Don't bother writing out metadata if the syncer is
2212 * making the request. We will let the sync vnode
2213 * write it out in a single burst through a call to
2214 * VFS_SYNC().
2215 */
2216 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2217 return 0;
2218
2219 /*
2220 * Don't flush the log if the vnode being flushed
2221 * contains no dirty buffers that could be in the log.
2222 */
2223 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2224 error = wapbl_flush(mp->mnt_wapbl, 0);
2225 if (error)
2226 return error;
2227 }
2228
2229 if ((flags & FSYNC_WAIT) != 0) {
2230 mutex_enter(vp->v_interlock);
2231 while (vp->v_numoutput)
2232 cv_wait(&vp->v_cv, vp->v_interlock);
2233 mutex_exit(vp->v_interlock);
2234 }
2235
2236 return 0;
2237 }
2238 #endif /* WAPBL */
2239
2240 error = vflushbuf(vp, flags);
2241 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2242 i = 1;
2243 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2244 kauth_cred_get());
2245 }
2246
2247 return error;
2248 }
2249