Home | History | Annotate | Line # | Download | only in ffs
ffs_vfsops.c revision 1.324
      1 /*	$NetBSD: ffs_vfsops.c,v 1.324 2015/03/15 09:21:01 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.324 2015/03/15 09:21:01 maxv Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_ffs.h"
     68 #include "opt_quota.h"
     69 #include "opt_wapbl.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/proc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/vnode.h>
     78 #include <sys/socket.h>
     79 #include <sys/mount.h>
     80 #include <sys/buf.h>
     81 #include <sys/device.h>
     82 #include <sys/disk.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/file.h>
     85 #include <sys/disklabel.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/kmem.h>
     89 #include <sys/pool.h>
     90 #include <sys/lock.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/wapbl.h>
     95 #include <sys/fstrans.h>
     96 #include <sys/module.h>
     97 
     98 #include <miscfs/genfs/genfs.h>
     99 #include <miscfs/specfs/specdev.h>
    100 
    101 #include <ufs/ufs/quota.h>
    102 #include <ufs/ufs/ufsmount.h>
    103 #include <ufs/ufs/inode.h>
    104 #include <ufs/ufs/dir.h>
    105 #include <ufs/ufs/ufs_extern.h>
    106 #include <ufs/ufs/ufs_bswap.h>
    107 #include <ufs/ufs/ufs_wapbl.h>
    108 
    109 #include <ufs/ffs/fs.h>
    110 #include <ufs/ffs/ffs_extern.h>
    111 
    112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
    113 
    114 static int ffs_vfs_fsync(vnode_t *, int);
    115 static int ffs_superblock_validate(struct fs *);
    116 
    117 static struct sysctllog *ffs_sysctl_log;
    118 
    119 static kauth_listener_t ffs_snapshot_listener;
    120 
    121 /* how many times ffs_init() was called */
    122 int ffs_initcount = 0;
    123 
    124 #ifdef DEBUG_FFS_MOUNT
    125 #define DPRINTF(_fmt, args...)	printf("%s: " _fmt "\n", __func__, ##args)
    126 #else
    127 #define DPRINTF(_fmt, args...)	do {} while (/*CONSTCOND*/0)
    128 #endif
    129 
    130 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
    131 extern const struct vnodeopv_desc ffs_specop_opv_desc;
    132 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
    133 
    134 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
    135 	&ffs_vnodeop_opv_desc,
    136 	&ffs_specop_opv_desc,
    137 	&ffs_fifoop_opv_desc,
    138 	NULL,
    139 };
    140 
    141 struct vfsops ffs_vfsops = {
    142 	.vfs_name = MOUNT_FFS,
    143 	.vfs_min_mount_data = sizeof (struct ufs_args),
    144 	.vfs_mount = ffs_mount,
    145 	.vfs_start = ufs_start,
    146 	.vfs_unmount = ffs_unmount,
    147 	.vfs_root = ufs_root,
    148 	.vfs_quotactl = ufs_quotactl,
    149 	.vfs_statvfs = ffs_statvfs,
    150 	.vfs_sync = ffs_sync,
    151 	.vfs_vget = ufs_vget,
    152 	.vfs_loadvnode = ffs_loadvnode,
    153 	.vfs_fhtovp = ffs_fhtovp,
    154 	.vfs_vptofh = ffs_vptofh,
    155 	.vfs_init = ffs_init,
    156 	.vfs_reinit = ffs_reinit,
    157 	.vfs_done = ffs_done,
    158 	.vfs_mountroot = ffs_mountroot,
    159 	.vfs_snapshot = ffs_snapshot,
    160 	.vfs_extattrctl = ffs_extattrctl,
    161 	.vfs_suspendctl = ffs_suspendctl,
    162 	.vfs_renamelock_enter = genfs_renamelock_enter,
    163 	.vfs_renamelock_exit = genfs_renamelock_exit,
    164 	.vfs_fsync = ffs_vfs_fsync,
    165 	.vfs_opv_descs = ffs_vnodeopv_descs
    166 };
    167 
    168 static const struct genfs_ops ffs_genfsops = {
    169 	.gop_size = ffs_gop_size,
    170 	.gop_alloc = ufs_gop_alloc,
    171 	.gop_write = genfs_gop_write,
    172 	.gop_markupdate = ufs_gop_markupdate,
    173 };
    174 
    175 static const struct ufs_ops ffs_ufsops = {
    176 	.uo_itimes = ffs_itimes,
    177 	.uo_update = ffs_update,
    178 	.uo_truncate = ffs_truncate,
    179 	.uo_valloc = ffs_valloc,
    180 	.uo_vfree = ffs_vfree,
    181 	.uo_balloc = ffs_balloc,
    182 	.uo_snapgone = ffs_snapgone,
    183 };
    184 
    185 static int
    186 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    187     void *arg0, void *arg1, void *arg2, void *arg3)
    188 {
    189 	vnode_t *vp = arg2;
    190 	int result = KAUTH_RESULT_DEFER;
    191 
    192 	if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
    193 		return result;
    194 
    195 	if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
    196 		result = KAUTH_RESULT_ALLOW;
    197 
    198 	return result;
    199 }
    200 
    201 static int
    202 ffs_modcmd(modcmd_t cmd, void *arg)
    203 {
    204 	int error;
    205 
    206 #if 0
    207 	extern int doasyncfree;
    208 #endif
    209 #ifdef UFS_EXTATTR
    210 	extern int ufs_extattr_autocreate;
    211 #endif
    212 	extern int ffs_log_changeopt;
    213 
    214 	switch (cmd) {
    215 	case MODULE_CMD_INIT:
    216 		error = vfs_attach(&ffs_vfsops);
    217 		if (error != 0)
    218 			break;
    219 
    220 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    221 			       CTLFLAG_PERMANENT,
    222 			       CTLTYPE_NODE, "ffs",
    223 			       SYSCTL_DESCR("Berkeley Fast File System"),
    224 			       NULL, 0, NULL, 0,
    225 			       CTL_VFS, 1, CTL_EOL);
    226 		/*
    227 		 * @@@ should we even bother with these first three?
    228 		 */
    229 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    230 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231 			       CTLTYPE_INT, "doclusterread", NULL,
    232 			       sysctl_notavail, 0, NULL, 0,
    233 			       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
    234 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    235 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    236 			       CTLTYPE_INT, "doclusterwrite", NULL,
    237 			       sysctl_notavail, 0, NULL, 0,
    238 			       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
    239 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    240 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    241 			       CTLTYPE_INT, "doreallocblks", NULL,
    242 			       sysctl_notavail, 0, NULL, 0,
    243 			       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
    244 #if 0
    245 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    246 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    247 			       CTLTYPE_INT, "doasyncfree",
    248 			       SYSCTL_DESCR("Release dirty blocks asynchronously"),
    249 			       NULL, 0, &doasyncfree, 0,
    250 			       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
    251 #endif
    252 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    253 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    254 			       CTLTYPE_INT, "log_changeopt",
    255 			       SYSCTL_DESCR("Log changes in optimization strategy"),
    256 			       NULL, 0, &ffs_log_changeopt, 0,
    257 			       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
    258 #ifdef UFS_EXTATTR
    259 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
    260 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    261 			       CTLTYPE_INT, "extattr_autocreate",
    262 			       SYSCTL_DESCR("Size of attribute for "
    263 					    "backing file autocreation"),
    264 			       NULL, 0, &ufs_extattr_autocreate, 0,
    265 			       CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
    266 
    267 #endif /* UFS_EXTATTR */
    268 
    269 		ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
    270 		    ffs_snapshot_cb, NULL);
    271 		if (ffs_snapshot_listener == NULL)
    272 			printf("ffs_modcmd: can't listen on system scope.\n");
    273 
    274 		break;
    275 	case MODULE_CMD_FINI:
    276 		error = vfs_detach(&ffs_vfsops);
    277 		if (error != 0)
    278 			break;
    279 		sysctl_teardown(&ffs_sysctl_log);
    280 		if (ffs_snapshot_listener != NULL)
    281 			kauth_unlisten_scope(ffs_snapshot_listener);
    282 		break;
    283 	default:
    284 		error = ENOTTY;
    285 		break;
    286 	}
    287 
    288 	return (error);
    289 }
    290 
    291 pool_cache_t ffs_inode_cache;
    292 pool_cache_t ffs_dinode1_cache;
    293 pool_cache_t ffs_dinode2_cache;
    294 
    295 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
    296 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
    297 
    298 /*
    299  * Called by main() when ffs is going to be mounted as root.
    300  */
    301 
    302 int
    303 ffs_mountroot(void)
    304 {
    305 	struct fs *fs;
    306 	struct mount *mp;
    307 	struct lwp *l = curlwp;			/* XXX */
    308 	struct ufsmount *ump;
    309 	int error;
    310 
    311 	if (device_class(root_device) != DV_DISK)
    312 		return (ENODEV);
    313 
    314 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
    315 		vrele(rootvp);
    316 		return (error);
    317 	}
    318 
    319 	/*
    320 	 * We always need to be able to mount the root file system.
    321 	 */
    322 	mp->mnt_flag |= MNT_FORCE;
    323 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
    324 		vfs_unbusy(mp, false, NULL);
    325 		vfs_destroy(mp);
    326 		return (error);
    327 	}
    328 	mp->mnt_flag &= ~MNT_FORCE;
    329 	mountlist_append(mp);
    330 	ump = VFSTOUFS(mp);
    331 	fs = ump->um_fs;
    332 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
    333 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
    334 	(void)ffs_statvfs(mp, &mp->mnt_stat);
    335 	vfs_unbusy(mp, false, NULL);
    336 	setrootfstime((time_t)fs->fs_time);
    337 	return (0);
    338 }
    339 
    340 /*
    341  * VFS Operations.
    342  *
    343  * mount system call
    344  */
    345 int
    346 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    347 {
    348 	struct lwp *l = curlwp;
    349 	struct vnode *devvp = NULL;
    350 	struct ufs_args *args = data;
    351 	struct ufsmount *ump = NULL;
    352 	struct fs *fs;
    353 	int error = 0, flags, update;
    354 	mode_t accessmode;
    355 
    356 	if (args == NULL) {
    357 		DPRINTF("NULL args");
    358 		return EINVAL;
    359 	}
    360 	if (*data_len < sizeof(*args)) {
    361 		DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args));
    362 		return EINVAL;
    363 	}
    364 
    365 	if (mp->mnt_flag & MNT_GETARGS) {
    366 		ump = VFSTOUFS(mp);
    367 		if (ump == NULL) {
    368 			DPRINTF("no ump");
    369 			return EIO;
    370 		}
    371 		args->fspec = NULL;
    372 		*data_len = sizeof *args;
    373 		return 0;
    374 	}
    375 
    376 	update = mp->mnt_flag & MNT_UPDATE;
    377 
    378 	/* Check arguments */
    379 	if (args->fspec != NULL) {
    380 		/*
    381 		 * Look up the name and verify that it's sane.
    382 		 */
    383 		error = namei_simple_user(args->fspec,
    384 		    NSM_FOLLOW_NOEMULROOT, &devvp);
    385 		if (error != 0) {
    386 			DPRINTF("namei_simple_user returned %d", error);
    387 			return error;
    388 		}
    389 
    390 		if (!update) {
    391 			/*
    392 			 * Be sure this is a valid block device
    393 			 */
    394 			if (devvp->v_type != VBLK) {
    395 				DPRINTF("non block device %d", devvp->v_type);
    396 				error = ENOTBLK;
    397 			} else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
    398 				DPRINTF("can't find block device 0x%jx",
    399 				    devvp->v_rdev);
    400 				error = ENXIO;
    401 			}
    402 		} else {
    403 			/*
    404 			 * Be sure we're still naming the same device
    405 			 * used for our initial mount
    406 			 */
    407 			ump = VFSTOUFS(mp);
    408 			if (devvp != ump->um_devvp) {
    409 				if (devvp->v_rdev != ump->um_devvp->v_rdev) {
    410 					DPRINTF("wrong device 0x%jx != 0x%jx",
    411 					    (uintmax_t)devvp->v_rdev,
    412 					    (uintmax_t)ump->um_devvp->v_rdev);
    413 					error = EINVAL;
    414 				} else {
    415 					vrele(devvp);
    416 					devvp = ump->um_devvp;
    417 					vref(devvp);
    418 				}
    419 			}
    420 		}
    421 	} else {
    422 		if (!update) {
    423 			/* New mounts must have a filename for the device */
    424 			DPRINTF("no filename for mount");
    425 			return EINVAL;
    426 		} else {
    427 			/* Use the extant mount */
    428 			ump = VFSTOUFS(mp);
    429 			devvp = ump->um_devvp;
    430 			vref(devvp);
    431 		}
    432 	}
    433 
    434 	/*
    435 	 * If mount by non-root, then verify that user has necessary
    436 	 * permissions on the device.
    437 	 *
    438 	 * Permission to update a mount is checked higher, so here we presume
    439 	 * updating the mount is okay (for example, as far as securelevel goes)
    440 	 * which leaves us with the normal check.
    441 	 */
    442 	if (error == 0) {
    443 		accessmode = VREAD;
    444 		if (update ?
    445 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    446 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    447 			accessmode |= VWRITE;
    448 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    449 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
    450 		    KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
    451 		    KAUTH_ARG(accessmode));
    452 		if (error) {
    453 			DPRINTF("kauth returned %d", error);
    454 		}
    455 		VOP_UNLOCK(devvp);
    456 	}
    457 
    458 	if (error) {
    459 		vrele(devvp);
    460 		return (error);
    461 	}
    462 
    463 #ifdef WAPBL
    464 	/* WAPBL can only be enabled on a r/w mount. */
    465 	if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
    466 		mp->mnt_flag &= ~MNT_LOG;
    467 	}
    468 #else /* !WAPBL */
    469 	mp->mnt_flag &= ~MNT_LOG;
    470 #endif /* !WAPBL */
    471 
    472 	if (!update) {
    473 		int xflags;
    474 
    475 		if (mp->mnt_flag & MNT_RDONLY)
    476 			xflags = FREAD;
    477 		else
    478 			xflags = FREAD | FWRITE;
    479 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    480 		error = VOP_OPEN(devvp, xflags, FSCRED);
    481 		VOP_UNLOCK(devvp);
    482 		if (error) {
    483 			DPRINTF("VOP_OPEN returned %d", error);
    484 			goto fail;
    485 		}
    486 		error = ffs_mountfs(devvp, mp, l);
    487 		if (error) {
    488 			DPRINTF("ffs_mountfs returned %d", error);
    489 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    490 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
    491 			VOP_UNLOCK(devvp);
    492 			goto fail;
    493 		}
    494 
    495 		ump = VFSTOUFS(mp);
    496 		fs = ump->um_fs;
    497 	} else {
    498 		/*
    499 		 * Update the mount.
    500 		 */
    501 
    502 		/*
    503 		 * The initial mount got a reference on this
    504 		 * device, so drop the one obtained via
    505 		 * namei(), above.
    506 		 */
    507 		vrele(devvp);
    508 
    509 		ump = VFSTOUFS(mp);
    510 		fs = ump->um_fs;
    511 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    512 			/*
    513 			 * Changing from r/w to r/o
    514 			 */
    515 			flags = WRITECLOSE;
    516 			if (mp->mnt_flag & MNT_FORCE)
    517 				flags |= FORCECLOSE;
    518 			error = ffs_flushfiles(mp, flags, l);
    519 			if (error == 0)
    520 				error = UFS_WAPBL_BEGIN(mp);
    521 			if (error == 0 &&
    522 			    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
    523 			    fs->fs_clean & FS_WASCLEAN) {
    524 				if (mp->mnt_flag & MNT_SOFTDEP)
    525 					fs->fs_flags &= ~FS_DOSOFTDEP;
    526 				fs->fs_clean = FS_ISCLEAN;
    527 				(void) ffs_sbupdate(ump, MNT_WAIT);
    528 			}
    529 			if (error) {
    530 				DPRINTF("wapbl %d", error);
    531 				return error;
    532 			}
    533 			UFS_WAPBL_END(mp);
    534 		}
    535 
    536 #ifdef WAPBL
    537 		if ((mp->mnt_flag & MNT_LOG) == 0) {
    538 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
    539 			if (error) {
    540 				DPRINTF("ffs_wapbl_stop returned %d", error);
    541 				return error;
    542 			}
    543 		}
    544 #endif /* WAPBL */
    545 
    546 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
    547 			/*
    548 			 * Finish change from r/w to r/o
    549 			 */
    550 			fs->fs_ronly = 1;
    551 			fs->fs_fmod = 0;
    552 		}
    553 
    554 		if (mp->mnt_flag & MNT_RELOAD) {
    555 			error = ffs_reload(mp, l->l_cred, l);
    556 			if (error) {
    557 				DPRINTF("ffs_reload returned %d", error);
    558 				return error;
    559 			}
    560 		}
    561 
    562 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    563 			/*
    564 			 * Changing from read-only to read/write
    565 			 */
    566 #ifndef QUOTA2
    567 			if (fs->fs_flags & FS_DOQUOTA2) {
    568 				ump->um_flags |= UFS_QUOTA2;
    569 				uprintf("%s: options QUOTA2 not enabled%s\n",
    570 				    mp->mnt_stat.f_mntonname,
    571 				    (mp->mnt_flag & MNT_FORCE) ? "" :
    572 				    ", not mounting");
    573 				DPRINTF("ffs_quota2 %d", EINVAL);
    574 				return EINVAL;
    575 			}
    576 #endif
    577 			fs->fs_ronly = 0;
    578 			fs->fs_clean <<= 1;
    579 			fs->fs_fmod = 1;
    580 #ifdef WAPBL
    581 			if (fs->fs_flags & FS_DOWAPBL) {
    582 				const char *nm = mp->mnt_stat.f_mntonname;
    583 				if (!mp->mnt_wapbl_replay) {
    584 					printf("%s: log corrupted;"
    585 					    " replay cancelled\n", nm);
    586 					return EFTYPE;
    587 				}
    588 				printf("%s: replaying log to disk\n", nm);
    589 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    590 				    devvp);
    591 				if (error) {
    592 					DPRINTF("%s: wapbl_replay_write %d",
    593 					    nm, error);
    594 					return error;
    595 				}
    596 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    597 				fs->fs_clean = FS_WASCLEAN;
    598 			}
    599 #endif /* WAPBL */
    600 			if (fs->fs_snapinum[0] != 0)
    601 				ffs_snapshot_mount(mp);
    602 		}
    603 
    604 #ifdef WAPBL
    605 		error = ffs_wapbl_start(mp);
    606 		if (error) {
    607 			DPRINTF("ffs_wapbl_start returned %d", error);
    608 			return error;
    609 		}
    610 #endif /* WAPBL */
    611 
    612 #ifdef QUOTA2
    613 		if (!fs->fs_ronly) {
    614 			error = ffs_quota2_mount(mp);
    615 			if (error) {
    616 				DPRINTF("ffs_quota2_mount returned %d", error);
    617 				return error;
    618 			}
    619 		}
    620 #endif
    621 
    622 		if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
    623 			ump->um_discarddata = ffs_discard_init(devvp, fs);
    624 
    625 		if (args->fspec == NULL)
    626 			return 0;
    627 	}
    628 
    629 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    630 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    631 	if (error == 0)
    632 		(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
    633 		    sizeof(fs->fs_fsmnt));
    634 	else {
    635 	    DPRINTF("set_statvfs_info returned %d", error);
    636 	}
    637 	fs->fs_flags &= ~FS_DOSOFTDEP;
    638 	if (fs->fs_fmod != 0) {	/* XXX */
    639 		int err;
    640 
    641 		fs->fs_fmod = 0;
    642 		if (fs->fs_clean & FS_WASCLEAN)
    643 			fs->fs_time = time_second;
    644 		else {
    645 			printf("%s: file system not clean (fs_clean=%#x); "
    646 			    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
    647 			    fs->fs_clean);
    648 			printf("%s: lost blocks %" PRId64 " files %d\n",
    649 			    mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
    650 			    fs->fs_pendinginodes);
    651 		}
    652 		err = UFS_WAPBL_BEGIN(mp);
    653 		if (err == 0) {
    654 			(void) ffs_cgupdate(ump, MNT_WAIT);
    655 			UFS_WAPBL_END(mp);
    656 		}
    657 	}
    658 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
    659 		printf("%s: `-o softdep' is no longer supported, "
    660 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
    661 		mp->mnt_flag &= ~MNT_SOFTDEP;
    662 	}
    663 
    664 	return (error);
    665 
    666 fail:
    667 	vrele(devvp);
    668 	return (error);
    669 }
    670 
    671 /*
    672  * Reload all incore data for a filesystem (used after running fsck on
    673  * the root filesystem and finding things to fix). The filesystem must
    674  * be mounted read-only.
    675  *
    676  * Things to do to update the mount:
    677  *	1) invalidate all cached meta-data.
    678  *	2) re-read superblock from disk.
    679  *	3) re-read summary information from disk.
    680  *	4) invalidate all inactive vnodes.
    681  *	5) invalidate all cached file data.
    682  *	6) re-read inode data for all active vnodes.
    683  */
    684 int
    685 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
    686 {
    687 	struct vnode *vp, *devvp;
    688 	struct inode *ip;
    689 	void *space;
    690 	struct buf *bp;
    691 	struct fs *fs, *newfs;
    692 	struct dkwedge_info dkw;
    693 	int i, bsize, blks, error;
    694 	int32_t *lp, fs_sbsize;
    695 	struct ufsmount *ump;
    696 	daddr_t sblockloc;
    697 	struct vnode_iterator *marker;
    698 
    699 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
    700 		return (EINVAL);
    701 
    702 	ump = VFSTOUFS(mp);
    703 
    704 	/*
    705 	 * Step 1: invalidate all cached meta-data.
    706 	 */
    707 	devvp = ump->um_devvp;
    708 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    709 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
    710 	VOP_UNLOCK(devvp);
    711 	if (error)
    712 		panic("ffs_reload: dirty1");
    713 
    714 	/*
    715 	 * Step 2: re-read superblock from disk. XXX: We don't handle
    716 	 * possibility that superblock moved. Which implies that we don't
    717 	 * want its size to change either.
    718 	 */
    719 	fs = ump->um_fs;
    720 	fs_sbsize = fs->fs_sbsize;
    721 	error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
    722 		      NOCRED, 0, &bp);
    723 	if (error)
    724 		return (error);
    725 	newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
    726 	memcpy(newfs, bp->b_data, fs_sbsize);
    727 
    728 #ifdef FFS_EI
    729 	if (ump->um_flags & UFS_NEEDSWAP) {
    730 		ffs_sb_swap((struct fs *)bp->b_data, newfs);
    731 		newfs->fs_flags |= FS_SWAPPED;
    732 	} else
    733 #endif
    734 		newfs->fs_flags &= ~FS_SWAPPED;
    735 
    736 	brelse(bp, 0);
    737 
    738 	if ((newfs->fs_magic != FS_UFS1_MAGIC) &&
    739 	    (newfs->fs_magic != FS_UFS2_MAGIC)) {
    740 		kmem_free(newfs, fs_sbsize);
    741 		return (EIO);		/* XXX needs translation */
    742 	}
    743 	if (!ffs_superblock_validate(newfs)) {
    744 		kmem_free(newfs, fs_sbsize);
    745 		return (EINVAL);
    746 	}
    747 
    748 	/*
    749 	 * The current implementation doesn't handle the possibility that
    750 	 * these values may have changed.
    751 	 */
    752 	if ((newfs->fs_sbsize != fs_sbsize) ||
    753 	    (newfs->fs_cssize != fs->fs_cssize) ||
    754 	    (newfs->fs_contigsumsize != fs->fs_contigsumsize) ||
    755 	    (newfs->fs_ncg != fs->fs_ncg)) {
    756 		kmem_free(newfs, fs_sbsize);
    757 		return (EINVAL);
    758 	}
    759 
    760 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
    761 	sblockloc = fs->fs_sblockloc;
    762 	/*
    763 	 * Copy pointer fields back into superblock before copying in	XXX
    764 	 * new superblock. These should really be in the ufsmount.	XXX
    765 	 * Note that important parameters (eg fs_ncg) are unchanged.
    766 	 */
    767 	newfs->fs_csp = fs->fs_csp;
    768 	newfs->fs_maxcluster = fs->fs_maxcluster;
    769 	newfs->fs_contigdirs = fs->fs_contigdirs;
    770 	newfs->fs_ronly = fs->fs_ronly;
    771 	newfs->fs_active = fs->fs_active;
    772 	memcpy(fs, newfs, (u_int)fs_sbsize);
    773 	kmem_free(newfs, fs_sbsize);
    774 
    775 	/* Recheck for apple UFS filesystem */
    776 	ump->um_flags &= ~UFS_ISAPPLEUFS;
    777 	/* First check to see if this is tagged as an Apple UFS filesystem
    778 	 * in the disklabel
    779 	 */
    780 	if (getdiskinfo(devvp, &dkw) == 0 &&
    781 	    strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
    782 		ump->um_flags |= UFS_ISAPPLEUFS;
    783 #ifdef APPLE_UFS
    784 	else {
    785 		/* Manually look for an apple ufs label, and if a valid one
    786 		 * is found, then treat it like an Apple UFS filesystem anyway
    787 		 *
    788 		 * EINVAL is most probably a blocksize or alignment problem,
    789 		 * it is unlikely that this is an Apple UFS filesystem then.
    790 		 */
    791 		error = bread(devvp,
    792 		    (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
    793 		    APPLEUFS_LABEL_SIZE, cred, 0, &bp);
    794 		if (error && error != EINVAL) {
    795 			return error;
    796 		}
    797 		if (error == 0) {
    798 			error = ffs_appleufs_validate(fs->fs_fsmnt,
    799 				(struct appleufslabel *)bp->b_data, NULL);
    800 			if (error == 0)
    801 				ump->um_flags |= UFS_ISAPPLEUFS;
    802 			brelse(bp, 0);
    803 		}
    804 		bp = NULL;
    805 	}
    806 #else
    807 	if (ump->um_flags & UFS_ISAPPLEUFS)
    808 		return (EIO);
    809 #endif
    810 
    811 	if (UFS_MPISAPPLEUFS(ump)) {
    812 		/* see comment about NeXT below */
    813 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
    814 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
    815 		mp->mnt_iflag |= IMNT_DTYPE;
    816 	} else {
    817 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
    818 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
    819 		if (ump->um_maxsymlinklen > 0)
    820 			mp->mnt_iflag |= IMNT_DTYPE;
    821 		else
    822 			mp->mnt_iflag &= ~IMNT_DTYPE;
    823 	}
    824 	ffs_oldfscompat_read(fs, ump, sblockloc);
    825 
    826 	mutex_enter(&ump->um_lock);
    827 	ump->um_maxfilesize = fs->fs_maxfilesize;
    828 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    829 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    830 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    831 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    832 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    833 			mutex_exit(&ump->um_lock);
    834 			return (EINVAL);
    835 		}
    836 	}
    837 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
    838 		fs->fs_pendingblocks = 0;
    839 		fs->fs_pendinginodes = 0;
    840 	}
    841 	mutex_exit(&ump->um_lock);
    842 
    843 	ffs_statvfs(mp, &mp->mnt_stat);
    844 	/*
    845 	 * Step 3: re-read summary information from disk.
    846 	 */
    847 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
    848 	space = fs->fs_csp;
    849 	for (i = 0; i < blks; i += fs->fs_frag) {
    850 		bsize = fs->fs_bsize;
    851 		if (i + fs->fs_frag > blks)
    852 			bsize = (blks - i) * fs->fs_fsize;
    853 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
    854 			      NOCRED, 0, &bp);
    855 		if (error) {
    856 			return (error);
    857 		}
    858 #ifdef FFS_EI
    859 		if (UFS_FSNEEDSWAP(fs))
    860 			ffs_csum_swap((struct csum *)bp->b_data,
    861 			    (struct csum *)space, bsize);
    862 		else
    863 #endif
    864 			memcpy(space, bp->b_data, (size_t)bsize);
    865 		space = (char *)space + bsize;
    866 		brelse(bp, 0);
    867 	}
    868 	/*
    869 	 * We no longer know anything about clusters per cylinder group.
    870 	 */
    871 	if (fs->fs_contigsumsize > 0) {
    872 		lp = fs->fs_maxcluster;
    873 		for (i = 0; i < fs->fs_ncg; i++)
    874 			*lp++ = fs->fs_contigsumsize;
    875 	}
    876 
    877 	vfs_vnode_iterator_init(mp, &marker);
    878 	while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
    879 		/*
    880 		 * Step 4: invalidate all inactive vnodes.
    881 		 */
    882 		if (vrecycle(vp))
    883 			continue;
    884 		/*
    885 		 * Step 5: invalidate all cached file data.
    886 		 */
    887 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    888 			vrele(vp);
    889 			continue;
    890 		}
    891 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
    892 			panic("ffs_reload: dirty2");
    893 		/*
    894 		 * Step 6: re-read inode data for all active vnodes.
    895 		 */
    896 		ip = VTOI(vp);
    897 		error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
    898 			      (int)fs->fs_bsize, NOCRED, 0, &bp);
    899 		if (error) {
    900 			vput(vp);
    901 			break;
    902 		}
    903 		ffs_load_inode(bp, ip, fs, ip->i_number);
    904 		brelse(bp, 0);
    905 		vput(vp);
    906 	}
    907 	vfs_vnode_iterator_destroy(marker);
    908 	return (error);
    909 }
    910 
    911 /*
    912  * Possible superblock locations ordered from most to least likely.
    913  */
    914 static const int sblock_try[] = SBLOCKSEARCH;
    915 
    916 
    917 static int
    918 ffs_superblock_validate(struct fs *fs)
    919 {
    920 	int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag;
    921 	int32_t fs_inopb;
    922 
    923 	/* Check the superblock size */
    924 	if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
    925 		return 0;
    926 
    927 	/* Check the file system blocksize */
    928 	if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
    929 		return 0;
    930 	if (!powerof2(fs->fs_bsize))
    931 		return 0;
    932 
    933 	/* Check the size of frag blocks */
    934 	if (!powerof2(fs->fs_fsize))
    935 		return 0;
    936 	if (fs->fs_fsize == 0)
    937 		return 0;
    938 
    939 	/*
    940 	 * XXX: these values are just zero-checked to prevent obvious
    941 	 * bugs. We need more strict checks.
    942 	 */
    943 	if (fs->fs_size == 0)
    944 		return 0;
    945 	if (fs->fs_cssize == 0)
    946 		return 0;
    947 	if (fs->fs_ipg == 0)
    948 		return 0;
    949 	if (fs->fs_fpg == 0)
    950 		return 0;
    951 
    952 	/* Check the number of inodes per block */
    953 	if (fs->fs_magic == FS_UFS1_MAGIC)
    954 		fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode);
    955 	else /* fs->fs_magic == FS_UFS2_MAGIC */
    956 		fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode);
    957 	if (fs->fs_inopb != fs_inopb)
    958 		return 0;
    959 
    960 	/* Block size cannot be smaller than fragment size */
    961 	if (fs->fs_bsize < fs->fs_fsize)
    962 		return 0;
    963 
    964 	/* Compute fs_bshift and ensure it is consistent */
    965 	for (i = fs->fs_bsize; i > 1; i >>= 1)
    966 		fs_bshift++;
    967 	if (fs->fs_bshift != fs_bshift)
    968 		return 0;
    969 
    970 	/* Compute fs_fshift and ensure it is consistent */
    971 	for (i = fs->fs_fsize; i > 1; i >>= 1)
    972 		fs_fshift++;
    973 	if (fs->fs_fshift != fs_fshift)
    974 		return 0;
    975 
    976 	/* Compute fs_fragshift and ensure it is consistent */
    977 	for (i = fs->fs_frag; i > 1; i >>= 1)
    978 		fs_fragshift++;
    979 	if (fs->fs_fragshift != fs_fragshift)
    980 		return 0;
    981 
    982 	/* Check the masks */
    983 	if (fs->fs_bmask != ~(fs->fs_bsize - 1))
    984 		return 0;
    985 	if (fs->fs_fmask != ~(fs->fs_fsize - 1))
    986 		return 0;
    987 
    988 	/*
    989 	 * Now that the shifts and masks are sanitized, we can use the ffs_ API.
    990 	 */
    991 
    992 	/* Check the number of frag blocks */
    993 	if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
    994 		return 0;
    995 	if (fs->fs_frag != fs_frag)
    996 		return 0;
    997 
    998 	return 1;
    999 }
   1000 
   1001 /*
   1002  * Common code for mount and mountroot
   1003  */
   1004 int
   1005 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
   1006 {
   1007 	struct ufsmount *ump = NULL;
   1008 	struct buf *bp = NULL;
   1009 	struct fs *fs = NULL;
   1010 	dev_t dev;
   1011 	struct dkwedge_info dkw;
   1012 	void *space;
   1013 	daddr_t sblockloc = 0;
   1014 	int blks, fstype = 0;
   1015 	int error, i, bsize, ronly, bset = 0;
   1016 #ifdef FFS_EI
   1017 	int needswap = 0;		/* keep gcc happy */
   1018 #endif
   1019 	int32_t *lp;
   1020 	kauth_cred_t cred;
   1021 	u_int32_t allocsbsize, fs_sbsize = 0;
   1022 
   1023 	dev = devvp->v_rdev;
   1024 	cred = l ? l->l_cred : NOCRED;
   1025 
   1026 	/* Flush out any old buffers remaining from a previous use. */
   1027 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
   1028 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
   1029 	VOP_UNLOCK(devvp);
   1030 	if (error) {
   1031 		DPRINTF("vinvalbuf returned %d", error);
   1032 		return error;
   1033 	}
   1034 
   1035 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
   1036 
   1037 	error = fstrans_mount(mp);
   1038 	if (error) {
   1039 		DPRINTF("fstrans_mount returned %d", error);
   1040 		return error;
   1041 	}
   1042 
   1043 	ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
   1044 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
   1045 	error = ffs_snapshot_init(ump);
   1046 	if (error) {
   1047 		DPRINTF("ffs_snapshot_init returned %d", error);
   1048 		goto out;
   1049 	}
   1050 	ump->um_ops = &ffs_ufsops;
   1051 
   1052 #ifdef WAPBL
   1053  sbagain:
   1054 #endif
   1055 	/*
   1056 	 * Try reading the superblock in each of its possible locations.
   1057 	 */
   1058 	for (i = 0; ; i++) {
   1059 		daddr_t fs_sblockloc;
   1060 
   1061 		if (bp != NULL) {
   1062 			brelse(bp, BC_NOCACHE);
   1063 			bp = NULL;
   1064 		}
   1065 		if (sblock_try[i] == -1) {
   1066 			DPRINTF("no superblock found");
   1067 			error = EINVAL;
   1068 			fs = NULL;
   1069 			goto out;
   1070 		}
   1071 
   1072 		error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
   1073 		    cred, 0, &bp);
   1074 		if (error) {
   1075 			DPRINTF("bread@0x%x returned %d",
   1076 			    sblock_try[i] / DEV_BSIZE, error);
   1077 			fs = NULL;
   1078 			goto out;
   1079 		}
   1080 		fs = (struct fs *)bp->b_data;
   1081 
   1082 		sblockloc = sblock_try[i];
   1083 		DPRINTF("fs_magic 0x%x", fs->fs_magic);
   1084 
   1085 		/*
   1086 		 * Swap: here, we swap fs->fs_sbsize in order to get the correct
   1087 		 * size to read the superblock. Once read, we swap the whole
   1088 		 * superblock structure.
   1089 		 */
   1090 		if (fs->fs_magic == FS_UFS1_MAGIC) {
   1091 			fs_sbsize = fs->fs_sbsize;
   1092 			fstype = UFS1;
   1093 #ifdef FFS_EI
   1094 			needswap = 0;
   1095 		} else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
   1096 			fs_sbsize = bswap32(fs->fs_sbsize);
   1097 			fstype = UFS1;
   1098 			needswap = 1;
   1099 #endif
   1100 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
   1101 			fs_sbsize = fs->fs_sbsize;
   1102 			fstype = UFS2;
   1103 #ifdef FFS_EI
   1104 			needswap = 0;
   1105 		} else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
   1106 			fs_sbsize = bswap32(fs->fs_sbsize);
   1107 			fstype = UFS2;
   1108 			needswap = 1;
   1109 #endif
   1110 		} else
   1111 			continue;
   1112 
   1113 		/* fs->fs_sblockloc isn't defined for old filesystems */
   1114 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
   1115 			if (sblockloc == SBLOCK_UFS2)
   1116 				/*
   1117 				 * This is likely to be the first alternate
   1118 				 * in a filesystem with 64k blocks.
   1119 				 * Don't use it.
   1120 				 */
   1121 				continue;
   1122 			fs_sblockloc = sblockloc;
   1123 		} else {
   1124 			fs_sblockloc = fs->fs_sblockloc;
   1125 #ifdef FFS_EI
   1126 			if (needswap)
   1127 				fs_sblockloc = bswap64(fs_sblockloc);
   1128 #endif
   1129 		}
   1130 
   1131 		/* Check we haven't found an alternate superblock */
   1132 		if (fs_sblockloc != sblockloc)
   1133 			continue;
   1134 
   1135 		/* Check the superblock size */
   1136 		if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
   1137 			continue;
   1138 		fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
   1139 		memcpy(fs, bp->b_data, fs_sbsize);
   1140 
   1141 		/* Swap the whole superblock structure, if necessary. */
   1142 #ifdef FFS_EI
   1143 		if (needswap) {
   1144 			ffs_sb_swap((struct fs*)bp->b_data, fs);
   1145 			fs->fs_flags |= FS_SWAPPED;
   1146 		} else
   1147 #endif
   1148 			fs->fs_flags &= ~FS_SWAPPED;
   1149 
   1150 		/*
   1151 		 * Now that everything is swapped, the superblock is ready to
   1152 		 * be sanitized.
   1153 		 */
   1154 		if (!ffs_superblock_validate(fs)) {
   1155 			kmem_free(fs, fs_sbsize);
   1156 			continue;
   1157 		}
   1158 
   1159 		/* Ok seems to be a good superblock */
   1160 		break;
   1161 	}
   1162 
   1163 	ump->um_fs = fs;
   1164 
   1165 #ifdef WAPBL
   1166 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
   1167 		error = ffs_wapbl_replay_start(mp, fs, devvp);
   1168 		if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
   1169 			DPRINTF("ffs_wapbl_replay_start returned %d", error);
   1170 			goto out;
   1171 		}
   1172 		if (!error) {
   1173 			if (!ronly) {
   1174 				/* XXX fsmnt may be stale. */
   1175 				printf("%s: replaying log to disk\n",
   1176 				    fs->fs_fsmnt);
   1177 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
   1178 				    devvp);
   1179 				if (error) {
   1180 					DPRINTF("wapbl_replay_write returned %d",
   1181 					    error);
   1182 					goto out;
   1183 				}
   1184 				wapbl_replay_stop(mp->mnt_wapbl_replay);
   1185 				fs->fs_clean = FS_WASCLEAN;
   1186 			} else {
   1187 				/* XXX fsmnt may be stale */
   1188 				printf("%s: replaying log to memory\n",
   1189 				    fs->fs_fsmnt);
   1190 			}
   1191 
   1192 			/* Force a re-read of the superblock */
   1193 			brelse(bp, BC_INVAL);
   1194 			bp = NULL;
   1195 			kmem_free(fs, fs_sbsize);
   1196 			fs = NULL;
   1197 			goto sbagain;
   1198 		}
   1199 	}
   1200 #else /* !WAPBL */
   1201 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
   1202 		error = EPERM;
   1203 		DPRINTF("no force %d", error);
   1204 		goto out;
   1205 	}
   1206 #endif /* !WAPBL */
   1207 
   1208 	ffs_oldfscompat_read(fs, ump, sblockloc);
   1209 	ump->um_maxfilesize = fs->fs_maxfilesize;
   1210 
   1211 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
   1212 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
   1213 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
   1214 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1215 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1216 			error = EINVAL;
   1217 			DPRINTF("no force %d", error);
   1218 			goto out;
   1219 		}
   1220 	}
   1221 
   1222 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
   1223 		fs->fs_pendingblocks = 0;
   1224 		fs->fs_pendinginodes = 0;
   1225 	}
   1226 
   1227 	ump->um_fstype = fstype;
   1228 	if (fs->fs_sbsize < SBLOCKSIZE)
   1229 		brelse(bp, BC_INVAL);
   1230 	else
   1231 		brelse(bp, 0);
   1232 	bp = NULL;
   1233 
   1234 	/*
   1235 	 * First check to see if this is tagged as an Apple UFS filesystem
   1236 	 * in the disklabel
   1237 	 */
   1238 	if (getdiskinfo(devvp, &dkw) == 0 &&
   1239 	    strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
   1240 		ump->um_flags |= UFS_ISAPPLEUFS;
   1241 #ifdef APPLE_UFS
   1242 	else {
   1243 		/*
   1244 		 * Manually look for an apple ufs label, and if a valid one
   1245 		 * is found, then treat it like an Apple UFS filesystem anyway
   1246 		 */
   1247 		error = bread(devvp,
   1248 		    (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
   1249 		    APPLEUFS_LABEL_SIZE, cred, 0, &bp);
   1250 		if (error) {
   1251 			DPRINTF("apple bread@0x%jx returned %d",
   1252 			    (intmax_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
   1253 			    error);
   1254 			goto out;
   1255 		}
   1256 		error = ffs_appleufs_validate(fs->fs_fsmnt,
   1257 		    (struct appleufslabel *)bp->b_data, NULL);
   1258 		if (error == 0)
   1259 			ump->um_flags |= UFS_ISAPPLEUFS;
   1260 		brelse(bp, 0);
   1261 		bp = NULL;
   1262 	}
   1263 #else
   1264 	if (ump->um_flags & UFS_ISAPPLEUFS) {
   1265 		DPRINTF("AppleUFS not supported");
   1266 		error = EINVAL;
   1267 		goto out;
   1268 	}
   1269 #endif
   1270 
   1271 #if 0
   1272 /*
   1273  * XXX This code changes the behaviour of mounting dirty filesystems, to
   1274  * XXX require "mount -f ..." to mount them.  This doesn't match what
   1275  * XXX mount(8) describes and is disabled for now.
   1276  */
   1277 	/*
   1278 	 * If the file system is not clean, don't allow it to be mounted
   1279 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
   1280 	 * for the root file system.)
   1281 	 */
   1282 	if (fs->fs_flags & FS_DOWAPBL) {
   1283 		/*
   1284 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
   1285 		 * bit is set, although there's a window in unmount where it
   1286 		 * could be FS_ISCLEAN
   1287 		 */
   1288 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
   1289 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
   1290 			error = EPERM;
   1291 			goto out;
   1292 		}
   1293 	} else
   1294 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
   1295 		    (mp->mnt_flag & MNT_FORCE) == 0) {
   1296 			error = EPERM;
   1297 			goto out;
   1298 		}
   1299 #endif
   1300 
   1301 	/*
   1302 	 * Verify that we can access the last block in the fs
   1303 	 * if we're mounting read/write.
   1304 	 */
   1305 	if (!ronly) {
   1306 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
   1307 		    fs->fs_fsize, cred, 0, &bp);
   1308 		if (error) {
   1309 			DPRINTF("bread@0x%jx returned %d",
   1310 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
   1311 			    error);
   1312 			bset = BC_INVAL;
   1313 			goto out;
   1314 		}
   1315 		if (bp->b_bcount != fs->fs_fsize) {
   1316 			DPRINTF("bcount %x != fsize %x", bp->b_bcount,
   1317 			    fs->fs_fsize);
   1318 			error = EINVAL;
   1319 		}
   1320 		brelse(bp, BC_INVAL);
   1321 		bp = NULL;
   1322 	}
   1323 
   1324 	fs->fs_ronly = ronly;
   1325 	/* Don't bump fs_clean if we're replaying journal */
   1326 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
   1327 		if (ronly == 0) {
   1328 			fs->fs_clean <<= 1;
   1329 			fs->fs_fmod = 1;
   1330 		}
   1331 	}
   1332 
   1333 	bsize = fs->fs_cssize;
   1334 	blks = howmany(bsize, fs->fs_fsize);
   1335 	if (fs->fs_contigsumsize > 0)
   1336 		bsize += fs->fs_ncg * sizeof(int32_t);
   1337 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1338 	allocsbsize = bsize;
   1339 	space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
   1340 	fs->fs_csp = space;
   1341 
   1342 	for (i = 0; i < blks; i += fs->fs_frag) {
   1343 		bsize = fs->fs_bsize;
   1344 		if (i + fs->fs_frag > blks)
   1345 			bsize = (blks - i) * fs->fs_fsize;
   1346 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
   1347 			      cred, 0, &bp);
   1348 		if (error) {
   1349 			DPRINTF("bread@0x%jx %d",
   1350 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
   1351 			    error);
   1352 			goto out1;
   1353 		}
   1354 #ifdef FFS_EI
   1355 		if (needswap)
   1356 			ffs_csum_swap((struct csum *)bp->b_data,
   1357 				(struct csum *)space, bsize);
   1358 		else
   1359 #endif
   1360 			memcpy(space, bp->b_data, (u_int)bsize);
   1361 
   1362 		space = (char *)space + bsize;
   1363 		brelse(bp, 0);
   1364 		bp = NULL;
   1365 	}
   1366 	if (fs->fs_contigsumsize > 0) {
   1367 		fs->fs_maxcluster = lp = space;
   1368 		for (i = 0; i < fs->fs_ncg; i++)
   1369 			*lp++ = fs->fs_contigsumsize;
   1370 		space = lp;
   1371 	}
   1372 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1373 	fs->fs_contigdirs = space;
   1374 	space = (char *)space + bsize;
   1375 	memset(fs->fs_contigdirs, 0, bsize);
   1376 
   1377 	/* Compatibility for old filesystems - XXX */
   1378 	if (fs->fs_avgfilesize <= 0)
   1379 		fs->fs_avgfilesize = AVFILESIZ;
   1380 	if (fs->fs_avgfpdir <= 0)
   1381 		fs->fs_avgfpdir = AFPDIR;
   1382 	fs->fs_active = NULL;
   1383 
   1384 	mp->mnt_data = ump;
   1385 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
   1386 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
   1387 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
   1388 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
   1389 	if (UFS_MPISAPPLEUFS(ump)) {
   1390 		/* NeXT used to keep short symlinks in the inode even
   1391 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
   1392 		 * is probably -1, but we still need to be able to identify
   1393 		 * short symlinks.
   1394 		 */
   1395 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
   1396 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
   1397 		mp->mnt_iflag |= IMNT_DTYPE;
   1398 	} else {
   1399 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
   1400 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
   1401 		if (ump->um_maxsymlinklen > 0)
   1402 			mp->mnt_iflag |= IMNT_DTYPE;
   1403 		else
   1404 			mp->mnt_iflag &= ~IMNT_DTYPE;
   1405 	}
   1406 	mp->mnt_fs_bshift = fs->fs_bshift;
   1407 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
   1408 	mp->mnt_flag |= MNT_LOCAL;
   1409 	mp->mnt_iflag |= IMNT_MPSAFE;
   1410 #ifdef FFS_EI
   1411 	if (needswap)
   1412 		ump->um_flags |= UFS_NEEDSWAP;
   1413 #endif
   1414 	ump->um_mountp = mp;
   1415 	ump->um_dev = dev;
   1416 	ump->um_devvp = devvp;
   1417 	ump->um_nindir = fs->fs_nindir;
   1418 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
   1419 	ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
   1420 	ump->um_seqinc = fs->fs_frag;
   1421 	for (i = 0; i < MAXQUOTAS; i++)
   1422 		ump->um_quotas[i] = NULLVP;
   1423 	spec_node_setmountedfs(devvp, mp);
   1424 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
   1425 		ffs_snapshot_mount(mp);
   1426 #ifdef WAPBL
   1427 	if (!ronly) {
   1428 		KDASSERT(fs->fs_ronly == 0);
   1429 		/*
   1430 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
   1431 		 * needs to create a new log file in-filesystem.
   1432 		 */
   1433 		error = ffs_statvfs(mp, &mp->mnt_stat);
   1434 		if (error) {
   1435 			DPRINTF("ffs_statvfs returned %d", error);
   1436 			goto out1;
   1437 		}
   1438 
   1439 		error = ffs_wapbl_start(mp);
   1440 		if (error) {
   1441 			DPRINTF("ffs_wapbl_start returned %d", error);
   1442 			goto out1;
   1443 		}
   1444 	}
   1445 #endif /* WAPBL */
   1446 	if (ronly == 0) {
   1447 #ifdef QUOTA2
   1448 		error = ffs_quota2_mount(mp);
   1449 		if (error) {
   1450 			DPRINTF("ffs_quota2_mount returned %d", error);
   1451 			goto out1;
   1452 		}
   1453 #else
   1454 		if (fs->fs_flags & FS_DOQUOTA2) {
   1455 			ump->um_flags |= UFS_QUOTA2;
   1456 			uprintf("%s: options QUOTA2 not enabled%s\n",
   1457 			    mp->mnt_stat.f_mntonname,
   1458 			    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1459 			if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1460 				error = EINVAL;
   1461 				DPRINTF("quota disabled %d", error);
   1462 				goto out1;
   1463 			}
   1464 		}
   1465 #endif
   1466 	 }
   1467 
   1468 	if (mp->mnt_flag & MNT_DISCARD)
   1469 		ump->um_discarddata = ffs_discard_init(devvp, fs);
   1470 
   1471 	return (0);
   1472 out1:
   1473 	kmem_free(fs->fs_csp, allocsbsize);
   1474 out:
   1475 #ifdef WAPBL
   1476 	if (mp->mnt_wapbl_replay) {
   1477 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1478 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1479 		mp->mnt_wapbl_replay = 0;
   1480 	}
   1481 #endif
   1482 
   1483 	fstrans_unmount(mp);
   1484 	if (fs)
   1485 		kmem_free(fs, fs->fs_sbsize);
   1486 	spec_node_setmountedfs(devvp, NULL);
   1487 	if (bp)
   1488 		brelse(bp, bset);
   1489 	if (ump) {
   1490 		if (ump->um_oldfscompat)
   1491 			kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
   1492 		mutex_destroy(&ump->um_lock);
   1493 		kmem_free(ump, sizeof(*ump));
   1494 		mp->mnt_data = NULL;
   1495 	}
   1496 	return (error);
   1497 }
   1498 
   1499 /*
   1500  * Sanity checks for loading old filesystem superblocks.
   1501  * See ffs_oldfscompat_write below for unwound actions.
   1502  *
   1503  * XXX - Parts get retired eventually.
   1504  * Unfortunately new bits get added.
   1505  */
   1506 static void
   1507 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
   1508 {
   1509 	off_t maxfilesize;
   1510 	int32_t *extrasave;
   1511 
   1512 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1513 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1514 		return;
   1515 
   1516 	if (!ump->um_oldfscompat)
   1517 		ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
   1518 		    KM_SLEEP);
   1519 
   1520 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
   1521 	extrasave = ump->um_oldfscompat;
   1522 	extrasave += 512/sizeof(int32_t);
   1523 	extrasave[0] = fs->fs_old_npsect;
   1524 	extrasave[1] = fs->fs_old_interleave;
   1525 	extrasave[2] = fs->fs_old_trackskew;
   1526 
   1527 	/* These fields will be overwritten by their
   1528 	 * original values in fs_oldfscompat_write, so it is harmless
   1529 	 * to modify them here.
   1530 	 */
   1531 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
   1532 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
   1533 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
   1534 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
   1535 
   1536 	fs->fs_maxbsize = fs->fs_bsize;
   1537 	fs->fs_time = fs->fs_old_time;
   1538 	fs->fs_size = fs->fs_old_size;
   1539 	fs->fs_dsize = fs->fs_old_dsize;
   1540 	fs->fs_csaddr = fs->fs_old_csaddr;
   1541 	fs->fs_sblockloc = sblockloc;
   1542 
   1543 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
   1544 
   1545 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
   1546 		fs->fs_old_nrpos = 8;
   1547 		fs->fs_old_npsect = fs->fs_old_nsect;
   1548 		fs->fs_old_interleave = 1;
   1549 		fs->fs_old_trackskew = 0;
   1550 	}
   1551 
   1552 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {
   1553 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
   1554 		fs->fs_qbmask = ~fs->fs_bmask;
   1555 		fs->fs_qfmask = ~fs->fs_fmask;
   1556 	}
   1557 
   1558 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
   1559 	if (fs->fs_maxfilesize > maxfilesize)
   1560 		fs->fs_maxfilesize = maxfilesize;
   1561 
   1562 	/* Compatibility for old filesystems */
   1563 	if (fs->fs_avgfilesize <= 0)
   1564 		fs->fs_avgfilesize = AVFILESIZ;
   1565 	if (fs->fs_avgfpdir <= 0)
   1566 		fs->fs_avgfpdir = AFPDIR;
   1567 
   1568 #if 0
   1569 	if (bigcgs) {
   1570 		fs->fs_save_cgsize = fs->fs_cgsize;
   1571 		fs->fs_cgsize = fs->fs_bsize;
   1572 	}
   1573 #endif
   1574 }
   1575 
   1576 /*
   1577  * Unwinding superblock updates for old filesystems.
   1578  * See ffs_oldfscompat_read above for details.
   1579  *
   1580  * XXX - Parts get retired eventually.
   1581  * Unfortunately new bits get added.
   1582  */
   1583 static void
   1584 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
   1585 {
   1586 	int32_t *extrasave;
   1587 
   1588 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1589 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1590 		return;
   1591 
   1592 	fs->fs_old_time = fs->fs_time;
   1593 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
   1594 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
   1595 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
   1596 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
   1597 	fs->fs_old_flags = fs->fs_flags;
   1598 
   1599 #if 0
   1600 	if (bigcgs) {
   1601 		fs->fs_cgsize = fs->fs_save_cgsize;
   1602 	}
   1603 #endif
   1604 
   1605 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
   1606 	extrasave = ump->um_oldfscompat;
   1607 	extrasave += 512/sizeof(int32_t);
   1608 	fs->fs_old_npsect = extrasave[0];
   1609 	fs->fs_old_interleave = extrasave[1];
   1610 	fs->fs_old_trackskew = extrasave[2];
   1611 
   1612 }
   1613 
   1614 /*
   1615  * unmount vfs operation
   1616  */
   1617 int
   1618 ffs_unmount(struct mount *mp, int mntflags)
   1619 {
   1620 	struct lwp *l = curlwp;
   1621 	struct ufsmount *ump = VFSTOUFS(mp);
   1622 	struct fs *fs = ump->um_fs;
   1623 	int error, flags;
   1624 	u_int32_t bsize;
   1625 #ifdef WAPBL
   1626 	extern int doforce;
   1627 #endif
   1628 
   1629 	if (ump->um_discarddata) {
   1630 		ffs_discard_finish(ump->um_discarddata, mntflags);
   1631 		ump->um_discarddata = NULL;
   1632 	}
   1633 
   1634 	flags = 0;
   1635 	if (mntflags & MNT_FORCE)
   1636 		flags |= FORCECLOSE;
   1637 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
   1638 		return (error);
   1639 	error = UFS_WAPBL_BEGIN(mp);
   1640 	if (error == 0)
   1641 		if (fs->fs_ronly == 0 &&
   1642 		    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
   1643 		    fs->fs_clean & FS_WASCLEAN) {
   1644 			fs->fs_clean = FS_ISCLEAN;
   1645 			fs->fs_fmod = 0;
   1646 			(void) ffs_sbupdate(ump, MNT_WAIT);
   1647 		}
   1648 	if (error == 0)
   1649 		UFS_WAPBL_END(mp);
   1650 #ifdef WAPBL
   1651 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
   1652 	if (mp->mnt_wapbl_replay) {
   1653 		KDASSERT(fs->fs_ronly);
   1654 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1655 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1656 		mp->mnt_wapbl_replay = 0;
   1657 	}
   1658 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
   1659 	if (error) {
   1660 		return error;
   1661 	}
   1662 #endif /* WAPBL */
   1663 
   1664 	if (ump->um_devvp->v_type != VBAD)
   1665 		spec_node_setmountedfs(ump->um_devvp, NULL);
   1666 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1667 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
   1668 		NOCRED);
   1669 	vput(ump->um_devvp);
   1670 
   1671 	bsize = fs->fs_cssize;
   1672 	if (fs->fs_contigsumsize > 0)
   1673 		bsize += fs->fs_ncg * sizeof(int32_t);
   1674 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1675 	kmem_free(fs->fs_csp, bsize);
   1676 
   1677 	kmem_free(fs, fs->fs_sbsize);
   1678 	if (ump->um_oldfscompat != NULL)
   1679 		kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
   1680 	mutex_destroy(&ump->um_lock);
   1681 	ffs_snapshot_fini(ump);
   1682 	kmem_free(ump, sizeof(*ump));
   1683 	mp->mnt_data = NULL;
   1684 	mp->mnt_flag &= ~MNT_LOCAL;
   1685 	fstrans_unmount(mp);
   1686 	return (0);
   1687 }
   1688 
   1689 /*
   1690  * Flush out all the files in a filesystem.
   1691  */
   1692 int
   1693 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
   1694 {
   1695 	extern int doforce;
   1696 	struct ufsmount *ump;
   1697 	int error;
   1698 
   1699 	if (!doforce)
   1700 		flags &= ~FORCECLOSE;
   1701 	ump = VFSTOUFS(mp);
   1702 #ifdef QUOTA
   1703 	if ((error = quota1_umount(mp, flags)) != 0)
   1704 		return (error);
   1705 #endif
   1706 #ifdef QUOTA2
   1707 	if ((error = quota2_umount(mp, flags)) != 0)
   1708 		return (error);
   1709 #endif
   1710 #ifdef UFS_EXTATTR
   1711 	if (ump->um_fstype == UFS1) {
   1712 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
   1713 			ufs_extattr_stop(mp, l);
   1714 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
   1715 			ufs_extattr_uepm_destroy(&ump->um_extattr);
   1716 		mp->mnt_flag &= ~MNT_EXTATTR;
   1717 	}
   1718 #endif
   1719 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
   1720 		return (error);
   1721 	ffs_snapshot_unmount(mp);
   1722 	/*
   1723 	 * Flush all the files.
   1724 	 */
   1725 	error = vflush(mp, NULLVP, flags);
   1726 	if (error)
   1727 		return (error);
   1728 	/*
   1729 	 * Flush filesystem metadata.
   1730 	 */
   1731 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1732 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
   1733 	VOP_UNLOCK(ump->um_devvp);
   1734 	if (flags & FORCECLOSE) /* XXXDBJ */
   1735 		error = 0;
   1736 
   1737 #ifdef WAPBL
   1738 	if (error)
   1739 		return error;
   1740 	if (mp->mnt_wapbl) {
   1741 		error = wapbl_flush(mp->mnt_wapbl, 1);
   1742 		if (flags & FORCECLOSE)
   1743 			error = 0;
   1744 	}
   1745 #endif
   1746 
   1747 	return (error);
   1748 }
   1749 
   1750 /*
   1751  * Get file system statistics.
   1752  */
   1753 int
   1754 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
   1755 {
   1756 	struct ufsmount *ump;
   1757 	struct fs *fs;
   1758 
   1759 	ump = VFSTOUFS(mp);
   1760 	fs = ump->um_fs;
   1761 	mutex_enter(&ump->um_lock);
   1762 	sbp->f_bsize = fs->fs_bsize;
   1763 	sbp->f_frsize = fs->fs_fsize;
   1764 	sbp->f_iosize = fs->fs_bsize;
   1765 	sbp->f_blocks = fs->fs_dsize;
   1766 	sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
   1767 	    fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
   1768 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
   1769 	    fs->fs_minfree) / (u_int64_t) 100;
   1770 	if (sbp->f_bfree > sbp->f_bresvd)
   1771 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1772 	else
   1773 		sbp->f_bavail = 0;
   1774 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
   1775 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
   1776 	sbp->f_favail = sbp->f_ffree;
   1777 	sbp->f_fresvd = 0;
   1778 	mutex_exit(&ump->um_lock);
   1779 	copy_statvfs_info(sbp, mp);
   1780 
   1781 	return (0);
   1782 }
   1783 
   1784 struct ffs_sync_ctx {
   1785 	int waitfor;
   1786 	bool is_suspending;
   1787 };
   1788 
   1789 static bool
   1790 ffs_sync_selector(void *cl, struct vnode *vp)
   1791 {
   1792 	struct ffs_sync_ctx *c = cl;
   1793 	struct inode *ip;
   1794 
   1795 	ip = VTOI(vp);
   1796 	/*
   1797 	 * Skip the vnode/inode if inaccessible.
   1798 	 */
   1799 	if (ip == NULL || vp->v_type == VNON)
   1800 		return false;
   1801 
   1802 	/*
   1803 	 * We deliberately update inode times here.  This will
   1804 	 * prevent a massive queue of updates accumulating, only
   1805 	 * to be handled by a call to unmount.
   1806 	 *
   1807 	 * XXX It would be better to have the syncer trickle these
   1808 	 * out.  Adjustment needed to allow registering vnodes for
   1809 	 * sync when the vnode is clean, but the inode dirty.  Or
   1810 	 * have ufs itself trickle out inode updates.
   1811 	 *
   1812 	 * If doing a lazy sync, we don't care about metadata or
   1813 	 * data updates, because they are handled by each vnode's
   1814 	 * synclist entry.  In this case we are only interested in
   1815 	 * writing back modified inodes.
   1816 	 */
   1817 	if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
   1818 	    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
   1819 	    (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
   1820 	    UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
   1821 		return false;
   1822 
   1823 	if (vp->v_type == VBLK && c->is_suspending)
   1824 		return false;
   1825 
   1826 	return true;
   1827 }
   1828 
   1829 /*
   1830  * Go through the disk queues to initiate sandbagged IO;
   1831  * go through the inodes to write those that have been modified;
   1832  * initiate the writing of the super block if it has been modified.
   1833  *
   1834  * Note: we are always called with the filesystem marked `MPBUSY'.
   1835  */
   1836 int
   1837 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1838 {
   1839 	struct vnode *vp;
   1840 	struct ufsmount *ump = VFSTOUFS(mp);
   1841 	struct fs *fs;
   1842 	struct vnode_iterator *marker;
   1843 	int error, allerror = 0;
   1844 	bool is_suspending;
   1845 	struct ffs_sync_ctx ctx;
   1846 
   1847 	fs = ump->um_fs;
   1848 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
   1849 		printf("fs = %s\n", fs->fs_fsmnt);
   1850 		panic("update: rofs mod");
   1851 	}
   1852 
   1853 	fstrans_start(mp, FSTRANS_SHARED);
   1854 	is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
   1855 	/*
   1856 	 * Write back each (modified) inode.
   1857 	 */
   1858 	vfs_vnode_iterator_init(mp, &marker);
   1859 
   1860 	ctx.waitfor = waitfor;
   1861 	ctx.is_suspending = is_suspending;
   1862 	while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
   1863 	{
   1864 		error = vn_lock(vp, LK_EXCLUSIVE);
   1865 		if (error) {
   1866 			vrele(vp);
   1867 			continue;
   1868 		}
   1869 		if (waitfor == MNT_LAZY) {
   1870 			error = UFS_WAPBL_BEGIN(vp->v_mount);
   1871 			if (!error) {
   1872 				error = ffs_update(vp, NULL, NULL,
   1873 				    UPDATE_CLOSE);
   1874 				UFS_WAPBL_END(vp->v_mount);
   1875 			}
   1876 		} else {
   1877 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
   1878 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
   1879 		}
   1880 		if (error)
   1881 			allerror = error;
   1882 		vput(vp);
   1883 	}
   1884 	vfs_vnode_iterator_destroy(marker);
   1885 
   1886 	/*
   1887 	 * Force stale file system control information to be flushed.
   1888 	 */
   1889 	if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
   1890 	    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
   1891 		vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1892 		if ((error = VOP_FSYNC(ump->um_devvp, cred,
   1893 		    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
   1894 		    0, 0)) != 0)
   1895 			allerror = error;
   1896 		VOP_UNLOCK(ump->um_devvp);
   1897 	}
   1898 #if defined(QUOTA) || defined(QUOTA2)
   1899 	qsync(mp);
   1900 #endif
   1901 	/*
   1902 	 * Write back modified superblock.
   1903 	 */
   1904 	if (fs->fs_fmod != 0) {
   1905 		fs->fs_fmod = 0;
   1906 		fs->fs_time = time_second;
   1907 		error = UFS_WAPBL_BEGIN(mp);
   1908 		if (error)
   1909 			allerror = error;
   1910 		else {
   1911 			if ((error = ffs_cgupdate(ump, waitfor)))
   1912 				allerror = error;
   1913 			UFS_WAPBL_END(mp);
   1914 		}
   1915 	}
   1916 
   1917 #ifdef WAPBL
   1918 	if (mp->mnt_wapbl) {
   1919 		error = wapbl_flush(mp->mnt_wapbl, 0);
   1920 		if (error)
   1921 			allerror = error;
   1922 	}
   1923 #endif
   1924 
   1925 	fstrans_done(mp);
   1926 	return (allerror);
   1927 }
   1928 
   1929 /*
   1930  * Read an inode from disk and initialize this vnode / inode pair.
   1931  * Caller assures no other thread will try to load this inode.
   1932  */
   1933 int
   1934 ffs_loadvnode(struct mount *mp, struct vnode *vp,
   1935     const void *key, size_t key_len, const void **new_key)
   1936 {
   1937 	ino_t ino;
   1938 	struct fs *fs;
   1939 	struct inode *ip;
   1940 	struct ufsmount *ump;
   1941 	struct buf *bp;
   1942 	dev_t dev;
   1943 	int error;
   1944 
   1945 	KASSERT(key_len == sizeof(ino));
   1946 	memcpy(&ino, key, key_len);
   1947 	ump = VFSTOUFS(mp);
   1948 	dev = ump->um_dev;
   1949 	fs = ump->um_fs;
   1950 
   1951 	/* Read in the disk contents for the inode. */
   1952 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
   1953 		      (int)fs->fs_bsize, NOCRED, 0, &bp);
   1954 	if (error)
   1955 		return error;
   1956 
   1957 	/* Allocate and initialize inode. */
   1958 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
   1959 	memset(ip, 0, sizeof(struct inode));
   1960 	vp->v_tag = VT_UFS;
   1961 	vp->v_op = ffs_vnodeop_p;
   1962 	vp->v_vflag |= VV_LOCKSWORK;
   1963 	vp->v_data = ip;
   1964 	ip->i_vnode = vp;
   1965 	ip->i_ump = ump;
   1966 	ip->i_fs = fs;
   1967 	ip->i_dev = dev;
   1968 	ip->i_number = ino;
   1969 #if defined(QUOTA) || defined(QUOTA2)
   1970 	ufsquota_init(ip);
   1971 #endif
   1972 
   1973 	/* Initialize genfs node. */
   1974 	genfs_node_init(vp, &ffs_genfsops);
   1975 
   1976 	if (ip->i_ump->um_fstype == UFS1)
   1977 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
   1978 		    PR_WAITOK);
   1979 	else
   1980 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
   1981 		    PR_WAITOK);
   1982 	ffs_load_inode(bp, ip, fs, ino);
   1983 	brelse(bp, 0);
   1984 
   1985 	/* Initialize the vnode from the inode. */
   1986 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   1987 
   1988 	/* Finish inode initialization.  */
   1989 	ip->i_devvp = ump->um_devvp;
   1990 	vref(ip->i_devvp);
   1991 
   1992 	/*
   1993 	 * Ensure that uid and gid are correct. This is a temporary
   1994 	 * fix until fsck has been changed to do the update.
   1995 	 */
   1996 
   1997 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
   1998 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
   1999 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
   2000 	}							/* XXX */
   2001 	uvm_vnp_setsize(vp, ip->i_size);
   2002 	*new_key = &ip->i_number;
   2003 	return 0;
   2004 }
   2005 
   2006 /*
   2007  * File handle to vnode
   2008  *
   2009  * Have to be really careful about stale file handles:
   2010  * - check that the inode number is valid
   2011  * - call ffs_vget() to get the locked inode
   2012  * - check for an unallocated inode (i_mode == 0)
   2013  * - check that the given client host has export rights and return
   2014  *   those rights via. exflagsp and credanonp
   2015  */
   2016 int
   2017 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   2018 {
   2019 	struct ufid ufh;
   2020 	struct fs *fs;
   2021 
   2022 	if (fhp->fid_len != sizeof(struct ufid))
   2023 		return EINVAL;
   2024 
   2025 	memcpy(&ufh, fhp, sizeof(ufh));
   2026 	fs = VFSTOUFS(mp)->um_fs;
   2027 	if (ufh.ufid_ino < UFS_ROOTINO ||
   2028 	    ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
   2029 		return (ESTALE);
   2030 	return (ufs_fhtovp(mp, &ufh, vpp));
   2031 }
   2032 
   2033 /*
   2034  * Vnode pointer to File handle
   2035  */
   2036 /* ARGSUSED */
   2037 int
   2038 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   2039 {
   2040 	struct inode *ip;
   2041 	struct ufid ufh;
   2042 
   2043 	if (*fh_size < sizeof(struct ufid)) {
   2044 		*fh_size = sizeof(struct ufid);
   2045 		return E2BIG;
   2046 	}
   2047 	ip = VTOI(vp);
   2048 	*fh_size = sizeof(struct ufid);
   2049 	memset(&ufh, 0, sizeof(ufh));
   2050 	ufh.ufid_len = sizeof(struct ufid);
   2051 	ufh.ufid_ino = ip->i_number;
   2052 	ufh.ufid_gen = ip->i_gen;
   2053 	memcpy(fhp, &ufh, sizeof(ufh));
   2054 	return (0);
   2055 }
   2056 
   2057 void
   2058 ffs_init(void)
   2059 {
   2060 	if (ffs_initcount++ > 0)
   2061 		return;
   2062 
   2063 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
   2064 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
   2065 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
   2066 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
   2067 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
   2068 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
   2069 	ufs_init();
   2070 }
   2071 
   2072 void
   2073 ffs_reinit(void)
   2074 {
   2075 	ufs_reinit();
   2076 }
   2077 
   2078 void
   2079 ffs_done(void)
   2080 {
   2081 	if (--ffs_initcount > 0)
   2082 		return;
   2083 
   2084 	ufs_done();
   2085 	pool_cache_destroy(ffs_dinode2_cache);
   2086 	pool_cache_destroy(ffs_dinode1_cache);
   2087 	pool_cache_destroy(ffs_inode_cache);
   2088 }
   2089 
   2090 /*
   2091  * Write a superblock and associated information back to disk.
   2092  */
   2093 int
   2094 ffs_sbupdate(struct ufsmount *mp, int waitfor)
   2095 {
   2096 	struct fs *fs = mp->um_fs;
   2097 	struct buf *bp;
   2098 	int error = 0;
   2099 	u_int32_t saveflag;
   2100 
   2101 	error = ffs_getblk(mp->um_devvp,
   2102 	    fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
   2103 	    fs->fs_sbsize, false, &bp);
   2104 	if (error)
   2105 		return error;
   2106 	saveflag = fs->fs_flags & FS_INTERNAL;
   2107 	fs->fs_flags &= ~FS_INTERNAL;
   2108 
   2109 	memcpy(bp->b_data, fs, fs->fs_sbsize);
   2110 
   2111 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
   2112 #ifdef FFS_EI
   2113 	if (mp->um_flags & UFS_NEEDSWAP)
   2114 		ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
   2115 #endif
   2116 	fs->fs_flags |= saveflag;
   2117 
   2118 	if (waitfor == MNT_WAIT)
   2119 		error = bwrite(bp);
   2120 	else
   2121 		bawrite(bp);
   2122 	return (error);
   2123 }
   2124 
   2125 int
   2126 ffs_cgupdate(struct ufsmount *mp, int waitfor)
   2127 {
   2128 	struct fs *fs = mp->um_fs;
   2129 	struct buf *bp;
   2130 	int blks;
   2131 	void *space;
   2132 	int i, size, error = 0, allerror = 0;
   2133 
   2134 	allerror = ffs_sbupdate(mp, waitfor);
   2135 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
   2136 	space = fs->fs_csp;
   2137 	for (i = 0; i < blks; i += fs->fs_frag) {
   2138 		size = fs->fs_bsize;
   2139 		if (i + fs->fs_frag > blks)
   2140 			size = (blks - i) * fs->fs_fsize;
   2141 		error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
   2142 		    FFS_NOBLK, size, false, &bp);
   2143 		if (error)
   2144 			break;
   2145 #ifdef FFS_EI
   2146 		if (mp->um_flags & UFS_NEEDSWAP)
   2147 			ffs_csum_swap((struct csum*)space,
   2148 			    (struct csum*)bp->b_data, size);
   2149 		else
   2150 #endif
   2151 			memcpy(bp->b_data, space, (u_int)size);
   2152 		space = (char *)space + size;
   2153 		if (waitfor == MNT_WAIT)
   2154 			error = bwrite(bp);
   2155 		else
   2156 			bawrite(bp);
   2157 	}
   2158 	if (!allerror && error)
   2159 		allerror = error;
   2160 	return (allerror);
   2161 }
   2162 
   2163 int
   2164 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
   2165     int attrnamespace, const char *attrname)
   2166 {
   2167 #ifdef UFS_EXTATTR
   2168 	/*
   2169 	 * File-backed extended attributes are only supported on UFS1.
   2170 	 * UFS2 has native extended attributes.
   2171 	 */
   2172 	if (VFSTOUFS(mp)->um_fstype == UFS1)
   2173 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
   2174 #endif
   2175 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
   2176 }
   2177 
   2178 int
   2179 ffs_suspendctl(struct mount *mp, int cmd)
   2180 {
   2181 	int error;
   2182 	struct lwp *l = curlwp;
   2183 
   2184 	switch (cmd) {
   2185 	case SUSPEND_SUSPEND:
   2186 		if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
   2187 			return error;
   2188 		error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
   2189 		if (error == 0)
   2190 			error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
   2191 #ifdef WAPBL
   2192 		if (error == 0 && mp->mnt_wapbl)
   2193 			error = wapbl_flush(mp->mnt_wapbl, 1);
   2194 #endif
   2195 		if (error != 0) {
   2196 			(void) fstrans_setstate(mp, FSTRANS_NORMAL);
   2197 			return error;
   2198 		}
   2199 		return 0;
   2200 
   2201 	case SUSPEND_RESUME:
   2202 		return fstrans_setstate(mp, FSTRANS_NORMAL);
   2203 
   2204 	default:
   2205 		return EINVAL;
   2206 	}
   2207 }
   2208 
   2209 /*
   2210  * Synch vnode for a mounted file system.
   2211  */
   2212 static int
   2213 ffs_vfs_fsync(vnode_t *vp, int flags)
   2214 {
   2215 	int error, i, pflags;
   2216 #ifdef WAPBL
   2217 	struct mount *mp;
   2218 #endif
   2219 
   2220 	KASSERT(vp->v_type == VBLK);
   2221 	KASSERT(spec_node_getmountedfs(vp) != NULL);
   2222 
   2223 	/*
   2224 	 * Flush all dirty data associated with the vnode.
   2225 	 */
   2226 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
   2227 	if ((flags & FSYNC_WAIT) != 0)
   2228 		pflags |= PGO_SYNCIO;
   2229 	mutex_enter(vp->v_interlock);
   2230 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
   2231 	if (error)
   2232 		return error;
   2233 
   2234 #ifdef WAPBL
   2235 	mp = spec_node_getmountedfs(vp);
   2236 	if (mp && mp->mnt_wapbl) {
   2237 		/*
   2238 		 * Don't bother writing out metadata if the syncer is
   2239 		 * making the request.  We will let the sync vnode
   2240 		 * write it out in a single burst through a call to
   2241 		 * VFS_SYNC().
   2242 		 */
   2243 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
   2244 			return 0;
   2245 
   2246 		/*
   2247 		 * Don't flush the log if the vnode being flushed
   2248 		 * contains no dirty buffers that could be in the log.
   2249 		 */
   2250 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2251 			error = wapbl_flush(mp->mnt_wapbl, 0);
   2252 			if (error)
   2253 				return error;
   2254 		}
   2255 
   2256 		if ((flags & FSYNC_WAIT) != 0) {
   2257 			mutex_enter(vp->v_interlock);
   2258 			while (vp->v_numoutput)
   2259 				cv_wait(&vp->v_cv, vp->v_interlock);
   2260 			mutex_exit(vp->v_interlock);
   2261 		}
   2262 
   2263 		return 0;
   2264 	}
   2265 #endif /* WAPBL */
   2266 
   2267 	error = vflushbuf(vp, flags);
   2268 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
   2269 		i = 1;
   2270 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
   2271 		    kauth_cred_get());
   2272 	}
   2273 
   2274 	return error;
   2275 }
   2276