ffs_vfsops.c revision 1.330 1 /* $NetBSD: ffs_vfsops.c,v 1.330 2015/04/26 06:19:36 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.330 2015/04/26 06:19:36 maxv Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/disk.h>
83 #include <sys/mbuf.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/fstrans.h>
96 #include <sys/module.h>
97
98 #include <miscfs/genfs/genfs.h>
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufs_extern.h>
106 #include <ufs/ufs/ufs_bswap.h>
107 #include <ufs/ufs/ufs_wapbl.h>
108
109 #include <ufs/ffs/fs.h>
110 #include <ufs/ffs/ffs_extern.h>
111
112 MODULE(MODULE_CLASS_VFS, ffs, NULL);
113
114 static int ffs_vfs_fsync(vnode_t *, int);
115 static int ffs_superblock_validate(struct fs *);
116 static int ffs_is_appleufs(struct vnode *, struct fs *);
117
118 static int ffs_init_vnode(struct ufsmount *, struct vnode *, ino_t);
119 static void ffs_deinit_vnode(struct ufsmount *, struct vnode *);
120
121 static struct sysctllog *ffs_sysctl_log;
122
123 static kauth_listener_t ffs_snapshot_listener;
124
125 /* how many times ffs_init() was called */
126 int ffs_initcount = 0;
127
128 #ifdef DEBUG_FFS_MOUNT
129 #define DPRINTF(_fmt, args...) printf("%s: " _fmt "\n", __func__, ##args)
130 #else
131 #define DPRINTF(_fmt, args...) do {} while (/*CONSTCOND*/0)
132 #endif
133
134 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
135 extern const struct vnodeopv_desc ffs_specop_opv_desc;
136 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
137
138 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
139 &ffs_vnodeop_opv_desc,
140 &ffs_specop_opv_desc,
141 &ffs_fifoop_opv_desc,
142 NULL,
143 };
144
145 struct vfsops ffs_vfsops = {
146 .vfs_name = MOUNT_FFS,
147 .vfs_min_mount_data = sizeof (struct ufs_args),
148 .vfs_mount = ffs_mount,
149 .vfs_start = ufs_start,
150 .vfs_unmount = ffs_unmount,
151 .vfs_root = ufs_root,
152 .vfs_quotactl = ufs_quotactl,
153 .vfs_statvfs = ffs_statvfs,
154 .vfs_sync = ffs_sync,
155 .vfs_vget = ufs_vget,
156 .vfs_loadvnode = ffs_loadvnode,
157 .vfs_newvnode = ffs_newvnode,
158 .vfs_fhtovp = ffs_fhtovp,
159 .vfs_vptofh = ffs_vptofh,
160 .vfs_init = ffs_init,
161 .vfs_reinit = ffs_reinit,
162 .vfs_done = ffs_done,
163 .vfs_mountroot = ffs_mountroot,
164 .vfs_snapshot = ffs_snapshot,
165 .vfs_extattrctl = ffs_extattrctl,
166 .vfs_suspendctl = ffs_suspendctl,
167 .vfs_renamelock_enter = genfs_renamelock_enter,
168 .vfs_renamelock_exit = genfs_renamelock_exit,
169 .vfs_fsync = ffs_vfs_fsync,
170 .vfs_opv_descs = ffs_vnodeopv_descs
171 };
172
173 static const struct genfs_ops ffs_genfsops = {
174 .gop_size = ffs_gop_size,
175 .gop_alloc = ufs_gop_alloc,
176 .gop_write = genfs_gop_write,
177 .gop_markupdate = ufs_gop_markupdate,
178 };
179
180 static const struct ufs_ops ffs_ufsops = {
181 .uo_itimes = ffs_itimes,
182 .uo_update = ffs_update,
183 .uo_truncate = ffs_truncate,
184 .uo_balloc = ffs_balloc,
185 .uo_snapgone = ffs_snapgone,
186 .uo_bufrd = ffs_bufrd,
187 .uo_bufwr = ffs_bufwr,
188 };
189
190 static int
191 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
192 void *arg0, void *arg1, void *arg2, void *arg3)
193 {
194 vnode_t *vp = arg2;
195 int result = KAUTH_RESULT_DEFER;
196
197 if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
198 return result;
199
200 if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
201 result = KAUTH_RESULT_ALLOW;
202
203 return result;
204 }
205
206 static int
207 ffs_modcmd(modcmd_t cmd, void *arg)
208 {
209 int error;
210
211 #if 0
212 extern int doasyncfree;
213 #endif
214 #ifdef UFS_EXTATTR
215 extern int ufs_extattr_autocreate;
216 #endif
217 extern int ffs_log_changeopt;
218
219 switch (cmd) {
220 case MODULE_CMD_INIT:
221 error = vfs_attach(&ffs_vfsops);
222 if (error != 0)
223 break;
224
225 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
226 CTLFLAG_PERMANENT,
227 CTLTYPE_NODE, "ffs",
228 SYSCTL_DESCR("Berkeley Fast File System"),
229 NULL, 0, NULL, 0,
230 CTL_VFS, 1, CTL_EOL);
231 /*
232 * @@@ should we even bother with these first three?
233 */
234 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
236 CTLTYPE_INT, "doclusterread", NULL,
237 sysctl_notavail, 0, NULL, 0,
238 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
239 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
241 CTLTYPE_INT, "doclusterwrite", NULL,
242 sysctl_notavail, 0, NULL, 0,
243 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
244 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
246 CTLTYPE_INT, "doreallocblks", NULL,
247 sysctl_notavail, 0, NULL, 0,
248 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
249 #if 0
250 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
251 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
252 CTLTYPE_INT, "doasyncfree",
253 SYSCTL_DESCR("Release dirty blocks asynchronously"),
254 NULL, 0, &doasyncfree, 0,
255 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
256 #endif
257 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
258 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
259 CTLTYPE_INT, "log_changeopt",
260 SYSCTL_DESCR("Log changes in optimization strategy"),
261 NULL, 0, &ffs_log_changeopt, 0,
262 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
263 #ifdef UFS_EXTATTR
264 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 CTLTYPE_INT, "extattr_autocreate",
267 SYSCTL_DESCR("Size of attribute for "
268 "backing file autocreation"),
269 NULL, 0, &ufs_extattr_autocreate, 0,
270 CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
271
272 #endif /* UFS_EXTATTR */
273
274 ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
275 ffs_snapshot_cb, NULL);
276 if (ffs_snapshot_listener == NULL)
277 printf("ffs_modcmd: can't listen on system scope.\n");
278
279 break;
280 case MODULE_CMD_FINI:
281 error = vfs_detach(&ffs_vfsops);
282 if (error != 0)
283 break;
284 sysctl_teardown(&ffs_sysctl_log);
285 if (ffs_snapshot_listener != NULL)
286 kauth_unlisten_scope(ffs_snapshot_listener);
287 break;
288 default:
289 error = ENOTTY;
290 break;
291 }
292
293 return (error);
294 }
295
296 pool_cache_t ffs_inode_cache;
297 pool_cache_t ffs_dinode1_cache;
298 pool_cache_t ffs_dinode2_cache;
299
300 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
301 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
302
303 /*
304 * Called by main() when ffs is going to be mounted as root.
305 */
306
307 int
308 ffs_mountroot(void)
309 {
310 struct fs *fs;
311 struct mount *mp;
312 struct lwp *l = curlwp; /* XXX */
313 struct ufsmount *ump;
314 int error;
315
316 if (device_class(root_device) != DV_DISK)
317 return (ENODEV);
318
319 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
320 vrele(rootvp);
321 return (error);
322 }
323
324 /*
325 * We always need to be able to mount the root file system.
326 */
327 mp->mnt_flag |= MNT_FORCE;
328 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
329 vfs_unbusy(mp, false, NULL);
330 vfs_destroy(mp);
331 return (error);
332 }
333 mp->mnt_flag &= ~MNT_FORCE;
334 mountlist_append(mp);
335 ump = VFSTOUFS(mp);
336 fs = ump->um_fs;
337 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
338 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
339 (void)ffs_statvfs(mp, &mp->mnt_stat);
340 vfs_unbusy(mp, false, NULL);
341 setrootfstime((time_t)fs->fs_time);
342 return (0);
343 }
344
345 /*
346 * VFS Operations.
347 *
348 * mount system call
349 */
350 int
351 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
352 {
353 struct lwp *l = curlwp;
354 struct vnode *devvp = NULL;
355 struct ufs_args *args = data;
356 struct ufsmount *ump = NULL;
357 struct fs *fs;
358 int error = 0, flags, update;
359 mode_t accessmode;
360
361 if (args == NULL) {
362 DPRINTF("NULL args");
363 return EINVAL;
364 }
365 if (*data_len < sizeof(*args)) {
366 DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args));
367 return EINVAL;
368 }
369
370 if (mp->mnt_flag & MNT_GETARGS) {
371 ump = VFSTOUFS(mp);
372 if (ump == NULL) {
373 DPRINTF("no ump");
374 return EIO;
375 }
376 args->fspec = NULL;
377 *data_len = sizeof *args;
378 return 0;
379 }
380
381 update = mp->mnt_flag & MNT_UPDATE;
382
383 /* Check arguments */
384 if (args->fspec != NULL) {
385 /*
386 * Look up the name and verify that it's sane.
387 */
388 error = namei_simple_user(args->fspec,
389 NSM_FOLLOW_NOEMULROOT, &devvp);
390 if (error != 0) {
391 DPRINTF("namei_simple_user returned %d", error);
392 return error;
393 }
394
395 if (!update) {
396 /*
397 * Be sure this is a valid block device
398 */
399 if (devvp->v_type != VBLK) {
400 DPRINTF("non block device %d", devvp->v_type);
401 error = ENOTBLK;
402 } else if (bdevsw_lookup(devvp->v_rdev) == NULL) {
403 DPRINTF("can't find block device 0x%jx",
404 devvp->v_rdev);
405 error = ENXIO;
406 }
407 } else {
408 /*
409 * Be sure we're still naming the same device
410 * used for our initial mount
411 */
412 ump = VFSTOUFS(mp);
413 if (devvp != ump->um_devvp) {
414 if (devvp->v_rdev != ump->um_devvp->v_rdev) {
415 DPRINTF("wrong device 0x%jx != 0x%jx",
416 (uintmax_t)devvp->v_rdev,
417 (uintmax_t)ump->um_devvp->v_rdev);
418 error = EINVAL;
419 } else {
420 vrele(devvp);
421 devvp = ump->um_devvp;
422 vref(devvp);
423 }
424 }
425 }
426 } else {
427 if (!update) {
428 /* New mounts must have a filename for the device */
429 DPRINTF("no filename for mount");
430 return EINVAL;
431 } else {
432 /* Use the extant mount */
433 ump = VFSTOUFS(mp);
434 devvp = ump->um_devvp;
435 vref(devvp);
436 }
437 }
438
439 /*
440 * If mount by non-root, then verify that user has necessary
441 * permissions on the device.
442 *
443 * Permission to update a mount is checked higher, so here we presume
444 * updating the mount is okay (for example, as far as securelevel goes)
445 * which leaves us with the normal check.
446 */
447 if (error == 0) {
448 accessmode = VREAD;
449 if (update ?
450 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
451 (mp->mnt_flag & MNT_RDONLY) == 0)
452 accessmode |= VWRITE;
453 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
454 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
455 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
456 KAUTH_ARG(accessmode));
457 if (error) {
458 DPRINTF("kauth returned %d", error);
459 }
460 VOP_UNLOCK(devvp);
461 }
462
463 if (error) {
464 vrele(devvp);
465 return (error);
466 }
467
468 #ifdef WAPBL
469 /* WAPBL can only be enabled on a r/w mount. */
470 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
471 mp->mnt_flag &= ~MNT_LOG;
472 }
473 #else /* !WAPBL */
474 mp->mnt_flag &= ~MNT_LOG;
475 #endif /* !WAPBL */
476
477 if (!update) {
478 int xflags;
479
480 if (mp->mnt_flag & MNT_RDONLY)
481 xflags = FREAD;
482 else
483 xflags = FREAD | FWRITE;
484 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
485 error = VOP_OPEN(devvp, xflags, FSCRED);
486 VOP_UNLOCK(devvp);
487 if (error) {
488 DPRINTF("VOP_OPEN returned %d", error);
489 goto fail;
490 }
491 error = ffs_mountfs(devvp, mp, l);
492 if (error) {
493 DPRINTF("ffs_mountfs returned %d", error);
494 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
495 (void)VOP_CLOSE(devvp, xflags, NOCRED);
496 VOP_UNLOCK(devvp);
497 goto fail;
498 }
499
500 ump = VFSTOUFS(mp);
501 fs = ump->um_fs;
502 } else {
503 /*
504 * Update the mount.
505 */
506
507 /*
508 * The initial mount got a reference on this
509 * device, so drop the one obtained via
510 * namei(), above.
511 */
512 vrele(devvp);
513
514 ump = VFSTOUFS(mp);
515 fs = ump->um_fs;
516 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
517 /*
518 * Changing from r/w to r/o
519 */
520 flags = WRITECLOSE;
521 if (mp->mnt_flag & MNT_FORCE)
522 flags |= FORCECLOSE;
523 error = ffs_flushfiles(mp, flags, l);
524 if (error == 0)
525 error = UFS_WAPBL_BEGIN(mp);
526 if (error == 0 &&
527 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
528 fs->fs_clean & FS_WASCLEAN) {
529 if (mp->mnt_flag & MNT_SOFTDEP)
530 fs->fs_flags &= ~FS_DOSOFTDEP;
531 fs->fs_clean = FS_ISCLEAN;
532 (void) ffs_sbupdate(ump, MNT_WAIT);
533 }
534 if (error) {
535 DPRINTF("wapbl %d", error);
536 return error;
537 }
538 UFS_WAPBL_END(mp);
539 }
540
541 #ifdef WAPBL
542 if ((mp->mnt_flag & MNT_LOG) == 0) {
543 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
544 if (error) {
545 DPRINTF("ffs_wapbl_stop returned %d", error);
546 return error;
547 }
548 }
549 #endif /* WAPBL */
550
551 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
552 /*
553 * Finish change from r/w to r/o
554 */
555 fs->fs_ronly = 1;
556 fs->fs_fmod = 0;
557 }
558
559 if (mp->mnt_flag & MNT_RELOAD) {
560 error = ffs_reload(mp, l->l_cred, l);
561 if (error) {
562 DPRINTF("ffs_reload returned %d", error);
563 return error;
564 }
565 }
566
567 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
568 /*
569 * Changing from read-only to read/write
570 */
571 #ifndef QUOTA2
572 if (fs->fs_flags & FS_DOQUOTA2) {
573 ump->um_flags |= UFS_QUOTA2;
574 uprintf("%s: options QUOTA2 not enabled%s\n",
575 mp->mnt_stat.f_mntonname,
576 (mp->mnt_flag & MNT_FORCE) ? "" :
577 ", not mounting");
578 DPRINTF("ffs_quota2 %d", EINVAL);
579 return EINVAL;
580 }
581 #endif
582 fs->fs_ronly = 0;
583 fs->fs_clean <<= 1;
584 fs->fs_fmod = 1;
585 #ifdef WAPBL
586 if (fs->fs_flags & FS_DOWAPBL) {
587 const char *nm = mp->mnt_stat.f_mntonname;
588 if (!mp->mnt_wapbl_replay) {
589 printf("%s: log corrupted;"
590 " replay cancelled\n", nm);
591 return EFTYPE;
592 }
593 printf("%s: replaying log to disk\n", nm);
594 error = wapbl_replay_write(mp->mnt_wapbl_replay,
595 devvp);
596 if (error) {
597 DPRINTF("%s: wapbl_replay_write %d",
598 nm, error);
599 return error;
600 }
601 wapbl_replay_stop(mp->mnt_wapbl_replay);
602 fs->fs_clean = FS_WASCLEAN;
603 }
604 #endif /* WAPBL */
605 if (fs->fs_snapinum[0] != 0)
606 ffs_snapshot_mount(mp);
607 }
608
609 #ifdef WAPBL
610 error = ffs_wapbl_start(mp);
611 if (error) {
612 DPRINTF("ffs_wapbl_start returned %d", error);
613 return error;
614 }
615 #endif /* WAPBL */
616
617 #ifdef QUOTA2
618 if (!fs->fs_ronly) {
619 error = ffs_quota2_mount(mp);
620 if (error) {
621 DPRINTF("ffs_quota2_mount returned %d", error);
622 return error;
623 }
624 }
625 #endif
626
627 if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
628 ump->um_discarddata = ffs_discard_init(devvp, fs);
629
630 if (args->fspec == NULL)
631 return 0;
632 }
633
634 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
635 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
636 if (error == 0)
637 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
638 sizeof(fs->fs_fsmnt));
639 else {
640 DPRINTF("set_statvfs_info returned %d", error);
641 }
642 fs->fs_flags &= ~FS_DOSOFTDEP;
643 if (fs->fs_fmod != 0) { /* XXX */
644 int err;
645
646 fs->fs_fmod = 0;
647 if (fs->fs_clean & FS_WASCLEAN)
648 fs->fs_time = time_second;
649 else {
650 printf("%s: file system not clean (fs_clean=%#x); "
651 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
652 fs->fs_clean);
653 printf("%s: lost blocks %" PRId64 " files %d\n",
654 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
655 fs->fs_pendinginodes);
656 }
657 err = UFS_WAPBL_BEGIN(mp);
658 if (err == 0) {
659 (void) ffs_cgupdate(ump, MNT_WAIT);
660 UFS_WAPBL_END(mp);
661 }
662 }
663 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
664 printf("%s: `-o softdep' is no longer supported, "
665 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
666 mp->mnt_flag &= ~MNT_SOFTDEP;
667 }
668
669 return (error);
670
671 fail:
672 vrele(devvp);
673 return (error);
674 }
675
676 /*
677 * Reload all incore data for a filesystem (used after running fsck on
678 * the root filesystem and finding things to fix). The filesystem must
679 * be mounted read-only.
680 *
681 * Things to do to update the mount:
682 * 1) invalidate all cached meta-data.
683 * 2) re-read superblock from disk.
684 * 3) re-read summary information from disk.
685 * 4) invalidate all inactive vnodes.
686 * 5) invalidate all cached file data.
687 * 6) re-read inode data for all active vnodes.
688 */
689 int
690 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
691 {
692 struct vnode *vp, *devvp;
693 struct inode *ip;
694 void *space;
695 struct buf *bp;
696 struct fs *fs, *newfs;
697 int i, bsize, blks, error;
698 int32_t *lp, fs_sbsize;
699 struct ufsmount *ump;
700 daddr_t sblockloc;
701 struct vnode_iterator *marker;
702
703 if ((mp->mnt_flag & MNT_RDONLY) == 0)
704 return (EINVAL);
705
706 ump = VFSTOUFS(mp);
707
708 /*
709 * Step 1: invalidate all cached meta-data.
710 */
711 devvp = ump->um_devvp;
712 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
713 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
714 VOP_UNLOCK(devvp);
715 if (error)
716 panic("ffs_reload: dirty1");
717
718 /*
719 * Step 2: re-read superblock from disk. XXX: We don't handle
720 * possibility that superblock moved. Which implies that we don't
721 * want its size to change either.
722 */
723 fs = ump->um_fs;
724 fs_sbsize = fs->fs_sbsize;
725 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
726 0, &bp);
727 if (error)
728 return (error);
729 newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
730 memcpy(newfs, bp->b_data, fs_sbsize);
731
732 #ifdef FFS_EI
733 if (ump->um_flags & UFS_NEEDSWAP) {
734 ffs_sb_swap((struct fs *)bp->b_data, newfs);
735 newfs->fs_flags |= FS_SWAPPED;
736 } else
737 #endif
738 newfs->fs_flags &= ~FS_SWAPPED;
739
740 brelse(bp, 0);
741
742 if ((newfs->fs_magic != FS_UFS1_MAGIC) &&
743 (newfs->fs_magic != FS_UFS2_MAGIC)) {
744 kmem_free(newfs, fs_sbsize);
745 return (EIO); /* XXX needs translation */
746 }
747 if (!ffs_superblock_validate(newfs)) {
748 kmem_free(newfs, fs_sbsize);
749 return (EINVAL);
750 }
751
752 /*
753 * The current implementation doesn't handle the possibility that
754 * these values may have changed.
755 */
756 if ((newfs->fs_sbsize != fs_sbsize) ||
757 (newfs->fs_cssize != fs->fs_cssize) ||
758 (newfs->fs_contigsumsize != fs->fs_contigsumsize) ||
759 (newfs->fs_ncg != fs->fs_ncg)) {
760 kmem_free(newfs, fs_sbsize);
761 return (EINVAL);
762 }
763
764 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
765 sblockloc = fs->fs_sblockloc;
766 /*
767 * Copy pointer fields back into superblock before copying in XXX
768 * new superblock. These should really be in the ufsmount. XXX
769 * Note that important parameters (eg fs_ncg) are unchanged.
770 */
771 newfs->fs_csp = fs->fs_csp;
772 newfs->fs_maxcluster = fs->fs_maxcluster;
773 newfs->fs_contigdirs = fs->fs_contigdirs;
774 newfs->fs_ronly = fs->fs_ronly;
775 newfs->fs_active = fs->fs_active;
776 memcpy(fs, newfs, (u_int)fs_sbsize);
777 kmem_free(newfs, fs_sbsize);
778
779 /*
780 * Recheck for Apple UFS filesystem.
781 */
782 ump->um_flags &= ~UFS_ISAPPLEUFS;
783 if (ffs_is_appleufs(devvp, fs)) {
784 #ifdef APPLE_UFS
785 ump->um_flags |= UFS_ISAPPLEUFS;
786 #else
787 DPRINTF("AppleUFS not supported");
788 return (EIO); /* XXX: really? */
789 #endif
790 }
791
792 if (UFS_MPISAPPLEUFS(ump)) {
793 /* see comment about NeXT below */
794 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
795 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
796 mp->mnt_iflag |= IMNT_DTYPE;
797 } else {
798 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
799 ump->um_dirblksiz = UFS_DIRBLKSIZ;
800 if (ump->um_maxsymlinklen > 0)
801 mp->mnt_iflag |= IMNT_DTYPE;
802 else
803 mp->mnt_iflag &= ~IMNT_DTYPE;
804 }
805 ffs_oldfscompat_read(fs, ump, sblockloc);
806
807 mutex_enter(&ump->um_lock);
808 ump->um_maxfilesize = fs->fs_maxfilesize;
809 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
810 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
811 mp->mnt_stat.f_mntonname, fs->fs_flags,
812 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
813 if ((mp->mnt_flag & MNT_FORCE) == 0) {
814 mutex_exit(&ump->um_lock);
815 return (EINVAL);
816 }
817 }
818 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
819 fs->fs_pendingblocks = 0;
820 fs->fs_pendinginodes = 0;
821 }
822 mutex_exit(&ump->um_lock);
823
824 ffs_statvfs(mp, &mp->mnt_stat);
825 /*
826 * Step 3: re-read summary information from disk.
827 */
828 blks = howmany(fs->fs_cssize, fs->fs_fsize);
829 space = fs->fs_csp;
830 for (i = 0; i < blks; i += fs->fs_frag) {
831 bsize = fs->fs_bsize;
832 if (i + fs->fs_frag > blks)
833 bsize = (blks - i) * fs->fs_fsize;
834 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
835 0, &bp);
836 if (error) {
837 return (error);
838 }
839 #ifdef FFS_EI
840 if (UFS_FSNEEDSWAP(fs))
841 ffs_csum_swap((struct csum *)bp->b_data,
842 (struct csum *)space, bsize);
843 else
844 #endif
845 memcpy(space, bp->b_data, (size_t)bsize);
846 space = (char *)space + bsize;
847 brelse(bp, 0);
848 }
849 /*
850 * We no longer know anything about clusters per cylinder group.
851 */
852 if (fs->fs_contigsumsize > 0) {
853 lp = fs->fs_maxcluster;
854 for (i = 0; i < fs->fs_ncg; i++)
855 *lp++ = fs->fs_contigsumsize;
856 }
857
858 vfs_vnode_iterator_init(mp, &marker);
859 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
860 /*
861 * Step 4: invalidate all inactive vnodes.
862 */
863 if (vrecycle(vp))
864 continue;
865 /*
866 * Step 5: invalidate all cached file data.
867 */
868 if (vn_lock(vp, LK_EXCLUSIVE)) {
869 vrele(vp);
870 continue;
871 }
872 if (vinvalbuf(vp, 0, cred, l, 0, 0))
873 panic("ffs_reload: dirty2");
874 /*
875 * Step 6: re-read inode data for all active vnodes.
876 */
877 ip = VTOI(vp);
878 error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
879 (int)fs->fs_bsize, 0, &bp);
880 if (error) {
881 vput(vp);
882 break;
883 }
884 ffs_load_inode(bp, ip, fs, ip->i_number);
885 brelse(bp, 0);
886 vput(vp);
887 }
888 vfs_vnode_iterator_destroy(marker);
889 return (error);
890 }
891
892 /*
893 * Possible superblock locations ordered from most to least likely.
894 */
895 static const int sblock_try[] = SBLOCKSEARCH;
896
897
898 static int
899 ffs_superblock_validate(struct fs *fs)
900 {
901 int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag;
902 int32_t fs_inopb, fs_cgsize;
903
904 /* Check the superblock size */
905 if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
906 return 0;
907
908 /* Check the file system blocksize */
909 if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
910 return 0;
911 if (!powerof2(fs->fs_bsize))
912 return 0;
913
914 /* Check the size of frag blocks */
915 if (!powerof2(fs->fs_fsize))
916 return 0;
917 if (fs->fs_fsize == 0)
918 return 0;
919
920 /*
921 * XXX: these values are just zero-checked to prevent obvious
922 * bugs. We need more strict checks.
923 */
924 if (fs->fs_size == 0)
925 return 0;
926 if (fs->fs_cssize == 0)
927 return 0;
928 if (fs->fs_ipg == 0)
929 return 0;
930 if (fs->fs_fpg == 0)
931 return 0;
932 if (fs->fs_ncg == 0)
933 return 0;
934 if (fs->fs_maxbpg == 0)
935 return 0;
936
937 /* Check the number of inodes per block */
938 if (fs->fs_magic == FS_UFS1_MAGIC)
939 fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode);
940 else /* fs->fs_magic == FS_UFS2_MAGIC */
941 fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode);
942 if (fs->fs_inopb != fs_inopb)
943 return 0;
944
945 /* Block size cannot be smaller than fragment size */
946 if (fs->fs_bsize < fs->fs_fsize)
947 return 0;
948
949 /* Compute fs_bshift and ensure it is consistent */
950 for (i = fs->fs_bsize; i > 1; i >>= 1)
951 fs_bshift++;
952 if (fs->fs_bshift != fs_bshift)
953 return 0;
954
955 /* Compute fs_fshift and ensure it is consistent */
956 for (i = fs->fs_fsize; i > 1; i >>= 1)
957 fs_fshift++;
958 if (fs->fs_fshift != fs_fshift)
959 return 0;
960
961 /* Compute fs_fragshift and ensure it is consistent */
962 for (i = fs->fs_frag; i > 1; i >>= 1)
963 fs_fragshift++;
964 if (fs->fs_fragshift != fs_fragshift)
965 return 0;
966
967 /* Check the masks */
968 if (fs->fs_bmask != ~(fs->fs_bsize - 1))
969 return 0;
970 if (fs->fs_fmask != ~(fs->fs_fsize - 1))
971 return 0;
972
973 /*
974 * Now that the shifts and masks are sanitized, we can use the ffs_ API.
975 */
976
977 /* Check the number of frag blocks */
978 if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
979 return 0;
980 if (fs->fs_frag != fs_frag)
981 return 0;
982
983 /* Check the size of cylinder groups */
984 fs_cgsize = ffs_fragroundup(fs, CGSIZE(fs));
985 if (fs->fs_cgsize != fs_cgsize)
986 return 0;
987
988 return 1;
989 }
990
991 static int
992 ffs_is_appleufs(struct vnode *devvp, struct fs *fs)
993 {
994 struct dkwedge_info dkw;
995 int ret = 0;
996
997 /*
998 * First check to see if this is tagged as an Apple UFS filesystem
999 * in the disklabel.
1000 */
1001 if (getdiskinfo(devvp, &dkw) == 0 &&
1002 strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1003 ret = 1;
1004 #ifdef APPLE_UFS
1005 else {
1006 struct appleufslabel *applefs;
1007 struct buf *bp;
1008 daddr_t blkno = APPLEUFS_LABEL_OFFSET / DEV_BSIZE;
1009 int error;
1010
1011 /*
1012 * Manually look for an Apple UFS label, and if a valid one
1013 * is found, then treat it like an Apple UFS filesystem anyway.
1014 */
1015 error = bread(devvp, blkno, APPLEUFS_LABEL_SIZE, 0, &bp);
1016 if (error) {
1017 DPRINTF("bread@0x%jx returned %d", (intmax_t)blkno, error);
1018 return 0;
1019 }
1020 applefs = (struct appleufslabel *)bp->b_data;
1021 error = ffs_appleufs_validate(fs->fs_fsmnt, applefs, NULL);
1022 if (error == 0)
1023 ret = 1;
1024 brelse(bp, 0);
1025 }
1026 #endif
1027
1028 return ret;
1029 }
1030
1031 /*
1032 * Common code for mount and mountroot
1033 */
1034 int
1035 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
1036 {
1037 struct ufsmount *ump = NULL;
1038 struct buf *bp = NULL;
1039 struct fs *fs = NULL;
1040 dev_t dev;
1041 void *space;
1042 daddr_t sblockloc = 0;
1043 int blks, fstype = 0;
1044 int error, i, bsize, ronly, bset = 0;
1045 #ifdef FFS_EI
1046 int needswap = 0; /* keep gcc happy */
1047 #endif
1048 int32_t *lp;
1049 kauth_cred_t cred;
1050 u_int32_t allocsbsize, fs_sbsize = 0;
1051
1052 dev = devvp->v_rdev;
1053 cred = l ? l->l_cred : NOCRED;
1054
1055 /* Flush out any old buffers remaining from a previous use. */
1056 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1057 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
1058 VOP_UNLOCK(devvp);
1059 if (error) {
1060 DPRINTF("vinvalbuf returned %d", error);
1061 return error;
1062 }
1063
1064 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
1065
1066 error = fstrans_mount(mp);
1067 if (error) {
1068 DPRINTF("fstrans_mount returned %d", error);
1069 return error;
1070 }
1071
1072 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1073 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1074 error = ffs_snapshot_init(ump);
1075 if (error) {
1076 DPRINTF("ffs_snapshot_init returned %d", error);
1077 goto out;
1078 }
1079 ump->um_ops = &ffs_ufsops;
1080
1081 #ifdef WAPBL
1082 sbagain:
1083 #endif
1084 /*
1085 * Try reading the superblock in each of its possible locations.
1086 */
1087 for (i = 0; ; i++) {
1088 daddr_t fs_sblockloc;
1089
1090 if (bp != NULL) {
1091 brelse(bp, BC_NOCACHE);
1092 bp = NULL;
1093 }
1094 if (sblock_try[i] == -1) {
1095 DPRINTF("no superblock found");
1096 error = EINVAL;
1097 fs = NULL;
1098 goto out;
1099 }
1100
1101 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1102 0, &bp);
1103 if (error) {
1104 DPRINTF("bread@0x%x returned %d",
1105 sblock_try[i] / DEV_BSIZE, error);
1106 fs = NULL;
1107 goto out;
1108 }
1109 fs = (struct fs *)bp->b_data;
1110
1111 sblockloc = sblock_try[i];
1112 DPRINTF("fs_magic 0x%x", fs->fs_magic);
1113
1114 /*
1115 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1116 * size to read the superblock. Once read, we swap the whole
1117 * superblock structure.
1118 */
1119 if (fs->fs_magic == FS_UFS1_MAGIC) {
1120 fs_sbsize = fs->fs_sbsize;
1121 fstype = UFS1;
1122 #ifdef FFS_EI
1123 needswap = 0;
1124 } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1125 fs_sbsize = bswap32(fs->fs_sbsize);
1126 fstype = UFS1;
1127 needswap = 1;
1128 #endif
1129 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
1130 fs_sbsize = fs->fs_sbsize;
1131 fstype = UFS2;
1132 #ifdef FFS_EI
1133 needswap = 0;
1134 } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1135 fs_sbsize = bswap32(fs->fs_sbsize);
1136 fstype = UFS2;
1137 needswap = 1;
1138 #endif
1139 } else
1140 continue;
1141
1142 /* fs->fs_sblockloc isn't defined for old filesystems */
1143 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1144 if (sblockloc == SBLOCK_UFS2)
1145 /*
1146 * This is likely to be the first alternate
1147 * in a filesystem with 64k blocks.
1148 * Don't use it.
1149 */
1150 continue;
1151 fs_sblockloc = sblockloc;
1152 } else {
1153 fs_sblockloc = fs->fs_sblockloc;
1154 #ifdef FFS_EI
1155 if (needswap)
1156 fs_sblockloc = bswap64(fs_sblockloc);
1157 #endif
1158 }
1159
1160 /* Check we haven't found an alternate superblock */
1161 if (fs_sblockloc != sblockloc)
1162 continue;
1163
1164 /* Check the superblock size */
1165 if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1166 continue;
1167 fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1168 memcpy(fs, bp->b_data, fs_sbsize);
1169
1170 /* Swap the whole superblock structure, if necessary. */
1171 #ifdef FFS_EI
1172 if (needswap) {
1173 ffs_sb_swap((struct fs*)bp->b_data, fs);
1174 fs->fs_flags |= FS_SWAPPED;
1175 } else
1176 #endif
1177 fs->fs_flags &= ~FS_SWAPPED;
1178
1179 /*
1180 * Now that everything is swapped, the superblock is ready to
1181 * be sanitized.
1182 */
1183 if (!ffs_superblock_validate(fs)) {
1184 kmem_free(fs, fs_sbsize);
1185 continue;
1186 }
1187
1188 /* Ok seems to be a good superblock */
1189 break;
1190 }
1191
1192 ump->um_fs = fs;
1193
1194 #ifdef WAPBL
1195 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1196 error = ffs_wapbl_replay_start(mp, fs, devvp);
1197 if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1198 DPRINTF("ffs_wapbl_replay_start returned %d", error);
1199 goto out;
1200 }
1201 if (!error) {
1202 if (!ronly) {
1203 /* XXX fsmnt may be stale. */
1204 printf("%s: replaying log to disk\n",
1205 fs->fs_fsmnt);
1206 error = wapbl_replay_write(mp->mnt_wapbl_replay,
1207 devvp);
1208 if (error) {
1209 DPRINTF("wapbl_replay_write returned %d",
1210 error);
1211 goto out;
1212 }
1213 wapbl_replay_stop(mp->mnt_wapbl_replay);
1214 fs->fs_clean = FS_WASCLEAN;
1215 } else {
1216 /* XXX fsmnt may be stale */
1217 printf("%s: replaying log to memory\n",
1218 fs->fs_fsmnt);
1219 }
1220
1221 /* Force a re-read of the superblock */
1222 brelse(bp, BC_INVAL);
1223 bp = NULL;
1224 kmem_free(fs, fs_sbsize);
1225 fs = NULL;
1226 goto sbagain;
1227 }
1228 }
1229 #else /* !WAPBL */
1230 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1231 error = EPERM;
1232 DPRINTF("no force %d", error);
1233 goto out;
1234 }
1235 #endif /* !WAPBL */
1236
1237 ffs_oldfscompat_read(fs, ump, sblockloc);
1238 ump->um_maxfilesize = fs->fs_maxfilesize;
1239
1240 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1241 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1242 mp->mnt_stat.f_mntonname, fs->fs_flags,
1243 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1244 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1245 error = EINVAL;
1246 DPRINTF("no force %d", error);
1247 goto out;
1248 }
1249 }
1250
1251 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1252 fs->fs_pendingblocks = 0;
1253 fs->fs_pendinginodes = 0;
1254 }
1255
1256 ump->um_fstype = fstype;
1257 if (fs->fs_sbsize < SBLOCKSIZE)
1258 brelse(bp, BC_INVAL);
1259 else
1260 brelse(bp, 0);
1261 bp = NULL;
1262
1263 if (ffs_is_appleufs(devvp, fs)) {
1264 #ifdef APPLE_UFS
1265 ump->um_flags |= UFS_ISAPPLEUFS;
1266 #else
1267 DPRINTF("AppleUFS not supported");
1268 error = EINVAL;
1269 goto out;
1270 #endif
1271 }
1272
1273 #if 0
1274 /*
1275 * XXX This code changes the behaviour of mounting dirty filesystems, to
1276 * XXX require "mount -f ..." to mount them. This doesn't match what
1277 * XXX mount(8) describes and is disabled for now.
1278 */
1279 /*
1280 * If the file system is not clean, don't allow it to be mounted
1281 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1282 * for the root file system.)
1283 */
1284 if (fs->fs_flags & FS_DOWAPBL) {
1285 /*
1286 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1287 * bit is set, although there's a window in unmount where it
1288 * could be FS_ISCLEAN
1289 */
1290 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1291 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1292 error = EPERM;
1293 goto out;
1294 }
1295 } else
1296 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1297 (mp->mnt_flag & MNT_FORCE) == 0) {
1298 error = EPERM;
1299 goto out;
1300 }
1301 #endif
1302
1303 /*
1304 * Verify that we can access the last block in the fs
1305 * if we're mounting read/write.
1306 */
1307 if (!ronly) {
1308 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1309 fs->fs_fsize, 0, &bp);
1310 if (error) {
1311 DPRINTF("bread@0x%jx returned %d",
1312 (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1313 error);
1314 bset = BC_INVAL;
1315 goto out;
1316 }
1317 if (bp->b_bcount != fs->fs_fsize) {
1318 DPRINTF("bcount %x != fsize %x", bp->b_bcount,
1319 fs->fs_fsize);
1320 error = EINVAL;
1321 }
1322 brelse(bp, BC_INVAL);
1323 bp = NULL;
1324 }
1325
1326 fs->fs_ronly = ronly;
1327 /* Don't bump fs_clean if we're replaying journal */
1328 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1329 if (ronly == 0) {
1330 fs->fs_clean <<= 1;
1331 fs->fs_fmod = 1;
1332 }
1333 }
1334
1335 bsize = fs->fs_cssize;
1336 blks = howmany(bsize, fs->fs_fsize);
1337 if (fs->fs_contigsumsize > 0)
1338 bsize += fs->fs_ncg * sizeof(int32_t);
1339 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1340 allocsbsize = bsize;
1341 space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1342 fs->fs_csp = space;
1343
1344 for (i = 0; i < blks; i += fs->fs_frag) {
1345 bsize = fs->fs_bsize;
1346 if (i + fs->fs_frag > blks)
1347 bsize = (blks - i) * fs->fs_fsize;
1348 error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1349 0, &bp);
1350 if (error) {
1351 DPRINTF("bread@0x%jx %d",
1352 (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1353 error);
1354 goto out1;
1355 }
1356 #ifdef FFS_EI
1357 if (needswap)
1358 ffs_csum_swap((struct csum *)bp->b_data,
1359 (struct csum *)space, bsize);
1360 else
1361 #endif
1362 memcpy(space, bp->b_data, (u_int)bsize);
1363
1364 space = (char *)space + bsize;
1365 brelse(bp, 0);
1366 bp = NULL;
1367 }
1368 if (fs->fs_contigsumsize > 0) {
1369 fs->fs_maxcluster = lp = space;
1370 for (i = 0; i < fs->fs_ncg; i++)
1371 *lp++ = fs->fs_contigsumsize;
1372 space = lp;
1373 }
1374 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1375 fs->fs_contigdirs = space;
1376 space = (char *)space + bsize;
1377 memset(fs->fs_contigdirs, 0, bsize);
1378
1379 /* Compatibility for old filesystems - XXX */
1380 if (fs->fs_avgfilesize <= 0)
1381 fs->fs_avgfilesize = AVFILESIZ;
1382 if (fs->fs_avgfpdir <= 0)
1383 fs->fs_avgfpdir = AFPDIR;
1384 fs->fs_active = NULL;
1385
1386 mp->mnt_data = ump;
1387 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1388 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1389 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1390 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1391 if (UFS_MPISAPPLEUFS(ump)) {
1392 /* NeXT used to keep short symlinks in the inode even
1393 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1394 * is probably -1, but we still need to be able to identify
1395 * short symlinks.
1396 */
1397 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1398 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1399 mp->mnt_iflag |= IMNT_DTYPE;
1400 } else {
1401 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1402 ump->um_dirblksiz = UFS_DIRBLKSIZ;
1403 if (ump->um_maxsymlinklen > 0)
1404 mp->mnt_iflag |= IMNT_DTYPE;
1405 else
1406 mp->mnt_iflag &= ~IMNT_DTYPE;
1407 }
1408 mp->mnt_fs_bshift = fs->fs_bshift;
1409 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1410 mp->mnt_flag |= MNT_LOCAL;
1411 mp->mnt_iflag |= IMNT_MPSAFE;
1412 #ifdef FFS_EI
1413 if (needswap)
1414 ump->um_flags |= UFS_NEEDSWAP;
1415 #endif
1416 ump->um_mountp = mp;
1417 ump->um_dev = dev;
1418 ump->um_devvp = devvp;
1419 ump->um_nindir = fs->fs_nindir;
1420 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1421 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1422 ump->um_seqinc = fs->fs_frag;
1423 for (i = 0; i < MAXQUOTAS; i++)
1424 ump->um_quotas[i] = NULLVP;
1425 spec_node_setmountedfs(devvp, mp);
1426 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1427 ffs_snapshot_mount(mp);
1428 #ifdef WAPBL
1429 if (!ronly) {
1430 KDASSERT(fs->fs_ronly == 0);
1431 /*
1432 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1433 * needs to create a new log file in-filesystem.
1434 */
1435 error = ffs_statvfs(mp, &mp->mnt_stat);
1436 if (error) {
1437 DPRINTF("ffs_statvfs returned %d", error);
1438 goto out1;
1439 }
1440
1441 error = ffs_wapbl_start(mp);
1442 if (error) {
1443 DPRINTF("ffs_wapbl_start returned %d", error);
1444 goto out1;
1445 }
1446 }
1447 #endif /* WAPBL */
1448 if (ronly == 0) {
1449 #ifdef QUOTA2
1450 error = ffs_quota2_mount(mp);
1451 if (error) {
1452 DPRINTF("ffs_quota2_mount returned %d", error);
1453 goto out1;
1454 }
1455 #else
1456 if (fs->fs_flags & FS_DOQUOTA2) {
1457 ump->um_flags |= UFS_QUOTA2;
1458 uprintf("%s: options QUOTA2 not enabled%s\n",
1459 mp->mnt_stat.f_mntonname,
1460 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1461 if ((mp->mnt_flag & MNT_FORCE) == 0) {
1462 error = EINVAL;
1463 DPRINTF("quota disabled %d", error);
1464 goto out1;
1465 }
1466 }
1467 #endif
1468 }
1469
1470 if (mp->mnt_flag & MNT_DISCARD)
1471 ump->um_discarddata = ffs_discard_init(devvp, fs);
1472
1473 return (0);
1474 out1:
1475 kmem_free(fs->fs_csp, allocsbsize);
1476 out:
1477 #ifdef WAPBL
1478 if (mp->mnt_wapbl_replay) {
1479 wapbl_replay_stop(mp->mnt_wapbl_replay);
1480 wapbl_replay_free(mp->mnt_wapbl_replay);
1481 mp->mnt_wapbl_replay = 0;
1482 }
1483 #endif
1484
1485 fstrans_unmount(mp);
1486 if (fs)
1487 kmem_free(fs, fs->fs_sbsize);
1488 spec_node_setmountedfs(devvp, NULL);
1489 if (bp)
1490 brelse(bp, bset);
1491 if (ump) {
1492 if (ump->um_oldfscompat)
1493 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1494 mutex_destroy(&ump->um_lock);
1495 kmem_free(ump, sizeof(*ump));
1496 mp->mnt_data = NULL;
1497 }
1498 return (error);
1499 }
1500
1501 /*
1502 * Sanity checks for loading old filesystem superblocks.
1503 * See ffs_oldfscompat_write below for unwound actions.
1504 *
1505 * XXX - Parts get retired eventually.
1506 * Unfortunately new bits get added.
1507 */
1508 static void
1509 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1510 {
1511 off_t maxfilesize;
1512 int32_t *extrasave;
1513
1514 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1515 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1516 return;
1517
1518 if (!ump->um_oldfscompat)
1519 ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1520 KM_SLEEP);
1521
1522 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1523 extrasave = ump->um_oldfscompat;
1524 extrasave += 512/sizeof(int32_t);
1525 extrasave[0] = fs->fs_old_npsect;
1526 extrasave[1] = fs->fs_old_interleave;
1527 extrasave[2] = fs->fs_old_trackskew;
1528
1529 /* These fields will be overwritten by their
1530 * original values in fs_oldfscompat_write, so it is harmless
1531 * to modify them here.
1532 */
1533 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1534 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1535 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1536 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1537
1538 fs->fs_maxbsize = fs->fs_bsize;
1539 fs->fs_time = fs->fs_old_time;
1540 fs->fs_size = fs->fs_old_size;
1541 fs->fs_dsize = fs->fs_old_dsize;
1542 fs->fs_csaddr = fs->fs_old_csaddr;
1543 fs->fs_sblockloc = sblockloc;
1544
1545 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1546
1547 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1548 fs->fs_old_nrpos = 8;
1549 fs->fs_old_npsect = fs->fs_old_nsect;
1550 fs->fs_old_interleave = 1;
1551 fs->fs_old_trackskew = 0;
1552 }
1553
1554 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1555 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1556 fs->fs_qbmask = ~fs->fs_bmask;
1557 fs->fs_qfmask = ~fs->fs_fmask;
1558 }
1559
1560 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1561 if (fs->fs_maxfilesize > maxfilesize)
1562 fs->fs_maxfilesize = maxfilesize;
1563
1564 /* Compatibility for old filesystems */
1565 if (fs->fs_avgfilesize <= 0)
1566 fs->fs_avgfilesize = AVFILESIZ;
1567 if (fs->fs_avgfpdir <= 0)
1568 fs->fs_avgfpdir = AFPDIR;
1569
1570 #if 0
1571 if (bigcgs) {
1572 fs->fs_save_cgsize = fs->fs_cgsize;
1573 fs->fs_cgsize = fs->fs_bsize;
1574 }
1575 #endif
1576 }
1577
1578 /*
1579 * Unwinding superblock updates for old filesystems.
1580 * See ffs_oldfscompat_read above for details.
1581 *
1582 * XXX - Parts get retired eventually.
1583 * Unfortunately new bits get added.
1584 */
1585 static void
1586 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1587 {
1588 int32_t *extrasave;
1589
1590 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1591 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1592 return;
1593
1594 fs->fs_old_time = fs->fs_time;
1595 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1596 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1597 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1598 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1599 fs->fs_old_flags = fs->fs_flags;
1600
1601 #if 0
1602 if (bigcgs) {
1603 fs->fs_cgsize = fs->fs_save_cgsize;
1604 }
1605 #endif
1606
1607 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1608 extrasave = ump->um_oldfscompat;
1609 extrasave += 512/sizeof(int32_t);
1610 fs->fs_old_npsect = extrasave[0];
1611 fs->fs_old_interleave = extrasave[1];
1612 fs->fs_old_trackskew = extrasave[2];
1613
1614 }
1615
1616 /*
1617 * unmount vfs operation
1618 */
1619 int
1620 ffs_unmount(struct mount *mp, int mntflags)
1621 {
1622 struct lwp *l = curlwp;
1623 struct ufsmount *ump = VFSTOUFS(mp);
1624 struct fs *fs = ump->um_fs;
1625 int error, flags;
1626 u_int32_t bsize;
1627 #ifdef WAPBL
1628 extern int doforce;
1629 #endif
1630
1631 if (ump->um_discarddata) {
1632 ffs_discard_finish(ump->um_discarddata, mntflags);
1633 ump->um_discarddata = NULL;
1634 }
1635
1636 flags = 0;
1637 if (mntflags & MNT_FORCE)
1638 flags |= FORCECLOSE;
1639 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1640 return (error);
1641 error = UFS_WAPBL_BEGIN(mp);
1642 if (error == 0)
1643 if (fs->fs_ronly == 0 &&
1644 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1645 fs->fs_clean & FS_WASCLEAN) {
1646 fs->fs_clean = FS_ISCLEAN;
1647 fs->fs_fmod = 0;
1648 (void) ffs_sbupdate(ump, MNT_WAIT);
1649 }
1650 if (error == 0)
1651 UFS_WAPBL_END(mp);
1652 #ifdef WAPBL
1653 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1654 if (mp->mnt_wapbl_replay) {
1655 KDASSERT(fs->fs_ronly);
1656 wapbl_replay_stop(mp->mnt_wapbl_replay);
1657 wapbl_replay_free(mp->mnt_wapbl_replay);
1658 mp->mnt_wapbl_replay = 0;
1659 }
1660 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1661 if (error) {
1662 return error;
1663 }
1664 #endif /* WAPBL */
1665
1666 if (ump->um_devvp->v_type != VBAD)
1667 spec_node_setmountedfs(ump->um_devvp, NULL);
1668 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1669 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1670 NOCRED);
1671 vput(ump->um_devvp);
1672
1673 bsize = fs->fs_cssize;
1674 if (fs->fs_contigsumsize > 0)
1675 bsize += fs->fs_ncg * sizeof(int32_t);
1676 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1677 kmem_free(fs->fs_csp, bsize);
1678
1679 kmem_free(fs, fs->fs_sbsize);
1680 if (ump->um_oldfscompat != NULL)
1681 kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1682 mutex_destroy(&ump->um_lock);
1683 ffs_snapshot_fini(ump);
1684 kmem_free(ump, sizeof(*ump));
1685 mp->mnt_data = NULL;
1686 mp->mnt_flag &= ~MNT_LOCAL;
1687 fstrans_unmount(mp);
1688 return (0);
1689 }
1690
1691 /*
1692 * Flush out all the files in a filesystem.
1693 */
1694 int
1695 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1696 {
1697 extern int doforce;
1698 struct ufsmount *ump;
1699 int error;
1700
1701 if (!doforce)
1702 flags &= ~FORCECLOSE;
1703 ump = VFSTOUFS(mp);
1704 #ifdef QUOTA
1705 if ((error = quota1_umount(mp, flags)) != 0)
1706 return (error);
1707 #endif
1708 #ifdef QUOTA2
1709 if ((error = quota2_umount(mp, flags)) != 0)
1710 return (error);
1711 #endif
1712 #ifdef UFS_EXTATTR
1713 if (ump->um_fstype == UFS1) {
1714 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1715 ufs_extattr_stop(mp, l);
1716 if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1717 ufs_extattr_uepm_destroy(&ump->um_extattr);
1718 mp->mnt_flag &= ~MNT_EXTATTR;
1719 }
1720 #endif
1721 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1722 return (error);
1723 ffs_snapshot_unmount(mp);
1724 /*
1725 * Flush all the files.
1726 */
1727 error = vflush(mp, NULLVP, flags);
1728 if (error)
1729 return (error);
1730 /*
1731 * Flush filesystem metadata.
1732 */
1733 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1734 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1735 VOP_UNLOCK(ump->um_devvp);
1736 if (flags & FORCECLOSE) /* XXXDBJ */
1737 error = 0;
1738
1739 #ifdef WAPBL
1740 if (error)
1741 return error;
1742 if (mp->mnt_wapbl) {
1743 error = wapbl_flush(mp->mnt_wapbl, 1);
1744 if (flags & FORCECLOSE)
1745 error = 0;
1746 }
1747 #endif
1748
1749 return (error);
1750 }
1751
1752 /*
1753 * Get file system statistics.
1754 */
1755 int
1756 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1757 {
1758 struct ufsmount *ump;
1759 struct fs *fs;
1760
1761 ump = VFSTOUFS(mp);
1762 fs = ump->um_fs;
1763 mutex_enter(&ump->um_lock);
1764 sbp->f_bsize = fs->fs_bsize;
1765 sbp->f_frsize = fs->fs_fsize;
1766 sbp->f_iosize = fs->fs_bsize;
1767 sbp->f_blocks = fs->fs_dsize;
1768 sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1769 fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1770 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1771 fs->fs_minfree) / (u_int64_t) 100;
1772 if (sbp->f_bfree > sbp->f_bresvd)
1773 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1774 else
1775 sbp->f_bavail = 0;
1776 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1777 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1778 sbp->f_favail = sbp->f_ffree;
1779 sbp->f_fresvd = 0;
1780 mutex_exit(&ump->um_lock);
1781 copy_statvfs_info(sbp, mp);
1782
1783 return (0);
1784 }
1785
1786 struct ffs_sync_ctx {
1787 int waitfor;
1788 bool is_suspending;
1789 };
1790
1791 static bool
1792 ffs_sync_selector(void *cl, struct vnode *vp)
1793 {
1794 struct ffs_sync_ctx *c = cl;
1795 struct inode *ip;
1796
1797 ip = VTOI(vp);
1798 /*
1799 * Skip the vnode/inode if inaccessible.
1800 */
1801 if (ip == NULL || vp->v_type == VNON)
1802 return false;
1803
1804 /*
1805 * We deliberately update inode times here. This will
1806 * prevent a massive queue of updates accumulating, only
1807 * to be handled by a call to unmount.
1808 *
1809 * XXX It would be better to have the syncer trickle these
1810 * out. Adjustment needed to allow registering vnodes for
1811 * sync when the vnode is clean, but the inode dirty. Or
1812 * have ufs itself trickle out inode updates.
1813 *
1814 * If doing a lazy sync, we don't care about metadata or
1815 * data updates, because they are handled by each vnode's
1816 * synclist entry. In this case we are only interested in
1817 * writing back modified inodes.
1818 */
1819 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1820 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1821 (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1822 UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
1823 return false;
1824
1825 if (vp->v_type == VBLK && c->is_suspending)
1826 return false;
1827
1828 return true;
1829 }
1830
1831 /*
1832 * Go through the disk queues to initiate sandbagged IO;
1833 * go through the inodes to write those that have been modified;
1834 * initiate the writing of the super block if it has been modified.
1835 *
1836 * Note: we are always called with the filesystem marked `MPBUSY'.
1837 */
1838 int
1839 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1840 {
1841 struct vnode *vp;
1842 struct ufsmount *ump = VFSTOUFS(mp);
1843 struct fs *fs;
1844 struct vnode_iterator *marker;
1845 int error, allerror = 0;
1846 bool is_suspending;
1847 struct ffs_sync_ctx ctx;
1848
1849 fs = ump->um_fs;
1850 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1851 printf("fs = %s\n", fs->fs_fsmnt);
1852 panic("update: rofs mod");
1853 }
1854
1855 fstrans_start(mp, FSTRANS_SHARED);
1856 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1857 /*
1858 * Write back each (modified) inode.
1859 */
1860 vfs_vnode_iterator_init(mp, &marker);
1861
1862 ctx.waitfor = waitfor;
1863 ctx.is_suspending = is_suspending;
1864 while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
1865 {
1866 error = vn_lock(vp, LK_EXCLUSIVE);
1867 if (error) {
1868 vrele(vp);
1869 continue;
1870 }
1871 if (waitfor == MNT_LAZY) {
1872 error = UFS_WAPBL_BEGIN(vp->v_mount);
1873 if (!error) {
1874 error = ffs_update(vp, NULL, NULL,
1875 UPDATE_CLOSE);
1876 UFS_WAPBL_END(vp->v_mount);
1877 }
1878 } else {
1879 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1880 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1881 }
1882 if (error)
1883 allerror = error;
1884 vput(vp);
1885 }
1886 vfs_vnode_iterator_destroy(marker);
1887
1888 /*
1889 * Force stale file system control information to be flushed.
1890 */
1891 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1892 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1893 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1894 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1895 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1896 0, 0)) != 0)
1897 allerror = error;
1898 VOP_UNLOCK(ump->um_devvp);
1899 }
1900 #if defined(QUOTA) || defined(QUOTA2)
1901 qsync(mp);
1902 #endif
1903 /*
1904 * Write back modified superblock.
1905 */
1906 if (fs->fs_fmod != 0) {
1907 fs->fs_fmod = 0;
1908 fs->fs_time = time_second;
1909 error = UFS_WAPBL_BEGIN(mp);
1910 if (error)
1911 allerror = error;
1912 else {
1913 if ((error = ffs_cgupdate(ump, waitfor)))
1914 allerror = error;
1915 UFS_WAPBL_END(mp);
1916 }
1917 }
1918
1919 #ifdef WAPBL
1920 if (mp->mnt_wapbl) {
1921 error = wapbl_flush(mp->mnt_wapbl, 0);
1922 if (error)
1923 allerror = error;
1924 }
1925 #endif
1926
1927 fstrans_done(mp);
1928 return (allerror);
1929 }
1930
1931 /*
1932 * Load inode from disk and initialize vnode.
1933 */
1934 static int
1935 ffs_init_vnode(struct ufsmount *ump, struct vnode *vp, ino_t ino)
1936 {
1937 struct fs *fs;
1938 struct inode *ip;
1939 struct buf *bp;
1940 int error;
1941
1942 fs = ump->um_fs;
1943
1944 /* Read in the disk contents for the inode. */
1945 error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
1946 (int)fs->fs_bsize, 0, &bp);
1947 if (error)
1948 return error;
1949
1950 /* Allocate and initialize inode. */
1951 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1952 memset(ip, 0, sizeof(struct inode));
1953 ip->i_ump = ump;
1954 ip->i_fs = fs;
1955 ip->i_dev = ump->um_dev;
1956 ip->i_number = ino;
1957 if (ump->um_fstype == UFS1)
1958 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1959 PR_WAITOK);
1960 else
1961 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1962 PR_WAITOK);
1963 ffs_load_inode(bp, ip, fs, ino);
1964 brelse(bp, 0);
1965 ip->i_vnode = vp;
1966 #if defined(QUOTA) || defined(QUOTA2)
1967 ufsquota_init(ip);
1968 #endif
1969
1970 /* Initialise vnode with this inode. */
1971 vp->v_tag = VT_UFS;
1972 vp->v_op = ffs_vnodeop_p;
1973 vp->v_vflag |= VV_LOCKSWORK;
1974 vp->v_data = ip;
1975
1976 /* Initialize genfs node. */
1977 genfs_node_init(vp, &ffs_genfsops);
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * Undo ffs_init_vnode().
1984 */
1985 static void
1986 ffs_deinit_vnode(struct ufsmount *ump, struct vnode *vp)
1987 {
1988 struct inode *ip = VTOI(vp);
1989
1990 if (ump->um_fstype == UFS1)
1991 pool_cache_put(ffs_dinode1_cache, ip->i_din.ffs1_din);
1992 else
1993 pool_cache_put(ffs_dinode2_cache, ip->i_din.ffs2_din);
1994 pool_cache_put(ffs_inode_cache, ip);
1995
1996 genfs_node_destroy(vp);
1997 vp->v_data = NULL;
1998 }
1999
2000 /*
2001 * Read an inode from disk and initialize this vnode / inode pair.
2002 * Caller assures no other thread will try to load this inode.
2003 */
2004 int
2005 ffs_loadvnode(struct mount *mp, struct vnode *vp,
2006 const void *key, size_t key_len, const void **new_key)
2007 {
2008 ino_t ino;
2009 struct fs *fs;
2010 struct inode *ip;
2011 struct ufsmount *ump;
2012 int error;
2013
2014 KASSERT(key_len == sizeof(ino));
2015 memcpy(&ino, key, key_len);
2016 ump = VFSTOUFS(mp);
2017 fs = ump->um_fs;
2018
2019 error = ffs_init_vnode(ump, vp, ino);
2020 if (error)
2021 return error;
2022
2023 ip = VTOI(vp);
2024 if (ip->i_mode == 0) {
2025 ffs_deinit_vnode(ump, vp);
2026
2027 return ENOENT;
2028 }
2029
2030 /* Initialize the vnode from the inode. */
2031 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
2032
2033 /* Finish inode initialization. */
2034 ip->i_devvp = ump->um_devvp;
2035 vref(ip->i_devvp);
2036
2037 /*
2038 * Ensure that uid and gid are correct. This is a temporary
2039 * fix until fsck has been changed to do the update.
2040 */
2041
2042 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
2043 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
2044 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
2045 } /* XXX */
2046 uvm_vnp_setsize(vp, ip->i_size);
2047 *new_key = &ip->i_number;
2048 return 0;
2049 }
2050
2051 /*
2052 * Create a new inode on disk and initialize this vnode / inode pair.
2053 */
2054 int
2055 ffs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
2056 struct vattr *vap, kauth_cred_t cred,
2057 size_t *key_len, const void **new_key)
2058 {
2059 ino_t ino;
2060 struct fs *fs;
2061 struct inode *ip;
2062 struct timespec ts;
2063 struct ufsmount *ump;
2064 int error, mode;
2065
2066 KASSERT(dvp->v_mount == mp);
2067 KASSERT(vap->va_type != VNON);
2068
2069 *key_len = sizeof(ino);
2070 ump = VFSTOUFS(mp);
2071 fs = ump->um_fs;
2072 mode = MAKEIMODE(vap->va_type, vap->va_mode);
2073
2074 /* Allocate fresh inode. */
2075 error = ffs_valloc(dvp, mode, cred, &ino);
2076 if (error)
2077 return error;
2078
2079 /* Attach inode to vnode. */
2080 error = ffs_init_vnode(ump, vp, ino);
2081 if (error) {
2082 if (UFS_WAPBL_BEGIN(mp) == 0) {
2083 ffs_vfree(dvp, ino, mode);
2084 UFS_WAPBL_END(mp);
2085 }
2086 return error;
2087 }
2088
2089 ip = VTOI(vp);
2090 if (ip->i_mode || DIP(ip, size) || DIP(ip, blocks)) {
2091 printf("free ino %" PRId64 " on %s:\n", ino, fs->fs_fsmnt);
2092 printf("dmode %x mode %x dgen %x gen %x\n",
2093 DIP(ip, mode), ip->i_mode,
2094 DIP(ip, gen), ip->i_gen);
2095 printf("size %" PRIx64 " blocks %" PRIx64 "\n",
2096 DIP(ip, size), DIP(ip, blocks));
2097 panic("ffs_init_vnode: dup alloc");
2098 }
2099
2100 /* Set uid / gid. */
2101 if (cred == NOCRED || cred == FSCRED) {
2102 ip->i_gid = 0;
2103 ip->i_uid = 0;
2104 } else {
2105 ip->i_gid = VTOI(dvp)->i_gid;
2106 ip->i_uid = kauth_cred_geteuid(cred);
2107 }
2108 DIP_ASSIGN(ip, gid, ip->i_gid);
2109 DIP_ASSIGN(ip, uid, ip->i_uid);
2110
2111 #if defined(QUOTA) || defined(QUOTA2)
2112 error = UFS_WAPBL_BEGIN(mp);
2113 if (error) {
2114 ffs_deinit_vnode(ump, vp);
2115
2116 return error;
2117 }
2118 error = chkiq(ip, 1, cred, 0);
2119 if (error) {
2120 ffs_vfree(dvp, ino, mode);
2121 UFS_WAPBL_END(mp);
2122 ffs_deinit_vnode(ump, vp);
2123
2124 return error;
2125 }
2126 UFS_WAPBL_END(mp);
2127 #endif
2128
2129 /* Set type and finalize. */
2130 ip->i_flags = 0;
2131 DIP_ASSIGN(ip, flags, 0);
2132 ip->i_mode = mode;
2133 DIP_ASSIGN(ip, mode, mode);
2134 if (vap->va_rdev != VNOVAL) {
2135 /*
2136 * Want to be able to use this to make badblock
2137 * inodes, so don't truncate the dev number.
2138 */
2139 if (ump->um_fstype == UFS1)
2140 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
2141 UFS_MPNEEDSWAP(ump));
2142 else
2143 ip->i_ffs2_rdev = ufs_rw64(vap->va_rdev,
2144 UFS_MPNEEDSWAP(ump));
2145 }
2146 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
2147 ip->i_devvp = ump->um_devvp;
2148 vref(ip->i_devvp);
2149
2150 /* Set up a new generation number for this inode. */
2151 ip->i_gen++;
2152 DIP_ASSIGN(ip, gen, ip->i_gen);
2153 if (fs->fs_magic == FS_UFS2_MAGIC) {
2154 vfs_timestamp(&ts);
2155 ip->i_ffs2_birthtime = ts.tv_sec;
2156 ip->i_ffs2_birthnsec = ts.tv_nsec;
2157 }
2158
2159 uvm_vnp_setsize(vp, ip->i_size);
2160 *new_key = &ip->i_number;
2161 return 0;
2162 }
2163
2164 /*
2165 * File handle to vnode
2166 *
2167 * Have to be really careful about stale file handles:
2168 * - check that the inode number is valid
2169 * - call ffs_vget() to get the locked inode
2170 * - check for an unallocated inode (i_mode == 0)
2171 * - check that the given client host has export rights and return
2172 * those rights via. exflagsp and credanonp
2173 */
2174 int
2175 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
2176 {
2177 struct ufid ufh;
2178 struct fs *fs;
2179
2180 if (fhp->fid_len != sizeof(struct ufid))
2181 return EINVAL;
2182
2183 memcpy(&ufh, fhp, sizeof(ufh));
2184 fs = VFSTOUFS(mp)->um_fs;
2185 if (ufh.ufid_ino < UFS_ROOTINO ||
2186 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
2187 return (ESTALE);
2188 return (ufs_fhtovp(mp, &ufh, vpp));
2189 }
2190
2191 /*
2192 * Vnode pointer to File handle
2193 */
2194 /* ARGSUSED */
2195 int
2196 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
2197 {
2198 struct inode *ip;
2199 struct ufid ufh;
2200
2201 if (*fh_size < sizeof(struct ufid)) {
2202 *fh_size = sizeof(struct ufid);
2203 return E2BIG;
2204 }
2205 ip = VTOI(vp);
2206 *fh_size = sizeof(struct ufid);
2207 memset(&ufh, 0, sizeof(ufh));
2208 ufh.ufid_len = sizeof(struct ufid);
2209 ufh.ufid_ino = ip->i_number;
2210 ufh.ufid_gen = ip->i_gen;
2211 memcpy(fhp, &ufh, sizeof(ufh));
2212 return (0);
2213 }
2214
2215 void
2216 ffs_init(void)
2217 {
2218 if (ffs_initcount++ > 0)
2219 return;
2220
2221 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2222 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2223 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2224 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2225 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2226 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2227 ufs_init();
2228 }
2229
2230 void
2231 ffs_reinit(void)
2232 {
2233 ufs_reinit();
2234 }
2235
2236 void
2237 ffs_done(void)
2238 {
2239 if (--ffs_initcount > 0)
2240 return;
2241
2242 ufs_done();
2243 pool_cache_destroy(ffs_dinode2_cache);
2244 pool_cache_destroy(ffs_dinode1_cache);
2245 pool_cache_destroy(ffs_inode_cache);
2246 }
2247
2248 /*
2249 * Write a superblock and associated information back to disk.
2250 */
2251 int
2252 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2253 {
2254 struct fs *fs = mp->um_fs;
2255 struct buf *bp;
2256 int error = 0;
2257 u_int32_t saveflag;
2258
2259 error = ffs_getblk(mp->um_devvp,
2260 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2261 fs->fs_sbsize, false, &bp);
2262 if (error)
2263 return error;
2264 saveflag = fs->fs_flags & FS_INTERNAL;
2265 fs->fs_flags &= ~FS_INTERNAL;
2266
2267 memcpy(bp->b_data, fs, fs->fs_sbsize);
2268
2269 ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2270 #ifdef FFS_EI
2271 if (mp->um_flags & UFS_NEEDSWAP)
2272 ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
2273 #endif
2274 fs->fs_flags |= saveflag;
2275
2276 if (waitfor == MNT_WAIT)
2277 error = bwrite(bp);
2278 else
2279 bawrite(bp);
2280 return (error);
2281 }
2282
2283 int
2284 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2285 {
2286 struct fs *fs = mp->um_fs;
2287 struct buf *bp;
2288 int blks;
2289 void *space;
2290 int i, size, error = 0, allerror = 0;
2291
2292 allerror = ffs_sbupdate(mp, waitfor);
2293 blks = howmany(fs->fs_cssize, fs->fs_fsize);
2294 space = fs->fs_csp;
2295 for (i = 0; i < blks; i += fs->fs_frag) {
2296 size = fs->fs_bsize;
2297 if (i + fs->fs_frag > blks)
2298 size = (blks - i) * fs->fs_fsize;
2299 error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2300 FFS_NOBLK, size, false, &bp);
2301 if (error)
2302 break;
2303 #ifdef FFS_EI
2304 if (mp->um_flags & UFS_NEEDSWAP)
2305 ffs_csum_swap((struct csum*)space,
2306 (struct csum*)bp->b_data, size);
2307 else
2308 #endif
2309 memcpy(bp->b_data, space, (u_int)size);
2310 space = (char *)space + size;
2311 if (waitfor == MNT_WAIT)
2312 error = bwrite(bp);
2313 else
2314 bawrite(bp);
2315 }
2316 if (!allerror && error)
2317 allerror = error;
2318 return (allerror);
2319 }
2320
2321 int
2322 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2323 int attrnamespace, const char *attrname)
2324 {
2325 #ifdef UFS_EXTATTR
2326 /*
2327 * File-backed extended attributes are only supported on UFS1.
2328 * UFS2 has native extended attributes.
2329 */
2330 if (VFSTOUFS(mp)->um_fstype == UFS1)
2331 return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2332 #endif
2333 return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2334 }
2335
2336 int
2337 ffs_suspendctl(struct mount *mp, int cmd)
2338 {
2339 int error;
2340 struct lwp *l = curlwp;
2341
2342 switch (cmd) {
2343 case SUSPEND_SUSPEND:
2344 if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2345 return error;
2346 error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2347 if (error == 0)
2348 error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2349 #ifdef WAPBL
2350 if (error == 0 && mp->mnt_wapbl)
2351 error = wapbl_flush(mp->mnt_wapbl, 1);
2352 #endif
2353 if (error != 0) {
2354 (void) fstrans_setstate(mp, FSTRANS_NORMAL);
2355 return error;
2356 }
2357 return 0;
2358
2359 case SUSPEND_RESUME:
2360 return fstrans_setstate(mp, FSTRANS_NORMAL);
2361
2362 default:
2363 return EINVAL;
2364 }
2365 }
2366
2367 /*
2368 * Synch vnode for a mounted file system.
2369 */
2370 static int
2371 ffs_vfs_fsync(vnode_t *vp, int flags)
2372 {
2373 int error, i, pflags;
2374 #ifdef WAPBL
2375 struct mount *mp;
2376 #endif
2377
2378 KASSERT(vp->v_type == VBLK);
2379 KASSERT(spec_node_getmountedfs(vp) != NULL);
2380
2381 /*
2382 * Flush all dirty data associated with the vnode.
2383 */
2384 pflags = PGO_ALLPAGES | PGO_CLEANIT;
2385 if ((flags & FSYNC_WAIT) != 0)
2386 pflags |= PGO_SYNCIO;
2387 mutex_enter(vp->v_interlock);
2388 error = VOP_PUTPAGES(vp, 0, 0, pflags);
2389 if (error)
2390 return error;
2391
2392 #ifdef WAPBL
2393 mp = spec_node_getmountedfs(vp);
2394 if (mp && mp->mnt_wapbl) {
2395 /*
2396 * Don't bother writing out metadata if the syncer is
2397 * making the request. We will let the sync vnode
2398 * write it out in a single burst through a call to
2399 * VFS_SYNC().
2400 */
2401 if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2402 return 0;
2403
2404 /*
2405 * Don't flush the log if the vnode being flushed
2406 * contains no dirty buffers that could be in the log.
2407 */
2408 if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2409 error = wapbl_flush(mp->mnt_wapbl, 0);
2410 if (error)
2411 return error;
2412 }
2413
2414 if ((flags & FSYNC_WAIT) != 0) {
2415 mutex_enter(vp->v_interlock);
2416 while (vp->v_numoutput)
2417 cv_wait(&vp->v_cv, vp->v_interlock);
2418 mutex_exit(vp->v_interlock);
2419 }
2420
2421 return 0;
2422 }
2423 #endif /* WAPBL */
2424
2425 error = vflushbuf(vp, flags);
2426 if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2427 i = 1;
2428 (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2429 kauth_cred_get());
2430 }
2431
2432 return error;
2433 }
2434