fs.h revision 1.4 1 1.4 mycroft /* $NetBSD: fs.h,v 1.4 1994/12/13 19:10:43 mycroft Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.4 mycroft * @(#)fs.h 8.10 (Berkeley) 10/27/94
36 1.1 mycroft */
37 1.1 mycroft
38 1.1 mycroft /*
39 1.1 mycroft * Each disk drive contains some number of file systems.
40 1.1 mycroft * A file system consists of a number of cylinder groups.
41 1.1 mycroft * Each cylinder group has inodes and data.
42 1.1 mycroft *
43 1.1 mycroft * A file system is described by its super-block, which in turn
44 1.1 mycroft * describes the cylinder groups. The super-block is critical
45 1.1 mycroft * data and is replicated in each cylinder group to protect against
46 1.1 mycroft * catastrophic loss. This is done at `newfs' time and the critical
47 1.1 mycroft * super-block data does not change, so the copies need not be
48 1.1 mycroft * referenced further unless disaster strikes.
49 1.1 mycroft *
50 1.1 mycroft * For file system fs, the offsets of the various blocks of interest
51 1.1 mycroft * are given in the super block as:
52 1.1 mycroft * [fs->fs_sblkno] Super-block
53 1.1 mycroft * [fs->fs_cblkno] Cylinder group block
54 1.1 mycroft * [fs->fs_iblkno] Inode blocks
55 1.1 mycroft * [fs->fs_dblkno] Data blocks
56 1.1 mycroft * The beginning of cylinder group cg in fs, is given by
57 1.1 mycroft * the ``cgbase(fs, cg)'' macro.
58 1.1 mycroft *
59 1.1 mycroft * The first boot and super blocks are given in absolute disk addresses.
60 1.1 mycroft * The byte-offset forms are preferred, as they don't imply a sector size.
61 1.1 mycroft */
62 1.1 mycroft #define BBSIZE 8192
63 1.1 mycroft #define SBSIZE 8192
64 1.1 mycroft #define BBOFF ((off_t)(0))
65 1.1 mycroft #define SBOFF ((off_t)(BBOFF + BBSIZE))
66 1.1 mycroft #define BBLOCK ((daddr_t)(0))
67 1.1 mycroft #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
68 1.1 mycroft
69 1.1 mycroft /*
70 1.1 mycroft * Addresses stored in inodes are capable of addressing fragments
71 1.1 mycroft * of `blocks'. File system blocks of at most size MAXBSIZE can
72 1.1 mycroft * be optionally broken into 2, 4, or 8 pieces, each of which is
73 1.1 mycroft * addressible; these pieces may be DEV_BSIZE, or some multiple of
74 1.1 mycroft * a DEV_BSIZE unit.
75 1.1 mycroft *
76 1.1 mycroft * Large files consist of exclusively large data blocks. To avoid
77 1.1 mycroft * undue wasted disk space, the last data block of a small file may be
78 1.1 mycroft * allocated as only as many fragments of a large block as are
79 1.1 mycroft * necessary. The file system format retains only a single pointer
80 1.1 mycroft * to such a fragment, which is a piece of a single large block that
81 1.1 mycroft * has been divided. The size of such a fragment is determinable from
82 1.1 mycroft * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
83 1.1 mycroft *
84 1.1 mycroft * The file system records space availability at the fragment level;
85 1.1 mycroft * to determine block availability, aligned fragments are examined.
86 1.1 mycroft */
87 1.1 mycroft
88 1.1 mycroft /*
89 1.4 mycroft * MINBSIZE is the smallest allowable block size.
90 1.4 mycroft * In order to insure that it is possible to create files of size
91 1.4 mycroft * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
92 1.4 mycroft * MINBSIZE must be big enough to hold a cylinder group block,
93 1.4 mycroft * thus changes to (struct cg) must keep its size within MINBSIZE.
94 1.4 mycroft * Note that super blocks are always of size SBSIZE,
95 1.1 mycroft * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
96 1.1 mycroft */
97 1.1 mycroft #define MINBSIZE 4096
98 1.1 mycroft
99 1.1 mycroft /*
100 1.4 mycroft * The path name on which the file system is mounted is maintained
101 1.4 mycroft * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
102 1.4 mycroft * the super block for this name.
103 1.3 cgd */
104 1.3 cgd #define MAXMNTLEN 512
105 1.3 cgd
106 1.3 cgd /*
107 1.1 mycroft * The limit on the amount of summary information per file system
108 1.1 mycroft * is defined by MAXCSBUFS. It is currently parameterized for a
109 1.3 cgd * size of 128 bytes (2 million cylinder groups on machines with
110 1.4 mycroft * 32-bit pointers, and 1 million on 64-bit machines). One pointer
111 1.4 mycroft * is taken away to point to an array of cluster sizes that is
112 1.4 mycroft * computed as cylinder groups are inspected.
113 1.1 mycroft */
114 1.3 cgd #define MAXCSBUFS (128 / sizeof(void *))
115 1.1 mycroft
116 1.1 mycroft /*
117 1.1 mycroft * A summary of contiguous blocks of various sizes is maintained
118 1.1 mycroft * in each cylinder group. Normally this is set by the initial
119 1.1 mycroft * value of fs_maxcontig. To conserve space, a maximum summary size
120 1.1 mycroft * is set by FS_MAXCONTIG.
121 1.1 mycroft */
122 1.1 mycroft #define FS_MAXCONTIG 16
123 1.1 mycroft
124 1.1 mycroft /*
125 1.1 mycroft * MINFREE gives the minimum acceptable percentage of file system
126 1.1 mycroft * blocks which may be free. If the freelist drops below this level
127 1.1 mycroft * only the superuser may continue to allocate blocks. This may
128 1.1 mycroft * be set to 0 if no reserve of free blocks is deemed necessary,
129 1.1 mycroft * however throughput drops by fifty percent if the file system
130 1.1 mycroft * is run at between 95% and 100% full; thus the minimum default
131 1.1 mycroft * value of fs_minfree is 5%. However, to get good clustering
132 1.1 mycroft * performance, 10% is a better choice. hence we use 10% as our
133 1.1 mycroft * default value. With 10% free space, fragmentation is not a
134 1.1 mycroft * problem, so we choose to optimize for time.
135 1.1 mycroft */
136 1.1 mycroft #define MINFREE 5
137 1.1 mycroft #define DEFAULTOPT FS_OPTTIME
138 1.1 mycroft
139 1.1 mycroft /*
140 1.1 mycroft * Per cylinder group information; summarized in blocks allocated
141 1.1 mycroft * from first cylinder group data blocks. These blocks have to be
142 1.1 mycroft * read in from fs_csaddr (size fs_cssize) in addition to the
143 1.1 mycroft * super block.
144 1.1 mycroft *
145 1.1 mycroft * N.B. sizeof(struct csum) must be a power of two in order for
146 1.1 mycroft * the ``fs_cs'' macro to work (see below).
147 1.1 mycroft */
148 1.1 mycroft struct csum {
149 1.4 mycroft int32_t cs_ndir; /* number of directories */
150 1.4 mycroft int32_t cs_nbfree; /* number of free blocks */
151 1.4 mycroft int32_t cs_nifree; /* number of free inodes */
152 1.4 mycroft int32_t cs_nffree; /* number of free frags */
153 1.1 mycroft };
154 1.1 mycroft
155 1.1 mycroft /*
156 1.4 mycroft * Super block for an FFS file system.
157 1.1 mycroft */
158 1.1 mycroft struct fs {
159 1.4 mycroft int32_t fs_firstfield; /* historic file system linked list, */
160 1.4 mycroft int32_t fs_unused_1; /* used for incore super blocks */
161 1.4 mycroft daddr_t fs_sblkno; /* addr of super-block in filesys */
162 1.4 mycroft daddr_t fs_cblkno; /* offset of cyl-block in filesys */
163 1.4 mycroft daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
164 1.4 mycroft daddr_t fs_dblkno; /* offset of first data after cg */
165 1.4 mycroft int32_t fs_cgoffset; /* cylinder group offset in cylinder */
166 1.4 mycroft int32_t fs_cgmask; /* used to calc mod fs_ntrak */
167 1.4 mycroft time_t fs_time; /* last time written */
168 1.4 mycroft int32_t fs_size; /* number of blocks in fs */
169 1.4 mycroft int32_t fs_dsize; /* number of data blocks in fs */
170 1.4 mycroft int32_t fs_ncg; /* number of cylinder groups */
171 1.4 mycroft int32_t fs_bsize; /* size of basic blocks in fs */
172 1.4 mycroft int32_t fs_fsize; /* size of frag blocks in fs */
173 1.4 mycroft int32_t fs_frag; /* number of frags in a block in fs */
174 1.1 mycroft /* these are configuration parameters */
175 1.4 mycroft int32_t fs_minfree; /* minimum percentage of free blocks */
176 1.4 mycroft int32_t fs_rotdelay; /* num of ms for optimal next block */
177 1.4 mycroft int32_t fs_rps; /* disk revolutions per second */
178 1.1 mycroft /* these fields can be computed from the others */
179 1.4 mycroft int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */
180 1.4 mycroft int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */
181 1.4 mycroft int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */
182 1.4 mycroft int32_t fs_fshift; /* ``numfrags'' calc number of frags */
183 1.1 mycroft /* these are configuration parameters */
184 1.4 mycroft int32_t fs_maxcontig; /* max number of contiguous blks */
185 1.4 mycroft int32_t fs_maxbpg; /* max number of blks per cyl group */
186 1.1 mycroft /* these fields can be computed from the others */
187 1.4 mycroft int32_t fs_fragshift; /* block to frag shift */
188 1.4 mycroft int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
189 1.4 mycroft int32_t fs_sbsize; /* actual size of super block */
190 1.4 mycroft int32_t fs_csmask; /* csum block offset */
191 1.4 mycroft int32_t fs_csshift; /* csum block number */
192 1.4 mycroft int32_t fs_nindir; /* value of NINDIR */
193 1.4 mycroft int32_t fs_inopb; /* value of INOPB */
194 1.4 mycroft int32_t fs_nspf; /* value of NSPF */
195 1.1 mycroft /* yet another configuration parameter */
196 1.4 mycroft int32_t fs_optim; /* optimization preference, see below */
197 1.1 mycroft /* these fields are derived from the hardware */
198 1.4 mycroft int32_t fs_npsect; /* # sectors/track including spares */
199 1.4 mycroft int32_t fs_interleave; /* hardware sector interleave */
200 1.4 mycroft int32_t fs_trackskew; /* sector 0 skew, per track */
201 1.4 mycroft int32_t fs_headswitch; /* head switch time, usec */
202 1.4 mycroft int32_t fs_trkseek; /* track-to-track seek, usec */
203 1.1 mycroft /* sizes determined by number of cylinder groups and their sizes */
204 1.4 mycroft daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
205 1.4 mycroft int32_t fs_cssize; /* size of cyl grp summary area */
206 1.4 mycroft int32_t fs_cgsize; /* cylinder group size */
207 1.1 mycroft /* these fields are derived from the hardware */
208 1.4 mycroft int32_t fs_ntrak; /* tracks per cylinder */
209 1.4 mycroft int32_t fs_nsect; /* sectors per track */
210 1.4 mycroft int32_t fs_spc; /* sectors per cylinder */
211 1.1 mycroft /* this comes from the disk driver partitioning */
212 1.4 mycroft int32_t fs_ncyl; /* cylinders in file system */
213 1.1 mycroft /* these fields can be computed from the others */
214 1.4 mycroft int32_t fs_cpg; /* cylinders per group */
215 1.4 mycroft int32_t fs_ipg; /* inodes per group */
216 1.4 mycroft int32_t fs_fpg; /* blocks per group * fs_frag */
217 1.1 mycroft /* this data must be re-computed after crashes */
218 1.4 mycroft struct csum fs_cstotal; /* cylinder summary information */
219 1.1 mycroft /* these fields are cleared at mount time */
220 1.4 mycroft int8_t fs_fmod; /* super block modified flag */
221 1.4 mycroft int8_t fs_clean; /* file system is clean flag */
222 1.4 mycroft int8_t fs_ronly; /* mounted read-only flag */
223 1.4 mycroft int8_t fs_flags; /* currently unused flag */
224 1.4 mycroft u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
225 1.1 mycroft /* these fields retain the current block allocation info */
226 1.4 mycroft int32_t fs_cgrotor; /* last cg searched */
227 1.4 mycroft struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
228 1.4 mycroft int32_t fs_cpc; /* cyl per cycle in postbl */
229 1.4 mycroft int16_t fs_opostbl[16][8]; /* old rotation block list head */
230 1.4 mycroft int32_t fs_sparecon[50]; /* reserved for future constants */
231 1.4 mycroft int32_t fs_contigsumsize; /* size of cluster summary array */
232 1.4 mycroft int32_t fs_maxsymlinklen; /* max length of an internal symlink */
233 1.4 mycroft int32_t fs_inodefmt; /* format of on-disk inodes */
234 1.3 cgd u_int64_t fs_maxfilesize; /* maximum representable file size */
235 1.4 mycroft int64_t fs_qbmask; /* ~fs_bmask - for use with quad size */
236 1.4 mycroft int64_t fs_qfmask; /* ~fs_fmask - for use with quad size */
237 1.4 mycroft int32_t fs_state; /* validate fs_clean field */
238 1.4 mycroft int32_t fs_postblformat; /* format of positional layout tables */
239 1.4 mycroft int32_t fs_nrpos; /* number of rotational positions */
240 1.4 mycroft int32_t fs_postbloff; /* (u_int16) rotation block list head */
241 1.4 mycroft int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */
242 1.4 mycroft int32_t fs_magic; /* magic number */
243 1.3 cgd u_int8_t fs_space[1]; /* list of blocks for each rotation */
244 1.1 mycroft /* actually longer */
245 1.1 mycroft };
246 1.3 cgd
247 1.1 mycroft /*
248 1.3 cgd * Filesystem identification
249 1.1 mycroft */
250 1.1 mycroft #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
251 1.1 mycroft #define FS_OKAY 0x7c269d38 /* superblock checksum */
252 1.1 mycroft #define FS_42INODEFMT -1 /* 4.2BSD inode format */
253 1.1 mycroft #define FS_44INODEFMT 2 /* 4.4BSD inode format */
254 1.1 mycroft /*
255 1.1 mycroft * Preference for optimization.
256 1.1 mycroft */
257 1.1 mycroft #define FS_OPTTIME 0 /* minimize allocation time */
258 1.1 mycroft #define FS_OPTSPACE 1 /* minimize disk fragmentation */
259 1.1 mycroft
260 1.1 mycroft /*
261 1.1 mycroft * Rotational layout table format types
262 1.1 mycroft */
263 1.1 mycroft #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
264 1.1 mycroft #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
265 1.1 mycroft /*
266 1.1 mycroft * Macros for access to superblock array structures
267 1.1 mycroft */
268 1.1 mycroft #define fs_postbl(fs, cylno) \
269 1.1 mycroft (((fs)->fs_postblformat == FS_42POSTBLFMT) \
270 1.4 mycroft ? ((fs)->fs_opostbl[cylno]) \
271 1.4 mycroft : ((int16_t *)((u_int8_t *)(fs) + \
272 1.4 mycroft (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
273 1.1 mycroft #define fs_rotbl(fs) \
274 1.1 mycroft (((fs)->fs_postblformat == FS_42POSTBLFMT) \
275 1.1 mycroft ? ((fs)->fs_space) \
276 1.4 mycroft : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff)))
277 1.1 mycroft
278 1.1 mycroft /*
279 1.1 mycroft * The size of a cylinder group is calculated by CGSIZE. The maximum size
280 1.4 mycroft * is limited by the fact that cylinder groups are at most one block.
281 1.4 mycroft * Its size is derived from the size of the maps maintained in the
282 1.4 mycroft * cylinder group and the (struct cg) size.
283 1.1 mycroft */
284 1.1 mycroft #define CGSIZE(fs) \
285 1.3 cgd /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \
286 1.3 cgd /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \
287 1.3 cgd /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \
288 1.1 mycroft /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
289 1.1 mycroft /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
290 1.1 mycroft /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
291 1.3 cgd /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \
292 1.1 mycroft /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
293 1.1 mycroft
294 1.1 mycroft /*
295 1.1 mycroft * Convert cylinder group to base address of its global summary info.
296 1.1 mycroft *
297 1.1 mycroft * N.B. This macro assumes that sizeof(struct csum) is a power of two.
298 1.1 mycroft */
299 1.1 mycroft #define fs_cs(fs, indx) \
300 1.1 mycroft fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
301 1.1 mycroft
302 1.1 mycroft /*
303 1.1 mycroft * Cylinder group block for a file system.
304 1.1 mycroft */
305 1.1 mycroft #define CG_MAGIC 0x090255
306 1.4 mycroft struct cg {
307 1.4 mycroft int32_t cg_firstfield; /* historic cyl groups linked list */
308 1.4 mycroft int32_t cg_magic; /* magic number */
309 1.4 mycroft time_t cg_time; /* time last written */
310 1.4 mycroft int32_t cg_cgx; /* we are the cgx'th cylinder group */
311 1.4 mycroft int16_t cg_ncyl; /* number of cyl's this cg */
312 1.4 mycroft int16_t cg_niblk; /* number of inode blocks this cg */
313 1.4 mycroft int32_t cg_ndblk; /* number of data blocks this cg */
314 1.4 mycroft struct csum cg_cs; /* cylinder summary information */
315 1.4 mycroft int32_t cg_rotor; /* position of last used block */
316 1.4 mycroft int32_t cg_frotor; /* position of last used frag */
317 1.4 mycroft int32_t cg_irotor; /* position of last used inode */
318 1.4 mycroft int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
319 1.4 mycroft int32_t cg_btotoff; /* (int32) block totals per cylinder */
320 1.4 mycroft int32_t cg_boff; /* (u_int16) free block positions */
321 1.4 mycroft int32_t cg_iusedoff; /* (u_int8) used inode map */
322 1.4 mycroft int32_t cg_freeoff; /* (u_int8) free block map */
323 1.4 mycroft int32_t cg_nextfreeoff; /* (u_int8) next available space */
324 1.4 mycroft int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */
325 1.4 mycroft int32_t cg_clusteroff; /* (u_int8) free cluster map */
326 1.4 mycroft int32_t cg_nclusterblks; /* number of clusters this cg */
327 1.4 mycroft int32_t cg_sparecon[13]; /* reserved for future use */
328 1.3 cgd u_int8_t cg_space[1]; /* space for cylinder group maps */
329 1.1 mycroft /* actually longer */
330 1.1 mycroft };
331 1.3 cgd
332 1.1 mycroft /*
333 1.1 mycroft * Macros for access to cylinder group array structures
334 1.1 mycroft */
335 1.1 mycroft #define cg_blktot(cgp) \
336 1.1 mycroft (((cgp)->cg_magic != CG_MAGIC) \
337 1.1 mycroft ? (((struct ocg *)(cgp))->cg_btot) \
338 1.4 mycroft : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff)))
339 1.1 mycroft #define cg_blks(fs, cgp, cylno) \
340 1.1 mycroft (((cgp)->cg_magic != CG_MAGIC) \
341 1.1 mycroft ? (((struct ocg *)(cgp))->cg_b[cylno]) \
342 1.4 mycroft : ((int16_t *)((u_int8_t *)(cgp) + \
343 1.4 mycroft (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
344 1.1 mycroft #define cg_inosused(cgp) \
345 1.1 mycroft (((cgp)->cg_magic != CG_MAGIC) \
346 1.1 mycroft ? (((struct ocg *)(cgp))->cg_iused) \
347 1.4 mycroft : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff)))
348 1.1 mycroft #define cg_blksfree(cgp) \
349 1.1 mycroft (((cgp)->cg_magic != CG_MAGIC) \
350 1.1 mycroft ? (((struct ocg *)(cgp))->cg_free) \
351 1.4 mycroft : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff)))
352 1.1 mycroft #define cg_chkmagic(cgp) \
353 1.1 mycroft ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
354 1.1 mycroft #define cg_clustersfree(cgp) \
355 1.4 mycroft ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff))
356 1.1 mycroft #define cg_clustersum(cgp) \
357 1.4 mycroft ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff))
358 1.1 mycroft
359 1.1 mycroft /*
360 1.1 mycroft * The following structure is defined
361 1.1 mycroft * for compatibility with old file systems.
362 1.1 mycroft */
363 1.4 mycroft struct ocg {
364 1.4 mycroft int32_t cg_firstfield; /* historic linked list of cyl groups */
365 1.4 mycroft int32_t cg_unused_1; /* used for incore cyl groups */
366 1.4 mycroft time_t cg_time; /* time last written */
367 1.4 mycroft int32_t cg_cgx; /* we are the cgx'th cylinder group */
368 1.4 mycroft int16_t cg_ncyl; /* number of cyl's this cg */
369 1.4 mycroft int16_t cg_niblk; /* number of inode blocks this cg */
370 1.4 mycroft int32_t cg_ndblk; /* number of data blocks this cg */
371 1.4 mycroft struct csum cg_cs; /* cylinder summary information */
372 1.4 mycroft int32_t cg_rotor; /* position of last used block */
373 1.4 mycroft int32_t cg_frotor; /* position of last used frag */
374 1.4 mycroft int32_t cg_irotor; /* position of last used inode */
375 1.4 mycroft int32_t cg_frsum[8]; /* counts of available frags */
376 1.4 mycroft int32_t cg_btot[32]; /* block totals per cylinder */
377 1.4 mycroft int16_t cg_b[32][8]; /* positions of free blocks */
378 1.4 mycroft u_int8_t cg_iused[256]; /* used inode map */
379 1.4 mycroft int32_t cg_magic; /* magic number */
380 1.3 cgd u_int8_t cg_free[1]; /* free block map */
381 1.1 mycroft /* actually longer */
382 1.1 mycroft };
383 1.1 mycroft
384 1.1 mycroft /*
385 1.1 mycroft * Turn file system block numbers into disk block addresses.
386 1.1 mycroft * This maps file system blocks to device size blocks.
387 1.1 mycroft */
388 1.1 mycroft #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
389 1.1 mycroft #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
390 1.1 mycroft
391 1.1 mycroft /*
392 1.1 mycroft * Cylinder group macros to locate things in cylinder groups.
393 1.1 mycroft * They calc file system addresses of cylinder group data structures.
394 1.1 mycroft */
395 1.1 mycroft #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
396 1.1 mycroft #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
397 1.1 mycroft #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
398 1.1 mycroft #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
399 1.1 mycroft #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
400 1.1 mycroft #define cgstart(fs, c) \
401 1.1 mycroft (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
402 1.1 mycroft
403 1.1 mycroft /*
404 1.1 mycroft * Macros for handling inode numbers:
405 1.1 mycroft * inode number to file system block offset.
406 1.1 mycroft * inode number to cylinder group number.
407 1.1 mycroft * inode number to file system block address.
408 1.1 mycroft */
409 1.1 mycroft #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
410 1.1 mycroft #define ino_to_fsba(fs, x) \
411 1.1 mycroft ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
412 1.1 mycroft (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
413 1.1 mycroft #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
414 1.1 mycroft
415 1.1 mycroft /*
416 1.1 mycroft * Give cylinder group number for a file system block.
417 1.1 mycroft * Give cylinder group block number for a file system block.
418 1.1 mycroft */
419 1.1 mycroft #define dtog(fs, d) ((d) / (fs)->fs_fpg)
420 1.1 mycroft #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
421 1.1 mycroft
422 1.1 mycroft /*
423 1.1 mycroft * Extract the bits for a block from a map.
424 1.1 mycroft * Compute the cylinder and rotational position of a cyl block addr.
425 1.1 mycroft */
426 1.1 mycroft #define blkmap(fs, map, loc) \
427 1.1 mycroft (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
428 1.1 mycroft #define cbtocylno(fs, bno) \
429 1.1 mycroft ((bno) * NSPF(fs) / (fs)->fs_spc)
430 1.1 mycroft #define cbtorpos(fs, bno) \
431 1.1 mycroft (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
432 1.1 mycroft (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
433 1.1 mycroft (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
434 1.1 mycroft
435 1.1 mycroft /*
436 1.1 mycroft * The following macros optimize certain frequently calculated
437 1.1 mycroft * quantities by using shifts and masks in place of divisions
438 1.1 mycroft * modulos and multiplications.
439 1.1 mycroft */
440 1.1 mycroft #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
441 1.1 mycroft ((loc) & (fs)->fs_qbmask)
442 1.1 mycroft #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
443 1.1 mycroft ((loc) & (fs)->fs_qfmask)
444 1.1 mycroft #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
445 1.1 mycroft ((blk) << (fs)->fs_bshift)
446 1.1 mycroft #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
447 1.1 mycroft ((loc) >> (fs)->fs_bshift)
448 1.1 mycroft #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
449 1.1 mycroft ((loc) >> (fs)->fs_fshift)
450 1.1 mycroft #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
451 1.1 mycroft (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
452 1.1 mycroft #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
453 1.1 mycroft (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
454 1.1 mycroft #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
455 1.1 mycroft ((frags) >> (fs)->fs_fragshift)
456 1.1 mycroft #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
457 1.1 mycroft ((blks) << (fs)->fs_fragshift)
458 1.1 mycroft #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
459 1.1 mycroft ((fsb) & ((fs)->fs_frag - 1))
460 1.1 mycroft #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
461 1.1 mycroft ((fsb) &~ ((fs)->fs_frag - 1))
462 1.1 mycroft
463 1.1 mycroft /*
464 1.1 mycroft * Determine the number of available frags given a
465 1.3 cgd * percentage to hold in reserve.
466 1.1 mycroft */
467 1.1 mycroft #define freespace(fs, percentreserved) \
468 1.1 mycroft (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
469 1.1 mycroft (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
470 1.1 mycroft
471 1.4 mycroft /*
472 1.4 mycroft * Determining the size of a file block in the file system.
473 1.4 mycroft */
474 1.1 mycroft #define blksize(fs, ip, lbn) \
475 1.1 mycroft (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
476 1.1 mycroft ? (fs)->fs_bsize \
477 1.1 mycroft : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
478 1.1 mycroft #define dblksize(fs, dip, lbn) \
479 1.1 mycroft (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
480 1.1 mycroft ? (fs)->fs_bsize \
481 1.1 mycroft : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
482 1.1 mycroft
483 1.4 mycroft /*
484 1.4 mycroft * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
485 1.4 mycroft * sector size.
486 1.4 mycroft */
487 1.1 mycroft #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
488 1.1 mycroft #define NSPF(fs) ((fs)->fs_nspf)
489 1.1 mycroft
490 1.4 mycroft /*
491 1.4 mycroft * Number of inodes in a secondary storage block/fragment.
492 1.4 mycroft */
493 1.1 mycroft #define INOPB(fs) ((fs)->fs_inopb)
494 1.1 mycroft #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
495 1.1 mycroft
496 1.4 mycroft /*
497 1.4 mycroft * Number of indirects in a file system block.
498 1.4 mycroft */
499 1.1 mycroft #define NINDIR(fs) ((fs)->fs_nindir)
500 1.1 mycroft
501 1.1 mycroft extern int inside[], around[];
502 1.1 mycroft extern u_char *fragtbl[];
503