fs.h revision 1.1 1 /*
2 * Copyright (c) 1982, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)fs.h 8.7 (Berkeley) 4/19/94
34 * $Id: fs.h,v 1.1 1994/06/08 11:42:13 mycroft Exp $
35 */
36
37 /*
38 * Each disk drive contains some number of file systems.
39 * A file system consists of a number of cylinder groups.
40 * Each cylinder group has inodes and data.
41 *
42 * A file system is described by its super-block, which in turn
43 * describes the cylinder groups. The super-block is critical
44 * data and is replicated in each cylinder group to protect against
45 * catastrophic loss. This is done at `newfs' time and the critical
46 * super-block data does not change, so the copies need not be
47 * referenced further unless disaster strikes.
48 *
49 * For file system fs, the offsets of the various blocks of interest
50 * are given in the super block as:
51 * [fs->fs_sblkno] Super-block
52 * [fs->fs_cblkno] Cylinder group block
53 * [fs->fs_iblkno] Inode blocks
54 * [fs->fs_dblkno] Data blocks
55 * The beginning of cylinder group cg in fs, is given by
56 * the ``cgbase(fs, cg)'' macro.
57 *
58 * The first boot and super blocks are given in absolute disk addresses.
59 * The byte-offset forms are preferred, as they don't imply a sector size.
60 */
61 #define BBSIZE 8192
62 #define SBSIZE 8192
63 #define BBOFF ((off_t)(0))
64 #define SBOFF ((off_t)(BBOFF + BBSIZE))
65 #define BBLOCK ((daddr_t)(0))
66 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
67
68 /*
69 * Addresses stored in inodes are capable of addressing fragments
70 * of `blocks'. File system blocks of at most size MAXBSIZE can
71 * be optionally broken into 2, 4, or 8 pieces, each of which is
72 * addressible; these pieces may be DEV_BSIZE, or some multiple of
73 * a DEV_BSIZE unit.
74 *
75 * Large files consist of exclusively large data blocks. To avoid
76 * undue wasted disk space, the last data block of a small file may be
77 * allocated as only as many fragments of a large block as are
78 * necessary. The file system format retains only a single pointer
79 * to such a fragment, which is a piece of a single large block that
80 * has been divided. The size of such a fragment is determinable from
81 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
82 *
83 * The file system records space availability at the fragment level;
84 * to determine block availability, aligned fragments are examined.
85 */
86
87 /*
88 * MINBSIZE is the smallest allowable block size.
89 * In order to insure that it is possible to create files of size
90 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
91 * MINBSIZE must be big enough to hold a cylinder group block,
92 * thus changes to (struct cg) must keep its size within MINBSIZE.
93 * Note that super blocks are always of size SBSIZE,
94 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
95 */
96 #define MINBSIZE 4096
97
98 /*
99 * The path name on which the file system is mounted is maintained
100 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
101 * the super block for this name.
102 * The limit on the amount of summary information per file system
103 * is defined by MAXCSBUFS. It is currently parameterized for a
104 * maximum of two million cylinders.
105 */
106 #define MAXMNTLEN 512
107 #define MAXCSBUFS 32
108
109 /*
110 * A summary of contiguous blocks of various sizes is maintained
111 * in each cylinder group. Normally this is set by the initial
112 * value of fs_maxcontig. To conserve space, a maximum summary size
113 * is set by FS_MAXCONTIG.
114 */
115 #define FS_MAXCONTIG 16
116
117 /*
118 * MINFREE gives the minimum acceptable percentage of file system
119 * blocks which may be free. If the freelist drops below this level
120 * only the superuser may continue to allocate blocks. This may
121 * be set to 0 if no reserve of free blocks is deemed necessary,
122 * however throughput drops by fifty percent if the file system
123 * is run at between 95% and 100% full; thus the minimum default
124 * value of fs_minfree is 5%. However, to get good clustering
125 * performance, 10% is a better choice. hence we use 10% as our
126 * default value. With 10% free space, fragmentation is not a
127 * problem, so we choose to optimize for time.
128 */
129 #define MINFREE 5
130 #define DEFAULTOPT FS_OPTTIME
131
132 /*
133 * Per cylinder group information; summarized in blocks allocated
134 * from first cylinder group data blocks. These blocks have to be
135 * read in from fs_csaddr (size fs_cssize) in addition to the
136 * super block.
137 *
138 * N.B. sizeof(struct csum) must be a power of two in order for
139 * the ``fs_cs'' macro to work (see below).
140 */
141 struct csum {
142 long cs_ndir; /* number of directories */
143 long cs_nbfree; /* number of free blocks */
144 long cs_nifree; /* number of free inodes */
145 long cs_nffree; /* number of free frags */
146 };
147
148 /*
149 * Super block for a file system.
150 */
151 struct fs {
152 struct fs *fs_link; /* linked list of file systems */
153 struct fs *fs_rlink; /* used for incore super blocks */
154 daddr_t fs_sblkno; /* addr of super-block in filesys */
155 daddr_t fs_cblkno; /* offset of cyl-block in filesys */
156 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
157 daddr_t fs_dblkno; /* offset of first data after cg */
158 long fs_cgoffset; /* cylinder group offset in cylinder */
159 long fs_cgmask; /* used to calc mod fs_ntrak */
160 time_t fs_time; /* last time written */
161 long fs_size; /* number of blocks in fs */
162 long fs_dsize; /* number of data blocks in fs */
163 long fs_ncg; /* number of cylinder groups */
164 long fs_bsize; /* size of basic blocks in fs */
165 long fs_fsize; /* size of frag blocks in fs */
166 long fs_frag; /* number of frags in a block in fs */
167 /* these are configuration parameters */
168 long fs_minfree; /* minimum percentage of free blocks */
169 long fs_rotdelay; /* num of ms for optimal next block */
170 long fs_rps; /* disk revolutions per second */
171 /* these fields can be computed from the others */
172 long fs_bmask; /* ``blkoff'' calc of blk offsets */
173 long fs_fmask; /* ``fragoff'' calc of frag offsets */
174 long fs_bshift; /* ``lblkno'' calc of logical blkno */
175 long fs_fshift; /* ``numfrags'' calc number of frags */
176 /* these are configuration parameters */
177 long fs_maxcontig; /* max number of contiguous blks */
178 long fs_maxbpg; /* max number of blks per cyl group */
179 /* these fields can be computed from the others */
180 long fs_fragshift; /* block to frag shift */
181 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
182 long fs_sbsize; /* actual size of super block */
183 long fs_csmask; /* csum block offset */
184 long fs_csshift; /* csum block number */
185 long fs_nindir; /* value of NINDIR */
186 long fs_inopb; /* value of INOPB */
187 long fs_nspf; /* value of NSPF */
188 /* yet another configuration parameter */
189 long fs_optim; /* optimization preference, see below */
190 /* these fields are derived from the hardware */
191 long fs_npsect; /* # sectors/track including spares */
192 long fs_interleave; /* hardware sector interleave */
193 long fs_trackskew; /* sector 0 skew, per track */
194 long fs_headswitch; /* head switch time, usec */
195 long fs_trkseek; /* track-to-track seek, usec */
196 /* sizes determined by number of cylinder groups and their sizes */
197 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
198 long fs_cssize; /* size of cyl grp summary area */
199 long fs_cgsize; /* cylinder group size */
200 /* these fields are derived from the hardware */
201 long fs_ntrak; /* tracks per cylinder */
202 long fs_nsect; /* sectors per track */
203 long fs_spc; /* sectors per cylinder */
204 /* this comes from the disk driver partitioning */
205 long fs_ncyl; /* cylinders in file system */
206 /* these fields can be computed from the others */
207 long fs_cpg; /* cylinders per group */
208 long fs_ipg; /* inodes per group */
209 long fs_fpg; /* blocks per group * fs_frag */
210 /* this data must be re-computed after crashes */
211 struct csum fs_cstotal; /* cylinder summary information */
212 /* these fields are cleared at mount time */
213 char fs_fmod; /* super block modified flag */
214 char fs_clean; /* file system is clean flag */
215 char fs_ronly; /* mounted read-only flag */
216 char fs_flags; /* currently unused flag */
217 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
218 /* these fields retain the current block allocation info */
219 long fs_cgrotor; /* last cg searched */
220 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
221 long fs_cpc; /* cyl per cycle in postbl */
222 short fs_opostbl[16][8]; /* old rotation block list head */
223 long fs_sparecon[50]; /* reserved for future constants */
224 long fs_contigsumsize; /* size of cluster summary array */
225 long fs_maxsymlinklen; /* max length of an internal symlink */
226 long fs_inodefmt; /* format of on-disk inodes */
227 u_quad_t fs_maxfilesize; /* maximum representable file size */
228 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */
229 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */
230 long fs_state; /* validate fs_clean field */
231 long fs_postblformat; /* format of positional layout tables */
232 long fs_nrpos; /* number of rotational positions */
233 long fs_postbloff; /* (short) rotation block list head */
234 long fs_rotbloff; /* (u_char) blocks for each rotation */
235 long fs_magic; /* magic number */
236 u_char fs_space[1]; /* list of blocks for each rotation */
237 /* actually longer */
238 };
239 /*
240 * Filesystem idetification
241 */
242 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
243 #define FS_OKAY 0x7c269d38 /* superblock checksum */
244 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
245 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
246 /*
247 * Preference for optimization.
248 */
249 #define FS_OPTTIME 0 /* minimize allocation time */
250 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
251
252 /*
253 * Rotational layout table format types
254 */
255 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
256 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
257 /*
258 * Macros for access to superblock array structures
259 */
260 #define fs_postbl(fs, cylno) \
261 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
262 ? ((fs)->fs_opostbl[cylno]) \
263 : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
264 #define fs_rotbl(fs) \
265 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
266 ? ((fs)->fs_space) \
267 : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff)))
268
269 /*
270 * The size of a cylinder group is calculated by CGSIZE. The maximum size
271 * is limited by the fact that cylinder groups are at most one block.
272 * Its size is derived from the size of the maps maintained in the
273 * cylinder group and the (struct cg) size.
274 */
275 #define CGSIZE(fs) \
276 /* base cg */ (sizeof(struct cg) + sizeof(long) + \
277 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \
278 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
279 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
280 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
281 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
282 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(long) + \
283 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
284
285 /*
286 * Convert cylinder group to base address of its global summary info.
287 *
288 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
289 */
290 #define fs_cs(fs, indx) \
291 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
292
293 /*
294 * Cylinder group block for a file system.
295 */
296 #define CG_MAGIC 0x090255
297 struct cg {
298 struct cg *cg_link; /* linked list of cyl groups */
299 long cg_magic; /* magic number */
300 time_t cg_time; /* time last written */
301 long cg_cgx; /* we are the cgx'th cylinder group */
302 short cg_ncyl; /* number of cyl's this cg */
303 short cg_niblk; /* number of inode blocks this cg */
304 long cg_ndblk; /* number of data blocks this cg */
305 struct csum cg_cs; /* cylinder summary information */
306 long cg_rotor; /* position of last used block */
307 long cg_frotor; /* position of last used frag */
308 long cg_irotor; /* position of last used inode */
309 long cg_frsum[MAXFRAG]; /* counts of available frags */
310 long cg_btotoff; /* (long) block totals per cylinder */
311 long cg_boff; /* (short) free block positions */
312 long cg_iusedoff; /* (char) used inode map */
313 long cg_freeoff; /* (u_char) free block map */
314 long cg_nextfreeoff; /* (u_char) next available space */
315 long cg_clustersumoff; /* (long) counts of avail clusters */
316 long cg_clusteroff; /* (char) free cluster map */
317 long cg_nclusterblks; /* number of clusters this cg */
318 long cg_sparecon[13]; /* reserved for future use */
319 u_char cg_space[1]; /* space for cylinder group maps */
320 /* actually longer */
321 };
322 /*
323 * Macros for access to cylinder group array structures
324 */
325 #define cg_blktot(cgp) \
326 (((cgp)->cg_magic != CG_MAGIC) \
327 ? (((struct ocg *)(cgp))->cg_btot) \
328 : ((long *)((char *)(cgp) + (cgp)->cg_btotoff)))
329 #define cg_blks(fs, cgp, cylno) \
330 (((cgp)->cg_magic != CG_MAGIC) \
331 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
332 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
333 #define cg_inosused(cgp) \
334 (((cgp)->cg_magic != CG_MAGIC) \
335 ? (((struct ocg *)(cgp))->cg_iused) \
336 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff)))
337 #define cg_blksfree(cgp) \
338 (((cgp)->cg_magic != CG_MAGIC) \
339 ? (((struct ocg *)(cgp))->cg_free) \
340 : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff)))
341 #define cg_chkmagic(cgp) \
342 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
343 #define cg_clustersfree(cgp) \
344 ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff))
345 #define cg_clustersum(cgp) \
346 ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff))
347
348 /*
349 * The following structure is defined
350 * for compatibility with old file systems.
351 */
352 struct ocg {
353 struct ocg *cg_link; /* linked list of cyl groups */
354 struct ocg *cg_rlink; /* used for incore cyl groups */
355 time_t cg_time; /* time last written */
356 long cg_cgx; /* we are the cgx'th cylinder group */
357 short cg_ncyl; /* number of cyl's this cg */
358 short cg_niblk; /* number of inode blocks this cg */
359 long cg_ndblk; /* number of data blocks this cg */
360 struct csum cg_cs; /* cylinder summary information */
361 long cg_rotor; /* position of last used block */
362 long cg_frotor; /* position of last used frag */
363 long cg_irotor; /* position of last used inode */
364 long cg_frsum[8]; /* counts of available frags */
365 long cg_btot[32]; /* block totals per cylinder */
366 short cg_b[32][8]; /* positions of free blocks */
367 char cg_iused[256]; /* used inode map */
368 long cg_magic; /* magic number */
369 u_char cg_free[1]; /* free block map */
370 /* actually longer */
371 };
372
373 /*
374 * Turn file system block numbers into disk block addresses.
375 * This maps file system blocks to device size blocks.
376 */
377 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
378 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
379
380 /*
381 * Cylinder group macros to locate things in cylinder groups.
382 * They calc file system addresses of cylinder group data structures.
383 */
384 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
385 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
386 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
387 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
388 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
389 #define cgstart(fs, c) \
390 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
391
392 /*
393 * Macros for handling inode numbers:
394 * inode number to file system block offset.
395 * inode number to cylinder group number.
396 * inode number to file system block address.
397 */
398 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
399 #define ino_to_fsba(fs, x) \
400 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
401 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
402 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
403
404 /*
405 * Give cylinder group number for a file system block.
406 * Give cylinder group block number for a file system block.
407 */
408 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
409 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
410
411 /*
412 * Extract the bits for a block from a map.
413 * Compute the cylinder and rotational position of a cyl block addr.
414 */
415 #define blkmap(fs, map, loc) \
416 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
417 #define cbtocylno(fs, bno) \
418 ((bno) * NSPF(fs) / (fs)->fs_spc)
419 #define cbtorpos(fs, bno) \
420 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
421 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
422 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
423
424 /*
425 * The following macros optimize certain frequently calculated
426 * quantities by using shifts and masks in place of divisions
427 * modulos and multiplications.
428 */
429 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
430 ((loc) & (fs)->fs_qbmask)
431 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
432 ((loc) & (fs)->fs_qfmask)
433 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
434 ((blk) << (fs)->fs_bshift)
435 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
436 ((loc) >> (fs)->fs_bshift)
437 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
438 ((loc) >> (fs)->fs_fshift)
439 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
440 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
441 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
442 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
443 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
444 ((frags) >> (fs)->fs_fragshift)
445 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
446 ((blks) << (fs)->fs_fragshift)
447 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
448 ((fsb) & ((fs)->fs_frag - 1))
449 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
450 ((fsb) &~ ((fs)->fs_frag - 1))
451
452 /*
453 * Determine the number of available frags given a
454 * percentage to hold in reserve
455 */
456 #define freespace(fs, percentreserved) \
457 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
458 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
459
460 /*
461 * Determining the size of a file block in the file system.
462 */
463 #define blksize(fs, ip, lbn) \
464 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
465 ? (fs)->fs_bsize \
466 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
467 #define dblksize(fs, dip, lbn) \
468 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
469 ? (fs)->fs_bsize \
470 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
471
472 /*
473 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
474 */
475 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
476 #define NSPF(fs) ((fs)->fs_nspf)
477
478 /*
479 * INOPB is the number of inodes in a secondary storage block.
480 */
481 #define INOPB(fs) ((fs)->fs_inopb)
482 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
483
484 /*
485 * NINDIR is the number of indirects in a file system block.
486 */
487 #define NINDIR(fs) ((fs)->fs_nindir)
488
489 extern int inside[], around[];
490 extern u_char *fragtbl[];
491