fs.h revision 1.1.1.1 1 /*
2 * Copyright (c) 1982, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)fs.h 8.7 (Berkeley) 4/19/94
34 */
35
36 /*
37 * Each disk drive contains some number of file systems.
38 * A file system consists of a number of cylinder groups.
39 * Each cylinder group has inodes and data.
40 *
41 * A file system is described by its super-block, which in turn
42 * describes the cylinder groups. The super-block is critical
43 * data and is replicated in each cylinder group to protect against
44 * catastrophic loss. This is done at `newfs' time and the critical
45 * super-block data does not change, so the copies need not be
46 * referenced further unless disaster strikes.
47 *
48 * For file system fs, the offsets of the various blocks of interest
49 * are given in the super block as:
50 * [fs->fs_sblkno] Super-block
51 * [fs->fs_cblkno] Cylinder group block
52 * [fs->fs_iblkno] Inode blocks
53 * [fs->fs_dblkno] Data blocks
54 * The beginning of cylinder group cg in fs, is given by
55 * the ``cgbase(fs, cg)'' macro.
56 *
57 * The first boot and super blocks are given in absolute disk addresses.
58 * The byte-offset forms are preferred, as they don't imply a sector size.
59 */
60 #define BBSIZE 8192
61 #define SBSIZE 8192
62 #define BBOFF ((off_t)(0))
63 #define SBOFF ((off_t)(BBOFF + BBSIZE))
64 #define BBLOCK ((daddr_t)(0))
65 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
66
67 /*
68 * Addresses stored in inodes are capable of addressing fragments
69 * of `blocks'. File system blocks of at most size MAXBSIZE can
70 * be optionally broken into 2, 4, or 8 pieces, each of which is
71 * addressible; these pieces may be DEV_BSIZE, or some multiple of
72 * a DEV_BSIZE unit.
73 *
74 * Large files consist of exclusively large data blocks. To avoid
75 * undue wasted disk space, the last data block of a small file may be
76 * allocated as only as many fragments of a large block as are
77 * necessary. The file system format retains only a single pointer
78 * to such a fragment, which is a piece of a single large block that
79 * has been divided. The size of such a fragment is determinable from
80 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
81 *
82 * The file system records space availability at the fragment level;
83 * to determine block availability, aligned fragments are examined.
84 */
85
86 /*
87 * MINBSIZE is the smallest allowable block size.
88 * In order to insure that it is possible to create files of size
89 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
90 * MINBSIZE must be big enough to hold a cylinder group block,
91 * thus changes to (struct cg) must keep its size within MINBSIZE.
92 * Note that super blocks are always of size SBSIZE,
93 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
94 */
95 #define MINBSIZE 4096
96
97 /*
98 * The path name on which the file system is mounted is maintained
99 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
100 * the super block for this name.
101 * The limit on the amount of summary information per file system
102 * is defined by MAXCSBUFS. It is currently parameterized for a
103 * maximum of two million cylinders.
104 */
105 #define MAXMNTLEN 512
106 #define MAXCSBUFS 32
107
108 /*
109 * A summary of contiguous blocks of various sizes is maintained
110 * in each cylinder group. Normally this is set by the initial
111 * value of fs_maxcontig. To conserve space, a maximum summary size
112 * is set by FS_MAXCONTIG.
113 */
114 #define FS_MAXCONTIG 16
115
116 /*
117 * MINFREE gives the minimum acceptable percentage of file system
118 * blocks which may be free. If the freelist drops below this level
119 * only the superuser may continue to allocate blocks. This may
120 * be set to 0 if no reserve of free blocks is deemed necessary,
121 * however throughput drops by fifty percent if the file system
122 * is run at between 95% and 100% full; thus the minimum default
123 * value of fs_minfree is 5%. However, to get good clustering
124 * performance, 10% is a better choice. hence we use 10% as our
125 * default value. With 10% free space, fragmentation is not a
126 * problem, so we choose to optimize for time.
127 */
128 #define MINFREE 5
129 #define DEFAULTOPT FS_OPTTIME
130
131 /*
132 * Per cylinder group information; summarized in blocks allocated
133 * from first cylinder group data blocks. These blocks have to be
134 * read in from fs_csaddr (size fs_cssize) in addition to the
135 * super block.
136 *
137 * N.B. sizeof(struct csum) must be a power of two in order for
138 * the ``fs_cs'' macro to work (see below).
139 */
140 struct csum {
141 long cs_ndir; /* number of directories */
142 long cs_nbfree; /* number of free blocks */
143 long cs_nifree; /* number of free inodes */
144 long cs_nffree; /* number of free frags */
145 };
146
147 /*
148 * Super block for a file system.
149 */
150 struct fs {
151 struct fs *fs_link; /* linked list of file systems */
152 struct fs *fs_rlink; /* used for incore super blocks */
153 daddr_t fs_sblkno; /* addr of super-block in filesys */
154 daddr_t fs_cblkno; /* offset of cyl-block in filesys */
155 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
156 daddr_t fs_dblkno; /* offset of first data after cg */
157 long fs_cgoffset; /* cylinder group offset in cylinder */
158 long fs_cgmask; /* used to calc mod fs_ntrak */
159 time_t fs_time; /* last time written */
160 long fs_size; /* number of blocks in fs */
161 long fs_dsize; /* number of data blocks in fs */
162 long fs_ncg; /* number of cylinder groups */
163 long fs_bsize; /* size of basic blocks in fs */
164 long fs_fsize; /* size of frag blocks in fs */
165 long fs_frag; /* number of frags in a block in fs */
166 /* these are configuration parameters */
167 long fs_minfree; /* minimum percentage of free blocks */
168 long fs_rotdelay; /* num of ms for optimal next block */
169 long fs_rps; /* disk revolutions per second */
170 /* these fields can be computed from the others */
171 long fs_bmask; /* ``blkoff'' calc of blk offsets */
172 long fs_fmask; /* ``fragoff'' calc of frag offsets */
173 long fs_bshift; /* ``lblkno'' calc of logical blkno */
174 long fs_fshift; /* ``numfrags'' calc number of frags */
175 /* these are configuration parameters */
176 long fs_maxcontig; /* max number of contiguous blks */
177 long fs_maxbpg; /* max number of blks per cyl group */
178 /* these fields can be computed from the others */
179 long fs_fragshift; /* block to frag shift */
180 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
181 long fs_sbsize; /* actual size of super block */
182 long fs_csmask; /* csum block offset */
183 long fs_csshift; /* csum block number */
184 long fs_nindir; /* value of NINDIR */
185 long fs_inopb; /* value of INOPB */
186 long fs_nspf; /* value of NSPF */
187 /* yet another configuration parameter */
188 long fs_optim; /* optimization preference, see below */
189 /* these fields are derived from the hardware */
190 long fs_npsect; /* # sectors/track including spares */
191 long fs_interleave; /* hardware sector interleave */
192 long fs_trackskew; /* sector 0 skew, per track */
193 long fs_headswitch; /* head switch time, usec */
194 long fs_trkseek; /* track-to-track seek, usec */
195 /* sizes determined by number of cylinder groups and their sizes */
196 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
197 long fs_cssize; /* size of cyl grp summary area */
198 long fs_cgsize; /* cylinder group size */
199 /* these fields are derived from the hardware */
200 long fs_ntrak; /* tracks per cylinder */
201 long fs_nsect; /* sectors per track */
202 long fs_spc; /* sectors per cylinder */
203 /* this comes from the disk driver partitioning */
204 long fs_ncyl; /* cylinders in file system */
205 /* these fields can be computed from the others */
206 long fs_cpg; /* cylinders per group */
207 long fs_ipg; /* inodes per group */
208 long fs_fpg; /* blocks per group * fs_frag */
209 /* this data must be re-computed after crashes */
210 struct csum fs_cstotal; /* cylinder summary information */
211 /* these fields are cleared at mount time */
212 char fs_fmod; /* super block modified flag */
213 char fs_clean; /* file system is clean flag */
214 char fs_ronly; /* mounted read-only flag */
215 char fs_flags; /* currently unused flag */
216 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
217 /* these fields retain the current block allocation info */
218 long fs_cgrotor; /* last cg searched */
219 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
220 long fs_cpc; /* cyl per cycle in postbl */
221 short fs_opostbl[16][8]; /* old rotation block list head */
222 long fs_sparecon[50]; /* reserved for future constants */
223 long fs_contigsumsize; /* size of cluster summary array */
224 long fs_maxsymlinklen; /* max length of an internal symlink */
225 long fs_inodefmt; /* format of on-disk inodes */
226 u_quad_t fs_maxfilesize; /* maximum representable file size */
227 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */
228 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */
229 long fs_state; /* validate fs_clean field */
230 long fs_postblformat; /* format of positional layout tables */
231 long fs_nrpos; /* number of rotational positions */
232 long fs_postbloff; /* (short) rotation block list head */
233 long fs_rotbloff; /* (u_char) blocks for each rotation */
234 long fs_magic; /* magic number */
235 u_char fs_space[1]; /* list of blocks for each rotation */
236 /* actually longer */
237 };
238 /*
239 * Filesystem idetification
240 */
241 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
242 #define FS_OKAY 0x7c269d38 /* superblock checksum */
243 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
244 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
245 /*
246 * Preference for optimization.
247 */
248 #define FS_OPTTIME 0 /* minimize allocation time */
249 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
250
251 /*
252 * Rotational layout table format types
253 */
254 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
255 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
256 /*
257 * Macros for access to superblock array structures
258 */
259 #define fs_postbl(fs, cylno) \
260 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
261 ? ((fs)->fs_opostbl[cylno]) \
262 : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
263 #define fs_rotbl(fs) \
264 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
265 ? ((fs)->fs_space) \
266 : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff)))
267
268 /*
269 * The size of a cylinder group is calculated by CGSIZE. The maximum size
270 * is limited by the fact that cylinder groups are at most one block.
271 * Its size is derived from the size of the maps maintained in the
272 * cylinder group and the (struct cg) size.
273 */
274 #define CGSIZE(fs) \
275 /* base cg */ (sizeof(struct cg) + sizeof(long) + \
276 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \
277 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
278 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
279 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
280 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
281 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(long) + \
282 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
283
284 /*
285 * Convert cylinder group to base address of its global summary info.
286 *
287 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
288 */
289 #define fs_cs(fs, indx) \
290 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
291
292 /*
293 * Cylinder group block for a file system.
294 */
295 #define CG_MAGIC 0x090255
296 struct cg {
297 struct cg *cg_link; /* linked list of cyl groups */
298 long cg_magic; /* magic number */
299 time_t cg_time; /* time last written */
300 long cg_cgx; /* we are the cgx'th cylinder group */
301 short cg_ncyl; /* number of cyl's this cg */
302 short cg_niblk; /* number of inode blocks this cg */
303 long cg_ndblk; /* number of data blocks this cg */
304 struct csum cg_cs; /* cylinder summary information */
305 long cg_rotor; /* position of last used block */
306 long cg_frotor; /* position of last used frag */
307 long cg_irotor; /* position of last used inode */
308 long cg_frsum[MAXFRAG]; /* counts of available frags */
309 long cg_btotoff; /* (long) block totals per cylinder */
310 long cg_boff; /* (short) free block positions */
311 long cg_iusedoff; /* (char) used inode map */
312 long cg_freeoff; /* (u_char) free block map */
313 long cg_nextfreeoff; /* (u_char) next available space */
314 long cg_clustersumoff; /* (long) counts of avail clusters */
315 long cg_clusteroff; /* (char) free cluster map */
316 long cg_nclusterblks; /* number of clusters this cg */
317 long cg_sparecon[13]; /* reserved for future use */
318 u_char cg_space[1]; /* space for cylinder group maps */
319 /* actually longer */
320 };
321 /*
322 * Macros for access to cylinder group array structures
323 */
324 #define cg_blktot(cgp) \
325 (((cgp)->cg_magic != CG_MAGIC) \
326 ? (((struct ocg *)(cgp))->cg_btot) \
327 : ((long *)((char *)(cgp) + (cgp)->cg_btotoff)))
328 #define cg_blks(fs, cgp, cylno) \
329 (((cgp)->cg_magic != CG_MAGIC) \
330 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
331 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
332 #define cg_inosused(cgp) \
333 (((cgp)->cg_magic != CG_MAGIC) \
334 ? (((struct ocg *)(cgp))->cg_iused) \
335 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff)))
336 #define cg_blksfree(cgp) \
337 (((cgp)->cg_magic != CG_MAGIC) \
338 ? (((struct ocg *)(cgp))->cg_free) \
339 : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff)))
340 #define cg_chkmagic(cgp) \
341 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
342 #define cg_clustersfree(cgp) \
343 ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff))
344 #define cg_clustersum(cgp) \
345 ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff))
346
347 /*
348 * The following structure is defined
349 * for compatibility with old file systems.
350 */
351 struct ocg {
352 struct ocg *cg_link; /* linked list of cyl groups */
353 struct ocg *cg_rlink; /* used for incore cyl groups */
354 time_t cg_time; /* time last written */
355 long cg_cgx; /* we are the cgx'th cylinder group */
356 short cg_ncyl; /* number of cyl's this cg */
357 short cg_niblk; /* number of inode blocks this cg */
358 long cg_ndblk; /* number of data blocks this cg */
359 struct csum cg_cs; /* cylinder summary information */
360 long cg_rotor; /* position of last used block */
361 long cg_frotor; /* position of last used frag */
362 long cg_irotor; /* position of last used inode */
363 long cg_frsum[8]; /* counts of available frags */
364 long cg_btot[32]; /* block totals per cylinder */
365 short cg_b[32][8]; /* positions of free blocks */
366 char cg_iused[256]; /* used inode map */
367 long cg_magic; /* magic number */
368 u_char cg_free[1]; /* free block map */
369 /* actually longer */
370 };
371
372 /*
373 * Turn file system block numbers into disk block addresses.
374 * This maps file system blocks to device size blocks.
375 */
376 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
377 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
378
379 /*
380 * Cylinder group macros to locate things in cylinder groups.
381 * They calc file system addresses of cylinder group data structures.
382 */
383 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
384 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
385 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
386 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
387 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
388 #define cgstart(fs, c) \
389 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
390
391 /*
392 * Macros for handling inode numbers:
393 * inode number to file system block offset.
394 * inode number to cylinder group number.
395 * inode number to file system block address.
396 */
397 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
398 #define ino_to_fsba(fs, x) \
399 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
400 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
401 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
402
403 /*
404 * Give cylinder group number for a file system block.
405 * Give cylinder group block number for a file system block.
406 */
407 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
408 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
409
410 /*
411 * Extract the bits for a block from a map.
412 * Compute the cylinder and rotational position of a cyl block addr.
413 */
414 #define blkmap(fs, map, loc) \
415 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
416 #define cbtocylno(fs, bno) \
417 ((bno) * NSPF(fs) / (fs)->fs_spc)
418 #define cbtorpos(fs, bno) \
419 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
420 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
421 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
422
423 /*
424 * The following macros optimize certain frequently calculated
425 * quantities by using shifts and masks in place of divisions
426 * modulos and multiplications.
427 */
428 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
429 ((loc) & (fs)->fs_qbmask)
430 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
431 ((loc) & (fs)->fs_qfmask)
432 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
433 ((blk) << (fs)->fs_bshift)
434 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
435 ((loc) >> (fs)->fs_bshift)
436 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
437 ((loc) >> (fs)->fs_fshift)
438 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
439 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
440 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
441 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
442 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
443 ((frags) >> (fs)->fs_fragshift)
444 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
445 ((blks) << (fs)->fs_fragshift)
446 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
447 ((fsb) & ((fs)->fs_frag - 1))
448 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
449 ((fsb) &~ ((fs)->fs_frag - 1))
450
451 /*
452 * Determine the number of available frags given a
453 * percentage to hold in reserve
454 */
455 #define freespace(fs, percentreserved) \
456 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
457 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
458
459 /*
460 * Determining the size of a file block in the file system.
461 */
462 #define blksize(fs, ip, lbn) \
463 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
464 ? (fs)->fs_bsize \
465 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
466 #define dblksize(fs, dip, lbn) \
467 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
468 ? (fs)->fs_bsize \
469 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
470
471 /*
472 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
473 */
474 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
475 #define NSPF(fs) ((fs)->fs_nspf)
476
477 /*
478 * INOPB is the number of inodes in a secondary storage block.
479 */
480 #define INOPB(fs) ((fs)->fs_inopb)
481 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
482
483 /*
484 * NINDIR is the number of indirects in a file system block.
485 */
486 #define NINDIR(fs) ((fs)->fs_nindir)
487
488 extern int inside[], around[];
489 extern u_char *fragtbl[];
490