fs.h revision 1.1.1.2 1 /*
2 * Copyright (c) 1982, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)fs.h 8.13 (Berkeley) 3/21/95
34 */
35
36 /*
37 * Each disk drive contains some number of file systems.
38 * A file system consists of a number of cylinder groups.
39 * Each cylinder group has inodes and data.
40 *
41 * A file system is described by its super-block, which in turn
42 * describes the cylinder groups. The super-block is critical
43 * data and is replicated in each cylinder group to protect against
44 * catastrophic loss. This is done at `newfs' time and the critical
45 * super-block data does not change, so the copies need not be
46 * referenced further unless disaster strikes.
47 *
48 * For file system fs, the offsets of the various blocks of interest
49 * are given in the super block as:
50 * [fs->fs_sblkno] Super-block
51 * [fs->fs_cblkno] Cylinder group block
52 * [fs->fs_iblkno] Inode blocks
53 * [fs->fs_dblkno] Data blocks
54 * The beginning of cylinder group cg in fs, is given by
55 * the ``cgbase(fs, cg)'' macro.
56 *
57 * The first boot and super blocks are given in absolute disk addresses.
58 * The byte-offset forms are preferred, as they don't imply a sector size.
59 */
60 #define BBSIZE 8192
61 #define SBSIZE 8192
62 #define BBOFF ((off_t)(0))
63 #define SBOFF ((off_t)(BBOFF + BBSIZE))
64 #define BBLOCK ((ufs_daddr_t)(0))
65 #define SBLOCK ((ufs_daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
66
67 /*
68 * Addresses stored in inodes are capable of addressing fragments
69 * of `blocks'. File system blocks of at most size MAXBSIZE can
70 * be optionally broken into 2, 4, or 8 pieces, each of which is
71 * addressible; these pieces may be DEV_BSIZE, or some multiple of
72 * a DEV_BSIZE unit.
73 *
74 * Large files consist of exclusively large data blocks. To avoid
75 * undue wasted disk space, the last data block of a small file may be
76 * allocated as only as many fragments of a large block as are
77 * necessary. The file system format retains only a single pointer
78 * to such a fragment, which is a piece of a single large block that
79 * has been divided. The size of such a fragment is determinable from
80 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
81 *
82 * The file system records space availability at the fragment level;
83 * to determine block availability, aligned fragments are examined.
84 */
85
86 /*
87 * MINBSIZE is the smallest allowable block size.
88 * In order to insure that it is possible to create files of size
89 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
90 * MINBSIZE must be big enough to hold a cylinder group block,
91 * thus changes to (struct cg) must keep its size within MINBSIZE.
92 * Note that super blocks are always of size SBSIZE,
93 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
94 */
95 #define MINBSIZE 4096
96
97 /*
98 * The path name on which the file system is mounted is maintained
99 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
100 * the super block for this name.
101 */
102 #define MAXMNTLEN 512
103
104 /*
105 * The limit on the amount of summary information per file system
106 * is defined by MAXCSBUFS. It is currently parameterized for a
107 * size of 128 bytes (2 million cylinder groups on machines with
108 * 32-bit pointers, and 1 million on 64-bit machines). One pointer
109 * is taken away to point to an array of cluster sizes that is
110 * computed as cylinder groups are inspected.
111 */
112 #define MAXCSBUFS ((128 / sizeof(void *)) - 1)
113
114 /*
115 * A summary of contiguous blocks of various sizes is maintained
116 * in each cylinder group. Normally this is set by the initial
117 * value of fs_maxcontig. To conserve space, a maximum summary size
118 * is set by FS_MAXCONTIG.
119 */
120 #define FS_MAXCONTIG 16
121
122 /*
123 * MINFREE gives the minimum acceptable percentage of file system
124 * blocks which may be free. If the freelist drops below this level
125 * only the superuser may continue to allocate blocks. This may
126 * be set to 0 if no reserve of free blocks is deemed necessary,
127 * however throughput drops by fifty percent if the file system
128 * is run at between 95% and 100% full; thus the minimum default
129 * value of fs_minfree is 5%. However, to get good clustering
130 * performance, 10% is a better choice. hence we use 10% as our
131 * default value. With 10% free space, fragmentation is not a
132 * problem, so we choose to optimize for time.
133 */
134 #define MINFREE 5
135 #define DEFAULTOPT FS_OPTTIME
136
137 /*
138 * Per cylinder group information; summarized in blocks allocated
139 * from first cylinder group data blocks. These blocks have to be
140 * read in from fs_csaddr (size fs_cssize) in addition to the
141 * super block.
142 *
143 * N.B. sizeof(struct csum) must be a power of two in order for
144 * the ``fs_cs'' macro to work (see below).
145 */
146 struct csum {
147 int32_t cs_ndir; /* number of directories */
148 int32_t cs_nbfree; /* number of free blocks */
149 int32_t cs_nifree; /* number of free inodes */
150 int32_t cs_nffree; /* number of free frags */
151 };
152
153 /*
154 * Super block for an FFS file system.
155 */
156 struct fs {
157 int32_t fs_firstfield; /* historic file system linked list, */
158 int32_t fs_unused_1; /* used for incore super blocks */
159 ufs_daddr_t fs_sblkno; /* addr of super-block in filesys */
160 ufs_daddr_t fs_cblkno; /* offset of cyl-block in filesys */
161 ufs_daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
162 ufs_daddr_t fs_dblkno; /* offset of first data after cg */
163 int32_t fs_cgoffset; /* cylinder group offset in cylinder */
164 int32_t fs_cgmask; /* used to calc mod fs_ntrak */
165 time_t fs_time; /* last time written */
166 int32_t fs_size; /* number of blocks in fs */
167 int32_t fs_dsize; /* number of data blocks in fs */
168 int32_t fs_ncg; /* number of cylinder groups */
169 int32_t fs_bsize; /* size of basic blocks in fs */
170 int32_t fs_fsize; /* size of frag blocks in fs */
171 int32_t fs_frag; /* number of frags in a block in fs */
172 /* these are configuration parameters */
173 int32_t fs_minfree; /* minimum percentage of free blocks */
174 int32_t fs_rotdelay; /* num of ms for optimal next block */
175 int32_t fs_rps; /* disk revolutions per second */
176 /* these fields can be computed from the others */
177 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */
178 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */
179 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */
180 int32_t fs_fshift; /* ``numfrags'' calc number of frags */
181 /* these are configuration parameters */
182 int32_t fs_maxcontig; /* max number of contiguous blks */
183 int32_t fs_maxbpg; /* max number of blks per cyl group */
184 /* these fields can be computed from the others */
185 int32_t fs_fragshift; /* block to frag shift */
186 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
187 int32_t fs_sbsize; /* actual size of super block */
188 int32_t fs_csmask; /* csum block offset */
189 int32_t fs_csshift; /* csum block number */
190 int32_t fs_nindir; /* value of NINDIR */
191 int32_t fs_inopb; /* value of INOPB */
192 int32_t fs_nspf; /* value of NSPF */
193 /* yet another configuration parameter */
194 int32_t fs_optim; /* optimization preference, see below */
195 /* these fields are derived from the hardware */
196 int32_t fs_npsect; /* # sectors/track including spares */
197 int32_t fs_interleave; /* hardware sector interleave */
198 int32_t fs_trackskew; /* sector 0 skew, per track */
199 int32_t fs_headswitch; /* head switch time, usec */
200 int32_t fs_trkseek; /* track-to-track seek, usec */
201 /* sizes determined by number of cylinder groups and their sizes */
202 ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
203 int32_t fs_cssize; /* size of cyl grp summary area */
204 int32_t fs_cgsize; /* cylinder group size */
205 /* these fields are derived from the hardware */
206 int32_t fs_ntrak; /* tracks per cylinder */
207 int32_t fs_nsect; /* sectors per track */
208 int32_t fs_spc; /* sectors per cylinder */
209 /* this comes from the disk driver partitioning */
210 int32_t fs_ncyl; /* cylinders in file system */
211 /* these fields can be computed from the others */
212 int32_t fs_cpg; /* cylinders per group */
213 int32_t fs_ipg; /* inodes per group */
214 int32_t fs_fpg; /* blocks per group * fs_frag */
215 /* this data must be re-computed after crashes */
216 struct csum fs_cstotal; /* cylinder summary information */
217 /* these fields are cleared at mount time */
218 int8_t fs_fmod; /* super block modified flag */
219 int8_t fs_clean; /* file system is clean flag */
220 int8_t fs_ronly; /* mounted read-only flag */
221 int8_t fs_flags; /* currently unused flag */
222 u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
223 /* these fields retain the current block allocation info */
224 int32_t fs_cgrotor; /* last cg searched */
225 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
226 int32_t *fs_maxcluster; /* max cluster in each cyl group */
227 int32_t fs_cpc; /* cyl per cycle in postbl */
228 int16_t fs_opostbl[16][8]; /* old rotation block list head */
229 int32_t fs_sparecon[50]; /* reserved for future constants */
230 int32_t fs_contigsumsize; /* size of cluster summary array */
231 int32_t fs_maxsymlinklen; /* max length of an internal symlink */
232 int32_t fs_inodefmt; /* format of on-disk inodes */
233 u_int64_t fs_maxfilesize; /* maximum representable file size */
234 int64_t fs_qbmask; /* ~fs_bmask for use with 64-bit size */
235 int64_t fs_qfmask; /* ~fs_fmask for use with 64-bit size */
236 int32_t fs_state; /* validate fs_clean field */
237 int32_t fs_postblformat; /* format of positional layout tables */
238 int32_t fs_nrpos; /* number of rotational positions */
239 int32_t fs_postbloff; /* (u_int16) rotation block list head */
240 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */
241 int32_t fs_magic; /* magic number */
242 u_int8_t fs_space[1]; /* list of blocks for each rotation */
243 /* actually longer */
244 };
245
246 /*
247 * Filesystem identification
248 */
249 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
250 #define FS_OKAY 0x7c269d38 /* superblock checksum */
251 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
252 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
253 /*
254 * Preference for optimization.
255 */
256 #define FS_OPTTIME 0 /* minimize allocation time */
257 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
258
259 /*
260 * Rotational layout table format types
261 */
262 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
263 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
264 /*
265 * Macros for access to superblock array structures
266 */
267 #define fs_postbl(fs, cylno) \
268 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
269 ? ((fs)->fs_opostbl[cylno]) \
270 : ((int16_t *)((u_int8_t *)(fs) + \
271 (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
272 #define fs_rotbl(fs) \
273 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
274 ? ((fs)->fs_space) \
275 : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff)))
276
277 /*
278 * The size of a cylinder group is calculated by CGSIZE. The maximum size
279 * is limited by the fact that cylinder groups are at most one block.
280 * Its size is derived from the size of the maps maintained in the
281 * cylinder group and the (struct cg) size.
282 */
283 #define CGSIZE(fs) \
284 /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \
285 /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \
286 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \
287 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
288 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
289 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
290 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \
291 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
292
293 /*
294 * Convert cylinder group to base address of its global summary info.
295 *
296 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
297 */
298 #define fs_cs(fs, indx) \
299 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
300
301 /*
302 * Cylinder group block for a file system.
303 */
304 #define CG_MAGIC 0x090255
305 struct cg {
306 int32_t cg_firstfield; /* historic cyl groups linked list */
307 int32_t cg_magic; /* magic number */
308 time_t cg_time; /* time last written */
309 int32_t cg_cgx; /* we are the cgx'th cylinder group */
310 int16_t cg_ncyl; /* number of cyl's this cg */
311 int16_t cg_niblk; /* number of inode blocks this cg */
312 int32_t cg_ndblk; /* number of data blocks this cg */
313 struct csum cg_cs; /* cylinder summary information */
314 int32_t cg_rotor; /* position of last used block */
315 int32_t cg_frotor; /* position of last used frag */
316 int32_t cg_irotor; /* position of last used inode */
317 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
318 int32_t cg_btotoff; /* (int32) block totals per cylinder */
319 int32_t cg_boff; /* (u_int16) free block positions */
320 int32_t cg_iusedoff; /* (u_int8) used inode map */
321 int32_t cg_freeoff; /* (u_int8) free block map */
322 int32_t cg_nextfreeoff; /* (u_int8) next available space */
323 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */
324 int32_t cg_clusteroff; /* (u_int8) free cluster map */
325 int32_t cg_nclusterblks; /* number of clusters this cg */
326 int32_t cg_sparecon[13]; /* reserved for future use */
327 u_int8_t cg_space[1]; /* space for cylinder group maps */
328 /* actually longer */
329 };
330
331 /*
332 * Macros for access to cylinder group array structures
333 */
334 #define cg_blktot(cgp) \
335 (((cgp)->cg_magic != CG_MAGIC) \
336 ? (((struct ocg *)(cgp))->cg_btot) \
337 : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff)))
338 #define cg_blks(fs, cgp, cylno) \
339 (((cgp)->cg_magic != CG_MAGIC) \
340 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
341 : ((int16_t *)((u_int8_t *)(cgp) + \
342 (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
343 #define cg_inosused(cgp) \
344 (((cgp)->cg_magic != CG_MAGIC) \
345 ? (((struct ocg *)(cgp))->cg_iused) \
346 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff)))
347 #define cg_blksfree(cgp) \
348 (((cgp)->cg_magic != CG_MAGIC) \
349 ? (((struct ocg *)(cgp))->cg_free) \
350 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff)))
351 #define cg_chkmagic(cgp) \
352 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
353 #define cg_clustersfree(cgp) \
354 ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff))
355 #define cg_clustersum(cgp) \
356 ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff))
357
358 /*
359 * The following structure is defined
360 * for compatibility with old file systems.
361 */
362 struct ocg {
363 int32_t cg_firstfield; /* historic linked list of cyl groups */
364 int32_t cg_unused_1; /* used for incore cyl groups */
365 time_t cg_time; /* time last written */
366 int32_t cg_cgx; /* we are the cgx'th cylinder group */
367 int16_t cg_ncyl; /* number of cyl's this cg */
368 int16_t cg_niblk; /* number of inode blocks this cg */
369 int32_t cg_ndblk; /* number of data blocks this cg */
370 struct csum cg_cs; /* cylinder summary information */
371 int32_t cg_rotor; /* position of last used block */
372 int32_t cg_frotor; /* position of last used frag */
373 int32_t cg_irotor; /* position of last used inode */
374 int32_t cg_frsum[8]; /* counts of available frags */
375 int32_t cg_btot[32]; /* block totals per cylinder */
376 int16_t cg_b[32][8]; /* positions of free blocks */
377 u_int8_t cg_iused[256]; /* used inode map */
378 int32_t cg_magic; /* magic number */
379 u_int8_t cg_free[1]; /* free block map */
380 /* actually longer */
381 };
382
383 /*
384 * Turn file system block numbers into disk block addresses.
385 * This maps file system blocks to device size blocks.
386 */
387 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
388 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
389
390 /*
391 * Cylinder group macros to locate things in cylinder groups.
392 * They calc file system addresses of cylinder group data structures.
393 */
394 #define cgbase(fs, c) ((ufs_daddr_t)((fs)->fs_fpg * (c)))
395 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
396 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
397 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
398 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
399 #define cgstart(fs, c) \
400 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
401
402 /*
403 * Macros for handling inode numbers:
404 * inode number to file system block offset.
405 * inode number to cylinder group number.
406 * inode number to file system block address.
407 */
408 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
409 #define ino_to_fsba(fs, x) \
410 ((ufs_daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
411 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
412 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
413
414 /*
415 * Give cylinder group number for a file system block.
416 * Give cylinder group block number for a file system block.
417 */
418 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
419 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
420
421 /*
422 * Extract the bits for a block from a map.
423 * Compute the cylinder and rotational position of a cyl block addr.
424 */
425 #define blkmap(fs, map, loc) \
426 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
427 #define cbtocylno(fs, bno) \
428 ((bno) * NSPF(fs) / (fs)->fs_spc)
429 #define cbtorpos(fs, bno) \
430 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
431 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
432 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
433
434 /*
435 * The following macros optimize certain frequently calculated
436 * quantities by using shifts and masks in place of divisions
437 * modulos and multiplications.
438 */
439 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
440 ((loc) & (fs)->fs_qbmask)
441 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
442 ((loc) & (fs)->fs_qfmask)
443 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
444 ((blk) << (fs)->fs_bshift)
445 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
446 ((loc) >> (fs)->fs_bshift)
447 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
448 ((loc) >> (fs)->fs_fshift)
449 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
450 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
451 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
452 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
453 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
454 ((frags) >> (fs)->fs_fragshift)
455 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
456 ((blks) << (fs)->fs_fragshift)
457 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
458 ((fsb) & ((fs)->fs_frag - 1))
459 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
460 ((fsb) &~ ((fs)->fs_frag - 1))
461
462 /*
463 * Determine the number of available frags given a
464 * percentage to hold in reserve.
465 */
466 #define freespace(fs, percentreserved) \
467 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
468 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
469
470 /*
471 * Determining the size of a file block in the file system.
472 */
473 #define blksize(fs, ip, lbn) \
474 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
475 ? (fs)->fs_bsize \
476 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
477 #define dblksize(fs, dip, lbn) \
478 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
479 ? (fs)->fs_bsize \
480 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
481
482 /*
483 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
484 * sector size.
485 */
486 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
487 #define NSPF(fs) ((fs)->fs_nspf)
488
489 /*
490 * Number of inodes in a secondary storage block/fragment.
491 */
492 #define INOPB(fs) ((fs)->fs_inopb)
493 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
494
495 /*
496 * Number of indirects in a file system block.
497 */
498 #define NINDIR(fs) ((fs)->fs_nindir)
499
500 extern int inside[], around[];
501 extern u_char *fragtbl[];
502