fs.h revision 1.14 1 /* $NetBSD: fs.h,v 1.14 2001/07/27 01:28:06 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)fs.h 8.13 (Berkeley) 3/21/95
36 */
37
38 #ifndef _UFS_FFS_FS_H_
39 #define _UFS_FFS_FS_H_
40
41 #include <ufs/ufs/dinode.h>
42
43 /*
44 * Each disk drive contains some number of file systems.
45 * A file system consists of a number of cylinder groups.
46 * Each cylinder group has inodes and data.
47 *
48 * A file system is described by its super-block, which in turn
49 * describes the cylinder groups. The super-block is critical
50 * data and is replicated in each cylinder group to protect against
51 * catastrophic loss. This is done at `newfs' time and the critical
52 * super-block data does not change, so the copies need not be
53 * referenced further unless disaster strikes.
54 *
55 * For file system fs, the offsets of the various blocks of interest
56 * are given in the super block as:
57 * [fs->fs_sblkno] Super-block
58 * [fs->fs_cblkno] Cylinder group block
59 * [fs->fs_iblkno] Inode blocks
60 * [fs->fs_dblkno] Data blocks
61 * The beginning of cylinder group cg in fs, is given by
62 * the ``cgbase(fs, cg)'' macro.
63 *
64 * The first boot and super blocks are given in absolute disk addresses.
65 * The byte-offset forms are preferred, as they don't imply a sector size.
66 */
67 #define BBSIZE 8192
68 #define SBSIZE 8192
69 #define BBOFF ((off_t)(0))
70 #define SBOFF ((off_t)(BBOFF + BBSIZE))
71 #define BBLOCK ((ufs_daddr_t)(0))
72 #define SBLOCK ((ufs_daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
73
74 /*
75 * Addresses stored in inodes are capable of addressing fragments
76 * of `blocks'. File system blocks of at most size MAXBSIZE can
77 * be optionally broken into 2, 4, or 8 pieces, each of which is
78 * addressible; these pieces may be DEV_BSIZE, or some multiple of
79 * a DEV_BSIZE unit.
80 *
81 * Large files consist of exclusively large data blocks. To avoid
82 * undue wasted disk space, the last data block of a small file may be
83 * allocated as only as many fragments of a large block as are
84 * necessary. The file system format retains only a single pointer
85 * to such a fragment, which is a piece of a single large block that
86 * has been divided. The size of such a fragment is determinable from
87 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
88 *
89 * The file system records space availability at the fragment level;
90 * to determine block availability, aligned fragments are examined.
91 */
92
93 /*
94 * MINBSIZE is the smallest allowable block size.
95 * In order to insure that it is possible to create files of size
96 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
97 * MINBSIZE must be big enough to hold a cylinder group block,
98 * thus changes to (struct cg) must keep its size within MINBSIZE.
99 * Note that super blocks are always of size SBSIZE,
100 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
101 */
102 #define MINBSIZE 4096
103
104 /*
105 * The path name on which the file system is mounted is maintained
106 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
107 * the super block for this name.
108 */
109 #define MAXMNTLEN 512
110
111 /*
112 * The limit on the amount of summary information per file system
113 * is defined by MAXCSBUFS. It is currently parameterized for a
114 * size of 128 bytes (2 million cylinder groups on machines with
115 * 32-bit pointers, and 1 million on 64-bit machines). One pointer
116 * is taken away to point to an array of cluster sizes that is
117 * computed as cylinder groups are inspected.
118 */
119 #define MAXCSBUFS ((128 / sizeof(void *)) - 1)
120
121 /*
122 * A summary of contiguous blocks of various sizes is maintained
123 * in each cylinder group. Normally this is set by the initial
124 * value of fs_maxcontig. To conserve space, a maximum summary size
125 * is set by FS_MAXCONTIG.
126 */
127 #define FS_MAXCONTIG 16
128
129 /*
130 * MINFREE gives the minimum acceptable percentage of file system
131 * blocks which may be free. If the freelist drops below this level
132 * only the superuser may continue to allocate blocks. This may
133 * be set to 0 if no reserve of free blocks is deemed necessary,
134 * however throughput drops by fifty percent if the file system
135 * is run at between 95% and 100% full; thus the minimum default
136 * value of fs_minfree is 5%. However, to get good clustering
137 * performance, 10% is a better choice. hence we use 10% as our
138 * default value. With 10% free space, fragmentation is not a
139 * problem, so we choose to optimize for time.
140 */
141 #define MINFREE 5
142 #define DEFAULTOPT FS_OPTTIME
143
144 /*
145 * Per cylinder group information; summarized in blocks allocated
146 * from first cylinder group data blocks. These blocks have to be
147 * read in from fs_csaddr (size fs_cssize) in addition to the
148 * super block.
149 *
150 * N.B. sizeof(struct csum) must be a power of two in order for
151 * the ``fs_cs'' macro to work (see below).
152 */
153 struct csum {
154 int32_t cs_ndir; /* number of directories */
155 int32_t cs_nbfree; /* number of free blocks */
156 int32_t cs_nifree; /* number of free inodes */
157 int32_t cs_nffree; /* number of free frags */
158 };
159
160 /*
161 * Super block for an FFS file system in memory.
162 */
163 struct fs {
164 int32_t fs_firstfield; /* historic file system linked list, */
165 int32_t fs_unused_1; /* used for incore super blocks */
166 ufs_daddr_t fs_sblkno; /* addr of super-block in filesys */
167 ufs_daddr_t fs_cblkno; /* offset of cyl-block in filesys */
168 ufs_daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
169 ufs_daddr_t fs_dblkno; /* offset of first data after cg */
170 int32_t fs_cgoffset; /* cylinder group offset in cylinder */
171 int32_t fs_cgmask; /* used to calc mod fs_ntrak */
172 int32_t fs_time; /* last time written */
173 int32_t fs_size; /* number of blocks in fs */
174 int32_t fs_dsize; /* number of data blocks in fs */
175 int32_t fs_ncg; /* number of cylinder groups */
176 int32_t fs_bsize; /* size of basic blocks in fs */
177 int32_t fs_fsize; /* size of frag blocks in fs */
178 int32_t fs_frag; /* number of frags in a block in fs */
179 /* these are configuration parameters */
180 int32_t fs_minfree; /* minimum percentage of free blocks */
181 int32_t fs_rotdelay; /* num of ms for optimal next block */
182 int32_t fs_rps; /* disk revolutions per second */
183 /* these fields can be computed from the others */
184 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */
185 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */
186 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */
187 int32_t fs_fshift; /* ``numfrags'' calc number of frags */
188 /* these are configuration parameters */
189 int32_t fs_maxcontig; /* max number of contiguous blks */
190 int32_t fs_maxbpg; /* max number of blks per cyl group */
191 /* these fields can be computed from the others */
192 int32_t fs_fragshift; /* block to frag shift */
193 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
194 int32_t fs_sbsize; /* actual size of super block */
195 int32_t fs_csmask; /* csum block offset */
196 int32_t fs_csshift; /* csum block number */
197 int32_t fs_nindir; /* value of NINDIR */
198 int32_t fs_inopb; /* value of INOPB */
199 int32_t fs_nspf; /* value of NSPF */
200 /* yet another configuration parameter */
201 int32_t fs_optim; /* optimization preference, see below */
202 /* these fields are derived from the hardware */
203 int32_t fs_npsect; /* # sectors/track including spares */
204 int32_t fs_interleave; /* hardware sector interleave */
205 int32_t fs_trackskew; /* sector 0 skew, per track */
206 int32_t fs_headswitch; /* head switch time, usec (UNUSED) */
207 int32_t fs_trkseek; /* track-to-track seek, usec (UNUSED) */
208 /* sizes determined by number of cylinder groups and their sizes */
209 ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
210 int32_t fs_cssize; /* size of cyl grp summary area */
211 int32_t fs_cgsize; /* cylinder group size */
212 /* these fields are derived from the hardware */
213 int32_t fs_ntrak; /* tracks per cylinder */
214 int32_t fs_nsect; /* sectors per track */
215 int32_t fs_spc; /* sectors per cylinder */
216 /* this comes from the disk driver partitioning */
217 int32_t fs_ncyl; /* cylinders in file system */
218 /* these fields can be computed from the others */
219 int32_t fs_cpg; /* cylinders per group */
220 int32_t fs_ipg; /* inodes per group */
221 int32_t fs_fpg; /* blocks per group * fs_frag */
222 /* this data must be re-computed after crashes */
223 struct csum fs_cstotal; /* cylinder summary information */
224 /* these fields are cleared at mount time */
225 int8_t fs_fmod; /* super block modified flag */
226 int8_t fs_clean; /* file system is clean flag */
227 int8_t fs_ronly; /* mounted read-only flag */
228 int8_t fs_flags; /* see FS_ flags below */
229 u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
230 /* these fields retain the current block allocation info */
231 int32_t fs_cgrotor; /* last cg searched */
232 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
233 int32_t *fs_maxcluster; /* max cluster in each cyl group */
234 int32_t fs_cpc; /* cyl per cycle in postbl */
235 int16_t fs_opostbl[16][8]; /* old rotation block list head */
236 int32_t fs_sparecon[49]; /* reserved for future constants */
237 int32_t fs_fscktime; /* last time fsck(8)ed */
238 int32_t fs_contigsumsize; /* size of cluster summary array */
239 int32_t fs_maxsymlinklen; /* max length of an internal symlink */
240 int32_t fs_inodefmt; /* format of on-disk inodes */
241 u_int64_t fs_maxfilesize; /* maximum representable file size */
242 int64_t fs_qbmask; /* ~fs_bmask - for use with quad size */
243 int64_t fs_qfmask; /* ~fs_fmask - for use with quad size */
244 int32_t fs_state; /* validate fs_clean field (UNUSED) */
245 int32_t fs_postblformat; /* format of positional layout tables */
246 int32_t fs_nrpos; /* number of rotational positions */
247 int32_t fs_postbloff; /* (u_int16) rotation block list head */
248 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */
249 int32_t fs_magic; /* magic number */
250 u_int8_t fs_space[1]; /* list of blocks for each rotation */
251 /* actually longer */
252 };
253
254 /*
255 * Filesystem identification
256 */
257 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
258 #define FS_OKAY 0x7c269d38 /* superblock checksum */
259 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
260 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
261
262 /*
263 * Filesystem clean flags
264 */
265 #define FS_ISCLEAN 0x01
266 #define FS_WASCLEAN 0x02
267
268 /*
269 * Preference for optimization.
270 */
271 #define FS_OPTTIME 0 /* minimize allocation time */
272 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
273
274 /*
275 * Filesystem flags.
276 */
277 #define FS_UNCLEAN 0x01 /* filesystem not clean at mount (unused) */
278 #define FS_DOSOFTDEP 0x02 /* filesystem using soft dependencies */
279
280 /*
281 * Filesystem internal flags, also in fs_flags
282 */
283 #define FS_SWAPPED 0x80 /* pick highest, avoid conflicts with others */
284 #define FS_INTERNAL 0x80 /* mask for internal flags */
285
286 /*
287 * Rotational layout table format types
288 */
289 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
290 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
291 /*
292 * Macros for access to superblock array structures
293 */
294 #define fs_postbl(fs, cylno) \
295 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
296 ? ((fs)->fs_opostbl[cylno]) \
297 : ((int16_t *)((u_int8_t *)(fs) + \
298 (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
299 #define fs_rotbl(fs) \
300 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
301 ? ((fs)->fs_space) \
302 : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff)))
303
304 /*
305 * The size of a cylinder group is calculated by CGSIZE. The maximum size
306 * is limited by the fact that cylinder groups are at most one block.
307 * Its size is derived from the size of the maps maintained in the
308 * cylinder group and the (struct cg) size.
309 */
310 #define CGSIZE(fs) \
311 /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \
312 /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \
313 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \
314 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
315 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
316 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
317 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \
318 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
319
320 /*
321 * Convert cylinder group to base address of its global summary info.
322 *
323 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
324 */
325 #define fs_cs(fs, indx) \
326 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
327
328 /*
329 * Cylinder group block for a file system.
330 */
331 #define CG_MAGIC 0x090255
332 struct cg {
333 int32_t cg_firstfield; /* historic cyl groups linked list */
334 int32_t cg_magic; /* magic number */
335 int32_t cg_time; /* time last written */
336 int32_t cg_cgx; /* we are the cgx'th cylinder group */
337 int16_t cg_ncyl; /* number of cyl's this cg */
338 int16_t cg_niblk; /* number of inode blocks this cg */
339 int32_t cg_ndblk; /* number of data blocks this cg */
340 struct csum cg_cs; /* cylinder summary information */
341 int32_t cg_rotor; /* position of last used block */
342 int32_t cg_frotor; /* position of last used frag */
343 int32_t cg_irotor; /* position of last used inode */
344 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
345 int32_t cg_btotoff; /* (int32) block totals per cylinder */
346 int32_t cg_boff; /* (u_int16) free block positions */
347 int32_t cg_iusedoff; /* (u_int8) used inode map */
348 int32_t cg_freeoff; /* (u_int8) free block map */
349 int32_t cg_nextfreeoff; /* (u_int8) next available space */
350 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */
351 int32_t cg_clusteroff; /* (u_int8) free cluster map */
352 int32_t cg_nclusterblks; /* number of clusters this cg */
353 int32_t cg_sparecon[13]; /* reserved for future use */
354 u_int8_t cg_space[1]; /* space for cylinder group maps */
355 /* actually longer */
356 };
357
358 /*
359 * Macros for access to cylinder group array structures
360 */
361 #define cg_blktot(cgp, ns) \
362 ((ufs_rw32((cgp)->cg_magic, (ns)) != CG_MAGIC) \
363 ? (((struct ocg *)(cgp))->cg_btot) \
364 : ((int32_t *)((u_int8_t *)(cgp) + \
365 ufs_rw32((cgp)->cg_btotoff, (ns)))))
366 #define cg_blks(fs, cgp, cylno, ns) \
367 ((ufs_rw32((cgp)->cg_magic, ns) != CG_MAGIC) \
368 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
369 : ((int16_t *)((u_int8_t *)(cgp) + \
370 ufs_rw32((cgp)->cg_boff, (ns))) + \
371 (cylno) * (fs)->fs_nrpos))
372 #define cg_inosused(cgp, ns) \
373 ((ufs_rw32((cgp)->cg_magic, (ns)) != CG_MAGIC) \
374 ? (((struct ocg *)(cgp))->cg_iused) \
375 : ((u_int8_t *)((u_int8_t *)(cgp) + \
376 ufs_rw32((cgp)->cg_iusedoff, (ns)))))
377 #define cg_blksfree(cgp, ns) \
378 ((ufs_rw32((cgp)->cg_magic, (ns)) != CG_MAGIC) \
379 ? (((struct ocg *)(cgp))->cg_free) \
380 : ((u_int8_t *)((u_int8_t *)(cgp) + \
381 ufs_rw32((cgp)->cg_freeoff, (ns)))))
382 #define cg_chkmagic(cgp, ns) \
383 (ufs_rw32((cgp)->cg_magic, (ns)) == CG_MAGIC || \
384 ufs_rw32(((struct ocg *)(cgp))->cg_magic, (ns)) == \
385 CG_MAGIC)
386 #define cg_clustersfree(cgp, ns) \
387 ((u_int8_t *)((u_int8_t *)(cgp) + \
388 ufs_rw32((cgp)->cg_clusteroff, (ns))))
389 #define cg_clustersum(cgp, ns) \
390 ((int32_t *)((u_int8_t *)(cgp) + \
391 ufs_rw32((cgp)->cg_clustersumoff, (ns))))
392
393 /*
394 * The following structure is defined
395 * for compatibility with old file systems.
396 */
397 struct ocg {
398 int32_t cg_firstfield; /* historic linked list of cyl groups */
399 int32_t cg_unused_1; /* used for incore cyl groups */
400 int32_t cg_time; /* time last written */
401 int32_t cg_cgx; /* we are the cgx'th cylinder group */
402 int16_t cg_ncyl; /* number of cyl's this cg */
403 int16_t cg_niblk; /* number of inode blocks this cg */
404 int32_t cg_ndblk; /* number of data blocks this cg */
405 struct csum cg_cs; /* cylinder summary information */
406 int32_t cg_rotor; /* position of last used block */
407 int32_t cg_frotor; /* position of last used frag */
408 int32_t cg_irotor; /* position of last used inode */
409 int32_t cg_frsum[8]; /* counts of available frags */
410 int32_t cg_btot[32]; /* block totals per cylinder */
411 int16_t cg_b[32][8]; /* positions of free blocks */
412 u_int8_t cg_iused[256]; /* used inode map */
413 int32_t cg_magic; /* magic number */
414 u_int8_t cg_free[1]; /* free block map */
415 /* actually longer */
416 };
417
418 /*
419 * Turn file system block numbers into disk block addresses.
420 * This maps file system blocks to device size blocks.
421 */
422 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
423 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
424
425 /*
426 * Cylinder group macros to locate things in cylinder groups.
427 * They calc file system addresses of cylinder group data structures.
428 */
429 #define cgbase(fs, c) ((ufs_daddr_t)((fs)->fs_fpg * (c)))
430 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
431 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
432 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
433 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
434 #define cgstart(fs, c) \
435 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
436
437 /*
438 * Macros for handling inode numbers:
439 * inode number to file system block offset.
440 * inode number to cylinder group number.
441 * inode number to file system block address.
442 */
443 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
444 #define ino_to_fsba(fs, x) \
445 ((ufs_daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
446 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
447 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
448
449 /*
450 * Give cylinder group number for a file system block.
451 * Give cylinder group block number for a file system block.
452 */
453 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
454 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
455
456 /*
457 * Extract the bits for a block from a map.
458 * Compute the cylinder and rotational position of a cyl block addr.
459 */
460 #define blkmap(fs, map, loc) \
461 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
462 #define cbtocylno(fs, bno) \
463 ((bno) * NSPF(fs) / (fs)->fs_spc)
464 #define cbtorpos(fs, bno) \
465 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
466 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
467 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
468
469 /*
470 * The following macros optimize certain frequently calculated
471 * quantities by using shifts and masks in place of divisions
472 * modulos and multiplications.
473 */
474 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
475 ((loc) & (fs)->fs_qbmask)
476 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
477 ((loc) & (fs)->fs_qfmask)
478 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
479 ((blk) << (fs)->fs_bshift)
480 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
481 ((loc) >> (fs)->fs_bshift)
482 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
483 ((loc) >> (fs)->fs_fshift)
484 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
485 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
486 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
487 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
488 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
489 ((frags) >> (fs)->fs_fragshift)
490 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
491 ((blks) << (fs)->fs_fragshift)
492 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
493 ((fsb) & ((fs)->fs_frag - 1))
494 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
495 ((fsb) &~ ((fs)->fs_frag - 1))
496
497 /*
498 * Determine the number of available frags given a
499 * percentage to hold in reserve.
500 */
501 #define freespace(fs, percentreserved) \
502 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
503 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
504
505 /*
506 * Determining the size of a file block in the file system.
507 */
508 #define blksize(fs, ip, lbn) \
509 (((lbn) >= NDADDR || (ip)->i_ffs_size >= ((lbn) + 1) << (fs)->fs_bshift) \
510 ? (fs)->fs_bsize \
511 : (fragroundup(fs, blkoff(fs, (ip)->i_ffs_size))))
512 #define dblksize(fs, dip, lbn) \
513 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
514 ? (fs)->fs_bsize \
515 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
516 #define sblksize(fs, size, lbn) \
517 (((lbn) >= NDADDR || (size) >= ((lbn) + 1) << (fs)->fs_bshift) \
518 ? (fs)->fs_bsize \
519 : (fragroundup(fs, blkoff(fs, (size)))))
520
521 /*
522 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
523 * sector size.
524 */
525 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
526 #define NSPF(fs) ((fs)->fs_nspf)
527
528 /*
529 * Number of inodes in a secondary storage block/fragment.
530 */
531 #define INOPB(fs) ((fs)->fs_inopb)
532 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
533
534 /*
535 * Number of indirects in a file system block.
536 */
537 #define NINDIR(fs) ((fs)->fs_nindir)
538
539 #endif /* !_UFS_FFS_FS_H_ */
540