fs.h revision 1.2 1 /* $NetBSD: fs.h,v 1.2 1994/06/29 06:46:40 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)fs.h 8.7 (Berkeley) 4/19/94
36 */
37
38 /*
39 * Each disk drive contains some number of file systems.
40 * A file system consists of a number of cylinder groups.
41 * Each cylinder group has inodes and data.
42 *
43 * A file system is described by its super-block, which in turn
44 * describes the cylinder groups. The super-block is critical
45 * data and is replicated in each cylinder group to protect against
46 * catastrophic loss. This is done at `newfs' time and the critical
47 * super-block data does not change, so the copies need not be
48 * referenced further unless disaster strikes.
49 *
50 * For file system fs, the offsets of the various blocks of interest
51 * are given in the super block as:
52 * [fs->fs_sblkno] Super-block
53 * [fs->fs_cblkno] Cylinder group block
54 * [fs->fs_iblkno] Inode blocks
55 * [fs->fs_dblkno] Data blocks
56 * The beginning of cylinder group cg in fs, is given by
57 * the ``cgbase(fs, cg)'' macro.
58 *
59 * The first boot and super blocks are given in absolute disk addresses.
60 * The byte-offset forms are preferred, as they don't imply a sector size.
61 */
62 #define BBSIZE 8192
63 #define SBSIZE 8192
64 #define BBOFF ((off_t)(0))
65 #define SBOFF ((off_t)(BBOFF + BBSIZE))
66 #define BBLOCK ((daddr_t)(0))
67 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
68
69 /*
70 * Addresses stored in inodes are capable of addressing fragments
71 * of `blocks'. File system blocks of at most size MAXBSIZE can
72 * be optionally broken into 2, 4, or 8 pieces, each of which is
73 * addressible; these pieces may be DEV_BSIZE, or some multiple of
74 * a DEV_BSIZE unit.
75 *
76 * Large files consist of exclusively large data blocks. To avoid
77 * undue wasted disk space, the last data block of a small file may be
78 * allocated as only as many fragments of a large block as are
79 * necessary. The file system format retains only a single pointer
80 * to such a fragment, which is a piece of a single large block that
81 * has been divided. The size of such a fragment is determinable from
82 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
83 *
84 * The file system records space availability at the fragment level;
85 * to determine block availability, aligned fragments are examined.
86 */
87
88 /*
89 * MINBSIZE is the smallest allowable block size.
90 * In order to insure that it is possible to create files of size
91 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
92 * MINBSIZE must be big enough to hold a cylinder group block,
93 * thus changes to (struct cg) must keep its size within MINBSIZE.
94 * Note that super blocks are always of size SBSIZE,
95 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
96 */
97 #define MINBSIZE 4096
98
99 /*
100 * The path name on which the file system is mounted is maintained
101 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
102 * the super block for this name.
103 * The limit on the amount of summary information per file system
104 * is defined by MAXCSBUFS. It is currently parameterized for a
105 * maximum of two million cylinders.
106 */
107 #define MAXMNTLEN 512
108 #define MAXCSBUFS 32
109
110 /*
111 * A summary of contiguous blocks of various sizes is maintained
112 * in each cylinder group. Normally this is set by the initial
113 * value of fs_maxcontig. To conserve space, a maximum summary size
114 * is set by FS_MAXCONTIG.
115 */
116 #define FS_MAXCONTIG 16
117
118 /*
119 * MINFREE gives the minimum acceptable percentage of file system
120 * blocks which may be free. If the freelist drops below this level
121 * only the superuser may continue to allocate blocks. This may
122 * be set to 0 if no reserve of free blocks is deemed necessary,
123 * however throughput drops by fifty percent if the file system
124 * is run at between 95% and 100% full; thus the minimum default
125 * value of fs_minfree is 5%. However, to get good clustering
126 * performance, 10% is a better choice. hence we use 10% as our
127 * default value. With 10% free space, fragmentation is not a
128 * problem, so we choose to optimize for time.
129 */
130 #define MINFREE 5
131 #define DEFAULTOPT FS_OPTTIME
132
133 /*
134 * Per cylinder group information; summarized in blocks allocated
135 * from first cylinder group data blocks. These blocks have to be
136 * read in from fs_csaddr (size fs_cssize) in addition to the
137 * super block.
138 *
139 * N.B. sizeof(struct csum) must be a power of two in order for
140 * the ``fs_cs'' macro to work (see below).
141 */
142 struct csum {
143 long cs_ndir; /* number of directories */
144 long cs_nbfree; /* number of free blocks */
145 long cs_nifree; /* number of free inodes */
146 long cs_nffree; /* number of free frags */
147 };
148
149 /*
150 * Super block for a file system.
151 */
152 struct fs {
153 struct fs *fs_link; /* linked list of file systems */
154 struct fs *fs_rlink; /* used for incore super blocks */
155 daddr_t fs_sblkno; /* addr of super-block in filesys */
156 daddr_t fs_cblkno; /* offset of cyl-block in filesys */
157 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
158 daddr_t fs_dblkno; /* offset of first data after cg */
159 long fs_cgoffset; /* cylinder group offset in cylinder */
160 long fs_cgmask; /* used to calc mod fs_ntrak */
161 time_t fs_time; /* last time written */
162 long fs_size; /* number of blocks in fs */
163 long fs_dsize; /* number of data blocks in fs */
164 long fs_ncg; /* number of cylinder groups */
165 long fs_bsize; /* size of basic blocks in fs */
166 long fs_fsize; /* size of frag blocks in fs */
167 long fs_frag; /* number of frags in a block in fs */
168 /* these are configuration parameters */
169 long fs_minfree; /* minimum percentage of free blocks */
170 long fs_rotdelay; /* num of ms for optimal next block */
171 long fs_rps; /* disk revolutions per second */
172 /* these fields can be computed from the others */
173 long fs_bmask; /* ``blkoff'' calc of blk offsets */
174 long fs_fmask; /* ``fragoff'' calc of frag offsets */
175 long fs_bshift; /* ``lblkno'' calc of logical blkno */
176 long fs_fshift; /* ``numfrags'' calc number of frags */
177 /* these are configuration parameters */
178 long fs_maxcontig; /* max number of contiguous blks */
179 long fs_maxbpg; /* max number of blks per cyl group */
180 /* these fields can be computed from the others */
181 long fs_fragshift; /* block to frag shift */
182 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
183 long fs_sbsize; /* actual size of super block */
184 long fs_csmask; /* csum block offset */
185 long fs_csshift; /* csum block number */
186 long fs_nindir; /* value of NINDIR */
187 long fs_inopb; /* value of INOPB */
188 long fs_nspf; /* value of NSPF */
189 /* yet another configuration parameter */
190 long fs_optim; /* optimization preference, see below */
191 /* these fields are derived from the hardware */
192 long fs_npsect; /* # sectors/track including spares */
193 long fs_interleave; /* hardware sector interleave */
194 long fs_trackskew; /* sector 0 skew, per track */
195 long fs_headswitch; /* head switch time, usec */
196 long fs_trkseek; /* track-to-track seek, usec */
197 /* sizes determined by number of cylinder groups and their sizes */
198 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
199 long fs_cssize; /* size of cyl grp summary area */
200 long fs_cgsize; /* cylinder group size */
201 /* these fields are derived from the hardware */
202 long fs_ntrak; /* tracks per cylinder */
203 long fs_nsect; /* sectors per track */
204 long fs_spc; /* sectors per cylinder */
205 /* this comes from the disk driver partitioning */
206 long fs_ncyl; /* cylinders in file system */
207 /* these fields can be computed from the others */
208 long fs_cpg; /* cylinders per group */
209 long fs_ipg; /* inodes per group */
210 long fs_fpg; /* blocks per group * fs_frag */
211 /* this data must be re-computed after crashes */
212 struct csum fs_cstotal; /* cylinder summary information */
213 /* these fields are cleared at mount time */
214 char fs_fmod; /* super block modified flag */
215 char fs_clean; /* file system is clean flag */
216 char fs_ronly; /* mounted read-only flag */
217 char fs_flags; /* currently unused flag */
218 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
219 /* these fields retain the current block allocation info */
220 long fs_cgrotor; /* last cg searched */
221 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
222 long fs_cpc; /* cyl per cycle in postbl */
223 short fs_opostbl[16][8]; /* old rotation block list head */
224 long fs_sparecon[50]; /* reserved for future constants */
225 long fs_contigsumsize; /* size of cluster summary array */
226 long fs_maxsymlinklen; /* max length of an internal symlink */
227 long fs_inodefmt; /* format of on-disk inodes */
228 u_quad_t fs_maxfilesize; /* maximum representable file size */
229 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */
230 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */
231 long fs_state; /* validate fs_clean field */
232 long fs_postblformat; /* format of positional layout tables */
233 long fs_nrpos; /* number of rotational positions */
234 long fs_postbloff; /* (short) rotation block list head */
235 long fs_rotbloff; /* (u_char) blocks for each rotation */
236 long fs_magic; /* magic number */
237 u_char fs_space[1]; /* list of blocks for each rotation */
238 /* actually longer */
239 };
240 /*
241 * Filesystem idetification
242 */
243 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
244 #define FS_OKAY 0x7c269d38 /* superblock checksum */
245 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
246 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
247 /*
248 * Preference for optimization.
249 */
250 #define FS_OPTTIME 0 /* minimize allocation time */
251 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
252
253 /*
254 * Rotational layout table format types
255 */
256 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
257 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
258 /*
259 * Macros for access to superblock array structures
260 */
261 #define fs_postbl(fs, cylno) \
262 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
263 ? ((fs)->fs_opostbl[cylno]) \
264 : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
265 #define fs_rotbl(fs) \
266 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
267 ? ((fs)->fs_space) \
268 : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff)))
269
270 /*
271 * The size of a cylinder group is calculated by CGSIZE. The maximum size
272 * is limited by the fact that cylinder groups are at most one block.
273 * Its size is derived from the size of the maps maintained in the
274 * cylinder group and the (struct cg) size.
275 */
276 #define CGSIZE(fs) \
277 /* base cg */ (sizeof(struct cg) + sizeof(long) + \
278 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \
279 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
280 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
281 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
282 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
283 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(long) + \
284 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
285
286 /*
287 * Convert cylinder group to base address of its global summary info.
288 *
289 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
290 */
291 #define fs_cs(fs, indx) \
292 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
293
294 /*
295 * Cylinder group block for a file system.
296 */
297 #define CG_MAGIC 0x090255
298 struct cg {
299 struct cg *cg_link; /* linked list of cyl groups */
300 long cg_magic; /* magic number */
301 time_t cg_time; /* time last written */
302 long cg_cgx; /* we are the cgx'th cylinder group */
303 short cg_ncyl; /* number of cyl's this cg */
304 short cg_niblk; /* number of inode blocks this cg */
305 long cg_ndblk; /* number of data blocks this cg */
306 struct csum cg_cs; /* cylinder summary information */
307 long cg_rotor; /* position of last used block */
308 long cg_frotor; /* position of last used frag */
309 long cg_irotor; /* position of last used inode */
310 long cg_frsum[MAXFRAG]; /* counts of available frags */
311 long cg_btotoff; /* (long) block totals per cylinder */
312 long cg_boff; /* (short) free block positions */
313 long cg_iusedoff; /* (char) used inode map */
314 long cg_freeoff; /* (u_char) free block map */
315 long cg_nextfreeoff; /* (u_char) next available space */
316 long cg_clustersumoff; /* (long) counts of avail clusters */
317 long cg_clusteroff; /* (char) free cluster map */
318 long cg_nclusterblks; /* number of clusters this cg */
319 long cg_sparecon[13]; /* reserved for future use */
320 u_char cg_space[1]; /* space for cylinder group maps */
321 /* actually longer */
322 };
323 /*
324 * Macros for access to cylinder group array structures
325 */
326 #define cg_blktot(cgp) \
327 (((cgp)->cg_magic != CG_MAGIC) \
328 ? (((struct ocg *)(cgp))->cg_btot) \
329 : ((long *)((char *)(cgp) + (cgp)->cg_btotoff)))
330 #define cg_blks(fs, cgp, cylno) \
331 (((cgp)->cg_magic != CG_MAGIC) \
332 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
333 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
334 #define cg_inosused(cgp) \
335 (((cgp)->cg_magic != CG_MAGIC) \
336 ? (((struct ocg *)(cgp))->cg_iused) \
337 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff)))
338 #define cg_blksfree(cgp) \
339 (((cgp)->cg_magic != CG_MAGIC) \
340 ? (((struct ocg *)(cgp))->cg_free) \
341 : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff)))
342 #define cg_chkmagic(cgp) \
343 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
344 #define cg_clustersfree(cgp) \
345 ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff))
346 #define cg_clustersum(cgp) \
347 ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff))
348
349 /*
350 * The following structure is defined
351 * for compatibility with old file systems.
352 */
353 struct ocg {
354 struct ocg *cg_link; /* linked list of cyl groups */
355 struct ocg *cg_rlink; /* used for incore cyl groups */
356 time_t cg_time; /* time last written */
357 long cg_cgx; /* we are the cgx'th cylinder group */
358 short cg_ncyl; /* number of cyl's this cg */
359 short cg_niblk; /* number of inode blocks this cg */
360 long cg_ndblk; /* number of data blocks this cg */
361 struct csum cg_cs; /* cylinder summary information */
362 long cg_rotor; /* position of last used block */
363 long cg_frotor; /* position of last used frag */
364 long cg_irotor; /* position of last used inode */
365 long cg_frsum[8]; /* counts of available frags */
366 long cg_btot[32]; /* block totals per cylinder */
367 short cg_b[32][8]; /* positions of free blocks */
368 char cg_iused[256]; /* used inode map */
369 long cg_magic; /* magic number */
370 u_char cg_free[1]; /* free block map */
371 /* actually longer */
372 };
373
374 /*
375 * Turn file system block numbers into disk block addresses.
376 * This maps file system blocks to device size blocks.
377 */
378 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
379 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
380
381 /*
382 * Cylinder group macros to locate things in cylinder groups.
383 * They calc file system addresses of cylinder group data structures.
384 */
385 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
386 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
387 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
388 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
389 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
390 #define cgstart(fs, c) \
391 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
392
393 /*
394 * Macros for handling inode numbers:
395 * inode number to file system block offset.
396 * inode number to cylinder group number.
397 * inode number to file system block address.
398 */
399 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
400 #define ino_to_fsba(fs, x) \
401 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
402 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
403 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
404
405 /*
406 * Give cylinder group number for a file system block.
407 * Give cylinder group block number for a file system block.
408 */
409 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
410 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
411
412 /*
413 * Extract the bits for a block from a map.
414 * Compute the cylinder and rotational position of a cyl block addr.
415 */
416 #define blkmap(fs, map, loc) \
417 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
418 #define cbtocylno(fs, bno) \
419 ((bno) * NSPF(fs) / (fs)->fs_spc)
420 #define cbtorpos(fs, bno) \
421 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
422 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
423 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
424
425 /*
426 * The following macros optimize certain frequently calculated
427 * quantities by using shifts and masks in place of divisions
428 * modulos and multiplications.
429 */
430 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
431 ((loc) & (fs)->fs_qbmask)
432 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
433 ((loc) & (fs)->fs_qfmask)
434 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
435 ((blk) << (fs)->fs_bshift)
436 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
437 ((loc) >> (fs)->fs_bshift)
438 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
439 ((loc) >> (fs)->fs_fshift)
440 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
441 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
442 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
443 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
444 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
445 ((frags) >> (fs)->fs_fragshift)
446 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
447 ((blks) << (fs)->fs_fragshift)
448 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
449 ((fsb) & ((fs)->fs_frag - 1))
450 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
451 ((fsb) &~ ((fs)->fs_frag - 1))
452
453 /*
454 * Determine the number of available frags given a
455 * percentage to hold in reserve
456 */
457 #define freespace(fs, percentreserved) \
458 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
459 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
460
461 /*
462 * Determining the size of a file block in the file system.
463 */
464 #define blksize(fs, ip, lbn) \
465 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
466 ? (fs)->fs_bsize \
467 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
468 #define dblksize(fs, dip, lbn) \
469 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
470 ? (fs)->fs_bsize \
471 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
472
473 /*
474 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
475 */
476 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
477 #define NSPF(fs) ((fs)->fs_nspf)
478
479 /*
480 * INOPB is the number of inodes in a secondary storage block.
481 */
482 #define INOPB(fs) ((fs)->fs_inopb)
483 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
484
485 /*
486 * NINDIR is the number of indirects in a file system block.
487 */
488 #define NINDIR(fs) ((fs)->fs_nindir)
489
490 extern int inside[], around[];
491 extern u_char *fragtbl[];
492