fs.h revision 1.4 1 /* $NetBSD: fs.h,v 1.4 1994/12/13 19:10:43 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)fs.h 8.10 (Berkeley) 10/27/94
36 */
37
38 /*
39 * Each disk drive contains some number of file systems.
40 * A file system consists of a number of cylinder groups.
41 * Each cylinder group has inodes and data.
42 *
43 * A file system is described by its super-block, which in turn
44 * describes the cylinder groups. The super-block is critical
45 * data and is replicated in each cylinder group to protect against
46 * catastrophic loss. This is done at `newfs' time and the critical
47 * super-block data does not change, so the copies need not be
48 * referenced further unless disaster strikes.
49 *
50 * For file system fs, the offsets of the various blocks of interest
51 * are given in the super block as:
52 * [fs->fs_sblkno] Super-block
53 * [fs->fs_cblkno] Cylinder group block
54 * [fs->fs_iblkno] Inode blocks
55 * [fs->fs_dblkno] Data blocks
56 * The beginning of cylinder group cg in fs, is given by
57 * the ``cgbase(fs, cg)'' macro.
58 *
59 * The first boot and super blocks are given in absolute disk addresses.
60 * The byte-offset forms are preferred, as they don't imply a sector size.
61 */
62 #define BBSIZE 8192
63 #define SBSIZE 8192
64 #define BBOFF ((off_t)(0))
65 #define SBOFF ((off_t)(BBOFF + BBSIZE))
66 #define BBLOCK ((daddr_t)(0))
67 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
68
69 /*
70 * Addresses stored in inodes are capable of addressing fragments
71 * of `blocks'. File system blocks of at most size MAXBSIZE can
72 * be optionally broken into 2, 4, or 8 pieces, each of which is
73 * addressible; these pieces may be DEV_BSIZE, or some multiple of
74 * a DEV_BSIZE unit.
75 *
76 * Large files consist of exclusively large data blocks. To avoid
77 * undue wasted disk space, the last data block of a small file may be
78 * allocated as only as many fragments of a large block as are
79 * necessary. The file system format retains only a single pointer
80 * to such a fragment, which is a piece of a single large block that
81 * has been divided. The size of such a fragment is determinable from
82 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
83 *
84 * The file system records space availability at the fragment level;
85 * to determine block availability, aligned fragments are examined.
86 */
87
88 /*
89 * MINBSIZE is the smallest allowable block size.
90 * In order to insure that it is possible to create files of size
91 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
92 * MINBSIZE must be big enough to hold a cylinder group block,
93 * thus changes to (struct cg) must keep its size within MINBSIZE.
94 * Note that super blocks are always of size SBSIZE,
95 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
96 */
97 #define MINBSIZE 4096
98
99 /*
100 * The path name on which the file system is mounted is maintained
101 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
102 * the super block for this name.
103 */
104 #define MAXMNTLEN 512
105
106 /*
107 * The limit on the amount of summary information per file system
108 * is defined by MAXCSBUFS. It is currently parameterized for a
109 * size of 128 bytes (2 million cylinder groups on machines with
110 * 32-bit pointers, and 1 million on 64-bit machines). One pointer
111 * is taken away to point to an array of cluster sizes that is
112 * computed as cylinder groups are inspected.
113 */
114 #define MAXCSBUFS (128 / sizeof(void *))
115
116 /*
117 * A summary of contiguous blocks of various sizes is maintained
118 * in each cylinder group. Normally this is set by the initial
119 * value of fs_maxcontig. To conserve space, a maximum summary size
120 * is set by FS_MAXCONTIG.
121 */
122 #define FS_MAXCONTIG 16
123
124 /*
125 * MINFREE gives the minimum acceptable percentage of file system
126 * blocks which may be free. If the freelist drops below this level
127 * only the superuser may continue to allocate blocks. This may
128 * be set to 0 if no reserve of free blocks is deemed necessary,
129 * however throughput drops by fifty percent if the file system
130 * is run at between 95% and 100% full; thus the minimum default
131 * value of fs_minfree is 5%. However, to get good clustering
132 * performance, 10% is a better choice. hence we use 10% as our
133 * default value. With 10% free space, fragmentation is not a
134 * problem, so we choose to optimize for time.
135 */
136 #define MINFREE 5
137 #define DEFAULTOPT FS_OPTTIME
138
139 /*
140 * Per cylinder group information; summarized in blocks allocated
141 * from first cylinder group data blocks. These blocks have to be
142 * read in from fs_csaddr (size fs_cssize) in addition to the
143 * super block.
144 *
145 * N.B. sizeof(struct csum) must be a power of two in order for
146 * the ``fs_cs'' macro to work (see below).
147 */
148 struct csum {
149 int32_t cs_ndir; /* number of directories */
150 int32_t cs_nbfree; /* number of free blocks */
151 int32_t cs_nifree; /* number of free inodes */
152 int32_t cs_nffree; /* number of free frags */
153 };
154
155 /*
156 * Super block for an FFS file system.
157 */
158 struct fs {
159 int32_t fs_firstfield; /* historic file system linked list, */
160 int32_t fs_unused_1; /* used for incore super blocks */
161 daddr_t fs_sblkno; /* addr of super-block in filesys */
162 daddr_t fs_cblkno; /* offset of cyl-block in filesys */
163 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
164 daddr_t fs_dblkno; /* offset of first data after cg */
165 int32_t fs_cgoffset; /* cylinder group offset in cylinder */
166 int32_t fs_cgmask; /* used to calc mod fs_ntrak */
167 time_t fs_time; /* last time written */
168 int32_t fs_size; /* number of blocks in fs */
169 int32_t fs_dsize; /* number of data blocks in fs */
170 int32_t fs_ncg; /* number of cylinder groups */
171 int32_t fs_bsize; /* size of basic blocks in fs */
172 int32_t fs_fsize; /* size of frag blocks in fs */
173 int32_t fs_frag; /* number of frags in a block in fs */
174 /* these are configuration parameters */
175 int32_t fs_minfree; /* minimum percentage of free blocks */
176 int32_t fs_rotdelay; /* num of ms for optimal next block */
177 int32_t fs_rps; /* disk revolutions per second */
178 /* these fields can be computed from the others */
179 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */
180 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */
181 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */
182 int32_t fs_fshift; /* ``numfrags'' calc number of frags */
183 /* these are configuration parameters */
184 int32_t fs_maxcontig; /* max number of contiguous blks */
185 int32_t fs_maxbpg; /* max number of blks per cyl group */
186 /* these fields can be computed from the others */
187 int32_t fs_fragshift; /* block to frag shift */
188 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
189 int32_t fs_sbsize; /* actual size of super block */
190 int32_t fs_csmask; /* csum block offset */
191 int32_t fs_csshift; /* csum block number */
192 int32_t fs_nindir; /* value of NINDIR */
193 int32_t fs_inopb; /* value of INOPB */
194 int32_t fs_nspf; /* value of NSPF */
195 /* yet another configuration parameter */
196 int32_t fs_optim; /* optimization preference, see below */
197 /* these fields are derived from the hardware */
198 int32_t fs_npsect; /* # sectors/track including spares */
199 int32_t fs_interleave; /* hardware sector interleave */
200 int32_t fs_trackskew; /* sector 0 skew, per track */
201 int32_t fs_headswitch; /* head switch time, usec */
202 int32_t fs_trkseek; /* track-to-track seek, usec */
203 /* sizes determined by number of cylinder groups and their sizes */
204 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
205 int32_t fs_cssize; /* size of cyl grp summary area */
206 int32_t fs_cgsize; /* cylinder group size */
207 /* these fields are derived from the hardware */
208 int32_t fs_ntrak; /* tracks per cylinder */
209 int32_t fs_nsect; /* sectors per track */
210 int32_t fs_spc; /* sectors per cylinder */
211 /* this comes from the disk driver partitioning */
212 int32_t fs_ncyl; /* cylinders in file system */
213 /* these fields can be computed from the others */
214 int32_t fs_cpg; /* cylinders per group */
215 int32_t fs_ipg; /* inodes per group */
216 int32_t fs_fpg; /* blocks per group * fs_frag */
217 /* this data must be re-computed after crashes */
218 struct csum fs_cstotal; /* cylinder summary information */
219 /* these fields are cleared at mount time */
220 int8_t fs_fmod; /* super block modified flag */
221 int8_t fs_clean; /* file system is clean flag */
222 int8_t fs_ronly; /* mounted read-only flag */
223 int8_t fs_flags; /* currently unused flag */
224 u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
225 /* these fields retain the current block allocation info */
226 int32_t fs_cgrotor; /* last cg searched */
227 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
228 int32_t fs_cpc; /* cyl per cycle in postbl */
229 int16_t fs_opostbl[16][8]; /* old rotation block list head */
230 int32_t fs_sparecon[50]; /* reserved for future constants */
231 int32_t fs_contigsumsize; /* size of cluster summary array */
232 int32_t fs_maxsymlinklen; /* max length of an internal symlink */
233 int32_t fs_inodefmt; /* format of on-disk inodes */
234 u_int64_t fs_maxfilesize; /* maximum representable file size */
235 int64_t fs_qbmask; /* ~fs_bmask - for use with quad size */
236 int64_t fs_qfmask; /* ~fs_fmask - for use with quad size */
237 int32_t fs_state; /* validate fs_clean field */
238 int32_t fs_postblformat; /* format of positional layout tables */
239 int32_t fs_nrpos; /* number of rotational positions */
240 int32_t fs_postbloff; /* (u_int16) rotation block list head */
241 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */
242 int32_t fs_magic; /* magic number */
243 u_int8_t fs_space[1]; /* list of blocks for each rotation */
244 /* actually longer */
245 };
246
247 /*
248 * Filesystem identification
249 */
250 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */
251 #define FS_OKAY 0x7c269d38 /* superblock checksum */
252 #define FS_42INODEFMT -1 /* 4.2BSD inode format */
253 #define FS_44INODEFMT 2 /* 4.4BSD inode format */
254 /*
255 * Preference for optimization.
256 */
257 #define FS_OPTTIME 0 /* minimize allocation time */
258 #define FS_OPTSPACE 1 /* minimize disk fragmentation */
259
260 /*
261 * Rotational layout table format types
262 */
263 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */
264 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */
265 /*
266 * Macros for access to superblock array structures
267 */
268 #define fs_postbl(fs, cylno) \
269 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
270 ? ((fs)->fs_opostbl[cylno]) \
271 : ((int16_t *)((u_int8_t *)(fs) + \
272 (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
273 #define fs_rotbl(fs) \
274 (((fs)->fs_postblformat == FS_42POSTBLFMT) \
275 ? ((fs)->fs_space) \
276 : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff)))
277
278 /*
279 * The size of a cylinder group is calculated by CGSIZE. The maximum size
280 * is limited by the fact that cylinder groups are at most one block.
281 * Its size is derived from the size of the maps maintained in the
282 * cylinder group and the (struct cg) size.
283 */
284 #define CGSIZE(fs) \
285 /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \
286 /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \
287 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \
288 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
289 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
290 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \
291 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \
292 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
293
294 /*
295 * Convert cylinder group to base address of its global summary info.
296 *
297 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
298 */
299 #define fs_cs(fs, indx) \
300 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
301
302 /*
303 * Cylinder group block for a file system.
304 */
305 #define CG_MAGIC 0x090255
306 struct cg {
307 int32_t cg_firstfield; /* historic cyl groups linked list */
308 int32_t cg_magic; /* magic number */
309 time_t cg_time; /* time last written */
310 int32_t cg_cgx; /* we are the cgx'th cylinder group */
311 int16_t cg_ncyl; /* number of cyl's this cg */
312 int16_t cg_niblk; /* number of inode blocks this cg */
313 int32_t cg_ndblk; /* number of data blocks this cg */
314 struct csum cg_cs; /* cylinder summary information */
315 int32_t cg_rotor; /* position of last used block */
316 int32_t cg_frotor; /* position of last used frag */
317 int32_t cg_irotor; /* position of last used inode */
318 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
319 int32_t cg_btotoff; /* (int32) block totals per cylinder */
320 int32_t cg_boff; /* (u_int16) free block positions */
321 int32_t cg_iusedoff; /* (u_int8) used inode map */
322 int32_t cg_freeoff; /* (u_int8) free block map */
323 int32_t cg_nextfreeoff; /* (u_int8) next available space */
324 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */
325 int32_t cg_clusteroff; /* (u_int8) free cluster map */
326 int32_t cg_nclusterblks; /* number of clusters this cg */
327 int32_t cg_sparecon[13]; /* reserved for future use */
328 u_int8_t cg_space[1]; /* space for cylinder group maps */
329 /* actually longer */
330 };
331
332 /*
333 * Macros for access to cylinder group array structures
334 */
335 #define cg_blktot(cgp) \
336 (((cgp)->cg_magic != CG_MAGIC) \
337 ? (((struct ocg *)(cgp))->cg_btot) \
338 : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff)))
339 #define cg_blks(fs, cgp, cylno) \
340 (((cgp)->cg_magic != CG_MAGIC) \
341 ? (((struct ocg *)(cgp))->cg_b[cylno]) \
342 : ((int16_t *)((u_int8_t *)(cgp) + \
343 (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
344 #define cg_inosused(cgp) \
345 (((cgp)->cg_magic != CG_MAGIC) \
346 ? (((struct ocg *)(cgp))->cg_iused) \
347 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff)))
348 #define cg_blksfree(cgp) \
349 (((cgp)->cg_magic != CG_MAGIC) \
350 ? (((struct ocg *)(cgp))->cg_free) \
351 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff)))
352 #define cg_chkmagic(cgp) \
353 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
354 #define cg_clustersfree(cgp) \
355 ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff))
356 #define cg_clustersum(cgp) \
357 ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff))
358
359 /*
360 * The following structure is defined
361 * for compatibility with old file systems.
362 */
363 struct ocg {
364 int32_t cg_firstfield; /* historic linked list of cyl groups */
365 int32_t cg_unused_1; /* used for incore cyl groups */
366 time_t cg_time; /* time last written */
367 int32_t cg_cgx; /* we are the cgx'th cylinder group */
368 int16_t cg_ncyl; /* number of cyl's this cg */
369 int16_t cg_niblk; /* number of inode blocks this cg */
370 int32_t cg_ndblk; /* number of data blocks this cg */
371 struct csum cg_cs; /* cylinder summary information */
372 int32_t cg_rotor; /* position of last used block */
373 int32_t cg_frotor; /* position of last used frag */
374 int32_t cg_irotor; /* position of last used inode */
375 int32_t cg_frsum[8]; /* counts of available frags */
376 int32_t cg_btot[32]; /* block totals per cylinder */
377 int16_t cg_b[32][8]; /* positions of free blocks */
378 u_int8_t cg_iused[256]; /* used inode map */
379 int32_t cg_magic; /* magic number */
380 u_int8_t cg_free[1]; /* free block map */
381 /* actually longer */
382 };
383
384 /*
385 * Turn file system block numbers into disk block addresses.
386 * This maps file system blocks to device size blocks.
387 */
388 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
389 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb)
390
391 /*
392 * Cylinder group macros to locate things in cylinder groups.
393 * They calc file system addresses of cylinder group data structures.
394 */
395 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
396 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
397 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
398 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
399 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
400 #define cgstart(fs, c) \
401 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
402
403 /*
404 * Macros for handling inode numbers:
405 * inode number to file system block offset.
406 * inode number to cylinder group number.
407 * inode number to file system block address.
408 */
409 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg)
410 #define ino_to_fsba(fs, x) \
411 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \
412 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
413 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs))
414
415 /*
416 * Give cylinder group number for a file system block.
417 * Give cylinder group block number for a file system block.
418 */
419 #define dtog(fs, d) ((d) / (fs)->fs_fpg)
420 #define dtogd(fs, d) ((d) % (fs)->fs_fpg)
421
422 /*
423 * Extract the bits for a block from a map.
424 * Compute the cylinder and rotational position of a cyl block addr.
425 */
426 #define blkmap(fs, map, loc) \
427 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
428 #define cbtocylno(fs, bno) \
429 ((bno) * NSPF(fs) / (fs)->fs_spc)
430 #define cbtorpos(fs, bno) \
431 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
432 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
433 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
434
435 /*
436 * The following macros optimize certain frequently calculated
437 * quantities by using shifts and masks in place of divisions
438 * modulos and multiplications.
439 */
440 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
441 ((loc) & (fs)->fs_qbmask)
442 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
443 ((loc) & (fs)->fs_qfmask)
444 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \
445 ((blk) << (fs)->fs_bshift)
446 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
447 ((loc) >> (fs)->fs_bshift)
448 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
449 ((loc) >> (fs)->fs_fshift)
450 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
451 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
452 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
453 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
454 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
455 ((frags) >> (fs)->fs_fragshift)
456 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
457 ((blks) << (fs)->fs_fragshift)
458 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
459 ((fsb) & ((fs)->fs_frag - 1))
460 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
461 ((fsb) &~ ((fs)->fs_frag - 1))
462
463 /*
464 * Determine the number of available frags given a
465 * percentage to hold in reserve.
466 */
467 #define freespace(fs, percentreserved) \
468 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
469 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
470
471 /*
472 * Determining the size of a file block in the file system.
473 */
474 #define blksize(fs, ip, lbn) \
475 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
476 ? (fs)->fs_bsize \
477 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
478 #define dblksize(fs, dip, lbn) \
479 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
480 ? (fs)->fs_bsize \
481 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
482
483 /*
484 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
485 * sector size.
486 */
487 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift)
488 #define NSPF(fs) ((fs)->fs_nspf)
489
490 /*
491 * Number of inodes in a secondary storage block/fragment.
492 */
493 #define INOPB(fs) ((fs)->fs_inopb)
494 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift)
495
496 /*
497 * Number of indirects in a file system block.
498 */
499 #define NINDIR(fs) ((fs)->fs_nindir)
500
501 extern int inside[], around[];
502 extern u_char *fragtbl[];
503