1 1.52 perseant /* $NetBSD: lfs_accessors.h,v 1.52 2025/09/15 04:14:59 perseant Exp $ */ 2 1.1 dholland 3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */ 4 1.46 dholland /* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */ 5 1.45 dholland /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */ 6 1.1 dholland 7 1.1 dholland /*- 8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 9 1.1 dholland * All rights reserved. 10 1.1 dholland * 11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation 12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>. 13 1.1 dholland * 14 1.1 dholland * Redistribution and use in source and binary forms, with or without 15 1.1 dholland * modification, are permitted provided that the following conditions 16 1.1 dholland * are met: 17 1.1 dholland * 1. Redistributions of source code must retain the above copyright 18 1.1 dholland * notice, this list of conditions and the following disclaimer. 19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright 20 1.1 dholland * notice, this list of conditions and the following disclaimer in the 21 1.1 dholland * documentation and/or other materials provided with the distribution. 22 1.1 dholland * 23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE. 34 1.1 dholland */ 35 1.1 dholland /*- 36 1.1 dholland * Copyright (c) 1991, 1993 37 1.1 dholland * The Regents of the University of California. All rights reserved. 38 1.1 dholland * 39 1.1 dholland * Redistribution and use in source and binary forms, with or without 40 1.1 dholland * modification, are permitted provided that the following conditions 41 1.1 dholland * are met: 42 1.1 dholland * 1. Redistributions of source code must retain the above copyright 43 1.1 dholland * notice, this list of conditions and the following disclaimer. 44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright 45 1.1 dholland * notice, this list of conditions and the following disclaimer in the 46 1.1 dholland * documentation and/or other materials provided with the distribution. 47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors 48 1.1 dholland * may be used to endorse or promote products derived from this software 49 1.1 dholland * without specific prior written permission. 50 1.1 dholland * 51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 1.1 dholland * SUCH DAMAGE. 62 1.1 dholland * 63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95 64 1.1 dholland */ 65 1.1 dholland /* 66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc. 67 1.1 dholland * All rights reserved. 68 1.1 dholland * 69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall 70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security 71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR 72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 73 1.1 dholland * research program 74 1.1 dholland * 75 1.1 dholland * Copyright (c) 1982, 1989, 1993 76 1.1 dholland * The Regents of the University of California. All rights reserved. 77 1.1 dholland * (c) UNIX System Laboratories, Inc. 78 1.1 dholland * All or some portions of this file are derived from material licensed 79 1.1 dholland * to the University of California by American Telephone and Telegraph 80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with 81 1.1 dholland * the permission of UNIX System Laboratories, Inc. 82 1.1 dholland * 83 1.1 dholland * Redistribution and use in source and binary forms, with or without 84 1.1 dholland * modification, are permitted provided that the following conditions 85 1.1 dholland * are met: 86 1.1 dholland * 1. Redistributions of source code must retain the above copyright 87 1.1 dholland * notice, this list of conditions and the following disclaimer. 88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright 89 1.1 dholland * notice, this list of conditions and the following disclaimer in the 90 1.1 dholland * documentation and/or other materials provided with the distribution. 91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors 92 1.1 dholland * may be used to endorse or promote products derived from this software 93 1.1 dholland * without specific prior written permission. 94 1.1 dholland * 95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 105 1.1 dholland * SUCH DAMAGE. 106 1.1 dholland * 107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95 108 1.1 dholland */ 109 1.1 dholland /* 110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993 111 1.1 dholland * The Regents of the University of California. All rights reserved. 112 1.1 dholland * (c) UNIX System Laboratories, Inc. 113 1.1 dholland * All or some portions of this file are derived from material licensed 114 1.1 dholland * to the University of California by American Telephone and Telegraph 115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with 116 1.1 dholland * the permission of UNIX System Laboratories, Inc. 117 1.1 dholland * 118 1.1 dholland * Redistribution and use in source and binary forms, with or without 119 1.1 dholland * modification, are permitted provided that the following conditions 120 1.1 dholland * are met: 121 1.1 dholland * 1. Redistributions of source code must retain the above copyright 122 1.1 dholland * notice, this list of conditions and the following disclaimer. 123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright 124 1.1 dholland * notice, this list of conditions and the following disclaimer in the 125 1.1 dholland * documentation and/or other materials provided with the distribution. 126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors 127 1.1 dholland * may be used to endorse or promote products derived from this software 128 1.1 dholland * without specific prior written permission. 129 1.1 dholland * 130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 140 1.1 dholland * SUCH DAMAGE. 141 1.1 dholland * 142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95 143 1.1 dholland */ 144 1.1 dholland 145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_ 146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_ 147 1.1 dholland 148 1.17 dholland #if defined(_KERNEL_OPT) 149 1.17 dholland #include "opt_lfs.h" 150 1.17 dholland #endif 151 1.17 dholland 152 1.17 dholland #include <sys/bswap.h> 153 1.17 dholland 154 1.43 riastrad #include <ufs/lfs/lfs.h> 155 1.43 riastrad 156 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE) 157 1.11 dholland #include <assert.h> 158 1.43 riastrad #include <string.h> 159 1.11 dholland #define KASSERT assert 160 1.43 riastrad #else 161 1.43 riastrad #include <sys/systm.h> 162 1.11 dholland #endif 163 1.11 dholland 164 1.1 dholland /* 165 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work 166 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to 167 1.9 dholland * get accessors that work with struct clfs. 168 1.9 dholland */ 169 1.9 dholland 170 1.9 dholland #ifndef STRUCT_LFS 171 1.9 dholland #define STRUCT_LFS struct lfs 172 1.9 dholland #endif 173 1.9 dholland 174 1.13 dholland /* 175 1.17 dholland * byte order 176 1.17 dholland */ 177 1.17 dholland 178 1.17 dholland /* 179 1.17 dholland * For now at least, the bootblocks shall not be endian-independent. 180 1.17 dholland * We can see later if it fits in the size budget. Also disable the 181 1.17 dholland * byteswapping if LFS_EI is off. 182 1.17 dholland * 183 1.17 dholland * Caution: these functions "know" that bswap16/32/64 are unsigned, 184 1.17 dholland * and if that changes will likely break silently. 185 1.17 dholland */ 186 1.17 dholland 187 1.17 dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI)) 188 1.17 dholland #define LFS_SWAP_int16_t(fs, val) (val) 189 1.17 dholland #define LFS_SWAP_int32_t(fs, val) (val) 190 1.17 dholland #define LFS_SWAP_int64_t(fs, val) (val) 191 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) (val) 192 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) (val) 193 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) (val) 194 1.17 dholland #else 195 1.17 dholland #define LFS_SWAP_int16_t(fs, val) \ 196 1.17 dholland ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val)) 197 1.17 dholland #define LFS_SWAP_int32_t(fs, val) \ 198 1.17 dholland ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val)) 199 1.17 dholland #define LFS_SWAP_int64_t(fs, val) \ 200 1.17 dholland ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val)) 201 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) \ 202 1.17 dholland ((fs)->lfs_dobyteswap ? bswap16(val) : (val)) 203 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) \ 204 1.17 dholland ((fs)->lfs_dobyteswap ? bswap32(val) : (val)) 205 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) \ 206 1.17 dholland ((fs)->lfs_dobyteswap ? bswap64(val) : (val)) 207 1.17 dholland #endif 208 1.17 dholland 209 1.17 dholland /* 210 1.22 dholland * For handling directories we will need to know if the volume is 211 1.22 dholland * little-endian. 212 1.22 dholland */ 213 1.22 dholland #if BYTE_ORDER == LITTLE_ENDIAN 214 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap) 215 1.22 dholland #else 216 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap) 217 1.22 dholland #endif 218 1.22 dholland 219 1.22 dholland 220 1.22 dholland /* 221 1.50 riastrad * Suppress spurious warnings -- we use 222 1.50 riastrad * 223 1.50 riastrad * type *foo = &obj->member; 224 1.50 riastrad * 225 1.50 riastrad * in macros to verify that obj->member has the right type. When the 226 1.50 riastrad * object is a packed structure with misaligned members, this causes 227 1.50 riastrad * some compiles to squeal that taking the address might lead to 228 1.50 riastrad * undefined behaviour later on -- which is helpful in general, not 229 1.50 riastrad * relevant in this case, because we don't do anything with foo 230 1.50 riastrad * afterward; we only declare it to get a type check and then we 231 1.50 riastrad * discard it. 232 1.50 riastrad */ 233 1.50 riastrad #ifdef __GNUC__ 234 1.50 riastrad #if defined(__clang__) 235 1.50 riastrad #pragma clang diagnostic push 236 1.50 riastrad #pragma clang diagnostic ignored "-Waddress-of-packed-member" 237 1.50 riastrad #elif __GNUC_PREREQ__(9,0) 238 1.50 riastrad #pragma GCC diagnostic push 239 1.50 riastrad #pragma GCC diagnostic ignored "-Waddress-of-packed-member" 240 1.50 riastrad #endif 241 1.50 riastrad #endif 242 1.50 riastrad 243 1.50 riastrad 244 1.50 riastrad 245 1.50 riastrad /* 246 1.22 dholland * directories 247 1.22 dholland */ 248 1.22 dholland 249 1.31 dholland #define LFS_DIRHEADERSIZE(fs) \ 250 1.31 dholland ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32)) 251 1.31 dholland 252 1.22 dholland /* 253 1.22 dholland * The LFS_DIRSIZ macro gives the minimum record length which will hold 254 1.22 dholland * the directory entry. This requires the amount of space in struct lfs_direct 255 1.22 dholland * without the d_name field, plus enough space for the name with a terminating 256 1.22 dholland * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary. 257 1.22 dholland */ 258 1.30 dholland #define LFS_DIRECTSIZ(fs, namlen) \ 259 1.31 dholland (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3)) 260 1.22 dholland 261 1.30 dholland /* 262 1.30 dholland * The size of the largest possible directory entry. This is 263 1.30 dholland * used by ulfs_dirhash to figure the size of an array, so we 264 1.30 dholland * need a single constant value true for both lfs32 and lfs64. 265 1.30 dholland */ 266 1.30 dholland #define LFS_MAXDIRENTRYSIZE \ 267 1.31 dholland (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3)) 268 1.30 dholland 269 1.22 dholland #if (BYTE_ORDER == LITTLE_ENDIAN) 270 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 271 1.22 dholland (((oldfmt) && !(needswap)) ? \ 272 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 273 1.22 dholland #else 274 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 275 1.22 dholland (((oldfmt) && (needswap)) ? \ 276 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 277 1.22 dholland #endif 278 1.22 dholland 279 1.30 dholland #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp)) 280 1.22 dholland 281 1.22 dholland /* Constants for the first argument of LFS_OLDDIRSIZ */ 282 1.22 dholland #define LFS_OLDDIRFMT 1 283 1.22 dholland #define LFS_NEWDIRFMT 0 284 1.22 dholland 285 1.23 dholland #define LFS_NEXTDIR(fs, dp) \ 286 1.31 dholland ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp))) 287 1.23 dholland 288 1.42 christos static __inline char * 289 1.31 dholland lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh) 290 1.26 dholland { 291 1.31 dholland if (fs->lfs_is64) { 292 1.31 dholland return (char *)(&dh->u_64 + 1); 293 1.31 dholland } else { 294 1.31 dholland return (char *)(&dh->u_32 + 1); 295 1.31 dholland } 296 1.26 dholland } 297 1.26 dholland 298 1.42 christos static __inline uint64_t 299 1.31 dholland lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 300 1.23 dholland { 301 1.31 dholland if (fs->lfs_is64) { 302 1.49 riastrad return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino); 303 1.31 dholland } else { 304 1.31 dholland return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino); 305 1.31 dholland } 306 1.23 dholland } 307 1.23 dholland 308 1.42 christos static __inline uint16_t 309 1.31 dholland lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 310 1.23 dholland { 311 1.31 dholland if (fs->lfs_is64) { 312 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen); 313 1.31 dholland } else { 314 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen); 315 1.31 dholland } 316 1.23 dholland } 317 1.23 dholland 318 1.42 christos static __inline uint8_t 319 1.31 dholland lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 320 1.22 dholland { 321 1.31 dholland if (fs->lfs_is64) { 322 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0); 323 1.31 dholland return dh->u_64.dh_type; 324 1.31 dholland } else if (fs->lfs_hasolddirfmt) { 325 1.22 dholland return LFS_DT_UNKNOWN; 326 1.31 dholland } else { 327 1.31 dholland return dh->u_32.dh_type; 328 1.22 dholland } 329 1.22 dholland } 330 1.22 dholland 331 1.42 christos static __inline uint8_t 332 1.31 dholland lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 333 1.22 dholland { 334 1.31 dholland if (fs->lfs_is64) { 335 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0); 336 1.40 dholland return dh->u_64.dh_namlen; 337 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 338 1.22 dholland /* low-order byte of old 16-bit namlen field */ 339 1.31 dholland return dh->u_32.dh_type; 340 1.31 dholland } else { 341 1.31 dholland return dh->u_32.dh_namlen; 342 1.22 dholland } 343 1.22 dholland } 344 1.22 dholland 345 1.42 christos static __inline void 346 1.31 dholland lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino) 347 1.23 dholland { 348 1.31 dholland if (fs->lfs_is64) { 349 1.49 riastrad dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino); 350 1.31 dholland } else { 351 1.31 dholland dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino); 352 1.31 dholland } 353 1.23 dholland } 354 1.23 dholland 355 1.42 christos static __inline void 356 1.31 dholland lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen) 357 1.23 dholland { 358 1.31 dholland if (fs->lfs_is64) { 359 1.31 dholland dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 360 1.31 dholland } else { 361 1.31 dholland dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 362 1.31 dholland } 363 1.23 dholland } 364 1.23 dholland 365 1.42 christos static __inline void 366 1.31 dholland lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type) 367 1.22 dholland { 368 1.31 dholland if (fs->lfs_is64) { 369 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0); 370 1.31 dholland dh->u_64.dh_type = type; 371 1.31 dholland } else if (fs->lfs_hasolddirfmt) { 372 1.22 dholland /* do nothing */ 373 1.22 dholland return; 374 1.31 dholland } else { 375 1.31 dholland dh->u_32.dh_type = type; 376 1.22 dholland } 377 1.22 dholland } 378 1.22 dholland 379 1.42 christos static __inline void 380 1.31 dholland lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen) 381 1.22 dholland { 382 1.31 dholland if (fs->lfs_is64) { 383 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0); 384 1.31 dholland dh->u_64.dh_namlen = namlen; 385 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 386 1.22 dholland /* low-order byte of old 16-bit namlen field */ 387 1.31 dholland dh->u_32.dh_type = namlen; 388 1.31 dholland } else { 389 1.31 dholland dh->u_32.dh_namlen = namlen; 390 1.22 dholland } 391 1.22 dholland } 392 1.22 dholland 393 1.42 christos static __inline void 394 1.25 dholland lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src, 395 1.25 dholland unsigned namlen, unsigned reclen) 396 1.25 dholland { 397 1.28 dholland unsigned spacelen; 398 1.28 dholland 399 1.31 dholland KASSERT(reclen > LFS_DIRHEADERSIZE(fs)); 400 1.31 dholland spacelen = reclen - LFS_DIRHEADERSIZE(fs); 401 1.28 dholland 402 1.25 dholland /* must always be at least 1 byte as a null terminator */ 403 1.28 dholland KASSERT(spacelen > namlen); 404 1.25 dholland 405 1.25 dholland memcpy(dest, src, namlen); 406 1.28 dholland memset(dest + namlen, '\0', spacelen - namlen); 407 1.25 dholland } 408 1.25 dholland 409 1.42 christos static __inline LFS_DIRHEADER * 410 1.31 dholland lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 411 1.31 dholland { 412 1.31 dholland /* XXX blah, be nice to have a way to do this w/o casts */ 413 1.31 dholland if (fs->lfs_is64) { 414 1.31 dholland return (LFS_DIRHEADER *)&dt->u_64.dotdot_header; 415 1.31 dholland } else { 416 1.31 dholland return (LFS_DIRHEADER *)&dt->u_32.dotdot_header; 417 1.31 dholland } 418 1.31 dholland } 419 1.31 dholland 420 1.42 christos static __inline char * 421 1.31 dholland lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 422 1.31 dholland { 423 1.31 dholland if (fs->lfs_is64) { 424 1.31 dholland return dt->u_64.dotdot_name; 425 1.31 dholland } else { 426 1.31 dholland return dt->u_32.dotdot_name; 427 1.31 dholland } 428 1.31 dholland } 429 1.31 dholland 430 1.22 dholland /* 431 1.13 dholland * dinodes 432 1.13 dholland */ 433 1.9 dholland 434 1.9 dholland /* 435 1.1 dholland * Maximum length of a symlink that can be stored within the inode. 436 1.1 dholland */ 437 1.20 dholland #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t)) 438 1.20 dholland #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t)) 439 1.1 dholland 440 1.20 dholland #define LFS_MAXSYMLINKLEN(fs) \ 441 1.20 dholland ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN) 442 1.20 dholland 443 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode)) 444 1.13 dholland 445 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \ 446 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix))) 447 1.13 dholland 448 1.42 christos static __inline void 449 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs, 450 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src) 451 1.14 dholland { 452 1.14 dholland /* 453 1.14 dholland * We can do structure assignment of the structs, but not of 454 1.14 dholland * the whole union, as the union is the size of the (larger) 455 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might 456 1.14 dholland * be off the end of a buffer or otherwise invalid. 457 1.14 dholland */ 458 1.14 dholland if (fs->lfs_is64) { 459 1.14 dholland dst->u_64 = src->u_64; 460 1.14 dholland } else { 461 1.14 dholland dst->u_32 = src->u_32; 462 1.14 dholland } 463 1.14 dholland } 464 1.14 dholland 465 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \ 466 1.42 christos static __inline type \ 467 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \ 468 1.13 dholland { \ 469 1.13 dholland if (fs->lfs_is64) { \ 470 1.17 dholland return LFS_SWAP_##type(fs, dip->u_64.di_##field); \ 471 1.13 dholland } else { \ 472 1.17 dholland return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \ 473 1.13 dholland } \ 474 1.13 dholland } \ 475 1.42 christos static __inline void \ 476 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \ 477 1.13 dholland { \ 478 1.13 dholland if (fs->lfs_is64) { \ 479 1.13 dholland type *p = &dip->u_64.di_##field; \ 480 1.13 dholland (void)p; \ 481 1.17 dholland dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \ 482 1.13 dholland } else { \ 483 1.13 dholland type32 *p = &dip->u_32.di_##field; \ 484 1.13 dholland (void)p; \ 485 1.17 dholland dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \ 486 1.13 dholland } \ 487 1.13 dholland } \ 488 1.13 dholland 489 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode) 490 1.51 rillig LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink) 491 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber) 492 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size) 493 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime) 494 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec) 495 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime) 496 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec) 497 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime) 498 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec) 499 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags) 500 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks) 501 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen) 502 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid) 503 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid) 504 1.13 dholland 505 1.16 dholland /* XXX this should be done differently (it's a fake field) */ 506 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev) 507 1.16 dholland 508 1.42 christos static __inline daddr_t 509 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 510 1.13 dholland { 511 1.13 dholland KASSERT(ix < ULFS_NDADDR); 512 1.13 dholland if (fs->lfs_is64) { 513 1.47 christos return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]); 514 1.13 dholland } else { 515 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */ 516 1.47 christos return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]); 517 1.13 dholland } 518 1.13 dholland } 519 1.13 dholland 520 1.42 christos static __inline daddr_t 521 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 522 1.13 dholland { 523 1.13 dholland KASSERT(ix < ULFS_NIADDR); 524 1.13 dholland if (fs->lfs_is64) { 525 1.47 christos return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]); 526 1.13 dholland } else { 527 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */ 528 1.47 christos return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]); 529 1.13 dholland } 530 1.13 dholland } 531 1.13 dholland 532 1.42 christos static __inline void 533 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 534 1.13 dholland { 535 1.13 dholland KASSERT(ix < ULFS_NDADDR); 536 1.13 dholland if (fs->lfs_is64) { 537 1.47 christos dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val); 538 1.13 dholland } else { 539 1.37 dholland dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val); 540 1.13 dholland } 541 1.13 dholland } 542 1.13 dholland 543 1.42 christos static __inline void 544 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 545 1.13 dholland { 546 1.13 dholland KASSERT(ix < ULFS_NIADDR); 547 1.13 dholland if (fs->lfs_is64) { 548 1.47 christos dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val); 549 1.13 dholland } else { 550 1.37 dholland dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val); 551 1.13 dholland } 552 1.13 dholland } 553 1.13 dholland 554 1.16 dholland /* birthtime is present only in the 64-bit inode */ 555 1.42 christos static __inline void 556 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip, 557 1.16 dholland const struct timespec *ts) 558 1.16 dholland { 559 1.16 dholland if (fs->lfs_is64) { 560 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec; 561 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec; 562 1.16 dholland } else { 563 1.16 dholland /* drop it on the floor */ 564 1.16 dholland } 565 1.16 dholland } 566 1.16 dholland 567 1.16 dholland /* 568 1.16 dholland * indirect blocks 569 1.16 dholland */ 570 1.16 dholland 571 1.42 christos static __inline daddr_t 572 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix) 573 1.16 dholland { 574 1.16 dholland if (fs->lfs_is64) { 575 1.16 dholland // XXX re-enable these asserts after reorging this file 576 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 577 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]); 578 1.16 dholland } else { 579 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 580 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */ 581 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]); 582 1.16 dholland } 583 1.16 dholland } 584 1.16 dholland 585 1.42 christos static __inline void 586 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val) 587 1.16 dholland { 588 1.16 dholland if (fs->lfs_is64) { 589 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 590 1.16 dholland ((int64_t *)block)[ix] = val; 591 1.16 dholland } else { 592 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 593 1.16 dholland ((int32_t *)block)[ix] = val; 594 1.16 dholland } 595 1.16 dholland } 596 1.16 dholland 597 1.1 dholland /* 598 1.1 dholland * "struct buf" associated definitions 599 1.1 dholland */ 600 1.1 dholland 601 1.1 dholland # define LFS_LOCK_BUF(bp) do { \ 602 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \ 603 1.1 dholland mutex_enter(&lfs_lock); \ 604 1.1 dholland ++locked_queue_count; \ 605 1.1 dholland locked_queue_bytes += bp->b_bufsize; \ 606 1.1 dholland mutex_exit(&lfs_lock); \ 607 1.1 dholland } \ 608 1.1 dholland (bp)->b_flags |= B_LOCKED; \ 609 1.1 dholland } while (0) 610 1.1 dholland 611 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \ 612 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \ 613 1.1 dholland mutex_enter(&lfs_lock); \ 614 1.1 dholland --locked_queue_count; \ 615 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \ 616 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \ 617 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \ 618 1.1 dholland cv_broadcast(&locked_queue_cv); \ 619 1.1 dholland mutex_exit(&lfs_lock); \ 620 1.1 dholland } \ 621 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \ 622 1.1 dholland } while (0) 623 1.1 dholland 624 1.1 dholland /* 625 1.1 dholland * "struct inode" associated definitions 626 1.1 dholland */ 627 1.1 dholland 628 1.48 maya #define LFS_SET_UINO(ip, states) do { \ 629 1.48 maya if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED)) \ 630 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \ 631 1.48 maya if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING)) \ 632 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \ 633 1.48 maya if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED)) \ 634 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \ 635 1.48 maya (ip)->i_state |= (states); \ 636 1.1 dholland } while (0) 637 1.1 dholland 638 1.48 maya #define LFS_CLR_UINO(ip, states) do { \ 639 1.48 maya if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED)) \ 640 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \ 641 1.48 maya if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING)) \ 642 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \ 643 1.48 maya if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED)) \ 644 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \ 645 1.48 maya (ip)->i_state &= ~(states); \ 646 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \ 647 1.1 dholland panic("lfs_uinodes < 0"); \ 648 1.1 dholland } \ 649 1.1 dholland } while (0) 650 1.1 dholland 651 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \ 652 1.48 maya while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \ 653 1.1 dholland lfs_itimes(ip, acc, mod, cre) 654 1.1 dholland 655 1.1 dholland /* 656 1.1 dholland * On-disk and in-memory checkpoint segment usage structure. 657 1.1 dholland */ 658 1.1 dholland 659 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs)) 660 1.1 dholland #define SEGTABSIZE_SU(fs) \ 661 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs)) 662 1.1 dholland 663 1.1 dholland #ifdef _KERNEL 664 1.1 dholland # define SHARE_IFLOCK(F) \ 665 1.1 dholland do { \ 666 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \ 667 1.1 dholland } while(0) 668 1.1 dholland # define UNSHARE_IFLOCK(F) \ 669 1.1 dholland do { \ 670 1.1 dholland rw_exit(&(F)->lfs_iflock); \ 671 1.1 dholland } while(0) 672 1.1 dholland #else /* ! _KERNEL */ 673 1.1 dholland # define SHARE_IFLOCK(F) 674 1.1 dholland # define UNSHARE_IFLOCK(F) 675 1.1 dholland #endif /* ! _KERNEL */ 676 1.1 dholland 677 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */ 678 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \ 679 1.1 dholland int _e; \ 680 1.1 dholland SHARE_IFLOCK(F); \ 681 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 682 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \ 683 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \ 684 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 685 1.39 dholland panic("lfs: ifile read: segentry %llu: error %d\n", \ 686 1.39 dholland (unsigned long long)(IN), _e); \ 687 1.6 dholland if (lfs_sb_getversion(F) == 1) \ 688 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \ 689 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \ 690 1.1 dholland else \ 691 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \ 692 1.1 dholland UNSHARE_IFLOCK(F); \ 693 1.1 dholland } while (0) 694 1.1 dholland 695 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \ 696 1.1 dholland if ((SP)->su_nbytes == 0) \ 697 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \ 698 1.1 dholland else \ 699 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \ 700 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \ 701 1.1 dholland LFS_BWRITE_LOG(BP); \ 702 1.1 dholland } while (0) 703 1.1 dholland 704 1.1 dholland /* 705 1.11 dholland * FINFO (file info) entries. 706 1.11 dholland */ 707 1.11 dholland 708 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */ 709 1.11 dholland /* XXX: move to a more suitable location in this file */ 710 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 711 1.11 dholland 712 1.12 dholland /* Size of an on-disk inode number. */ 713 1.12 dholland /* XXX: move to a more suitable location in this file */ 714 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 715 1.12 dholland 716 1.12 dholland /* size of a FINFO, without the block pointers */ 717 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32)) 718 1.12 dholland 719 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */ 720 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \ 721 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs)) 722 1.11 dholland 723 1.11 dholland #define NEXT_FINFO(fs, fip) \ 724 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip))) 725 1.11 dholland 726 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \ 727 1.42 christos static __inline type \ 728 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \ 729 1.12 dholland { \ 730 1.12 dholland if (fs->lfs_is64) { \ 731 1.12 dholland return fip->u_64.fi_##field; \ 732 1.12 dholland } else { \ 733 1.12 dholland return fip->u_32.fi_##field; \ 734 1.12 dholland } \ 735 1.12 dholland } \ 736 1.42 christos static __inline void \ 737 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \ 738 1.12 dholland { \ 739 1.12 dholland if (fs->lfs_is64) { \ 740 1.12 dholland type *p = &fip->u_64.fi_##field; \ 741 1.12 dholland (void)p; \ 742 1.12 dholland fip->u_64.fi_##field = val; \ 743 1.12 dholland } else { \ 744 1.12 dholland type32 *p = &fip->u_32.fi_##field; \ 745 1.12 dholland (void)p; \ 746 1.12 dholland fip->u_32.fi_##field = val; \ 747 1.12 dholland } \ 748 1.12 dholland } \ 749 1.12 dholland 750 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks) 751 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version) 752 1.51 rillig LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino) 753 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength) 754 1.12 dholland 755 1.42 christos static __inline daddr_t 756 1.43 riastrad lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx) 757 1.12 dholland { 758 1.12 dholland void *firstblock; 759 1.12 dholland 760 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs); 761 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 762 1.12 dholland if (fs->lfs_is64) { 763 1.43 riastrad return ((int64_t *)firstblock)[idx]; 764 1.12 dholland } else { 765 1.43 riastrad return ((int32_t *)firstblock)[idx]; 766 1.12 dholland } 767 1.12 dholland } 768 1.12 dholland 769 1.42 christos static __inline void 770 1.43 riastrad lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk) 771 1.12 dholland { 772 1.12 dholland void *firstblock; 773 1.12 dholland 774 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs); 775 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 776 1.12 dholland if (fs->lfs_is64) { 777 1.43 riastrad ((int64_t *)firstblock)[idx] = blk; 778 1.12 dholland } else { 779 1.43 riastrad ((int32_t *)firstblock)[idx] = blk; 780 1.12 dholland } 781 1.12 dholland } 782 1.12 dholland 783 1.11 dholland /* 784 1.34 dholland * inode info entries (in the segment summary) 785 1.34 dholland */ 786 1.34 dholland 787 1.34 dholland #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32)) 788 1.34 dholland 789 1.34 dholland /* iinfos scroll backward from the end of the segment summary block */ 790 1.34 dholland #define SEGSUM_IINFOSTART(fs, buf) \ 791 1.34 dholland ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs))) 792 1.34 dholland 793 1.34 dholland #define NEXTLOWER_IINFO(fs, iip) \ 794 1.34 dholland ((IINFO *)((char *)(iip) - IINFOSIZE(fs))) 795 1.34 dholland 796 1.35 dholland #define NTH_IINFO(fs, buf, n) \ 797 1.35 dholland ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs))) 798 1.35 dholland 799 1.42 christos static __inline uint64_t 800 1.34 dholland lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip) 801 1.34 dholland { 802 1.34 dholland if (fs->lfs_is64) { 803 1.34 dholland return iip->u_64.ii_block; 804 1.34 dholland } else { 805 1.34 dholland return iip->u_32.ii_block; 806 1.34 dholland } 807 1.34 dholland } 808 1.34 dholland 809 1.42 christos static __inline void 810 1.34 dholland lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block) 811 1.34 dholland { 812 1.34 dholland if (fs->lfs_is64) { 813 1.34 dholland iip->u_64.ii_block = block; 814 1.34 dholland } else { 815 1.34 dholland iip->u_32.ii_block = block; 816 1.34 dholland } 817 1.34 dholland } 818 1.34 dholland 819 1.34 dholland /* 820 1.1 dholland * Index file inode entries. 821 1.1 dholland */ 822 1.1 dholland 823 1.33 dholland #define IFILE_ENTRYSIZE(fs) \ 824 1.33 dholland ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32)) 825 1.33 dholland 826 1.1 dholland /* 827 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it 828 1.1 dholland * may not be mapped! 829 1.1 dholland */ 830 1.1 dholland /* Read in the block with a specific inode from the ifile. */ 831 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \ 832 1.1 dholland int _e; \ 833 1.1 dholland SHARE_IFLOCK(F); \ 834 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 835 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \ 836 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \ 837 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 838 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \ 839 1.10 dholland if ((F)->lfs_is64) { \ 840 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \ 841 1.10 dholland (IN) % lfs_sb_getifpb(F)); \ 842 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \ 843 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \ 844 1.10 dholland (IN) % lfs_sb_getifpb(F)); \ 845 1.10 dholland } else { \ 846 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \ 847 1.1 dholland (IN) % lfs_sb_getifpb(F)); \ 848 1.10 dholland } \ 849 1.1 dholland UNSHARE_IFLOCK(F); \ 850 1.1 dholland } while (0) 851 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \ 852 1.15 mlelstv if ((F)->lfs_is64) { \ 853 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \ 854 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \ 855 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \ 856 1.15 mlelstv } else { \ 857 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \ 858 1.15 mlelstv } \ 859 1.15 mlelstv } while (0) 860 1.1 dholland 861 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \ 862 1.42 christos static __inline type \ 863 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \ 864 1.10 dholland { \ 865 1.10 dholland if (fs->lfs_is64) { \ 866 1.10 dholland return ifp->u_64.if_##field; \ 867 1.10 dholland } else { \ 868 1.10 dholland return ifp->u_32.if_##field; \ 869 1.10 dholland } \ 870 1.10 dholland } \ 871 1.42 christos static __inline void \ 872 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \ 873 1.10 dholland { \ 874 1.10 dholland if (fs->lfs_is64) { \ 875 1.10 dholland type *p = &ifp->u_64.if_##field; \ 876 1.10 dholland (void)p; \ 877 1.10 dholland ifp->u_64.if_##field = val; \ 878 1.10 dholland } else { \ 879 1.10 dholland type32 *p = &ifp->u_32.if_##field; \ 880 1.10 dholland (void)p; \ 881 1.10 dholland ifp->u_32.if_##field = val; \ 882 1.10 dholland } \ 883 1.10 dholland } \ 884 1.10 dholland 885 1.51 rillig LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version) 886 1.51 rillig LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr) 887 1.51 rillig LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree) 888 1.51 rillig LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec) 889 1.51 rillig LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec) 890 1.10 dholland 891 1.1 dholland /* 892 1.1 dholland * Cleaner information structure. This resides in the ifile and is used 893 1.1 dholland * to pass information from the kernel to the cleaner. 894 1.1 dholland */ 895 1.1 dholland 896 1.1 dholland #define CLEANSIZE_SU(fs) \ 897 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \ 898 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs)) 899 1.9 dholland 900 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \ 901 1.42 christos static __inline type \ 902 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \ 903 1.9 dholland { \ 904 1.9 dholland if (fs->lfs_is64) { \ 905 1.9 dholland return cip->u_64.field; \ 906 1.9 dholland } else { \ 907 1.9 dholland return cip->u_32.field; \ 908 1.9 dholland } \ 909 1.9 dholland } \ 910 1.42 christos static __inline void \ 911 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \ 912 1.9 dholland { \ 913 1.9 dholland if (fs->lfs_is64) { \ 914 1.9 dholland type *p = &cip->u_64.field; \ 915 1.9 dholland (void)p; \ 916 1.9 dholland cip->u_64.field = val; \ 917 1.9 dholland } else { \ 918 1.9 dholland type32 *p = &cip->u_32.field; \ 919 1.9 dholland (void)p; \ 920 1.9 dholland cip->u_32.field = val; \ 921 1.9 dholland } \ 922 1.9 dholland } \ 923 1.9 dholland 924 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean) 925 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty) 926 1.51 rillig LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree) 927 1.51 rillig LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail) 928 1.51 rillig LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head) 929 1.51 rillig LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail) 930 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags) 931 1.9 dholland 932 1.42 christos static __inline void 933 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 934 1.9 dholland { 935 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num); 936 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num); 937 1.9 dholland } 938 1.9 dholland 939 1.42 christos static __inline void 940 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 941 1.9 dholland { 942 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num); 943 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num); 944 1.9 dholland } 945 1.1 dholland 946 1.1 dholland /* Read in the block with the cleaner info from the ifile. */ 947 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \ 948 1.39 dholland int _e; \ 949 1.1 dholland SHARE_IFLOCK(F); \ 950 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 951 1.39 dholland _e = bread((F)->lfs_ivnode, \ 952 1.39 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \ 953 1.39 dholland if (_e) \ 954 1.39 dholland panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \ 955 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \ 956 1.1 dholland UNSHARE_IFLOCK(F); \ 957 1.1 dholland } while (0) 958 1.1 dholland 959 1.1 dholland /* 960 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree. 961 1.1 dholland */ 962 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \ 963 1.1 dholland mutex_enter(&lfs_lock); \ 964 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \ 965 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \ 966 1.1 dholland fs->lfs_favail) { \ 967 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \ 968 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \ 969 1.9 dholland fs->lfs_favail); \ 970 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \ 971 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \ 972 1.1 dholland } \ 973 1.1 dholland mutex_exit(&lfs_lock); \ 974 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \ 975 1.1 dholland } else { \ 976 1.1 dholland mutex_exit(&lfs_lock); \ 977 1.1 dholland brelse(bp, 0); \ 978 1.1 dholland } \ 979 1.1 dholland } while (0) 980 1.1 dholland 981 1.1 dholland /* 982 1.1 dholland * Get the head of the inode free list. 983 1.1 dholland * Always called with the segment lock held. 984 1.1 dholland */ 985 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \ 986 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \ 987 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \ 988 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \ 989 1.1 dholland brelse(BP, 0); \ 990 1.1 dholland } \ 991 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \ 992 1.1 dholland } while (0) 993 1.1 dholland 994 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \ 995 1.1 dholland lfs_sb_setfreehd(FS, VAL); \ 996 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \ 997 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \ 998 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \ 999 1.52 perseant if ((VAL) == LFS_UNUSED_INUM) \ 1000 1.52 perseant lfs_ci_setfree_tail(FS, CIP, VAL); \ 1001 1.1 dholland LFS_BWRITE_LOG(BP); \ 1002 1.1 dholland mutex_enter(&lfs_lock); \ 1003 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \ 1004 1.1 dholland mutex_exit(&lfs_lock); \ 1005 1.1 dholland } \ 1006 1.1 dholland } while (0) 1007 1.1 dholland 1008 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \ 1009 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1010 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \ 1011 1.1 dholland brelse(BP, 0); \ 1012 1.1 dholland } while (0) 1013 1.1 dholland 1014 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \ 1015 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1016 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \ 1017 1.52 perseant if ((VAL) == LFS_UNUSED_INUM) \ 1018 1.52 perseant lfs_ci_setfree_head(FS, CIP, VAL); \ 1019 1.1 dholland LFS_BWRITE_LOG(BP); \ 1020 1.1 dholland mutex_enter(&lfs_lock); \ 1021 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \ 1022 1.1 dholland mutex_exit(&lfs_lock); \ 1023 1.1 dholland } while (0) 1024 1.1 dholland 1025 1.1 dholland /* 1026 1.1 dholland * On-disk segment summary information 1027 1.1 dholland */ 1028 1.1 dholland 1029 1.11 dholland #define SEGSUM_SIZE(fs) \ 1030 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \ 1031 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1)) 1032 1.11 dholland 1033 1.11 dholland /* 1034 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer 1035 1.11 dholland * to the first FINFO. 1036 1.11 dholland * 1037 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted. 1038 1.11 dholland */ 1039 1.11 dholland #if 0 1040 1.42 christos static __inline FINFO * 1041 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp) 1042 1.11 dholland { 1043 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs)); 1044 1.11 dholland } 1045 1.11 dholland #else 1046 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \ 1047 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs))); 1048 1.11 dholland #endif 1049 1.11 dholland 1050 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \ 1051 1.42 christos static __inline type \ 1052 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \ 1053 1.11 dholland { \ 1054 1.11 dholland if (fs->lfs_is64) { \ 1055 1.11 dholland return ssp->u_64.ss_##field; \ 1056 1.11 dholland } else { \ 1057 1.11 dholland return ssp->u_32.ss_##field; \ 1058 1.11 dholland } \ 1059 1.11 dholland } \ 1060 1.42 christos static __inline void \ 1061 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \ 1062 1.11 dholland { \ 1063 1.11 dholland if (fs->lfs_is64) { \ 1064 1.11 dholland type *p = &ssp->u_64.ss_##field; \ 1065 1.11 dholland (void)p; \ 1066 1.11 dholland ssp->u_64.ss_##field = val; \ 1067 1.11 dholland } else { \ 1068 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \ 1069 1.11 dholland (void)p; \ 1070 1.11 dholland ssp->u_32.ss_##field = val; \ 1071 1.11 dholland } \ 1072 1.11 dholland } \ 1073 1.11 dholland 1074 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum) 1075 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum) 1076 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic) 1077 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident) 1078 1.51 rillig LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next) 1079 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo) 1080 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos) 1081 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags) 1082 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino) 1083 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial) 1084 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create) 1085 1.11 dholland 1086 1.42 christos static __inline size_t 1087 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs) 1088 1.11 dholland { 1089 1.11 dholland /* These are actually all the same. */ 1090 1.11 dholland if (fs->lfs_is64) { 1091 1.11 dholland return offsetof(SEGSUM64, ss_datasum); 1092 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ { 1093 1.11 dholland return offsetof(SEGSUM32, ss_datasum); 1094 1.11 dholland } /* else { 1095 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum); 1096 1.11 dholland } */ 1097 1.11 dholland /* 1098 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't 1099 1.11 dholland * defined yet. 1100 1.11 dholland */ 1101 1.11 dholland } 1102 1.11 dholland 1103 1.42 christos static __inline uint32_t 1104 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp) 1105 1.11 dholland { 1106 1.11 dholland KASSERT(fs->lfs_is64 == 0); 1107 1.11 dholland /* XXX need to resort this file before we can do this */ 1108 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1); 1109 1.51 rillig 1110 1.11 dholland return ssp->u_v1.ss_create; 1111 1.11 dholland } 1112 1.11 dholland 1113 1.42 christos static __inline void 1114 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val) 1115 1.11 dholland { 1116 1.11 dholland KASSERT(fs->lfs_is64 == 0); 1117 1.11 dholland /* XXX need to resort this file before we can do this */ 1118 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1); 1119 1.51 rillig 1120 1.11 dholland ssp->u_v1.ss_create = val; 1121 1.11 dholland } 1122 1.11 dholland 1123 1.1 dholland 1124 1.1 dholland /* 1125 1.1 dholland * Super block. 1126 1.1 dholland */ 1127 1.1 dholland 1128 1.1 dholland /* 1129 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp. 1130 1.1 dholland */ 1131 1.1 dholland 1132 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \ 1133 1.42 christos static __inline type \ 1134 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \ 1135 1.1 dholland { \ 1136 1.7 dholland if (fs->lfs_is64) { \ 1137 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1138 1.7 dholland } else { \ 1139 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1140 1.7 dholland } \ 1141 1.1 dholland } \ 1142 1.42 christos static __inline void \ 1143 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \ 1144 1.1 dholland { \ 1145 1.7 dholland if (fs->lfs_is64) { \ 1146 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \ 1147 1.7 dholland } else { \ 1148 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \ 1149 1.7 dholland } \ 1150 1.1 dholland } \ 1151 1.42 christos static __inline void \ 1152 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \ 1153 1.1 dholland { \ 1154 1.7 dholland if (fs->lfs_is64) { \ 1155 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1156 1.7 dholland *p64 += val; \ 1157 1.7 dholland } else { \ 1158 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1159 1.7 dholland *p32 += val; \ 1160 1.7 dholland } \ 1161 1.1 dholland } \ 1162 1.42 christos static __inline void \ 1163 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \ 1164 1.1 dholland { \ 1165 1.7 dholland if (fs->lfs_is64) { \ 1166 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1167 1.7 dholland *p64 -= val; \ 1168 1.7 dholland } else { \ 1169 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1170 1.7 dholland *p32 -= val; \ 1171 1.7 dholland } \ 1172 1.1 dholland } 1173 1.1 dholland 1174 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f) 1175 1.3 dholland 1176 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \ 1177 1.42 christos static __inline type \ 1178 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \ 1179 1.7 dholland { \ 1180 1.7 dholland if (fs->lfs_is64) { \ 1181 1.7 dholland return val64; \ 1182 1.7 dholland } else { \ 1183 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1184 1.7 dholland } \ 1185 1.7 dholland } 1186 1.7 dholland 1187 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, version) 1188 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size) 1189 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ssize) 1190 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize) 1191 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, bsize) 1192 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsize) 1193 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, frag) 1194 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd) 1195 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree) 1196 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles) 1197 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail) 1198 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, uinodes) 1199 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr) 1200 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM) 1201 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg) 1202 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg) 1203 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg) 1204 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset) 1205 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg) 1206 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inopf) 1207 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, minfree) 1208 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize) 1209 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg) 1210 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inopb) 1211 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ifpb) 1212 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sepb) 1213 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nindir) 1214 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nseg) 1215 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nspf) 1216 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, cleansz) 1217 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz) 1218 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0) 1219 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0) 1220 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, bmask) 1221 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, bshift) 1222 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, ffmask) 1223 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ffshift) 1224 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, fbmask) 1225 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fbshift) 1226 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, blktodb) 1227 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb) 1228 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sushift) 1229 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen) 1230 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, cksum) 1231 1.51 rillig LFS_DEF_SB_ACCESSOR(uint16_t, pflags) 1232 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nclean) 1233 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, dmeta) 1234 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg) 1235 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sumsize) 1236 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, serial) 1237 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ibsize) 1238 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr) 1239 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, tstamp) 1240 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt) 1241 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, interleave) 1242 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ident) 1243 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, resvseg) 1244 1.1 dholland 1245 1.1 dholland /* special-case accessors */ 1246 1.1 dholland 1247 1.1 dholland /* 1248 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf 1249 1.1 dholland */ 1250 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs) 1251 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val) 1252 1.1 dholland 1253 1.1 dholland /* 1254 1.1 dholland * lfs_sboffs is an array 1255 1.1 dholland */ 1256 1.42 christos static __inline int32_t 1257 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n) 1258 1.1 dholland { 1259 1.1 dholland #ifdef KASSERT /* ugh */ 1260 1.1 dholland KASSERT(n < LFS_MAXNUMSB); 1261 1.1 dholland #endif 1262 1.7 dholland if (fs->lfs_is64) { 1263 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n]; 1264 1.7 dholland } else { 1265 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n]; 1266 1.7 dholland } 1267 1.1 dholland } 1268 1.42 christos static __inline void 1269 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val) 1270 1.1 dholland { 1271 1.1 dholland #ifdef KASSERT /* ugh */ 1272 1.1 dholland KASSERT(n < LFS_MAXNUMSB); 1273 1.1 dholland #endif 1274 1.7 dholland if (fs->lfs_is64) { 1275 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val; 1276 1.7 dholland } else { 1277 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val; 1278 1.7 dholland } 1279 1.1 dholland } 1280 1.1 dholland 1281 1.1 dholland /* 1282 1.1 dholland * lfs_fsmnt is a string 1283 1.1 dholland */ 1284 1.42 christos static __inline const char * 1285 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs) 1286 1.1 dholland { 1287 1.7 dholland if (fs->lfs_is64) { 1288 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt; 1289 1.7 dholland } else { 1290 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt; 1291 1.7 dholland } 1292 1.7 dholland } 1293 1.7 dholland 1294 1.42 christos static __inline void 1295 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str) 1296 1.7 dholland { 1297 1.7 dholland if (fs->lfs_is64) { 1298 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str, 1299 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt)); 1300 1.7 dholland } else { 1301 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str, 1302 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt)); 1303 1.7 dholland } 1304 1.1 dholland } 1305 1.1 dholland 1306 1.8 dholland /* Highest addressable fsb */ 1307 1.8 dholland #define LFS_MAX_DADDR(fs) \ 1308 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff) 1309 1.8 dholland 1310 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */ 1311 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs)) 1312 1.1 dholland 1313 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */ 1314 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs)) 1315 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */ 1316 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs)) 1317 1.1 dholland 1318 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs))) 1319 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \ 1320 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs))) 1321 1.1 dholland 1322 1.4 dholland /* XXX: lowercase these as they're no longer macros */ 1323 1.4 dholland /* Frags to diskblocks */ 1324 1.42 christos static __inline uint64_t 1325 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b) 1326 1.4 dholland { 1327 1.1 dholland #if defined(_KERNEL) 1328 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1329 1.1 dholland #else 1330 1.4 dholland return b << lfs_sb_getfsbtodb(fs); 1331 1.1 dholland #endif 1332 1.4 dholland } 1333 1.4 dholland /* Diskblocks to frags */ 1334 1.42 christos static __inline uint64_t 1335 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b) 1336 1.4 dholland { 1337 1.4 dholland #if defined(_KERNEL) 1338 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1339 1.4 dholland #else 1340 1.4 dholland return b >> lfs_sb_getfsbtodb(fs); 1341 1.4 dholland #endif 1342 1.4 dholland } 1343 1.1 dholland 1344 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs)) 1345 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs)) 1346 1.1 dholland 1347 1.4 dholland /* Frags to bytes */ 1348 1.42 christos static __inline uint64_t 1349 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b) 1350 1.4 dholland { 1351 1.4 dholland return b << lfs_sb_getffshift(fs); 1352 1.4 dholland } 1353 1.4 dholland /* Bytes to frags */ 1354 1.42 christos static __inline uint64_t 1355 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b) 1356 1.4 dholland { 1357 1.4 dholland return b >> lfs_sb_getffshift(fs); 1358 1.4 dholland } 1359 1.1 dholland 1360 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \ 1361 1.1 dholland ((loc) >> lfs_sb_getffshift(fs)) 1362 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \ 1363 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs)))) 1364 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \ 1365 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs)))) 1366 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \ 1367 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs)) 1368 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \ 1369 1.1 dholland ((blks) << lfs_sb_getfbshift(fs)) 1370 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \ 1371 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1)) 1372 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \ 1373 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1)) 1374 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \ 1375 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \ 1376 1.1 dholland ? lfs_sb_getbsize(fs) \ 1377 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp))))) 1378 1.1 dholland 1379 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \ 1380 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \ 1381 1.1 dholland lfs_sb_getssize(fs)) 1382 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */ 1383 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg)) 1384 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \ 1385 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1))) 1386 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \ 1387 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs))) 1388 1.1 dholland 1389 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */ 1390 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_ 1391 1.42 christos static __inline uint32_t 1392 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn) 1393 1.4 dholland { 1394 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) { 1395 1.4 dholland return lfs_sb_getbsize(fs); 1396 1.4 dholland } else { 1397 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din))); 1398 1.4 dholland } 1399 1.4 dholland } 1400 1.4 dholland #endif 1401 1.4 dholland 1402 1.12 dholland /* 1403 1.12 dholland * union lfs_blocks 1404 1.12 dholland */ 1405 1.12 dholland 1406 1.42 christos static __inline void 1407 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p) 1408 1.12 dholland { 1409 1.12 dholland if (fs->lfs_is64) { 1410 1.12 dholland bp->b64 = p; 1411 1.12 dholland } else { 1412 1.12 dholland bp->b32 = p; 1413 1.12 dholland } 1414 1.12 dholland } 1415 1.12 dholland 1416 1.42 christos static __inline void 1417 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip) 1418 1.12 dholland { 1419 1.12 dholland void *firstblock; 1420 1.12 dholland 1421 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs); 1422 1.12 dholland if (fs->lfs_is64) { 1423 1.12 dholland bp->b64 = (int64_t *)firstblock; 1424 1.12 dholland } else { 1425 1.12 dholland bp->b32 = (int32_t *)firstblock; 1426 1.12 dholland } 1427 1.12 dholland } 1428 1.12 dholland 1429 1.42 christos static __inline daddr_t 1430 1.43 riastrad lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx) 1431 1.12 dholland { 1432 1.12 dholland if (fs->lfs_is64) { 1433 1.43 riastrad return bp->b64[idx]; 1434 1.12 dholland } else { 1435 1.43 riastrad return bp->b32[idx]; 1436 1.12 dholland } 1437 1.12 dholland } 1438 1.12 dholland 1439 1.42 christos static __inline void 1440 1.43 riastrad lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val) 1441 1.12 dholland { 1442 1.12 dholland if (fs->lfs_is64) { 1443 1.43 riastrad bp->b64[idx] = val; 1444 1.12 dholland } else { 1445 1.43 riastrad bp->b32[idx] = val; 1446 1.12 dholland } 1447 1.12 dholland } 1448 1.12 dholland 1449 1.42 christos static __inline void 1450 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp) 1451 1.12 dholland { 1452 1.12 dholland if (fs->lfs_is64) { 1453 1.12 dholland bp->b64++; 1454 1.12 dholland } else { 1455 1.12 dholland bp->b32++; 1456 1.12 dholland } 1457 1.12 dholland } 1458 1.12 dholland 1459 1.42 christos static __inline int 1460 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1461 1.12 dholland { 1462 1.12 dholland if (fs->lfs_is64) { 1463 1.12 dholland return bp1->b64 == bp2->b64; 1464 1.12 dholland } else { 1465 1.12 dholland return bp1->b32 == bp2->b32; 1466 1.12 dholland } 1467 1.12 dholland } 1468 1.12 dholland 1469 1.42 christos static __inline int 1470 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1471 1.12 dholland { 1472 1.12 dholland /* (remember that the pointers are typed) */ 1473 1.12 dholland if (fs->lfs_is64) { 1474 1.12 dholland return bp1->b64 - bp2->b64; 1475 1.12 dholland } else { 1476 1.12 dholland return bp1->b32 - bp2->b32; 1477 1.12 dholland } 1478 1.12 dholland } 1479 1.12 dholland 1480 1.12 dholland /* 1481 1.12 dholland * struct segment 1482 1.12 dholland */ 1483 1.12 dholland 1484 1.4 dholland 1485 1.1 dholland /* 1486 1.1 dholland * Macros for determining free space on the disk, with the variable metadata 1487 1.1 dholland * of segment summaries and inode blocks taken into account. 1488 1.1 dholland */ 1489 1.1 dholland /* 1490 1.1 dholland * Estimate number of clean blocks not available for writing because 1491 1.1 dholland * they will contain metadata or overhead. This is calculated as 1492 1.1 dholland * 1493 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T 1494 1.1 dholland * or more simply 1495 1.1 dholland * E = (C * M) / T 1496 1.1 dholland * 1497 1.1 dholland * where 1498 1.1 dholland * C is the clean space, 1499 1.1 dholland * D is the dirty space, 1500 1.1 dholland * M is the dirty metadata, and 1501 1.1 dholland * T = C + D is the total space on disk. 1502 1.1 dholland * 1503 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T, 1504 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small. 1505 1.1 dholland */ 1506 1.33 dholland #define LFS_EST_CMETA(F) (( \ 1507 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \ 1508 1.1 dholland (lfs_sb_getnseg(F)))) 1509 1.1 dholland 1510 1.1 dholland /* Estimate total size of the disk not including metadata */ 1511 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F)) 1512 1.1 dholland 1513 1.1 dholland /* Estimate number of blocks actually available for writing */ 1514 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \ 1515 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0) 1516 1.1 dholland 1517 1.1 dholland /* Amount of non-meta space not available to mortal man */ 1518 1.33 dholland #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \ 1519 1.46 dholland (uint64_t)lfs_sb_getminfree(F)) / \ 1520 1.1 dholland 100) 1521 1.1 dholland 1522 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */ 1523 1.1 dholland #define ISSPACE(F, BB, C) \ 1524 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \ 1525 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \ 1526 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB))) 1527 1.1 dholland 1528 1.1 dholland /* Can an ordinary user write BB blocks */ 1529 1.1 dholland #define IS_FREESPACE(F, BB) \ 1530 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F)) 1531 1.1 dholland 1532 1.1 dholland /* 1533 1.1 dholland * The minimum number of blocks to create a new inode. This is: 1534 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) + 1535 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks. 1536 1.1 dholland */ 1537 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F))) 1538 1.1 dholland 1539 1.1 dholland 1540 1.50 riastrad /* 1541 1.50 riastrad * Suppress spurious clang warnings 1542 1.50 riastrad */ 1543 1.50 riastrad #ifdef __GNUC__ 1544 1.50 riastrad #if defined(__clang__) 1545 1.50 riastrad #pragma clang diagnostic pop 1546 1.50 riastrad #elif __GNUC_PREREQ__(9,0) 1547 1.50 riastrad #pragma GCC diagnostic pop 1548 1.50 riastrad #endif 1549 1.50 riastrad #endif 1550 1.50 riastrad 1551 1.1 dholland 1552 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */ 1553