Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.12
      1  1.12  dholland /*	$NetBSD: lfs_accessors.h,v 1.12 2015/08/12 18:27:01 dholland Exp $	*/
      2   1.1  dholland 
      3   1.1  dholland /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4   1.1  dholland /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5   1.1  dholland /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6   1.1  dholland 
      7   1.1  dholland /*-
      8   1.1  dholland  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9   1.1  dholland  * All rights reserved.
     10   1.1  dholland  *
     11   1.1  dholland  * This code is derived from software contributed to The NetBSD Foundation
     12   1.1  dholland  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13   1.1  dholland  *
     14   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     15   1.1  dholland  * modification, are permitted provided that the following conditions
     16   1.1  dholland  * are met:
     17   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     18   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     19   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     20   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     21   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     22   1.1  dholland  *
     23   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24   1.1  dholland  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  dholland  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  dholland  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27   1.1  dholland  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1  dholland  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  dholland  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  dholland  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  dholland  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  dholland  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  dholland  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  dholland  */
     35   1.1  dholland /*-
     36   1.1  dholland  * Copyright (c) 1991, 1993
     37   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     38   1.1  dholland  *
     39   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     40   1.1  dholland  * modification, are permitted provided that the following conditions
     41   1.1  dholland  * are met:
     42   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     43   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     44   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     45   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     46   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     47   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     48   1.1  dholland  *    may be used to endorse or promote products derived from this software
     49   1.1  dholland  *    without specific prior written permission.
     50   1.1  dholland  *
     51   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.1  dholland  * SUCH DAMAGE.
     62   1.1  dholland  *
     63   1.1  dholland  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64   1.1  dholland  */
     65   1.1  dholland /*
     66   1.1  dholland  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67   1.1  dholland  * All rights reserved.
     68   1.1  dholland  *
     69   1.1  dholland  * This software was developed for the FreeBSD Project by Marshall
     70   1.1  dholland  * Kirk McKusick and Network Associates Laboratories, the Security
     71   1.1  dholland  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72   1.1  dholland  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73   1.1  dholland  * research program
     74   1.1  dholland  *
     75   1.1  dholland  * Copyright (c) 1982, 1989, 1993
     76   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     77   1.1  dholland  * (c) UNIX System Laboratories, Inc.
     78   1.1  dholland  * All or some portions of this file are derived from material licensed
     79   1.1  dholland  * to the University of California by American Telephone and Telegraph
     80   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
     82   1.1  dholland  *
     83   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     84   1.1  dholland  * modification, are permitted provided that the following conditions
     85   1.1  dholland  * are met:
     86   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     87   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     88   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     89   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     90   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     91   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     92   1.1  dholland  *    may be used to endorse or promote products derived from this software
     93   1.1  dholland  *    without specific prior written permission.
     94   1.1  dholland  *
     95   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105   1.1  dholland  * SUCH DAMAGE.
    106   1.1  dholland  *
    107   1.1  dholland  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108   1.1  dholland  */
    109   1.1  dholland /*
    110   1.1  dholland  * Copyright (c) 1982, 1986, 1989, 1993
    111   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
    112   1.1  dholland  * (c) UNIX System Laboratories, Inc.
    113   1.1  dholland  * All or some portions of this file are derived from material licensed
    114   1.1  dholland  * to the University of California by American Telephone and Telegraph
    115   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
    117   1.1  dholland  *
    118   1.1  dholland  * Redistribution and use in source and binary forms, with or without
    119   1.1  dholland  * modification, are permitted provided that the following conditions
    120   1.1  dholland  * are met:
    121   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
    122   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
    123   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
    124   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
    125   1.1  dholland  *    documentation and/or other materials provided with the distribution.
    126   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
    127   1.1  dholland  *    may be used to endorse or promote products derived from this software
    128   1.1  dholland  *    without specific prior written permission.
    129   1.1  dholland  *
    130   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140   1.1  dholland  * SUCH DAMAGE.
    141   1.1  dholland  *
    142   1.1  dholland  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143   1.1  dholland  */
    144   1.1  dholland 
    145   1.1  dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146   1.1  dholland #define _UFS_LFS_LFS_ACCESSORS_H_
    147   1.1  dholland 
    148  1.11  dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
    149  1.11  dholland #include <assert.h>
    150  1.11  dholland #define KASSERT assert
    151  1.11  dholland #endif
    152  1.11  dholland 
    153   1.1  dholland /*
    154   1.9  dholland  * STRUCT_LFS is used by the libsa code to get accessors that work
    155   1.9  dholland  * with struct salfs instead of struct lfs, and by the cleaner to
    156   1.9  dholland  * get accessors that work with struct clfs.
    157   1.9  dholland  */
    158   1.9  dholland 
    159   1.9  dholland #ifndef STRUCT_LFS
    160   1.9  dholland #define STRUCT_LFS struct lfs
    161   1.9  dholland #endif
    162   1.9  dholland 
    163   1.9  dholland 
    164   1.9  dholland /*
    165   1.1  dholland  * Maximum length of a symlink that can be stored within the inode.
    166   1.1  dholland  */
    167   1.1  dholland #define ULFS1_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    168   1.1  dholland #define ULFS2_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    169   1.1  dholland 
    170   1.1  dholland #define ULFS_MAXSYMLINKLEN(ip) \
    171   1.1  dholland 	((ip)->i_ump->um_fstype == ULFS1) ? \
    172   1.1  dholland 	ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
    173   1.1  dholland 
    174   1.1  dholland /*
    175   1.1  dholland  * "struct buf" associated definitions
    176   1.1  dholland  */
    177   1.1  dholland 
    178   1.1  dholland # define LFS_LOCK_BUF(bp) do {						\
    179   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    180   1.1  dholland 		mutex_enter(&lfs_lock);					\
    181   1.1  dholland 		++locked_queue_count;					\
    182   1.1  dholland 		locked_queue_bytes += bp->b_bufsize;			\
    183   1.1  dholland 		mutex_exit(&lfs_lock);					\
    184   1.1  dholland 	}								\
    185   1.1  dholland 	(bp)->b_flags |= B_LOCKED;					\
    186   1.1  dholland } while (0)
    187   1.1  dholland 
    188   1.1  dholland # define LFS_UNLOCK_BUF(bp) do {					\
    189   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    190   1.1  dholland 		mutex_enter(&lfs_lock);					\
    191   1.1  dholland 		--locked_queue_count;					\
    192   1.1  dholland 		locked_queue_bytes -= bp->b_bufsize;			\
    193   1.1  dholland 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    194   1.1  dholland 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    195   1.1  dholland 			cv_broadcast(&locked_queue_cv);			\
    196   1.1  dholland 		mutex_exit(&lfs_lock);					\
    197   1.1  dholland 	}								\
    198   1.1  dholland 	(bp)->b_flags &= ~B_LOCKED;					\
    199   1.1  dholland } while (0)
    200   1.1  dholland 
    201   1.1  dholland /*
    202   1.1  dholland  * "struct inode" associated definitions
    203   1.1  dholland  */
    204   1.1  dholland 
    205   1.1  dholland #define LFS_SET_UINO(ip, flags) do {					\
    206   1.1  dholland 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    207   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    208   1.1  dholland 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    209   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    210   1.1  dholland 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    211   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    212   1.1  dholland 	(ip)->i_flag |= (flags);					\
    213   1.1  dholland } while (0)
    214   1.1  dholland 
    215   1.1  dholland #define LFS_CLR_UINO(ip, flags) do {					\
    216   1.1  dholland 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    217   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    218   1.1  dholland 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    219   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    220   1.1  dholland 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    221   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    222   1.1  dholland 	(ip)->i_flag &= ~(flags);					\
    223   1.1  dholland 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    224   1.1  dholland 		panic("lfs_uinodes < 0");				\
    225   1.1  dholland 	}								\
    226   1.1  dholland } while (0)
    227   1.1  dholland 
    228   1.1  dholland #define LFS_ITIMES(ip, acc, mod, cre) \
    229   1.1  dholland 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    230   1.1  dholland 		lfs_itimes(ip, acc, mod, cre)
    231   1.1  dholland 
    232   1.1  dholland /*
    233   1.1  dholland  * On-disk and in-memory checkpoint segment usage structure.
    234   1.1  dholland  */
    235   1.1  dholland 
    236   1.1  dholland #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    237   1.1  dholland #define	SEGTABSIZE_SU(fs)						\
    238   1.1  dholland 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    239   1.1  dholland 
    240   1.1  dholland #ifdef _KERNEL
    241   1.1  dholland # define SHARE_IFLOCK(F) 						\
    242   1.1  dholland   do {									\
    243   1.1  dholland 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    244   1.1  dholland   } while(0)
    245   1.1  dholland # define UNSHARE_IFLOCK(F)						\
    246   1.1  dholland   do {									\
    247   1.1  dholland 	rw_exit(&(F)->lfs_iflock);					\
    248   1.1  dholland   } while(0)
    249   1.1  dholland #else /* ! _KERNEL */
    250   1.1  dholland # define SHARE_IFLOCK(F)
    251   1.1  dholland # define UNSHARE_IFLOCK(F)
    252   1.1  dholland #endif /* ! _KERNEL */
    253   1.1  dholland 
    254   1.1  dholland /* Read in the block with a specific segment usage entry from the ifile. */
    255   1.1  dholland #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    256   1.1  dholland 	int _e;								\
    257   1.1  dholland 	SHARE_IFLOCK(F);						\
    258   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    259   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    260   1.1  dholland 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    261   1.1  dholland 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    262   1.1  dholland 		panic("lfs: ifile read: %d", _e);			\
    263   1.6  dholland 	if (lfs_sb_getversion(F) == 1)					\
    264   1.1  dholland 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    265   1.1  dholland 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    266   1.1  dholland 	else								\
    267   1.1  dholland 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    268   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    269   1.1  dholland } while (0)
    270   1.1  dholland 
    271   1.1  dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    272   1.1  dholland 	if ((SP)->su_nbytes == 0)					\
    273   1.1  dholland 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    274   1.1  dholland 	else								\
    275   1.1  dholland 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    276   1.1  dholland 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    277   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    278   1.1  dholland } while (0)
    279   1.1  dholland 
    280   1.1  dholland /*
    281  1.11  dholland  * FINFO (file info) entries.
    282  1.11  dholland  */
    283  1.11  dholland 
    284  1.11  dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
    285  1.11  dholland /* XXX: move to a more suitable location in this file */
    286  1.11  dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    287  1.11  dholland 
    288  1.12  dholland /* Size of an on-disk inode number. */
    289  1.12  dholland /* XXX: move to a more suitable location in this file */
    290  1.12  dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    291  1.12  dholland 
    292  1.12  dholland /* size of a FINFO, without the block pointers */
    293  1.12  dholland #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    294  1.12  dholland 
    295  1.11  dholland /* Full size of the provided FINFO record, including its block pointers. */
    296  1.11  dholland #define FINFO_FULLSIZE(fs, fip) \
    297  1.12  dholland 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    298  1.11  dholland 
    299  1.11  dholland #define NEXT_FINFO(fs, fip) \
    300  1.11  dholland 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    301  1.11  dholland 
    302  1.12  dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    303  1.12  dholland 	static __unused inline type				\
    304  1.12  dholland 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    305  1.12  dholland 	{							\
    306  1.12  dholland 		if (fs->lfs_is64) {				\
    307  1.12  dholland 			return fip->u_64.fi_##field; 		\
    308  1.12  dholland 		} else {					\
    309  1.12  dholland 			return fip->u_32.fi_##field; 		\
    310  1.12  dholland 		}						\
    311  1.12  dholland 	}							\
    312  1.12  dholland 	static __unused inline void				\
    313  1.12  dholland 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    314  1.12  dholland 	{							\
    315  1.12  dholland 		if (fs->lfs_is64) {				\
    316  1.12  dholland 			type *p = &fip->u_64.fi_##field;	\
    317  1.12  dholland 			(void)p;				\
    318  1.12  dholland 			fip->u_64.fi_##field = val;		\
    319  1.12  dholland 		} else {					\
    320  1.12  dholland 			type32 *p = &fip->u_32.fi_##field;	\
    321  1.12  dholland 			(void)p;				\
    322  1.12  dholland 			fip->u_32.fi_##field = val;		\
    323  1.12  dholland 		}						\
    324  1.12  dholland 	}							\
    325  1.12  dholland 
    326  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    327  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    328  1.12  dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    329  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    330  1.12  dholland 
    331  1.12  dholland static __unused inline daddr_t
    332  1.12  dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    333  1.12  dholland {
    334  1.12  dholland 	void *firstblock;
    335  1.12  dholland 
    336  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    337  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    338  1.12  dholland 	if (fs->lfs_is64) {
    339  1.12  dholland 		return ((int64_t *)firstblock)[index];
    340  1.12  dholland 	} else {
    341  1.12  dholland 		return ((int32_t *)firstblock)[index];
    342  1.12  dholland 	}
    343  1.12  dholland }
    344  1.12  dholland 
    345  1.12  dholland static __unused inline void
    346  1.12  dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    347  1.12  dholland {
    348  1.12  dholland 	void *firstblock;
    349  1.12  dholland 
    350  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    351  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    352  1.12  dholland 	if (fs->lfs_is64) {
    353  1.12  dholland 		((int64_t *)firstblock)[index] = blk;
    354  1.12  dholland 	} else {
    355  1.12  dholland 		((int32_t *)firstblock)[index] = blk;
    356  1.12  dholland 	}
    357  1.12  dholland }
    358  1.12  dholland 
    359  1.11  dholland /*
    360   1.1  dholland  * Index file inode entries.
    361   1.1  dholland  */
    362   1.1  dholland 
    363   1.1  dholland /*
    364   1.1  dholland  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    365   1.1  dholland  * may not be mapped!
    366   1.1  dholland  */
    367   1.1  dholland /* Read in the block with a specific inode from the ifile. */
    368   1.1  dholland #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    369   1.1  dholland 	int _e;								\
    370   1.1  dholland 	SHARE_IFLOCK(F);						\
    371   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    372   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    373   1.1  dholland 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    374   1.1  dholland 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    375   1.1  dholland 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    376  1.10  dholland 	if ((F)->lfs_is64) {						\
    377  1.10  dholland 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    378  1.10  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    379  1.10  dholland 	} else if (lfs_sb_getversion(F) > 1) {				\
    380  1.10  dholland 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    381  1.10  dholland 				(IN) % lfs_sb_getifpb(F)); 		\
    382  1.10  dholland 	} else {							\
    383   1.1  dholland 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    384   1.1  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    385  1.10  dholland 	}								\
    386   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    387   1.1  dholland } while (0)
    388   1.1  dholland 
    389  1.10  dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    390  1.10  dholland 	static __unused inline type				\
    391  1.10  dholland 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    392  1.10  dholland 	{							\
    393  1.10  dholland 		if (fs->lfs_is64) {				\
    394  1.10  dholland 			return ifp->u_64.if_##field; 		\
    395  1.10  dholland 		} else {					\
    396  1.10  dholland 			return ifp->u_32.if_##field; 		\
    397  1.10  dholland 		}						\
    398  1.10  dholland 	}							\
    399  1.10  dholland 	static __unused inline void				\
    400  1.10  dholland 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    401  1.10  dholland 	{							\
    402  1.10  dholland 		if (fs->lfs_is64) {				\
    403  1.10  dholland 			type *p = &ifp->u_64.if_##field;	\
    404  1.10  dholland 			(void)p;				\
    405  1.10  dholland 			ifp->u_64.if_##field = val;		\
    406  1.10  dholland 		} else {					\
    407  1.10  dholland 			type32 *p = &ifp->u_32.if_##field;	\
    408  1.10  dholland 			(void)p;				\
    409  1.10  dholland 			ifp->u_32.if_##field = val;		\
    410  1.10  dholland 		}						\
    411  1.10  dholland 	}							\
    412  1.10  dholland 
    413  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    414  1.10  dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    415  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    416  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
    417  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    418  1.10  dholland 
    419   1.1  dholland /*
    420   1.1  dholland  * Cleaner information structure.  This resides in the ifile and is used
    421   1.1  dholland  * to pass information from the kernel to the cleaner.
    422   1.1  dholland  */
    423   1.1  dholland 
    424   1.1  dholland #define	CLEANSIZE_SU(fs)						\
    425   1.9  dholland 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    426   1.9  dholland 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    427   1.9  dholland 
    428   1.9  dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    429   1.9  dholland 	static __unused inline type				\
    430   1.9  dholland 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    431   1.9  dholland 	{							\
    432   1.9  dholland 		if (fs->lfs_is64) {				\
    433   1.9  dholland 			return cip->u_64.field; 		\
    434   1.9  dholland 		} else {					\
    435   1.9  dholland 			return cip->u_32.field; 		\
    436   1.9  dholland 		}						\
    437   1.9  dholland 	}							\
    438   1.9  dholland 	static __unused inline void				\
    439   1.9  dholland 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    440   1.9  dholland 	{							\
    441   1.9  dholland 		if (fs->lfs_is64) {				\
    442   1.9  dholland 			type *p = &cip->u_64.field;		\
    443   1.9  dholland 			(void)p;				\
    444   1.9  dholland 			cip->u_64.field = val;			\
    445   1.9  dholland 		} else {					\
    446   1.9  dholland 			type32 *p = &cip->u_32.field;		\
    447   1.9  dholland 			(void)p;				\
    448   1.9  dholland 			cip->u_32.field = val;			\
    449   1.9  dholland 		}						\
    450   1.9  dholland 	}							\
    451   1.9  dholland 
    452   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    453   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    454   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    455   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    456   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    457   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    458   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    459   1.9  dholland 
    460   1.9  dholland static __unused inline void
    461   1.9  dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    462   1.9  dholland {
    463   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    464   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    465   1.9  dholland }
    466   1.9  dholland 
    467   1.9  dholland static __unused inline void
    468   1.9  dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    469   1.9  dholland {
    470   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    471   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    472   1.9  dholland }
    473   1.1  dholland 
    474   1.1  dholland /* Read in the block with the cleaner info from the ifile. */
    475   1.1  dholland #define LFS_CLEANERINFO(CP, F, BP) do {					\
    476   1.1  dholland 	SHARE_IFLOCK(F);						\
    477   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    478   1.1  dholland 	if (bread((F)->lfs_ivnode,					\
    479   1.1  dholland 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    480   1.1  dholland 		panic("lfs: ifile read");				\
    481   1.1  dholland 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    482   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    483   1.1  dholland } while (0)
    484   1.1  dholland 
    485   1.1  dholland /*
    486   1.1  dholland  * Synchronize the Ifile cleaner info with current avail and bfree.
    487   1.1  dholland  */
    488   1.1  dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    489   1.1  dholland     mutex_enter(&lfs_lock);						\
    490   1.9  dholland     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    491   1.9  dholland 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    492   1.1  dholland 	fs->lfs_favail) {	 					\
    493   1.9  dholland 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    494   1.9  dholland 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    495   1.9  dholland 		fs->lfs_favail);				 	\
    496   1.1  dholland 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    497   1.1  dholland 		fs->lfs_flags |= LFS_IFDIRTY;				\
    498   1.1  dholland 	}								\
    499   1.1  dholland 	mutex_exit(&lfs_lock);						\
    500   1.1  dholland 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    501   1.1  dholland     } else {							 	\
    502   1.1  dholland 	mutex_exit(&lfs_lock);						\
    503   1.1  dholland 	brelse(bp, 0);						 	\
    504   1.1  dholland     }									\
    505   1.1  dholland } while (0)
    506   1.1  dholland 
    507   1.1  dholland /*
    508   1.1  dholland  * Get the head of the inode free list.
    509   1.1  dholland  * Always called with the segment lock held.
    510   1.1  dholland  */
    511   1.1  dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    512   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    513   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    514   1.9  dholland 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    515   1.1  dholland 		brelse(BP, 0);						\
    516   1.1  dholland 	}								\
    517   1.1  dholland 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    518   1.1  dholland } while (0)
    519   1.1  dholland 
    520   1.1  dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    521   1.1  dholland 	lfs_sb_setfreehd(FS, VAL);					\
    522   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    523   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    524   1.9  dholland 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    525   1.1  dholland 		LFS_BWRITE_LOG(BP);					\
    526   1.1  dholland 		mutex_enter(&lfs_lock);					\
    527   1.1  dholland 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    528   1.1  dholland 		mutex_exit(&lfs_lock);					\
    529   1.1  dholland 	}								\
    530   1.1  dholland } while (0)
    531   1.1  dholland 
    532   1.1  dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    533   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    534   1.9  dholland 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    535   1.1  dholland 	brelse(BP, 0);							\
    536   1.1  dholland } while (0)
    537   1.1  dholland 
    538   1.1  dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    539   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    540   1.9  dholland 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
    541   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    542   1.1  dholland 	mutex_enter(&lfs_lock);						\
    543   1.1  dholland 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
    544   1.1  dholland 	mutex_exit(&lfs_lock);						\
    545   1.1  dholland } while (0)
    546   1.1  dholland 
    547   1.1  dholland /*
    548   1.1  dholland  * On-disk segment summary information
    549   1.1  dholland  */
    550   1.1  dholland 
    551  1.11  dholland #define SEGSUM_SIZE(fs) \
    552  1.11  dholland 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
    553  1.11  dholland 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
    554  1.11  dholland 
    555  1.11  dholland /*
    556  1.11  dholland  * The SEGSUM structure is followed by FINFO structures. Get the pointer
    557  1.11  dholland  * to the first FINFO.
    558  1.11  dholland  *
    559  1.11  dholland  * XXX this can't be a macro yet; this file needs to be resorted.
    560  1.11  dholland  */
    561  1.11  dholland #if 0
    562  1.11  dholland static __unused inline FINFO *
    563  1.11  dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
    564  1.11  dholland {
    565  1.12  dholland 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
    566  1.11  dholland }
    567  1.11  dholland #else
    568  1.11  dholland #define SEGSUM_FINFOBASE(fs, ssp) \
    569  1.12  dholland 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
    570  1.11  dholland #endif
    571  1.11  dholland 
    572  1.11  dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
    573  1.11  dholland 	static __unused inline type				\
    574  1.11  dholland 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
    575  1.11  dholland 	{							\
    576  1.11  dholland 		if (fs->lfs_is64) {				\
    577  1.11  dholland 			return ssp->u_64.ss_##field; 		\
    578  1.11  dholland 		} else {					\
    579  1.11  dholland 			return ssp->u_32.ss_##field; 		\
    580  1.11  dholland 		}						\
    581  1.11  dholland 	}							\
    582  1.11  dholland 	static __unused inline void				\
    583  1.11  dholland 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
    584  1.11  dholland 	{							\
    585  1.11  dholland 		if (fs->lfs_is64) {				\
    586  1.11  dholland 			type *p = &ssp->u_64.ss_##field;	\
    587  1.11  dholland 			(void)p;				\
    588  1.11  dholland 			ssp->u_64.ss_##field = val;		\
    589  1.11  dholland 		} else {					\
    590  1.11  dholland 			type32 *p = &ssp->u_32.ss_##field;	\
    591  1.11  dholland 			(void)p;				\
    592  1.11  dholland 			ssp->u_32.ss_##field = val;		\
    593  1.11  dholland 		}						\
    594  1.11  dholland 	}							\
    595  1.11  dholland 
    596  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
    597  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
    598  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
    599  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
    600  1.11  dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
    601  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
    602  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
    603  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
    604  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
    605  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
    606  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
    607  1.11  dholland 
    608  1.11  dholland static __unused inline size_t
    609  1.11  dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
    610  1.11  dholland {
    611  1.11  dholland 	/* These are actually all the same. */
    612  1.11  dholland 	if (fs->lfs_is64) {
    613  1.11  dholland 		return offsetof(SEGSUM64, ss_datasum);
    614  1.11  dholland 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
    615  1.11  dholland 		return offsetof(SEGSUM32, ss_datasum);
    616  1.11  dholland 	} /* else {
    617  1.11  dholland 		return offsetof(SEGSUM_V1, ss_datasum);
    618  1.11  dholland 	} */
    619  1.11  dholland 	/*
    620  1.11  dholland 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
    621  1.11  dholland 	 * defined yet.
    622  1.11  dholland 	 */
    623  1.11  dholland }
    624  1.11  dholland 
    625  1.11  dholland static __unused inline uint32_t
    626  1.11  dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
    627  1.11  dholland {
    628  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    629  1.11  dholland 	/* XXX need to resort this file before we can do this */
    630  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    631  1.11  dholland 
    632  1.11  dholland 	return ssp->u_v1.ss_create;
    633  1.11  dholland }
    634  1.11  dholland 
    635  1.11  dholland static __unused inline void
    636  1.11  dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
    637  1.11  dholland {
    638  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    639  1.11  dholland 	/* XXX need to resort this file before we can do this */
    640  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    641  1.11  dholland 
    642  1.11  dholland 	ssp->u_v1.ss_create = val;
    643  1.11  dholland }
    644  1.11  dholland 
    645   1.1  dholland 
    646   1.1  dholland /*
    647   1.1  dholland  * Super block.
    648   1.1  dholland  */
    649   1.1  dholland 
    650   1.1  dholland /*
    651   1.1  dholland  * Generate accessors for the on-disk superblock fields with cpp.
    652   1.1  dholland  */
    653   1.1  dholland 
    654   1.3  dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
    655   1.1  dholland 	static __unused inline type				\
    656   1.1  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
    657   1.1  dholland 	{							\
    658   1.7  dholland 		if (fs->lfs_is64) {				\
    659   1.7  dholland 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
    660   1.7  dholland 		} else {					\
    661   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
    662   1.7  dholland 		}						\
    663   1.1  dholland 	}							\
    664   1.1  dholland 	static __unused inline void				\
    665   1.1  dholland 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
    666   1.1  dholland 	{							\
    667   1.7  dholland 		if (fs->lfs_is64) {				\
    668   1.7  dholland 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
    669   1.7  dholland 		} else {					\
    670   1.7  dholland 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
    671   1.7  dholland 		}						\
    672   1.1  dholland 	}							\
    673   1.1  dholland 	static __unused inline void				\
    674   1.1  dholland 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
    675   1.1  dholland 	{							\
    676   1.7  dholland 		if (fs->lfs_is64) {				\
    677   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
    678   1.7  dholland 			*p64 += val;				\
    679   1.7  dholland 		} else {					\
    680   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
    681   1.7  dholland 			*p32 += val;				\
    682   1.7  dholland 		}						\
    683   1.1  dholland 	}							\
    684   1.1  dholland 	static __unused inline void				\
    685   1.1  dholland 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
    686   1.1  dholland 	{							\
    687   1.7  dholland 		if (fs->lfs_is64) {				\
    688   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
    689   1.7  dholland 			*p64 -= val;				\
    690   1.7  dholland 		} else {					\
    691   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
    692   1.7  dholland 			*p32 -= val;				\
    693   1.7  dholland 		}						\
    694   1.1  dholland 	}
    695   1.1  dholland 
    696   1.3  dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
    697   1.3  dholland 
    698   1.7  dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
    699   1.7  dholland 	static __unused inline type				\
    700   1.7  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
    701   1.7  dholland 	{							\
    702   1.7  dholland 		if (fs->lfs_is64) {				\
    703   1.7  dholland 			return val64;				\
    704   1.7  dholland 		} else {					\
    705   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
    706   1.7  dholland 		}						\
    707   1.7  dholland 	}
    708   1.7  dholland 
    709   1.1  dholland #define lfs_magic lfs_dlfs.dlfs_magic
    710   1.6  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
    711   1.3  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
    712   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
    713   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
    714   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
    715   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
    716   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
    717   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
    718   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
    719   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
    720   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
    721   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
    722   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
    723   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
    724   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
    725   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
    726   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
    727   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
    728   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
    729   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
    730   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
    731   1.1  dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
    732   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
    733   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
    734   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
    735   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
    736   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
    737   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
    738   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
    739   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
    740   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
    741   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
    742   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
    743   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
    744   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
    745   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
    746   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
    747   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
    748   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
    749   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
    750   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
    751   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
    752   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
    753   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
    754   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
    755   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
    756   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
    757   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
    758   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
    759   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
    760   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
    761   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
    762   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
    763   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
    764   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
    765   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
    766   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
    767   1.1  dholland 
    768   1.1  dholland /* special-case accessors */
    769   1.1  dholland 
    770   1.1  dholland /*
    771   1.1  dholland  * the v1 otstamp field lives in what's now dlfs_inopf
    772   1.1  dholland  */
    773   1.1  dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
    774   1.1  dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
    775   1.1  dholland 
    776   1.1  dholland /*
    777   1.1  dholland  * lfs_sboffs is an array
    778   1.1  dholland  */
    779   1.1  dholland static __unused inline int32_t
    780   1.2  dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
    781   1.1  dholland {
    782   1.1  dholland #ifdef KASSERT /* ugh */
    783   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
    784   1.1  dholland #endif
    785   1.7  dholland 	if (fs->lfs_is64) {
    786   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
    787   1.7  dholland 	} else {
    788   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
    789   1.7  dholland 	}
    790   1.1  dholland }
    791   1.1  dholland static __unused inline void
    792   1.2  dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
    793   1.1  dholland {
    794   1.1  dholland #ifdef KASSERT /* ugh */
    795   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
    796   1.1  dholland #endif
    797   1.7  dholland 	if (fs->lfs_is64) {
    798   1.7  dholland 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
    799   1.7  dholland 	} else {
    800   1.7  dholland 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
    801   1.7  dholland 	}
    802   1.1  dholland }
    803   1.1  dholland 
    804   1.1  dholland /*
    805   1.1  dholland  * lfs_fsmnt is a string
    806   1.1  dholland  */
    807   1.1  dholland static __unused inline const char *
    808   1.2  dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
    809   1.1  dholland {
    810   1.7  dholland 	if (fs->lfs_is64) {
    811   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
    812   1.7  dholland 	} else {
    813   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
    814   1.7  dholland 	}
    815   1.7  dholland }
    816   1.7  dholland 
    817   1.7  dholland static __unused inline void
    818   1.7  dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
    819   1.7  dholland {
    820   1.7  dholland 	if (fs->lfs_is64) {
    821   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
    822   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
    823   1.7  dholland 	} else {
    824   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
    825   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
    826   1.7  dholland 	}
    827   1.1  dholland }
    828   1.1  dholland 
    829   1.8  dholland /* Highest addressable fsb */
    830   1.8  dholland #define LFS_MAX_DADDR(fs) \
    831   1.8  dholland 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
    832   1.8  dholland 
    833   1.1  dholland /* LFS_NINDIR is the number of indirects in a file system block. */
    834   1.1  dholland #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
    835   1.1  dholland 
    836   1.1  dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
    837   1.1  dholland #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
    838   1.1  dholland /* LFS_INOPF is the number of inodes in a fragment. */
    839   1.1  dholland #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
    840   1.1  dholland 
    841   1.1  dholland #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
    842   1.1  dholland #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
    843   1.1  dholland     ((int)((loc) & lfs_sb_getffmask(fs)))
    844   1.1  dholland 
    845   1.4  dholland /* XXX: lowercase these as they're no longer macros */
    846   1.4  dholland /* Frags to diskblocks */
    847   1.4  dholland static __unused inline uint64_t
    848   1.4  dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
    849   1.4  dholland {
    850   1.1  dholland #if defined(_KERNEL)
    851   1.4  dholland 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
    852   1.1  dholland #else
    853   1.4  dholland 	return b << lfs_sb_getfsbtodb(fs);
    854   1.1  dholland #endif
    855   1.4  dholland }
    856   1.4  dholland /* Diskblocks to frags */
    857   1.4  dholland static __unused inline uint64_t
    858   1.4  dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
    859   1.4  dholland {
    860   1.4  dholland #if defined(_KERNEL)
    861   1.4  dholland 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
    862   1.4  dholland #else
    863   1.4  dholland 	return b >> lfs_sb_getfsbtodb(fs);
    864   1.4  dholland #endif
    865   1.4  dholland }
    866   1.1  dholland 
    867   1.1  dholland #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
    868   1.1  dholland #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
    869   1.1  dholland 
    870   1.4  dholland /* Frags to bytes */
    871   1.4  dholland static __unused inline uint64_t
    872   1.4  dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
    873   1.4  dholland {
    874   1.4  dholland 	return b << lfs_sb_getffshift(fs);
    875   1.4  dholland }
    876   1.4  dholland /* Bytes to frags */
    877   1.4  dholland static __unused inline uint64_t
    878   1.4  dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
    879   1.4  dholland {
    880   1.4  dholland 	return b >> lfs_sb_getffshift(fs);
    881   1.4  dholland }
    882   1.1  dholland 
    883   1.1  dholland #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
    884   1.1  dholland 	((loc) >> lfs_sb_getffshift(fs))
    885   1.1  dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
    886   1.1  dholland 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
    887   1.1  dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
    888   1.1  dholland 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
    889   1.1  dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
    890   1.1  dholland 	((frags) >> lfs_sb_getfbshift(fs))
    891   1.1  dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
    892   1.1  dholland 	((blks) << lfs_sb_getfbshift(fs))
    893   1.1  dholland #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
    894   1.1  dholland 	((fsb) & ((fs)->lfs_frag - 1))
    895   1.1  dholland #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
    896   1.1  dholland 	((fsb) &~ ((fs)->lfs_frag - 1))
    897   1.1  dholland #define lfs_dblksize(fs, dp, lbn) \
    898   1.1  dholland 	(((lbn) >= ULFS_NDADDR || (dp)->di_size >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
    899   1.1  dholland 	    ? lfs_sb_getbsize(fs) \
    900   1.1  dholland 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, (dp)->di_size))))
    901   1.1  dholland 
    902   1.6  dholland #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
    903   1.1  dholland 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
    904   1.1  dholland 			   lfs_sb_getssize(fs))
    905   1.4  dholland /* XXX segtod produces a result in frags despite the 'd' */
    906   1.4  dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
    907   1.1  dholland #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
    908   1.1  dholland 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
    909   1.1  dholland #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
    910   1.1  dholland 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
    911   1.1  dholland 
    912   1.4  dholland /* XXX, blah. make this appear only if struct inode is defined */
    913   1.4  dholland #ifdef _UFS_LFS_LFS_INODE_H_
    914   1.4  dholland static __unused inline uint32_t
    915   1.4  dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
    916   1.4  dholland {
    917   1.4  dholland 	if (lbn >= ULFS_NDADDR || ip->i_ffs1_size >= (lbn + 1) << lfs_sb_getbshift(fs)) {
    918   1.4  dholland 		return lfs_sb_getbsize(fs);
    919   1.4  dholland 	} else {
    920   1.4  dholland 		return lfs_fragroundup(fs, lfs_blkoff(fs, ip->i_ffs1_size));
    921   1.4  dholland 	}
    922   1.4  dholland }
    923   1.4  dholland #endif
    924   1.4  dholland 
    925  1.12  dholland /*
    926  1.12  dholland  * union lfs_blocks
    927  1.12  dholland  */
    928  1.12  dholland 
    929  1.12  dholland static __unused inline void
    930  1.12  dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
    931  1.12  dholland {
    932  1.12  dholland 	if (fs->lfs_is64) {
    933  1.12  dholland 		bp->b64 = p;
    934  1.12  dholland 	} else {
    935  1.12  dholland 		bp->b32 = p;
    936  1.12  dholland 	}
    937  1.12  dholland }
    938  1.12  dholland 
    939  1.12  dholland static __unused inline void
    940  1.12  dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
    941  1.12  dholland {
    942  1.12  dholland 	void *firstblock;
    943  1.12  dholland 
    944  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    945  1.12  dholland 	if (fs->lfs_is64) {
    946  1.12  dholland 		bp->b64 = (int64_t *)firstblock;
    947  1.12  dholland 	}  else {
    948  1.12  dholland 		bp->b32 = (int32_t *)firstblock;
    949  1.12  dholland 	}
    950  1.12  dholland }
    951  1.12  dholland 
    952  1.12  dholland static __unused inline daddr_t
    953  1.12  dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
    954  1.12  dholland {
    955  1.12  dholland 	if (fs->lfs_is64) {
    956  1.12  dholland 		return bp->b64[index];
    957  1.12  dholland 	} else {
    958  1.12  dholland 		return bp->b32[index];
    959  1.12  dholland 	}
    960  1.12  dholland }
    961  1.12  dholland 
    962  1.12  dholland static __unused inline void
    963  1.12  dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
    964  1.12  dholland {
    965  1.12  dholland 	if (fs->lfs_is64) {
    966  1.12  dholland 		bp->b64[index] = val;
    967  1.12  dholland 	} else {
    968  1.12  dholland 		bp->b32[index] = val;
    969  1.12  dholland 	}
    970  1.12  dholland }
    971  1.12  dholland 
    972  1.12  dholland static __unused inline void
    973  1.12  dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
    974  1.12  dholland {
    975  1.12  dholland 	if (fs->lfs_is64) {
    976  1.12  dholland 		bp->b64++;
    977  1.12  dholland 	} else {
    978  1.12  dholland 		bp->b32++;
    979  1.12  dholland 	}
    980  1.12  dholland }
    981  1.12  dholland 
    982  1.12  dholland static __unused inline int
    983  1.12  dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
    984  1.12  dholland {
    985  1.12  dholland 	if (fs->lfs_is64) {
    986  1.12  dholland 		return bp1->b64 == bp2->b64;
    987  1.12  dholland 	} else {
    988  1.12  dholland 		return bp1->b32 == bp2->b32;
    989  1.12  dholland 	}
    990  1.12  dholland }
    991  1.12  dholland 
    992  1.12  dholland static __unused inline int
    993  1.12  dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
    994  1.12  dholland {
    995  1.12  dholland 	/* (remember that the pointers are typed) */
    996  1.12  dholland 	if (fs->lfs_is64) {
    997  1.12  dholland 		return bp1->b64 - bp2->b64;
    998  1.12  dholland 	} else {
    999  1.12  dholland 		return bp1->b32 - bp2->b32;
   1000  1.12  dholland 	}
   1001  1.12  dholland }
   1002  1.12  dholland 
   1003  1.12  dholland /*
   1004  1.12  dholland  * struct segment
   1005  1.12  dholland  */
   1006  1.12  dholland 
   1007   1.4  dholland 
   1008   1.1  dholland /*
   1009   1.1  dholland  * Macros for determining free space on the disk, with the variable metadata
   1010   1.1  dholland  * of segment summaries and inode blocks taken into account.
   1011   1.1  dholland  */
   1012   1.1  dholland /*
   1013   1.1  dholland  * Estimate number of clean blocks not available for writing because
   1014   1.1  dholland  * they will contain metadata or overhead.  This is calculated as
   1015   1.1  dholland  *
   1016   1.1  dholland  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1017   1.1  dholland  * or more simply
   1018   1.1  dholland  *		E = (C * M) / T
   1019   1.1  dholland  *
   1020   1.1  dholland  * where
   1021   1.1  dholland  * C is the clean space,
   1022   1.1  dholland  * D is the dirty space,
   1023   1.1  dholland  * M is the dirty metadata, and
   1024   1.1  dholland  * T = C + D is the total space on disk.
   1025   1.1  dholland  *
   1026   1.1  dholland  * This approximates the old formula of E = C * M / D when D is close to T,
   1027   1.1  dholland  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1028   1.1  dholland  */
   1029   1.1  dholland #define LFS_EST_CMETA(F) (int32_t)((					\
   1030   1.1  dholland 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1031   1.1  dholland 	(lfs_sb_getnseg(F))))
   1032   1.1  dholland 
   1033   1.1  dholland /* Estimate total size of the disk not including metadata */
   1034   1.1  dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1035   1.1  dholland 
   1036   1.1  dholland /* Estimate number of blocks actually available for writing */
   1037   1.1  dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1038   1.1  dholland 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1039   1.1  dholland 
   1040   1.1  dholland /* Amount of non-meta space not available to mortal man */
   1041   1.1  dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) *			     \
   1042   1.1  dholland 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1043   1.1  dholland 				  100)
   1044   1.1  dholland 
   1045   1.4  dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1046   1.1  dholland #define ISSPACE(F, BB, C)						\
   1047   1.1  dholland 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1048   1.1  dholland 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1049   1.1  dholland 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1050   1.1  dholland 
   1051   1.1  dholland /* Can an ordinary user write BB blocks */
   1052   1.1  dholland #define IS_FREESPACE(F, BB)						\
   1053   1.1  dholland 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1054   1.1  dholland 
   1055   1.1  dholland /*
   1056   1.1  dholland  * The minimum number of blocks to create a new inode.  This is:
   1057   1.1  dholland  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1058   1.1  dholland  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1059   1.1  dholland  */
   1060   1.1  dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1061   1.1  dholland 
   1062   1.1  dholland 
   1063   1.1  dholland 
   1064   1.1  dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1065