lfs_accessors.h revision 1.13 1 1.13 dholland /* $NetBSD: lfs_accessors.h,v 1.13 2015/08/12 18:28:01 dholland Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.1 dholland /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 1.1 dholland /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
149 1.11 dholland #include <assert.h>
150 1.11 dholland #define KASSERT assert
151 1.11 dholland #endif
152 1.11 dholland
153 1.1 dholland /*
154 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
155 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
156 1.9 dholland * get accessors that work with struct clfs.
157 1.9 dholland */
158 1.9 dholland
159 1.9 dholland #ifndef STRUCT_LFS
160 1.9 dholland #define STRUCT_LFS struct lfs
161 1.9 dholland #endif
162 1.9 dholland
163 1.13 dholland /*
164 1.13 dholland * dinodes
165 1.13 dholland */
166 1.9 dholland
167 1.9 dholland /*
168 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
169 1.1 dholland */
170 1.1 dholland #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
171 1.1 dholland #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
172 1.1 dholland
173 1.1 dholland #define ULFS_MAXSYMLINKLEN(ip) \
174 1.1 dholland ((ip)->i_ump->um_fstype == ULFS1) ? \
175 1.1 dholland ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
176 1.1 dholland
177 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
178 1.13 dholland
179 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
180 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
181 1.13 dholland
182 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
183 1.13 dholland static __unused inline type \
184 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
185 1.13 dholland { \
186 1.13 dholland if (fs->lfs_is64) { \
187 1.13 dholland return dip->u_64.di_##field; \
188 1.13 dholland } else { \
189 1.13 dholland return dip->u_32.di_##field; \
190 1.13 dholland } \
191 1.13 dholland } \
192 1.13 dholland static __unused inline void \
193 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
194 1.13 dholland { \
195 1.13 dholland if (fs->lfs_is64) { \
196 1.13 dholland type *p = &dip->u_64.di_##field; \
197 1.13 dholland (void)p; \
198 1.13 dholland dip->u_64.di_##field = val; \
199 1.13 dholland } else { \
200 1.13 dholland type32 *p = &dip->u_32.di_##field; \
201 1.13 dholland (void)p; \
202 1.13 dholland dip->u_32.di_##field = val; \
203 1.13 dholland } \
204 1.13 dholland } \
205 1.13 dholland
206 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
207 1.13 dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
208 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
209 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
210 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
211 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
212 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
213 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
214 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
215 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
216 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
217 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
218 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
219 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
220 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
221 1.13 dholland
222 1.13 dholland static __unused inline daddr_t
223 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
224 1.13 dholland {
225 1.13 dholland KASSERT(ix < ULFS_NDADDR);
226 1.13 dholland if (fs->lfs_is64) {
227 1.13 dholland return dip->u_64.di_db[ix];
228 1.13 dholland } else {
229 1.13 dholland return dip->u_32.di_db[ix];
230 1.13 dholland }
231 1.13 dholland }
232 1.13 dholland
233 1.13 dholland static __unused inline daddr_t
234 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
235 1.13 dholland {
236 1.13 dholland KASSERT(ix < ULFS_NIADDR);
237 1.13 dholland if (fs->lfs_is64) {
238 1.13 dholland return dip->u_64.di_ib[ix];
239 1.13 dholland } else {
240 1.13 dholland return dip->u_32.di_ib[ix];
241 1.13 dholland }
242 1.13 dholland }
243 1.13 dholland
244 1.13 dholland static __unused inline void
245 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
246 1.13 dholland {
247 1.13 dholland KASSERT(ix < ULFS_NDADDR);
248 1.13 dholland if (fs->lfs_is64) {
249 1.13 dholland dip->u_64.di_db[ix] = val;
250 1.13 dholland } else {
251 1.13 dholland dip->u_32.di_db[ix] = val;
252 1.13 dholland }
253 1.13 dholland }
254 1.13 dholland
255 1.13 dholland static __unused inline void
256 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
257 1.13 dholland {
258 1.13 dholland KASSERT(ix < ULFS_NIADDR);
259 1.13 dholland if (fs->lfs_is64) {
260 1.13 dholland dip->u_64.di_ib[ix] = val;
261 1.13 dholland } else {
262 1.13 dholland dip->u_32.di_ib[ix] = val;
263 1.13 dholland }
264 1.13 dholland }
265 1.13 dholland
266 1.1 dholland /*
267 1.1 dholland * "struct buf" associated definitions
268 1.1 dholland */
269 1.1 dholland
270 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
271 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
272 1.1 dholland mutex_enter(&lfs_lock); \
273 1.1 dholland ++locked_queue_count; \
274 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
275 1.1 dholland mutex_exit(&lfs_lock); \
276 1.1 dholland } \
277 1.1 dholland (bp)->b_flags |= B_LOCKED; \
278 1.1 dholland } while (0)
279 1.1 dholland
280 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
281 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
282 1.1 dholland mutex_enter(&lfs_lock); \
283 1.1 dholland --locked_queue_count; \
284 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
285 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
286 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
287 1.1 dholland cv_broadcast(&locked_queue_cv); \
288 1.1 dholland mutex_exit(&lfs_lock); \
289 1.1 dholland } \
290 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
291 1.1 dholland } while (0)
292 1.1 dholland
293 1.1 dholland /*
294 1.1 dholland * "struct inode" associated definitions
295 1.1 dholland */
296 1.1 dholland
297 1.1 dholland #define LFS_SET_UINO(ip, flags) do { \
298 1.1 dholland if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
299 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
300 1.1 dholland if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
301 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
302 1.1 dholland if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
303 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
304 1.1 dholland (ip)->i_flag |= (flags); \
305 1.1 dholland } while (0)
306 1.1 dholland
307 1.1 dholland #define LFS_CLR_UINO(ip, flags) do { \
308 1.1 dholland if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
309 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
310 1.1 dholland if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
311 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
312 1.1 dholland if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
313 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
314 1.1 dholland (ip)->i_flag &= ~(flags); \
315 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
316 1.1 dholland panic("lfs_uinodes < 0"); \
317 1.1 dholland } \
318 1.1 dholland } while (0)
319 1.1 dholland
320 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
321 1.1 dholland while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
322 1.1 dholland lfs_itimes(ip, acc, mod, cre)
323 1.1 dholland
324 1.1 dholland /*
325 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
326 1.1 dholland */
327 1.1 dholland
328 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
329 1.1 dholland #define SEGTABSIZE_SU(fs) \
330 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
331 1.1 dholland
332 1.1 dholland #ifdef _KERNEL
333 1.1 dholland # define SHARE_IFLOCK(F) \
334 1.1 dholland do { \
335 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
336 1.1 dholland } while(0)
337 1.1 dholland # define UNSHARE_IFLOCK(F) \
338 1.1 dholland do { \
339 1.1 dholland rw_exit(&(F)->lfs_iflock); \
340 1.1 dholland } while(0)
341 1.1 dholland #else /* ! _KERNEL */
342 1.1 dholland # define SHARE_IFLOCK(F)
343 1.1 dholland # define UNSHARE_IFLOCK(F)
344 1.1 dholland #endif /* ! _KERNEL */
345 1.1 dholland
346 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
347 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
348 1.1 dholland int _e; \
349 1.1 dholland SHARE_IFLOCK(F); \
350 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
351 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
352 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
353 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
354 1.1 dholland panic("lfs: ifile read: %d", _e); \
355 1.6 dholland if (lfs_sb_getversion(F) == 1) \
356 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
357 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
358 1.1 dholland else \
359 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
360 1.1 dholland UNSHARE_IFLOCK(F); \
361 1.1 dholland } while (0)
362 1.1 dholland
363 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
364 1.1 dholland if ((SP)->su_nbytes == 0) \
365 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
366 1.1 dholland else \
367 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
368 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
369 1.1 dholland LFS_BWRITE_LOG(BP); \
370 1.1 dholland } while (0)
371 1.1 dholland
372 1.1 dholland /*
373 1.11 dholland * FINFO (file info) entries.
374 1.11 dholland */
375 1.11 dholland
376 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
377 1.11 dholland /* XXX: move to a more suitable location in this file */
378 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
379 1.11 dholland
380 1.12 dholland /* Size of an on-disk inode number. */
381 1.12 dholland /* XXX: move to a more suitable location in this file */
382 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
383 1.12 dholland
384 1.12 dholland /* size of a FINFO, without the block pointers */
385 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
386 1.12 dholland
387 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
388 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
389 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
390 1.11 dholland
391 1.11 dholland #define NEXT_FINFO(fs, fip) \
392 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
393 1.11 dholland
394 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
395 1.12 dholland static __unused inline type \
396 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
397 1.12 dholland { \
398 1.12 dholland if (fs->lfs_is64) { \
399 1.12 dholland return fip->u_64.fi_##field; \
400 1.12 dholland } else { \
401 1.12 dholland return fip->u_32.fi_##field; \
402 1.12 dholland } \
403 1.12 dholland } \
404 1.12 dholland static __unused inline void \
405 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
406 1.12 dholland { \
407 1.12 dholland if (fs->lfs_is64) { \
408 1.12 dholland type *p = &fip->u_64.fi_##field; \
409 1.12 dholland (void)p; \
410 1.12 dholland fip->u_64.fi_##field = val; \
411 1.12 dholland } else { \
412 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
413 1.12 dholland (void)p; \
414 1.12 dholland fip->u_32.fi_##field = val; \
415 1.12 dholland } \
416 1.12 dholland } \
417 1.12 dholland
418 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
419 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
420 1.12 dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
421 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
422 1.12 dholland
423 1.12 dholland static __unused inline daddr_t
424 1.12 dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
425 1.12 dholland {
426 1.12 dholland void *firstblock;
427 1.12 dholland
428 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
429 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
430 1.12 dholland if (fs->lfs_is64) {
431 1.12 dholland return ((int64_t *)firstblock)[index];
432 1.12 dholland } else {
433 1.12 dholland return ((int32_t *)firstblock)[index];
434 1.12 dholland }
435 1.12 dholland }
436 1.12 dholland
437 1.12 dholland static __unused inline void
438 1.12 dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
439 1.12 dholland {
440 1.12 dholland void *firstblock;
441 1.12 dholland
442 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
443 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
444 1.12 dholland if (fs->lfs_is64) {
445 1.12 dholland ((int64_t *)firstblock)[index] = blk;
446 1.12 dholland } else {
447 1.12 dholland ((int32_t *)firstblock)[index] = blk;
448 1.12 dholland }
449 1.12 dholland }
450 1.12 dholland
451 1.11 dholland /*
452 1.1 dholland * Index file inode entries.
453 1.1 dholland */
454 1.1 dholland
455 1.1 dholland /*
456 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
457 1.1 dholland * may not be mapped!
458 1.1 dholland */
459 1.1 dholland /* Read in the block with a specific inode from the ifile. */
460 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
461 1.1 dholland int _e; \
462 1.1 dholland SHARE_IFLOCK(F); \
463 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
464 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
465 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
466 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
467 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
468 1.10 dholland if ((F)->lfs_is64) { \
469 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
470 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
471 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
472 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
473 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
474 1.10 dholland } else { \
475 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
476 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
477 1.10 dholland } \
478 1.1 dholland UNSHARE_IFLOCK(F); \
479 1.1 dholland } while (0)
480 1.1 dholland
481 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
482 1.10 dholland static __unused inline type \
483 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
484 1.10 dholland { \
485 1.10 dholland if (fs->lfs_is64) { \
486 1.10 dholland return ifp->u_64.if_##field; \
487 1.10 dholland } else { \
488 1.10 dholland return ifp->u_32.if_##field; \
489 1.10 dholland } \
490 1.10 dholland } \
491 1.10 dholland static __unused inline void \
492 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
493 1.10 dholland { \
494 1.10 dholland if (fs->lfs_is64) { \
495 1.10 dholland type *p = &ifp->u_64.if_##field; \
496 1.10 dholland (void)p; \
497 1.10 dholland ifp->u_64.if_##field = val; \
498 1.10 dholland } else { \
499 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
500 1.10 dholland (void)p; \
501 1.10 dholland ifp->u_32.if_##field = val; \
502 1.10 dholland } \
503 1.10 dholland } \
504 1.10 dholland
505 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
506 1.10 dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
507 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
508 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
509 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
510 1.10 dholland
511 1.1 dholland /*
512 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
513 1.1 dholland * to pass information from the kernel to the cleaner.
514 1.1 dholland */
515 1.1 dholland
516 1.1 dholland #define CLEANSIZE_SU(fs) \
517 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
518 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
519 1.9 dholland
520 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
521 1.9 dholland static __unused inline type \
522 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
523 1.9 dholland { \
524 1.9 dholland if (fs->lfs_is64) { \
525 1.9 dholland return cip->u_64.field; \
526 1.9 dholland } else { \
527 1.9 dholland return cip->u_32.field; \
528 1.9 dholland } \
529 1.9 dholland } \
530 1.9 dholland static __unused inline void \
531 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
532 1.9 dholland { \
533 1.9 dholland if (fs->lfs_is64) { \
534 1.9 dholland type *p = &cip->u_64.field; \
535 1.9 dholland (void)p; \
536 1.9 dholland cip->u_64.field = val; \
537 1.9 dholland } else { \
538 1.9 dholland type32 *p = &cip->u_32.field; \
539 1.9 dholland (void)p; \
540 1.9 dholland cip->u_32.field = val; \
541 1.9 dholland } \
542 1.9 dholland } \
543 1.9 dholland
544 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
545 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
546 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
547 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
548 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
549 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
550 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
551 1.9 dholland
552 1.9 dholland static __unused inline void
553 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
554 1.9 dholland {
555 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
556 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
557 1.9 dholland }
558 1.9 dholland
559 1.9 dholland static __unused inline void
560 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
561 1.9 dholland {
562 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
563 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
564 1.9 dholland }
565 1.1 dholland
566 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
567 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
568 1.1 dholland SHARE_IFLOCK(F); \
569 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
570 1.1 dholland if (bread((F)->lfs_ivnode, \
571 1.1 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
572 1.1 dholland panic("lfs: ifile read"); \
573 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
574 1.1 dholland UNSHARE_IFLOCK(F); \
575 1.1 dholland } while (0)
576 1.1 dholland
577 1.1 dholland /*
578 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
579 1.1 dholland */
580 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
581 1.1 dholland mutex_enter(&lfs_lock); \
582 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
583 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
584 1.1 dholland fs->lfs_favail) { \
585 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
586 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
587 1.9 dholland fs->lfs_favail); \
588 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
589 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
590 1.1 dholland } \
591 1.1 dholland mutex_exit(&lfs_lock); \
592 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
593 1.1 dholland } else { \
594 1.1 dholland mutex_exit(&lfs_lock); \
595 1.1 dholland brelse(bp, 0); \
596 1.1 dholland } \
597 1.1 dholland } while (0)
598 1.1 dholland
599 1.1 dholland /*
600 1.1 dholland * Get the head of the inode free list.
601 1.1 dholland * Always called with the segment lock held.
602 1.1 dholland */
603 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
604 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
605 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
606 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
607 1.1 dholland brelse(BP, 0); \
608 1.1 dholland } \
609 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
610 1.1 dholland } while (0)
611 1.1 dholland
612 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
613 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
614 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
615 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
616 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
617 1.1 dholland LFS_BWRITE_LOG(BP); \
618 1.1 dholland mutex_enter(&lfs_lock); \
619 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
620 1.1 dholland mutex_exit(&lfs_lock); \
621 1.1 dholland } \
622 1.1 dholland } while (0)
623 1.1 dholland
624 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
625 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
626 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
627 1.1 dholland brelse(BP, 0); \
628 1.1 dholland } while (0)
629 1.1 dholland
630 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
631 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
632 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
633 1.1 dholland LFS_BWRITE_LOG(BP); \
634 1.1 dholland mutex_enter(&lfs_lock); \
635 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
636 1.1 dholland mutex_exit(&lfs_lock); \
637 1.1 dholland } while (0)
638 1.1 dholland
639 1.1 dholland /*
640 1.1 dholland * On-disk segment summary information
641 1.1 dholland */
642 1.1 dholland
643 1.11 dholland #define SEGSUM_SIZE(fs) \
644 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
645 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
646 1.11 dholland
647 1.11 dholland /*
648 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
649 1.11 dholland * to the first FINFO.
650 1.11 dholland *
651 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
652 1.11 dholland */
653 1.11 dholland #if 0
654 1.11 dholland static __unused inline FINFO *
655 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
656 1.11 dholland {
657 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
658 1.11 dholland }
659 1.11 dholland #else
660 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
661 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
662 1.11 dholland #endif
663 1.11 dholland
664 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
665 1.11 dholland static __unused inline type \
666 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
667 1.11 dholland { \
668 1.11 dholland if (fs->lfs_is64) { \
669 1.11 dholland return ssp->u_64.ss_##field; \
670 1.11 dholland } else { \
671 1.11 dholland return ssp->u_32.ss_##field; \
672 1.11 dholland } \
673 1.11 dholland } \
674 1.11 dholland static __unused inline void \
675 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
676 1.11 dholland { \
677 1.11 dholland if (fs->lfs_is64) { \
678 1.11 dholland type *p = &ssp->u_64.ss_##field; \
679 1.11 dholland (void)p; \
680 1.11 dholland ssp->u_64.ss_##field = val; \
681 1.11 dholland } else { \
682 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
683 1.11 dholland (void)p; \
684 1.11 dholland ssp->u_32.ss_##field = val; \
685 1.11 dholland } \
686 1.11 dholland } \
687 1.11 dholland
688 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
689 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
690 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
691 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
692 1.11 dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
693 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
694 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
695 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
696 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
697 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
698 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
699 1.11 dholland
700 1.11 dholland static __unused inline size_t
701 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
702 1.11 dholland {
703 1.11 dholland /* These are actually all the same. */
704 1.11 dholland if (fs->lfs_is64) {
705 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
706 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
707 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
708 1.11 dholland } /* else {
709 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
710 1.11 dholland } */
711 1.11 dholland /*
712 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
713 1.11 dholland * defined yet.
714 1.11 dholland */
715 1.11 dholland }
716 1.11 dholland
717 1.11 dholland static __unused inline uint32_t
718 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
719 1.11 dholland {
720 1.11 dholland KASSERT(fs->lfs_is64 == 0);
721 1.11 dholland /* XXX need to resort this file before we can do this */
722 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
723 1.11 dholland
724 1.11 dholland return ssp->u_v1.ss_create;
725 1.11 dholland }
726 1.11 dholland
727 1.11 dholland static __unused inline void
728 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
729 1.11 dholland {
730 1.11 dholland KASSERT(fs->lfs_is64 == 0);
731 1.11 dholland /* XXX need to resort this file before we can do this */
732 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
733 1.11 dholland
734 1.11 dholland ssp->u_v1.ss_create = val;
735 1.11 dholland }
736 1.11 dholland
737 1.1 dholland
738 1.1 dholland /*
739 1.1 dholland * Super block.
740 1.1 dholland */
741 1.1 dholland
742 1.1 dholland /*
743 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
744 1.1 dholland */
745 1.1 dholland
746 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
747 1.1 dholland static __unused inline type \
748 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
749 1.1 dholland { \
750 1.7 dholland if (fs->lfs_is64) { \
751 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
752 1.7 dholland } else { \
753 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
754 1.7 dholland } \
755 1.1 dholland } \
756 1.1 dholland static __unused inline void \
757 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
758 1.1 dholland { \
759 1.7 dholland if (fs->lfs_is64) { \
760 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
761 1.7 dholland } else { \
762 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
763 1.7 dholland } \
764 1.1 dholland } \
765 1.1 dholland static __unused inline void \
766 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
767 1.1 dholland { \
768 1.7 dholland if (fs->lfs_is64) { \
769 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
770 1.7 dholland *p64 += val; \
771 1.7 dholland } else { \
772 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
773 1.7 dholland *p32 += val; \
774 1.7 dholland } \
775 1.1 dholland } \
776 1.1 dholland static __unused inline void \
777 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
778 1.1 dholland { \
779 1.7 dholland if (fs->lfs_is64) { \
780 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
781 1.7 dholland *p64 -= val; \
782 1.7 dholland } else { \
783 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
784 1.7 dholland *p32 -= val; \
785 1.7 dholland } \
786 1.1 dholland }
787 1.1 dholland
788 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
789 1.3 dholland
790 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
791 1.7 dholland static __unused inline type \
792 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
793 1.7 dholland { \
794 1.7 dholland if (fs->lfs_is64) { \
795 1.7 dholland return val64; \
796 1.7 dholland } else { \
797 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
798 1.7 dholland } \
799 1.7 dholland }
800 1.7 dholland
801 1.1 dholland #define lfs_magic lfs_dlfs.dlfs_magic
802 1.6 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
803 1.3 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
804 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
805 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
806 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
807 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
808 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
809 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
810 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
811 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
812 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
813 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
814 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
815 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
816 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
817 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
818 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
819 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
820 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
821 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
822 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
823 1.1 dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
824 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
825 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
826 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
827 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
828 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
829 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
830 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
831 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
832 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
833 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
834 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
835 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
836 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
837 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
838 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
839 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
840 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
841 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
842 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
843 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
844 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
845 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
846 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
847 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
848 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
849 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
850 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
851 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
852 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
853 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
854 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
855 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
856 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
857 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
858 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
859 1.1 dholland
860 1.1 dholland /* special-case accessors */
861 1.1 dholland
862 1.1 dholland /*
863 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
864 1.1 dholland */
865 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
866 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
867 1.1 dholland
868 1.1 dholland /*
869 1.1 dholland * lfs_sboffs is an array
870 1.1 dholland */
871 1.1 dholland static __unused inline int32_t
872 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
873 1.1 dholland {
874 1.1 dholland #ifdef KASSERT /* ugh */
875 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
876 1.1 dholland #endif
877 1.7 dholland if (fs->lfs_is64) {
878 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
879 1.7 dholland } else {
880 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
881 1.7 dholland }
882 1.1 dholland }
883 1.1 dholland static __unused inline void
884 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
885 1.1 dholland {
886 1.1 dholland #ifdef KASSERT /* ugh */
887 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
888 1.1 dholland #endif
889 1.7 dholland if (fs->lfs_is64) {
890 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
891 1.7 dholland } else {
892 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
893 1.7 dholland }
894 1.1 dholland }
895 1.1 dholland
896 1.1 dholland /*
897 1.1 dholland * lfs_fsmnt is a string
898 1.1 dholland */
899 1.1 dholland static __unused inline const char *
900 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
901 1.1 dholland {
902 1.7 dholland if (fs->lfs_is64) {
903 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
904 1.7 dholland } else {
905 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
906 1.7 dholland }
907 1.7 dholland }
908 1.7 dholland
909 1.7 dholland static __unused inline void
910 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
911 1.7 dholland {
912 1.7 dholland if (fs->lfs_is64) {
913 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
914 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
915 1.7 dholland } else {
916 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
917 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
918 1.7 dholland }
919 1.1 dholland }
920 1.1 dholland
921 1.8 dholland /* Highest addressable fsb */
922 1.8 dholland #define LFS_MAX_DADDR(fs) \
923 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
924 1.8 dholland
925 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
926 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
927 1.1 dholland
928 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
929 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
930 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
931 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
932 1.1 dholland
933 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
934 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
935 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
936 1.1 dholland
937 1.4 dholland /* XXX: lowercase these as they're no longer macros */
938 1.4 dholland /* Frags to diskblocks */
939 1.4 dholland static __unused inline uint64_t
940 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
941 1.4 dholland {
942 1.1 dholland #if defined(_KERNEL)
943 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
944 1.1 dholland #else
945 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
946 1.1 dholland #endif
947 1.4 dholland }
948 1.4 dholland /* Diskblocks to frags */
949 1.4 dholland static __unused inline uint64_t
950 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
951 1.4 dholland {
952 1.4 dholland #if defined(_KERNEL)
953 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
954 1.4 dholland #else
955 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
956 1.4 dholland #endif
957 1.4 dholland }
958 1.1 dholland
959 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
960 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
961 1.1 dholland
962 1.4 dholland /* Frags to bytes */
963 1.4 dholland static __unused inline uint64_t
964 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
965 1.4 dholland {
966 1.4 dholland return b << lfs_sb_getffshift(fs);
967 1.4 dholland }
968 1.4 dholland /* Bytes to frags */
969 1.4 dholland static __unused inline uint64_t
970 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
971 1.4 dholland {
972 1.4 dholland return b >> lfs_sb_getffshift(fs);
973 1.4 dholland }
974 1.1 dholland
975 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
976 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
977 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
978 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
979 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
980 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
981 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
982 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
983 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
984 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
985 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
986 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
987 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
988 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
989 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
990 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
991 1.1 dholland ? lfs_sb_getbsize(fs) \
992 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
993 1.1 dholland
994 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
995 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
996 1.1 dholland lfs_sb_getssize(fs))
997 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
998 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
999 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1000 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1001 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1002 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1003 1.1 dholland
1004 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1005 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1006 1.4 dholland static __unused inline uint32_t
1007 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1008 1.4 dholland {
1009 1.4 dholland if (lbn >= ULFS_NDADDR || ip->i_ffs1_size >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1010 1.4 dholland return lfs_sb_getbsize(fs);
1011 1.4 dholland } else {
1012 1.4 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, ip->i_ffs1_size));
1013 1.4 dholland }
1014 1.4 dholland }
1015 1.4 dholland #endif
1016 1.4 dholland
1017 1.12 dholland /*
1018 1.12 dholland * union lfs_blocks
1019 1.12 dholland */
1020 1.12 dholland
1021 1.12 dholland static __unused inline void
1022 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1023 1.12 dholland {
1024 1.12 dholland if (fs->lfs_is64) {
1025 1.12 dholland bp->b64 = p;
1026 1.12 dholland } else {
1027 1.12 dholland bp->b32 = p;
1028 1.12 dholland }
1029 1.12 dholland }
1030 1.12 dholland
1031 1.12 dholland static __unused inline void
1032 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1033 1.12 dholland {
1034 1.12 dholland void *firstblock;
1035 1.12 dholland
1036 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1037 1.12 dholland if (fs->lfs_is64) {
1038 1.12 dholland bp->b64 = (int64_t *)firstblock;
1039 1.12 dholland } else {
1040 1.12 dholland bp->b32 = (int32_t *)firstblock;
1041 1.12 dholland }
1042 1.12 dholland }
1043 1.12 dholland
1044 1.12 dholland static __unused inline daddr_t
1045 1.12 dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1046 1.12 dholland {
1047 1.12 dholland if (fs->lfs_is64) {
1048 1.12 dholland return bp->b64[index];
1049 1.12 dholland } else {
1050 1.12 dholland return bp->b32[index];
1051 1.12 dholland }
1052 1.12 dholland }
1053 1.12 dholland
1054 1.12 dholland static __unused inline void
1055 1.12 dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1056 1.12 dholland {
1057 1.12 dholland if (fs->lfs_is64) {
1058 1.12 dholland bp->b64[index] = val;
1059 1.12 dholland } else {
1060 1.12 dholland bp->b32[index] = val;
1061 1.12 dholland }
1062 1.12 dholland }
1063 1.12 dholland
1064 1.12 dholland static __unused inline void
1065 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1066 1.12 dholland {
1067 1.12 dholland if (fs->lfs_is64) {
1068 1.12 dholland bp->b64++;
1069 1.12 dholland } else {
1070 1.12 dholland bp->b32++;
1071 1.12 dholland }
1072 1.12 dholland }
1073 1.12 dholland
1074 1.12 dholland static __unused inline int
1075 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1076 1.12 dholland {
1077 1.12 dholland if (fs->lfs_is64) {
1078 1.12 dholland return bp1->b64 == bp2->b64;
1079 1.12 dholland } else {
1080 1.12 dholland return bp1->b32 == bp2->b32;
1081 1.12 dholland }
1082 1.12 dholland }
1083 1.12 dholland
1084 1.12 dholland static __unused inline int
1085 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1086 1.12 dholland {
1087 1.12 dholland /* (remember that the pointers are typed) */
1088 1.12 dholland if (fs->lfs_is64) {
1089 1.12 dholland return bp1->b64 - bp2->b64;
1090 1.12 dholland } else {
1091 1.12 dholland return bp1->b32 - bp2->b32;
1092 1.12 dholland }
1093 1.12 dholland }
1094 1.12 dholland
1095 1.12 dholland /*
1096 1.12 dholland * struct segment
1097 1.12 dholland */
1098 1.12 dholland
1099 1.4 dholland
1100 1.1 dholland /*
1101 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1102 1.1 dholland * of segment summaries and inode blocks taken into account.
1103 1.1 dholland */
1104 1.1 dholland /*
1105 1.1 dholland * Estimate number of clean blocks not available for writing because
1106 1.1 dholland * they will contain metadata or overhead. This is calculated as
1107 1.1 dholland *
1108 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1109 1.1 dholland * or more simply
1110 1.1 dholland * E = (C * M) / T
1111 1.1 dholland *
1112 1.1 dholland * where
1113 1.1 dholland * C is the clean space,
1114 1.1 dholland * D is the dirty space,
1115 1.1 dholland * M is the dirty metadata, and
1116 1.1 dholland * T = C + D is the total space on disk.
1117 1.1 dholland *
1118 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1119 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1120 1.1 dholland */
1121 1.1 dholland #define LFS_EST_CMETA(F) (int32_t)(( \
1122 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1123 1.1 dholland (lfs_sb_getnseg(F))))
1124 1.1 dholland
1125 1.1 dholland /* Estimate total size of the disk not including metadata */
1126 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1127 1.1 dholland
1128 1.1 dholland /* Estimate number of blocks actually available for writing */
1129 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1130 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1131 1.1 dholland
1132 1.1 dholland /* Amount of non-meta space not available to mortal man */
1133 1.1 dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1134 1.1 dholland (u_int64_t)lfs_sb_getminfree(F)) / \
1135 1.1 dholland 100)
1136 1.1 dholland
1137 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1138 1.1 dholland #define ISSPACE(F, BB, C) \
1139 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1140 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1141 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1142 1.1 dholland
1143 1.1 dholland /* Can an ordinary user write BB blocks */
1144 1.1 dholland #define IS_FREESPACE(F, BB) \
1145 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1146 1.1 dholland
1147 1.1 dholland /*
1148 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1149 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1150 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1151 1.1 dholland */
1152 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1153 1.1 dholland
1154 1.1 dholland
1155 1.1 dholland
1156 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1157