lfs_accessors.h revision 1.16 1 1.16 dholland /* $NetBSD: lfs_accessors.h,v 1.16 2015/09/01 06:08:37 dholland Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.1 dholland /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 1.1 dholland /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
149 1.11 dholland #include <assert.h>
150 1.11 dholland #define KASSERT assert
151 1.11 dholland #endif
152 1.11 dholland
153 1.1 dholland /*
154 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
155 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
156 1.9 dholland * get accessors that work with struct clfs.
157 1.9 dholland */
158 1.9 dholland
159 1.9 dholland #ifndef STRUCT_LFS
160 1.9 dholland #define STRUCT_LFS struct lfs
161 1.9 dholland #endif
162 1.9 dholland
163 1.13 dholland /*
164 1.13 dholland * dinodes
165 1.13 dholland */
166 1.9 dholland
167 1.9 dholland /*
168 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
169 1.1 dholland */
170 1.1 dholland #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
171 1.1 dholland #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
172 1.1 dholland
173 1.1 dholland #define ULFS_MAXSYMLINKLEN(ip) \
174 1.1 dholland ((ip)->i_ump->um_fstype == ULFS1) ? \
175 1.1 dholland ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
176 1.1 dholland
177 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
178 1.13 dholland
179 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
180 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
181 1.13 dholland
182 1.14 dholland static __unused inline void
183 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs,
184 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src)
185 1.14 dholland {
186 1.14 dholland /*
187 1.14 dholland * We can do structure assignment of the structs, but not of
188 1.14 dholland * the whole union, as the union is the size of the (larger)
189 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might
190 1.14 dholland * be off the end of a buffer or otherwise invalid.
191 1.14 dholland */
192 1.14 dholland if (fs->lfs_is64) {
193 1.14 dholland dst->u_64 = src->u_64;
194 1.14 dholland } else {
195 1.14 dholland dst->u_32 = src->u_32;
196 1.14 dholland }
197 1.14 dholland }
198 1.14 dholland
199 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
200 1.13 dholland static __unused inline type \
201 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
202 1.13 dholland { \
203 1.13 dholland if (fs->lfs_is64) { \
204 1.13 dholland return dip->u_64.di_##field; \
205 1.13 dholland } else { \
206 1.13 dholland return dip->u_32.di_##field; \
207 1.13 dholland } \
208 1.13 dholland } \
209 1.13 dholland static __unused inline void \
210 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
211 1.13 dholland { \
212 1.13 dholland if (fs->lfs_is64) { \
213 1.13 dholland type *p = &dip->u_64.di_##field; \
214 1.13 dholland (void)p; \
215 1.13 dholland dip->u_64.di_##field = val; \
216 1.13 dholland } else { \
217 1.13 dholland type32 *p = &dip->u_32.di_##field; \
218 1.13 dholland (void)p; \
219 1.13 dholland dip->u_32.di_##field = val; \
220 1.13 dholland } \
221 1.13 dholland } \
222 1.13 dholland
223 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
224 1.13 dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
225 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
226 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
227 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
228 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
229 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
230 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
231 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
232 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
233 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
234 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
235 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
236 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
237 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
238 1.13 dholland
239 1.16 dholland /* XXX this should be done differently (it's a fake field) */
240 1.16 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
241 1.16 dholland
242 1.13 dholland static __unused inline daddr_t
243 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
244 1.13 dholland {
245 1.13 dholland KASSERT(ix < ULFS_NDADDR);
246 1.13 dholland if (fs->lfs_is64) {
247 1.13 dholland return dip->u_64.di_db[ix];
248 1.13 dholland } else {
249 1.13 dholland return dip->u_32.di_db[ix];
250 1.13 dholland }
251 1.13 dholland }
252 1.13 dholland
253 1.13 dholland static __unused inline daddr_t
254 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
255 1.13 dholland {
256 1.13 dholland KASSERT(ix < ULFS_NIADDR);
257 1.13 dholland if (fs->lfs_is64) {
258 1.13 dholland return dip->u_64.di_ib[ix];
259 1.13 dholland } else {
260 1.13 dholland return dip->u_32.di_ib[ix];
261 1.13 dholland }
262 1.13 dholland }
263 1.13 dholland
264 1.13 dholland static __unused inline void
265 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
266 1.13 dholland {
267 1.13 dholland KASSERT(ix < ULFS_NDADDR);
268 1.13 dholland if (fs->lfs_is64) {
269 1.13 dholland dip->u_64.di_db[ix] = val;
270 1.13 dholland } else {
271 1.13 dholland dip->u_32.di_db[ix] = val;
272 1.13 dholland }
273 1.13 dholland }
274 1.13 dholland
275 1.13 dholland static __unused inline void
276 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
277 1.13 dholland {
278 1.13 dholland KASSERT(ix < ULFS_NIADDR);
279 1.13 dholland if (fs->lfs_is64) {
280 1.13 dholland dip->u_64.di_ib[ix] = val;
281 1.13 dholland } else {
282 1.13 dholland dip->u_32.di_ib[ix] = val;
283 1.13 dholland }
284 1.13 dholland }
285 1.13 dholland
286 1.16 dholland /* birthtime is present only in the 64-bit inode */
287 1.16 dholland static __unused inline void
288 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
289 1.16 dholland const struct timespec *ts)
290 1.16 dholland {
291 1.16 dholland if (fs->lfs_is64) {
292 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec;
293 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec;
294 1.16 dholland } else {
295 1.16 dholland /* drop it on the floor */
296 1.16 dholland }
297 1.16 dholland }
298 1.16 dholland
299 1.16 dholland /*
300 1.16 dholland * indirect blocks
301 1.16 dholland */
302 1.16 dholland
303 1.16 dholland static __unused inline daddr_t
304 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
305 1.16 dholland {
306 1.16 dholland if (fs->lfs_is64) {
307 1.16 dholland // XXX re-enable these asserts after reorging this file
308 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
309 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]);
310 1.16 dholland } else {
311 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
312 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */
313 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
314 1.16 dholland }
315 1.16 dholland }
316 1.16 dholland
317 1.16 dholland static __unused inline void
318 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
319 1.16 dholland {
320 1.16 dholland if (fs->lfs_is64) {
321 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
322 1.16 dholland ((int64_t *)block)[ix] = val;
323 1.16 dholland } else {
324 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
325 1.16 dholland ((int32_t *)block)[ix] = val;
326 1.16 dholland }
327 1.16 dholland }
328 1.16 dholland
329 1.1 dholland /*
330 1.1 dholland * "struct buf" associated definitions
331 1.1 dholland */
332 1.1 dholland
333 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
334 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
335 1.1 dholland mutex_enter(&lfs_lock); \
336 1.1 dholland ++locked_queue_count; \
337 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
338 1.1 dholland mutex_exit(&lfs_lock); \
339 1.1 dholland } \
340 1.1 dholland (bp)->b_flags |= B_LOCKED; \
341 1.1 dholland } while (0)
342 1.1 dholland
343 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
344 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
345 1.1 dholland mutex_enter(&lfs_lock); \
346 1.1 dholland --locked_queue_count; \
347 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
348 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
349 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
350 1.1 dholland cv_broadcast(&locked_queue_cv); \
351 1.1 dholland mutex_exit(&lfs_lock); \
352 1.1 dholland } \
353 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
354 1.1 dholland } while (0)
355 1.1 dholland
356 1.1 dholland /*
357 1.1 dholland * "struct inode" associated definitions
358 1.1 dholland */
359 1.1 dholland
360 1.1 dholland #define LFS_SET_UINO(ip, flags) do { \
361 1.1 dholland if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
362 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
363 1.1 dholland if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
364 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
365 1.1 dholland if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
366 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
367 1.1 dholland (ip)->i_flag |= (flags); \
368 1.1 dholland } while (0)
369 1.1 dholland
370 1.1 dholland #define LFS_CLR_UINO(ip, flags) do { \
371 1.1 dholland if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
372 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
373 1.1 dholland if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
374 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
375 1.1 dholland if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
376 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
377 1.1 dholland (ip)->i_flag &= ~(flags); \
378 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
379 1.1 dholland panic("lfs_uinodes < 0"); \
380 1.1 dholland } \
381 1.1 dholland } while (0)
382 1.1 dholland
383 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
384 1.1 dholland while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
385 1.1 dholland lfs_itimes(ip, acc, mod, cre)
386 1.1 dholland
387 1.1 dholland /*
388 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
389 1.1 dholland */
390 1.1 dholland
391 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
392 1.1 dholland #define SEGTABSIZE_SU(fs) \
393 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
394 1.1 dholland
395 1.1 dholland #ifdef _KERNEL
396 1.1 dholland # define SHARE_IFLOCK(F) \
397 1.1 dholland do { \
398 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
399 1.1 dholland } while(0)
400 1.1 dholland # define UNSHARE_IFLOCK(F) \
401 1.1 dholland do { \
402 1.1 dholland rw_exit(&(F)->lfs_iflock); \
403 1.1 dholland } while(0)
404 1.1 dholland #else /* ! _KERNEL */
405 1.1 dholland # define SHARE_IFLOCK(F)
406 1.1 dholland # define UNSHARE_IFLOCK(F)
407 1.1 dholland #endif /* ! _KERNEL */
408 1.1 dholland
409 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
410 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
411 1.1 dholland int _e; \
412 1.1 dholland SHARE_IFLOCK(F); \
413 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
414 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
415 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
416 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
417 1.1 dholland panic("lfs: ifile read: %d", _e); \
418 1.6 dholland if (lfs_sb_getversion(F) == 1) \
419 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
420 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
421 1.1 dholland else \
422 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
423 1.1 dholland UNSHARE_IFLOCK(F); \
424 1.1 dholland } while (0)
425 1.1 dholland
426 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
427 1.1 dholland if ((SP)->su_nbytes == 0) \
428 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
429 1.1 dholland else \
430 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
431 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
432 1.1 dholland LFS_BWRITE_LOG(BP); \
433 1.1 dholland } while (0)
434 1.1 dholland
435 1.1 dholland /*
436 1.11 dholland * FINFO (file info) entries.
437 1.11 dholland */
438 1.11 dholland
439 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
440 1.11 dholland /* XXX: move to a more suitable location in this file */
441 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
442 1.11 dholland
443 1.12 dholland /* Size of an on-disk inode number. */
444 1.12 dholland /* XXX: move to a more suitable location in this file */
445 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
446 1.12 dholland
447 1.12 dholland /* size of a FINFO, without the block pointers */
448 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
449 1.12 dholland
450 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
451 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
452 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
453 1.11 dholland
454 1.11 dholland #define NEXT_FINFO(fs, fip) \
455 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
456 1.11 dholland
457 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
458 1.12 dholland static __unused inline type \
459 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
460 1.12 dholland { \
461 1.12 dholland if (fs->lfs_is64) { \
462 1.12 dholland return fip->u_64.fi_##field; \
463 1.12 dholland } else { \
464 1.12 dholland return fip->u_32.fi_##field; \
465 1.12 dholland } \
466 1.12 dholland } \
467 1.12 dholland static __unused inline void \
468 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
469 1.12 dholland { \
470 1.12 dholland if (fs->lfs_is64) { \
471 1.12 dholland type *p = &fip->u_64.fi_##field; \
472 1.12 dholland (void)p; \
473 1.12 dholland fip->u_64.fi_##field = val; \
474 1.12 dholland } else { \
475 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
476 1.12 dholland (void)p; \
477 1.12 dholland fip->u_32.fi_##field = val; \
478 1.12 dholland } \
479 1.12 dholland } \
480 1.12 dholland
481 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
482 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
483 1.12 dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
484 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
485 1.12 dholland
486 1.12 dholland static __unused inline daddr_t
487 1.12 dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
488 1.12 dholland {
489 1.12 dholland void *firstblock;
490 1.12 dholland
491 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
492 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
493 1.12 dholland if (fs->lfs_is64) {
494 1.12 dholland return ((int64_t *)firstblock)[index];
495 1.12 dholland } else {
496 1.12 dholland return ((int32_t *)firstblock)[index];
497 1.12 dholland }
498 1.12 dholland }
499 1.12 dholland
500 1.12 dholland static __unused inline void
501 1.12 dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
502 1.12 dholland {
503 1.12 dholland void *firstblock;
504 1.12 dholland
505 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
506 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
507 1.12 dholland if (fs->lfs_is64) {
508 1.12 dholland ((int64_t *)firstblock)[index] = blk;
509 1.12 dholland } else {
510 1.12 dholland ((int32_t *)firstblock)[index] = blk;
511 1.12 dholland }
512 1.12 dholland }
513 1.12 dholland
514 1.11 dholland /*
515 1.1 dholland * Index file inode entries.
516 1.1 dholland */
517 1.1 dholland
518 1.1 dholland /*
519 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
520 1.1 dholland * may not be mapped!
521 1.1 dholland */
522 1.1 dholland /* Read in the block with a specific inode from the ifile. */
523 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
524 1.1 dholland int _e; \
525 1.1 dholland SHARE_IFLOCK(F); \
526 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
527 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
528 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
529 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
530 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
531 1.10 dholland if ((F)->lfs_is64) { \
532 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
533 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
534 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
535 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
536 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
537 1.10 dholland } else { \
538 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
539 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
540 1.10 dholland } \
541 1.1 dholland UNSHARE_IFLOCK(F); \
542 1.1 dholland } while (0)
543 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
544 1.15 mlelstv if ((F)->lfs_is64) { \
545 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
546 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \
547 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
548 1.15 mlelstv } else { \
549 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
550 1.15 mlelstv } \
551 1.15 mlelstv } while (0)
552 1.1 dholland
553 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
554 1.10 dholland static __unused inline type \
555 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
556 1.10 dholland { \
557 1.10 dholland if (fs->lfs_is64) { \
558 1.10 dholland return ifp->u_64.if_##field; \
559 1.10 dholland } else { \
560 1.10 dholland return ifp->u_32.if_##field; \
561 1.10 dholland } \
562 1.10 dholland } \
563 1.10 dholland static __unused inline void \
564 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
565 1.10 dholland { \
566 1.10 dholland if (fs->lfs_is64) { \
567 1.10 dholland type *p = &ifp->u_64.if_##field; \
568 1.10 dholland (void)p; \
569 1.10 dholland ifp->u_64.if_##field = val; \
570 1.10 dholland } else { \
571 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
572 1.10 dholland (void)p; \
573 1.10 dholland ifp->u_32.if_##field = val; \
574 1.10 dholland } \
575 1.10 dholland } \
576 1.10 dholland
577 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
578 1.10 dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
579 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
580 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
581 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
582 1.10 dholland
583 1.1 dholland /*
584 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
585 1.1 dholland * to pass information from the kernel to the cleaner.
586 1.1 dholland */
587 1.1 dholland
588 1.1 dholland #define CLEANSIZE_SU(fs) \
589 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
590 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
591 1.9 dholland
592 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
593 1.9 dholland static __unused inline type \
594 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
595 1.9 dholland { \
596 1.9 dholland if (fs->lfs_is64) { \
597 1.9 dholland return cip->u_64.field; \
598 1.9 dholland } else { \
599 1.9 dholland return cip->u_32.field; \
600 1.9 dholland } \
601 1.9 dholland } \
602 1.9 dholland static __unused inline void \
603 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
604 1.9 dholland { \
605 1.9 dholland if (fs->lfs_is64) { \
606 1.9 dholland type *p = &cip->u_64.field; \
607 1.9 dholland (void)p; \
608 1.9 dholland cip->u_64.field = val; \
609 1.9 dholland } else { \
610 1.9 dholland type32 *p = &cip->u_32.field; \
611 1.9 dholland (void)p; \
612 1.9 dholland cip->u_32.field = val; \
613 1.9 dholland } \
614 1.9 dholland } \
615 1.9 dholland
616 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
617 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
618 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
619 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
620 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
621 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
622 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
623 1.9 dholland
624 1.9 dholland static __unused inline void
625 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
626 1.9 dholland {
627 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
628 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
629 1.9 dholland }
630 1.9 dholland
631 1.9 dholland static __unused inline void
632 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
633 1.9 dholland {
634 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
635 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
636 1.9 dholland }
637 1.1 dholland
638 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
639 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
640 1.1 dholland SHARE_IFLOCK(F); \
641 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
642 1.1 dholland if (bread((F)->lfs_ivnode, \
643 1.1 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
644 1.1 dholland panic("lfs: ifile read"); \
645 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
646 1.1 dholland UNSHARE_IFLOCK(F); \
647 1.1 dholland } while (0)
648 1.1 dholland
649 1.1 dholland /*
650 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
651 1.1 dholland */
652 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
653 1.1 dholland mutex_enter(&lfs_lock); \
654 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
655 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
656 1.1 dholland fs->lfs_favail) { \
657 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
658 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
659 1.9 dholland fs->lfs_favail); \
660 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
661 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
662 1.1 dholland } \
663 1.1 dholland mutex_exit(&lfs_lock); \
664 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
665 1.1 dholland } else { \
666 1.1 dholland mutex_exit(&lfs_lock); \
667 1.1 dholland brelse(bp, 0); \
668 1.1 dholland } \
669 1.1 dholland } while (0)
670 1.1 dholland
671 1.1 dholland /*
672 1.1 dholland * Get the head of the inode free list.
673 1.1 dholland * Always called with the segment lock held.
674 1.1 dholland */
675 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
676 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
677 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
678 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
679 1.1 dholland brelse(BP, 0); \
680 1.1 dholland } \
681 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
682 1.1 dholland } while (0)
683 1.1 dholland
684 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
685 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
686 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
687 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
688 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
689 1.1 dholland LFS_BWRITE_LOG(BP); \
690 1.1 dholland mutex_enter(&lfs_lock); \
691 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
692 1.1 dholland mutex_exit(&lfs_lock); \
693 1.1 dholland } \
694 1.1 dholland } while (0)
695 1.1 dholland
696 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
697 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
698 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
699 1.1 dholland brelse(BP, 0); \
700 1.1 dholland } while (0)
701 1.1 dholland
702 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
703 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
704 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
705 1.1 dholland LFS_BWRITE_LOG(BP); \
706 1.1 dholland mutex_enter(&lfs_lock); \
707 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
708 1.1 dholland mutex_exit(&lfs_lock); \
709 1.1 dholland } while (0)
710 1.1 dholland
711 1.1 dholland /*
712 1.1 dholland * On-disk segment summary information
713 1.1 dholland */
714 1.1 dholland
715 1.11 dholland #define SEGSUM_SIZE(fs) \
716 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
717 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
718 1.11 dholland
719 1.11 dholland /*
720 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
721 1.11 dholland * to the first FINFO.
722 1.11 dholland *
723 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
724 1.11 dholland */
725 1.11 dholland #if 0
726 1.11 dholland static __unused inline FINFO *
727 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
728 1.11 dholland {
729 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
730 1.11 dholland }
731 1.11 dholland #else
732 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
733 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
734 1.11 dholland #endif
735 1.11 dholland
736 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
737 1.11 dholland static __unused inline type \
738 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
739 1.11 dholland { \
740 1.11 dholland if (fs->lfs_is64) { \
741 1.11 dholland return ssp->u_64.ss_##field; \
742 1.11 dholland } else { \
743 1.11 dholland return ssp->u_32.ss_##field; \
744 1.11 dholland } \
745 1.11 dholland } \
746 1.11 dholland static __unused inline void \
747 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
748 1.11 dholland { \
749 1.11 dholland if (fs->lfs_is64) { \
750 1.11 dholland type *p = &ssp->u_64.ss_##field; \
751 1.11 dholland (void)p; \
752 1.11 dholland ssp->u_64.ss_##field = val; \
753 1.11 dholland } else { \
754 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
755 1.11 dholland (void)p; \
756 1.11 dholland ssp->u_32.ss_##field = val; \
757 1.11 dholland } \
758 1.11 dholland } \
759 1.11 dholland
760 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
761 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
762 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
763 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
764 1.11 dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
765 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
766 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
767 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
768 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
769 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
770 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
771 1.11 dholland
772 1.11 dholland static __unused inline size_t
773 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
774 1.11 dholland {
775 1.11 dholland /* These are actually all the same. */
776 1.11 dholland if (fs->lfs_is64) {
777 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
778 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
779 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
780 1.11 dholland } /* else {
781 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
782 1.11 dholland } */
783 1.11 dholland /*
784 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
785 1.11 dholland * defined yet.
786 1.11 dholland */
787 1.11 dholland }
788 1.11 dholland
789 1.11 dholland static __unused inline uint32_t
790 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
791 1.11 dholland {
792 1.11 dholland KASSERT(fs->lfs_is64 == 0);
793 1.11 dholland /* XXX need to resort this file before we can do this */
794 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
795 1.11 dholland
796 1.11 dholland return ssp->u_v1.ss_create;
797 1.11 dholland }
798 1.11 dholland
799 1.11 dholland static __unused inline void
800 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
801 1.11 dholland {
802 1.11 dholland KASSERT(fs->lfs_is64 == 0);
803 1.11 dholland /* XXX need to resort this file before we can do this */
804 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
805 1.11 dholland
806 1.11 dholland ssp->u_v1.ss_create = val;
807 1.11 dholland }
808 1.11 dholland
809 1.1 dholland
810 1.1 dholland /*
811 1.1 dholland * Super block.
812 1.1 dholland */
813 1.1 dholland
814 1.1 dholland /*
815 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
816 1.1 dholland */
817 1.1 dholland
818 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
819 1.1 dholland static __unused inline type \
820 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
821 1.1 dholland { \
822 1.7 dholland if (fs->lfs_is64) { \
823 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
824 1.7 dholland } else { \
825 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
826 1.7 dholland } \
827 1.1 dholland } \
828 1.1 dholland static __unused inline void \
829 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
830 1.1 dholland { \
831 1.7 dholland if (fs->lfs_is64) { \
832 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
833 1.7 dholland } else { \
834 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
835 1.7 dholland } \
836 1.1 dholland } \
837 1.1 dholland static __unused inline void \
838 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
839 1.1 dholland { \
840 1.7 dholland if (fs->lfs_is64) { \
841 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
842 1.7 dholland *p64 += val; \
843 1.7 dholland } else { \
844 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
845 1.7 dholland *p32 += val; \
846 1.7 dholland } \
847 1.1 dholland } \
848 1.1 dholland static __unused inline void \
849 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
850 1.1 dholland { \
851 1.7 dholland if (fs->lfs_is64) { \
852 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
853 1.7 dholland *p64 -= val; \
854 1.7 dholland } else { \
855 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
856 1.7 dholland *p32 -= val; \
857 1.7 dholland } \
858 1.1 dholland }
859 1.1 dholland
860 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
861 1.3 dholland
862 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
863 1.7 dholland static __unused inline type \
864 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
865 1.7 dholland { \
866 1.7 dholland if (fs->lfs_is64) { \
867 1.7 dholland return val64; \
868 1.7 dholland } else { \
869 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
870 1.7 dholland } \
871 1.7 dholland }
872 1.7 dholland
873 1.1 dholland #define lfs_magic lfs_dlfs.dlfs_magic
874 1.6 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
875 1.3 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
876 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
877 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
878 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
879 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
880 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
881 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
882 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
883 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
884 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
885 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
886 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
887 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
888 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
889 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
890 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
891 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
892 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
893 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
894 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
895 1.1 dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
896 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
897 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
898 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
899 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
900 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
901 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
902 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
903 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
904 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
905 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
906 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
907 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
908 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
909 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
910 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
911 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
912 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
913 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
914 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
915 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
916 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
917 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
918 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
919 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
920 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
921 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
922 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
923 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
924 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
925 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
926 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
927 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
928 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
929 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
930 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
931 1.1 dholland
932 1.1 dholland /* special-case accessors */
933 1.1 dholland
934 1.1 dholland /*
935 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
936 1.1 dholland */
937 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
938 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
939 1.1 dholland
940 1.1 dholland /*
941 1.1 dholland * lfs_sboffs is an array
942 1.1 dholland */
943 1.1 dholland static __unused inline int32_t
944 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
945 1.1 dholland {
946 1.1 dholland #ifdef KASSERT /* ugh */
947 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
948 1.1 dholland #endif
949 1.7 dholland if (fs->lfs_is64) {
950 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
951 1.7 dholland } else {
952 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
953 1.7 dholland }
954 1.1 dholland }
955 1.1 dholland static __unused inline void
956 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
957 1.1 dholland {
958 1.1 dholland #ifdef KASSERT /* ugh */
959 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
960 1.1 dholland #endif
961 1.7 dholland if (fs->lfs_is64) {
962 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
963 1.7 dholland } else {
964 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
965 1.7 dholland }
966 1.1 dholland }
967 1.1 dholland
968 1.1 dholland /*
969 1.1 dholland * lfs_fsmnt is a string
970 1.1 dholland */
971 1.1 dholland static __unused inline const char *
972 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
973 1.1 dholland {
974 1.7 dholland if (fs->lfs_is64) {
975 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
976 1.7 dholland } else {
977 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
978 1.7 dholland }
979 1.7 dholland }
980 1.7 dholland
981 1.7 dholland static __unused inline void
982 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
983 1.7 dholland {
984 1.7 dholland if (fs->lfs_is64) {
985 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
986 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
987 1.7 dholland } else {
988 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
989 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
990 1.7 dholland }
991 1.1 dholland }
992 1.1 dholland
993 1.8 dholland /* Highest addressable fsb */
994 1.8 dholland #define LFS_MAX_DADDR(fs) \
995 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
996 1.8 dholland
997 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
998 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
999 1.1 dholland
1000 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
1001 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1002 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
1003 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1004 1.1 dholland
1005 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1006 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1007 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
1008 1.1 dholland
1009 1.4 dholland /* XXX: lowercase these as they're no longer macros */
1010 1.4 dholland /* Frags to diskblocks */
1011 1.4 dholland static __unused inline uint64_t
1012 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1013 1.4 dholland {
1014 1.1 dholland #if defined(_KERNEL)
1015 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1016 1.1 dholland #else
1017 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
1018 1.1 dholland #endif
1019 1.4 dholland }
1020 1.4 dholland /* Diskblocks to frags */
1021 1.4 dholland static __unused inline uint64_t
1022 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1023 1.4 dholland {
1024 1.4 dholland #if defined(_KERNEL)
1025 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1026 1.4 dholland #else
1027 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
1028 1.4 dholland #endif
1029 1.4 dholland }
1030 1.1 dholland
1031 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1032 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1033 1.1 dholland
1034 1.4 dholland /* Frags to bytes */
1035 1.4 dholland static __unused inline uint64_t
1036 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1037 1.4 dholland {
1038 1.4 dholland return b << lfs_sb_getffshift(fs);
1039 1.4 dholland }
1040 1.4 dholland /* Bytes to frags */
1041 1.4 dholland static __unused inline uint64_t
1042 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1043 1.4 dholland {
1044 1.4 dholland return b >> lfs_sb_getffshift(fs);
1045 1.4 dholland }
1046 1.1 dholland
1047 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1048 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
1049 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1050 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1051 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1052 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1053 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1054 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
1055 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1056 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
1057 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1058 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
1059 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1060 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
1061 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
1062 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1063 1.1 dholland ? lfs_sb_getbsize(fs) \
1064 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1065 1.1 dholland
1066 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1067 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1068 1.1 dholland lfs_sb_getssize(fs))
1069 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
1070 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1071 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1072 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1073 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1074 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1075 1.1 dholland
1076 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1077 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1078 1.4 dholland static __unused inline uint32_t
1079 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1080 1.4 dholland {
1081 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1082 1.4 dholland return lfs_sb_getbsize(fs);
1083 1.4 dholland } else {
1084 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1085 1.4 dholland }
1086 1.4 dholland }
1087 1.4 dholland #endif
1088 1.4 dholland
1089 1.12 dholland /*
1090 1.12 dholland * union lfs_blocks
1091 1.12 dholland */
1092 1.12 dholland
1093 1.12 dholland static __unused inline void
1094 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1095 1.12 dholland {
1096 1.12 dholland if (fs->lfs_is64) {
1097 1.12 dholland bp->b64 = p;
1098 1.12 dholland } else {
1099 1.12 dholland bp->b32 = p;
1100 1.12 dholland }
1101 1.12 dholland }
1102 1.12 dholland
1103 1.12 dholland static __unused inline void
1104 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1105 1.12 dholland {
1106 1.12 dholland void *firstblock;
1107 1.12 dholland
1108 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1109 1.12 dholland if (fs->lfs_is64) {
1110 1.12 dholland bp->b64 = (int64_t *)firstblock;
1111 1.12 dholland } else {
1112 1.12 dholland bp->b32 = (int32_t *)firstblock;
1113 1.12 dholland }
1114 1.12 dholland }
1115 1.12 dholland
1116 1.12 dholland static __unused inline daddr_t
1117 1.12 dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1118 1.12 dholland {
1119 1.12 dholland if (fs->lfs_is64) {
1120 1.12 dholland return bp->b64[index];
1121 1.12 dholland } else {
1122 1.12 dholland return bp->b32[index];
1123 1.12 dholland }
1124 1.12 dholland }
1125 1.12 dholland
1126 1.12 dholland static __unused inline void
1127 1.12 dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1128 1.12 dholland {
1129 1.12 dholland if (fs->lfs_is64) {
1130 1.12 dholland bp->b64[index] = val;
1131 1.12 dholland } else {
1132 1.12 dholland bp->b32[index] = val;
1133 1.12 dholland }
1134 1.12 dholland }
1135 1.12 dholland
1136 1.12 dholland static __unused inline void
1137 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1138 1.12 dholland {
1139 1.12 dholland if (fs->lfs_is64) {
1140 1.12 dholland bp->b64++;
1141 1.12 dholland } else {
1142 1.12 dholland bp->b32++;
1143 1.12 dholland }
1144 1.12 dholland }
1145 1.12 dholland
1146 1.12 dholland static __unused inline int
1147 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1148 1.12 dholland {
1149 1.12 dholland if (fs->lfs_is64) {
1150 1.12 dholland return bp1->b64 == bp2->b64;
1151 1.12 dholland } else {
1152 1.12 dholland return bp1->b32 == bp2->b32;
1153 1.12 dholland }
1154 1.12 dholland }
1155 1.12 dholland
1156 1.12 dholland static __unused inline int
1157 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1158 1.12 dholland {
1159 1.12 dholland /* (remember that the pointers are typed) */
1160 1.12 dholland if (fs->lfs_is64) {
1161 1.12 dholland return bp1->b64 - bp2->b64;
1162 1.12 dholland } else {
1163 1.12 dholland return bp1->b32 - bp2->b32;
1164 1.12 dholland }
1165 1.12 dholland }
1166 1.12 dholland
1167 1.12 dholland /*
1168 1.12 dholland * struct segment
1169 1.12 dholland */
1170 1.12 dholland
1171 1.4 dholland
1172 1.1 dholland /*
1173 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1174 1.1 dholland * of segment summaries and inode blocks taken into account.
1175 1.1 dholland */
1176 1.1 dholland /*
1177 1.1 dholland * Estimate number of clean blocks not available for writing because
1178 1.1 dholland * they will contain metadata or overhead. This is calculated as
1179 1.1 dholland *
1180 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1181 1.1 dholland * or more simply
1182 1.1 dholland * E = (C * M) / T
1183 1.1 dholland *
1184 1.1 dholland * where
1185 1.1 dholland * C is the clean space,
1186 1.1 dholland * D is the dirty space,
1187 1.1 dholland * M is the dirty metadata, and
1188 1.1 dholland * T = C + D is the total space on disk.
1189 1.1 dholland *
1190 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1191 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1192 1.1 dholland */
1193 1.1 dholland #define LFS_EST_CMETA(F) (int32_t)(( \
1194 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1195 1.1 dholland (lfs_sb_getnseg(F))))
1196 1.1 dholland
1197 1.1 dholland /* Estimate total size of the disk not including metadata */
1198 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1199 1.1 dholland
1200 1.1 dholland /* Estimate number of blocks actually available for writing */
1201 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1202 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1203 1.1 dholland
1204 1.1 dholland /* Amount of non-meta space not available to mortal man */
1205 1.1 dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1206 1.1 dholland (u_int64_t)lfs_sb_getminfree(F)) / \
1207 1.1 dholland 100)
1208 1.1 dholland
1209 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1210 1.1 dholland #define ISSPACE(F, BB, C) \
1211 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1212 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1213 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1214 1.1 dholland
1215 1.1 dholland /* Can an ordinary user write BB blocks */
1216 1.1 dholland #define IS_FREESPACE(F, BB) \
1217 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1218 1.1 dholland
1219 1.1 dholland /*
1220 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1221 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1222 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1223 1.1 dholland */
1224 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1225 1.1 dholland
1226 1.1 dholland
1227 1.1 dholland
1228 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1229