lfs_accessors.h revision 1.18 1 1.18 dholland /* $NetBSD: lfs_accessors.h,v 1.18 2015/09/01 06:11:06 dholland Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.1 dholland /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 1.1 dholland /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.17 dholland #if defined(_KERNEL_OPT)
149 1.17 dholland #include "opt_lfs.h"
150 1.17 dholland #endif
151 1.17 dholland
152 1.17 dholland #include <sys/bswap.h>
153 1.17 dholland
154 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
155 1.11 dholland #include <assert.h>
156 1.11 dholland #define KASSERT assert
157 1.11 dholland #endif
158 1.11 dholland
159 1.1 dholland /*
160 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
161 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
162 1.9 dholland * get accessors that work with struct clfs.
163 1.9 dholland */
164 1.9 dholland
165 1.9 dholland #ifndef STRUCT_LFS
166 1.9 dholland #define STRUCT_LFS struct lfs
167 1.9 dholland #endif
168 1.9 dholland
169 1.13 dholland /*
170 1.17 dholland * byte order
171 1.17 dholland */
172 1.17 dholland
173 1.17 dholland /*
174 1.17 dholland * For now at least, the bootblocks shall not be endian-independent.
175 1.17 dholland * We can see later if it fits in the size budget. Also disable the
176 1.17 dholland * byteswapping if LFS_EI is off.
177 1.17 dholland *
178 1.17 dholland * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 1.17 dholland * and if that changes will likely break silently.
180 1.17 dholland */
181 1.17 dholland
182 1.17 dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 1.17 dholland #define LFS_SWAP_int16_t(fs, val) (val)
184 1.17 dholland #define LFS_SWAP_int32_t(fs, val) (val)
185 1.17 dholland #define LFS_SWAP_int64_t(fs, val) (val)
186 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) (val)
187 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) (val)
188 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) (val)
189 1.17 dholland #else
190 1.17 dholland #define LFS_SWAP_int16_t(fs, val) \
191 1.17 dholland ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 1.17 dholland #define LFS_SWAP_int32_t(fs, val) \
193 1.17 dholland ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 1.17 dholland #define LFS_SWAP_int64_t(fs, val) \
195 1.17 dholland ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) \
197 1.17 dholland ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) \
199 1.17 dholland ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) \
201 1.17 dholland ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 1.17 dholland #endif
203 1.17 dholland
204 1.17 dholland /*
205 1.13 dholland * dinodes
206 1.13 dholland */
207 1.9 dholland
208 1.9 dholland /*
209 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
210 1.1 dholland */
211 1.1 dholland #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
212 1.1 dholland #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
213 1.1 dholland
214 1.1 dholland #define ULFS_MAXSYMLINKLEN(ip) \
215 1.1 dholland ((ip)->i_ump->um_fstype == ULFS1) ? \
216 1.1 dholland ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
217 1.1 dholland
218 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
219 1.13 dholland
220 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
221 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
222 1.13 dholland
223 1.14 dholland static __unused inline void
224 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs,
225 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src)
226 1.14 dholland {
227 1.14 dholland /*
228 1.14 dholland * We can do structure assignment of the structs, but not of
229 1.14 dholland * the whole union, as the union is the size of the (larger)
230 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might
231 1.14 dholland * be off the end of a buffer or otherwise invalid.
232 1.14 dholland */
233 1.14 dholland if (fs->lfs_is64) {
234 1.14 dholland dst->u_64 = src->u_64;
235 1.14 dholland } else {
236 1.14 dholland dst->u_32 = src->u_32;
237 1.14 dholland }
238 1.14 dholland }
239 1.14 dholland
240 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
241 1.13 dholland static __unused inline type \
242 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
243 1.13 dholland { \
244 1.13 dholland if (fs->lfs_is64) { \
245 1.17 dholland return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
246 1.13 dholland } else { \
247 1.17 dholland return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
248 1.13 dholland } \
249 1.13 dholland } \
250 1.13 dholland static __unused inline void \
251 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
252 1.13 dholland { \
253 1.13 dholland if (fs->lfs_is64) { \
254 1.13 dholland type *p = &dip->u_64.di_##field; \
255 1.13 dholland (void)p; \
256 1.17 dholland dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
257 1.13 dholland } else { \
258 1.13 dholland type32 *p = &dip->u_32.di_##field; \
259 1.13 dholland (void)p; \
260 1.17 dholland dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
261 1.13 dholland } \
262 1.13 dholland } \
263 1.13 dholland
264 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
265 1.13 dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
266 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
267 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
268 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
269 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
270 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
271 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
272 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
273 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
274 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
275 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
276 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
277 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
278 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
279 1.13 dholland
280 1.16 dholland /* XXX this should be done differently (it's a fake field) */
281 1.16 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
282 1.16 dholland
283 1.13 dholland static __unused inline daddr_t
284 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
285 1.13 dholland {
286 1.13 dholland KASSERT(ix < ULFS_NDADDR);
287 1.13 dholland if (fs->lfs_is64) {
288 1.13 dholland return dip->u_64.di_db[ix];
289 1.13 dholland } else {
290 1.13 dholland return dip->u_32.di_db[ix];
291 1.13 dholland }
292 1.13 dholland }
293 1.13 dholland
294 1.13 dholland static __unused inline daddr_t
295 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
296 1.13 dholland {
297 1.13 dholland KASSERT(ix < ULFS_NIADDR);
298 1.13 dholland if (fs->lfs_is64) {
299 1.13 dholland return dip->u_64.di_ib[ix];
300 1.13 dholland } else {
301 1.13 dholland return dip->u_32.di_ib[ix];
302 1.13 dholland }
303 1.13 dholland }
304 1.13 dholland
305 1.13 dholland static __unused inline void
306 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
307 1.13 dholland {
308 1.13 dholland KASSERT(ix < ULFS_NDADDR);
309 1.13 dholland if (fs->lfs_is64) {
310 1.13 dholland dip->u_64.di_db[ix] = val;
311 1.13 dholland } else {
312 1.13 dholland dip->u_32.di_db[ix] = val;
313 1.13 dholland }
314 1.13 dholland }
315 1.13 dholland
316 1.13 dholland static __unused inline void
317 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
318 1.13 dholland {
319 1.13 dholland KASSERT(ix < ULFS_NIADDR);
320 1.13 dholland if (fs->lfs_is64) {
321 1.13 dholland dip->u_64.di_ib[ix] = val;
322 1.13 dholland } else {
323 1.13 dholland dip->u_32.di_ib[ix] = val;
324 1.13 dholland }
325 1.13 dholland }
326 1.13 dholland
327 1.16 dholland /* birthtime is present only in the 64-bit inode */
328 1.16 dholland static __unused inline void
329 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
330 1.16 dholland const struct timespec *ts)
331 1.16 dholland {
332 1.16 dholland if (fs->lfs_is64) {
333 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec;
334 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec;
335 1.16 dholland } else {
336 1.16 dholland /* drop it on the floor */
337 1.16 dholland }
338 1.16 dholland }
339 1.16 dholland
340 1.16 dholland /*
341 1.16 dholland * indirect blocks
342 1.16 dholland */
343 1.16 dholland
344 1.16 dholland static __unused inline daddr_t
345 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
346 1.16 dholland {
347 1.16 dholland if (fs->lfs_is64) {
348 1.16 dholland // XXX re-enable these asserts after reorging this file
349 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
350 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]);
351 1.16 dholland } else {
352 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
353 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */
354 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
355 1.16 dholland }
356 1.16 dholland }
357 1.16 dholland
358 1.16 dholland static __unused inline void
359 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
360 1.16 dholland {
361 1.16 dholland if (fs->lfs_is64) {
362 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
363 1.16 dholland ((int64_t *)block)[ix] = val;
364 1.16 dholland } else {
365 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
366 1.16 dholland ((int32_t *)block)[ix] = val;
367 1.16 dholland }
368 1.16 dholland }
369 1.16 dholland
370 1.1 dholland /*
371 1.1 dholland * "struct buf" associated definitions
372 1.1 dholland */
373 1.1 dholland
374 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
375 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
376 1.1 dholland mutex_enter(&lfs_lock); \
377 1.1 dholland ++locked_queue_count; \
378 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
379 1.1 dholland mutex_exit(&lfs_lock); \
380 1.1 dholland } \
381 1.1 dholland (bp)->b_flags |= B_LOCKED; \
382 1.1 dholland } while (0)
383 1.1 dholland
384 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
385 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
386 1.1 dholland mutex_enter(&lfs_lock); \
387 1.1 dholland --locked_queue_count; \
388 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
389 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
390 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
391 1.1 dholland cv_broadcast(&locked_queue_cv); \
392 1.1 dholland mutex_exit(&lfs_lock); \
393 1.1 dholland } \
394 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
395 1.1 dholland } while (0)
396 1.1 dholland
397 1.1 dholland /*
398 1.1 dholland * "struct inode" associated definitions
399 1.1 dholland */
400 1.1 dholland
401 1.1 dholland #define LFS_SET_UINO(ip, flags) do { \
402 1.1 dholland if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
403 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
404 1.1 dholland if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
405 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
406 1.1 dholland if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
407 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
408 1.1 dholland (ip)->i_flag |= (flags); \
409 1.1 dholland } while (0)
410 1.1 dholland
411 1.1 dholland #define LFS_CLR_UINO(ip, flags) do { \
412 1.1 dholland if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
413 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
414 1.1 dholland if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
415 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
416 1.1 dholland if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
417 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
418 1.1 dholland (ip)->i_flag &= ~(flags); \
419 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
420 1.1 dholland panic("lfs_uinodes < 0"); \
421 1.1 dholland } \
422 1.1 dholland } while (0)
423 1.1 dholland
424 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
425 1.1 dholland while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
426 1.1 dholland lfs_itimes(ip, acc, mod, cre)
427 1.1 dholland
428 1.1 dholland /*
429 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
430 1.1 dholland */
431 1.1 dholland
432 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
433 1.1 dholland #define SEGTABSIZE_SU(fs) \
434 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
435 1.1 dholland
436 1.1 dholland #ifdef _KERNEL
437 1.1 dholland # define SHARE_IFLOCK(F) \
438 1.1 dholland do { \
439 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
440 1.1 dholland } while(0)
441 1.1 dholland # define UNSHARE_IFLOCK(F) \
442 1.1 dholland do { \
443 1.1 dholland rw_exit(&(F)->lfs_iflock); \
444 1.1 dholland } while(0)
445 1.1 dholland #else /* ! _KERNEL */
446 1.1 dholland # define SHARE_IFLOCK(F)
447 1.1 dholland # define UNSHARE_IFLOCK(F)
448 1.1 dholland #endif /* ! _KERNEL */
449 1.1 dholland
450 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
451 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
452 1.1 dholland int _e; \
453 1.1 dholland SHARE_IFLOCK(F); \
454 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
455 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
456 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
457 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
458 1.1 dholland panic("lfs: ifile read: %d", _e); \
459 1.6 dholland if (lfs_sb_getversion(F) == 1) \
460 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
461 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
462 1.1 dholland else \
463 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
464 1.1 dholland UNSHARE_IFLOCK(F); \
465 1.1 dholland } while (0)
466 1.1 dholland
467 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
468 1.1 dholland if ((SP)->su_nbytes == 0) \
469 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
470 1.1 dholland else \
471 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
472 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
473 1.1 dholland LFS_BWRITE_LOG(BP); \
474 1.1 dholland } while (0)
475 1.1 dholland
476 1.1 dholland /*
477 1.11 dholland * FINFO (file info) entries.
478 1.11 dholland */
479 1.11 dholland
480 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
481 1.11 dholland /* XXX: move to a more suitable location in this file */
482 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
483 1.11 dholland
484 1.12 dholland /* Size of an on-disk inode number. */
485 1.12 dholland /* XXX: move to a more suitable location in this file */
486 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
487 1.12 dholland
488 1.12 dholland /* size of a FINFO, without the block pointers */
489 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
490 1.12 dholland
491 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
492 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
493 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
494 1.11 dholland
495 1.11 dholland #define NEXT_FINFO(fs, fip) \
496 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
497 1.11 dholland
498 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
499 1.12 dholland static __unused inline type \
500 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
501 1.12 dholland { \
502 1.12 dholland if (fs->lfs_is64) { \
503 1.12 dholland return fip->u_64.fi_##field; \
504 1.12 dholland } else { \
505 1.12 dholland return fip->u_32.fi_##field; \
506 1.12 dholland } \
507 1.12 dholland } \
508 1.12 dholland static __unused inline void \
509 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
510 1.12 dholland { \
511 1.12 dholland if (fs->lfs_is64) { \
512 1.12 dholland type *p = &fip->u_64.fi_##field; \
513 1.12 dholland (void)p; \
514 1.12 dholland fip->u_64.fi_##field = val; \
515 1.12 dholland } else { \
516 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
517 1.12 dholland (void)p; \
518 1.12 dholland fip->u_32.fi_##field = val; \
519 1.12 dholland } \
520 1.12 dholland } \
521 1.12 dholland
522 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
523 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
524 1.12 dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
525 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
526 1.12 dholland
527 1.12 dholland static __unused inline daddr_t
528 1.12 dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
529 1.12 dholland {
530 1.12 dholland void *firstblock;
531 1.12 dholland
532 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
533 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
534 1.12 dholland if (fs->lfs_is64) {
535 1.12 dholland return ((int64_t *)firstblock)[index];
536 1.12 dholland } else {
537 1.12 dholland return ((int32_t *)firstblock)[index];
538 1.12 dholland }
539 1.12 dholland }
540 1.12 dholland
541 1.12 dholland static __unused inline void
542 1.12 dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
543 1.12 dholland {
544 1.12 dholland void *firstblock;
545 1.12 dholland
546 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
547 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
548 1.12 dholland if (fs->lfs_is64) {
549 1.12 dholland ((int64_t *)firstblock)[index] = blk;
550 1.12 dholland } else {
551 1.12 dholland ((int32_t *)firstblock)[index] = blk;
552 1.12 dholland }
553 1.12 dholland }
554 1.12 dholland
555 1.11 dholland /*
556 1.1 dholland * Index file inode entries.
557 1.1 dholland */
558 1.1 dholland
559 1.1 dholland /*
560 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
561 1.1 dholland * may not be mapped!
562 1.1 dholland */
563 1.1 dholland /* Read in the block with a specific inode from the ifile. */
564 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
565 1.1 dholland int _e; \
566 1.1 dholland SHARE_IFLOCK(F); \
567 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
568 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
569 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
570 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
571 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
572 1.10 dholland if ((F)->lfs_is64) { \
573 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
574 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
575 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
576 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
577 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
578 1.10 dholland } else { \
579 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
580 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
581 1.10 dholland } \
582 1.1 dholland UNSHARE_IFLOCK(F); \
583 1.1 dholland } while (0)
584 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
585 1.15 mlelstv if ((F)->lfs_is64) { \
586 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
587 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \
588 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
589 1.15 mlelstv } else { \
590 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
591 1.15 mlelstv } \
592 1.15 mlelstv } while (0)
593 1.1 dholland
594 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
595 1.10 dholland static __unused inline type \
596 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
597 1.10 dholland { \
598 1.10 dholland if (fs->lfs_is64) { \
599 1.10 dholland return ifp->u_64.if_##field; \
600 1.10 dholland } else { \
601 1.10 dholland return ifp->u_32.if_##field; \
602 1.10 dholland } \
603 1.10 dholland } \
604 1.10 dholland static __unused inline void \
605 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
606 1.10 dholland { \
607 1.10 dholland if (fs->lfs_is64) { \
608 1.10 dholland type *p = &ifp->u_64.if_##field; \
609 1.10 dholland (void)p; \
610 1.10 dholland ifp->u_64.if_##field = val; \
611 1.10 dholland } else { \
612 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
613 1.10 dholland (void)p; \
614 1.10 dholland ifp->u_32.if_##field = val; \
615 1.10 dholland } \
616 1.10 dholland } \
617 1.10 dholland
618 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
619 1.10 dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
620 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
621 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
622 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
623 1.10 dholland
624 1.1 dholland /*
625 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
626 1.1 dholland * to pass information from the kernel to the cleaner.
627 1.1 dholland */
628 1.1 dholland
629 1.1 dholland #define CLEANSIZE_SU(fs) \
630 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
631 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
632 1.9 dholland
633 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
634 1.9 dholland static __unused inline type \
635 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
636 1.9 dholland { \
637 1.9 dholland if (fs->lfs_is64) { \
638 1.9 dholland return cip->u_64.field; \
639 1.9 dholland } else { \
640 1.9 dholland return cip->u_32.field; \
641 1.9 dholland } \
642 1.9 dholland } \
643 1.9 dholland static __unused inline void \
644 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
645 1.9 dholland { \
646 1.9 dholland if (fs->lfs_is64) { \
647 1.9 dholland type *p = &cip->u_64.field; \
648 1.9 dholland (void)p; \
649 1.9 dholland cip->u_64.field = val; \
650 1.9 dholland } else { \
651 1.9 dholland type32 *p = &cip->u_32.field; \
652 1.9 dholland (void)p; \
653 1.9 dholland cip->u_32.field = val; \
654 1.9 dholland } \
655 1.9 dholland } \
656 1.9 dholland
657 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
658 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
659 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
660 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
661 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
662 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
663 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
664 1.9 dholland
665 1.9 dholland static __unused inline void
666 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
667 1.9 dholland {
668 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
669 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
670 1.9 dholland }
671 1.9 dholland
672 1.9 dholland static __unused inline void
673 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
674 1.9 dholland {
675 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
676 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
677 1.9 dholland }
678 1.1 dholland
679 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
680 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
681 1.1 dholland SHARE_IFLOCK(F); \
682 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
683 1.1 dholland if (bread((F)->lfs_ivnode, \
684 1.1 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
685 1.1 dholland panic("lfs: ifile read"); \
686 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
687 1.1 dholland UNSHARE_IFLOCK(F); \
688 1.1 dholland } while (0)
689 1.1 dholland
690 1.1 dholland /*
691 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
692 1.1 dholland */
693 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
694 1.1 dholland mutex_enter(&lfs_lock); \
695 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
696 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
697 1.1 dholland fs->lfs_favail) { \
698 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
699 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
700 1.9 dholland fs->lfs_favail); \
701 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
702 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
703 1.1 dholland } \
704 1.1 dholland mutex_exit(&lfs_lock); \
705 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
706 1.1 dholland } else { \
707 1.1 dholland mutex_exit(&lfs_lock); \
708 1.1 dholland brelse(bp, 0); \
709 1.1 dholland } \
710 1.1 dholland } while (0)
711 1.1 dholland
712 1.1 dholland /*
713 1.1 dholland * Get the head of the inode free list.
714 1.1 dholland * Always called with the segment lock held.
715 1.1 dholland */
716 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
717 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
718 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
719 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
720 1.1 dholland brelse(BP, 0); \
721 1.1 dholland } \
722 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
723 1.1 dholland } while (0)
724 1.1 dholland
725 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
726 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
727 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
728 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
729 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
730 1.1 dholland LFS_BWRITE_LOG(BP); \
731 1.1 dholland mutex_enter(&lfs_lock); \
732 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
733 1.1 dholland mutex_exit(&lfs_lock); \
734 1.1 dholland } \
735 1.1 dholland } while (0)
736 1.1 dholland
737 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
738 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
739 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
740 1.1 dholland brelse(BP, 0); \
741 1.1 dholland } while (0)
742 1.1 dholland
743 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
744 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
745 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
746 1.1 dholland LFS_BWRITE_LOG(BP); \
747 1.1 dholland mutex_enter(&lfs_lock); \
748 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
749 1.1 dholland mutex_exit(&lfs_lock); \
750 1.1 dholland } while (0)
751 1.1 dholland
752 1.1 dholland /*
753 1.1 dholland * On-disk segment summary information
754 1.1 dholland */
755 1.1 dholland
756 1.11 dholland #define SEGSUM_SIZE(fs) \
757 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
758 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
759 1.11 dholland
760 1.11 dholland /*
761 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
762 1.11 dholland * to the first FINFO.
763 1.11 dholland *
764 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
765 1.11 dholland */
766 1.11 dholland #if 0
767 1.11 dholland static __unused inline FINFO *
768 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
769 1.11 dholland {
770 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
771 1.11 dholland }
772 1.11 dholland #else
773 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
774 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
775 1.11 dholland #endif
776 1.11 dholland
777 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
778 1.11 dholland static __unused inline type \
779 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
780 1.11 dholland { \
781 1.11 dholland if (fs->lfs_is64) { \
782 1.11 dholland return ssp->u_64.ss_##field; \
783 1.11 dholland } else { \
784 1.11 dholland return ssp->u_32.ss_##field; \
785 1.11 dholland } \
786 1.11 dholland } \
787 1.11 dholland static __unused inline void \
788 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
789 1.11 dholland { \
790 1.11 dholland if (fs->lfs_is64) { \
791 1.11 dholland type *p = &ssp->u_64.ss_##field; \
792 1.11 dholland (void)p; \
793 1.11 dholland ssp->u_64.ss_##field = val; \
794 1.11 dholland } else { \
795 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
796 1.11 dholland (void)p; \
797 1.11 dholland ssp->u_32.ss_##field = val; \
798 1.11 dholland } \
799 1.11 dholland } \
800 1.11 dholland
801 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
802 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
803 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
804 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
805 1.11 dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
806 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
807 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
808 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
809 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
810 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
811 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
812 1.11 dholland
813 1.11 dholland static __unused inline size_t
814 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
815 1.11 dholland {
816 1.11 dholland /* These are actually all the same. */
817 1.11 dholland if (fs->lfs_is64) {
818 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
819 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
820 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
821 1.11 dholland } /* else {
822 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
823 1.11 dholland } */
824 1.11 dholland /*
825 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
826 1.11 dholland * defined yet.
827 1.11 dholland */
828 1.11 dholland }
829 1.11 dholland
830 1.11 dholland static __unused inline uint32_t
831 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
832 1.11 dholland {
833 1.11 dholland KASSERT(fs->lfs_is64 == 0);
834 1.11 dholland /* XXX need to resort this file before we can do this */
835 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
836 1.11 dholland
837 1.11 dholland return ssp->u_v1.ss_create;
838 1.11 dholland }
839 1.11 dholland
840 1.11 dholland static __unused inline void
841 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
842 1.11 dholland {
843 1.11 dholland KASSERT(fs->lfs_is64 == 0);
844 1.11 dholland /* XXX need to resort this file before we can do this */
845 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
846 1.11 dholland
847 1.11 dholland ssp->u_v1.ss_create = val;
848 1.11 dholland }
849 1.11 dholland
850 1.1 dholland
851 1.1 dholland /*
852 1.1 dholland * Super block.
853 1.1 dholland */
854 1.1 dholland
855 1.1 dholland /*
856 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
857 1.1 dholland */
858 1.1 dholland
859 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
860 1.1 dholland static __unused inline type \
861 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
862 1.1 dholland { \
863 1.7 dholland if (fs->lfs_is64) { \
864 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
865 1.7 dholland } else { \
866 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
867 1.7 dholland } \
868 1.1 dholland } \
869 1.1 dholland static __unused inline void \
870 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
871 1.1 dholland { \
872 1.7 dholland if (fs->lfs_is64) { \
873 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
874 1.7 dholland } else { \
875 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
876 1.7 dholland } \
877 1.1 dholland } \
878 1.1 dholland static __unused inline void \
879 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
880 1.1 dholland { \
881 1.7 dholland if (fs->lfs_is64) { \
882 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
883 1.7 dholland *p64 += val; \
884 1.7 dholland } else { \
885 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
886 1.7 dholland *p32 += val; \
887 1.7 dholland } \
888 1.1 dholland } \
889 1.1 dholland static __unused inline void \
890 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
891 1.1 dholland { \
892 1.7 dholland if (fs->lfs_is64) { \
893 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
894 1.7 dholland *p64 -= val; \
895 1.7 dholland } else { \
896 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
897 1.7 dholland *p32 -= val; \
898 1.7 dholland } \
899 1.1 dholland }
900 1.1 dholland
901 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
902 1.3 dholland
903 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
904 1.7 dholland static __unused inline type \
905 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
906 1.7 dholland { \
907 1.7 dholland if (fs->lfs_is64) { \
908 1.7 dholland return val64; \
909 1.7 dholland } else { \
910 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
911 1.7 dholland } \
912 1.7 dholland }
913 1.7 dholland
914 1.1 dholland #define lfs_magic lfs_dlfs.dlfs_magic
915 1.6 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
916 1.3 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
917 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
918 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
919 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
920 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
921 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
922 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
923 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
924 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
925 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
926 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
927 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
928 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
929 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
930 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
931 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
932 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
933 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
934 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
935 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
936 1.1 dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
937 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
938 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
939 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
940 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
941 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
942 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
943 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
944 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
945 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
946 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
947 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
948 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
949 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
950 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
951 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
952 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
953 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
954 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
955 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
956 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
957 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
958 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
959 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
960 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
961 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
962 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
963 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
964 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
965 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
966 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
967 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
968 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
969 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
970 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
971 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
972 1.1 dholland
973 1.1 dholland /* special-case accessors */
974 1.1 dholland
975 1.1 dholland /*
976 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
977 1.1 dholland */
978 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
979 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
980 1.1 dholland
981 1.1 dholland /*
982 1.1 dholland * lfs_sboffs is an array
983 1.1 dholland */
984 1.1 dholland static __unused inline int32_t
985 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
986 1.1 dholland {
987 1.1 dholland #ifdef KASSERT /* ugh */
988 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
989 1.1 dholland #endif
990 1.7 dholland if (fs->lfs_is64) {
991 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
992 1.7 dholland } else {
993 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
994 1.7 dholland }
995 1.1 dholland }
996 1.1 dholland static __unused inline void
997 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
998 1.1 dholland {
999 1.1 dholland #ifdef KASSERT /* ugh */
1000 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1001 1.1 dholland #endif
1002 1.7 dholland if (fs->lfs_is64) {
1003 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1004 1.7 dholland } else {
1005 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1006 1.7 dholland }
1007 1.1 dholland }
1008 1.1 dholland
1009 1.1 dholland /*
1010 1.1 dholland * lfs_fsmnt is a string
1011 1.1 dholland */
1012 1.1 dholland static __unused inline const char *
1013 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
1014 1.1 dholland {
1015 1.7 dholland if (fs->lfs_is64) {
1016 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1017 1.7 dholland } else {
1018 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1019 1.7 dholland }
1020 1.7 dholland }
1021 1.7 dholland
1022 1.7 dholland static __unused inline void
1023 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1024 1.7 dholland {
1025 1.7 dholland if (fs->lfs_is64) {
1026 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1027 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1028 1.7 dholland } else {
1029 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1030 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1031 1.7 dholland }
1032 1.1 dholland }
1033 1.1 dholland
1034 1.8 dholland /* Highest addressable fsb */
1035 1.8 dholland #define LFS_MAX_DADDR(fs) \
1036 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1037 1.8 dholland
1038 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
1039 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1040 1.1 dholland
1041 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
1042 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1043 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
1044 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1045 1.1 dholland
1046 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1047 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1048 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
1049 1.1 dholland
1050 1.4 dholland /* XXX: lowercase these as they're no longer macros */
1051 1.4 dholland /* Frags to diskblocks */
1052 1.4 dholland static __unused inline uint64_t
1053 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1054 1.4 dholland {
1055 1.1 dholland #if defined(_KERNEL)
1056 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1057 1.1 dholland #else
1058 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
1059 1.1 dholland #endif
1060 1.4 dholland }
1061 1.4 dholland /* Diskblocks to frags */
1062 1.4 dholland static __unused inline uint64_t
1063 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1064 1.4 dholland {
1065 1.4 dholland #if defined(_KERNEL)
1066 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1067 1.4 dholland #else
1068 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
1069 1.4 dholland #endif
1070 1.4 dholland }
1071 1.1 dholland
1072 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1073 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1074 1.1 dholland
1075 1.4 dholland /* Frags to bytes */
1076 1.4 dholland static __unused inline uint64_t
1077 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1078 1.4 dholland {
1079 1.4 dholland return b << lfs_sb_getffshift(fs);
1080 1.4 dholland }
1081 1.4 dholland /* Bytes to frags */
1082 1.4 dholland static __unused inline uint64_t
1083 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1084 1.4 dholland {
1085 1.4 dholland return b >> lfs_sb_getffshift(fs);
1086 1.4 dholland }
1087 1.1 dholland
1088 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1089 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
1090 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1091 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1092 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1093 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1094 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1095 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
1096 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1097 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
1098 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1099 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
1100 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1101 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
1102 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
1103 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1104 1.1 dholland ? lfs_sb_getbsize(fs) \
1105 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1106 1.1 dholland
1107 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1108 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1109 1.1 dholland lfs_sb_getssize(fs))
1110 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
1111 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1112 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1113 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1114 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1115 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1116 1.1 dholland
1117 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1118 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1119 1.4 dholland static __unused inline uint32_t
1120 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1121 1.4 dholland {
1122 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1123 1.4 dholland return lfs_sb_getbsize(fs);
1124 1.4 dholland } else {
1125 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1126 1.4 dholland }
1127 1.4 dholland }
1128 1.4 dholland #endif
1129 1.4 dholland
1130 1.12 dholland /*
1131 1.12 dholland * union lfs_blocks
1132 1.12 dholland */
1133 1.12 dholland
1134 1.12 dholland static __unused inline void
1135 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1136 1.12 dholland {
1137 1.12 dholland if (fs->lfs_is64) {
1138 1.12 dholland bp->b64 = p;
1139 1.12 dholland } else {
1140 1.12 dholland bp->b32 = p;
1141 1.12 dholland }
1142 1.12 dholland }
1143 1.12 dholland
1144 1.12 dholland static __unused inline void
1145 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1146 1.12 dholland {
1147 1.12 dholland void *firstblock;
1148 1.12 dholland
1149 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1150 1.12 dholland if (fs->lfs_is64) {
1151 1.12 dholland bp->b64 = (int64_t *)firstblock;
1152 1.12 dholland } else {
1153 1.12 dholland bp->b32 = (int32_t *)firstblock;
1154 1.12 dholland }
1155 1.12 dholland }
1156 1.12 dholland
1157 1.12 dholland static __unused inline daddr_t
1158 1.12 dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1159 1.12 dholland {
1160 1.12 dholland if (fs->lfs_is64) {
1161 1.12 dholland return bp->b64[index];
1162 1.12 dholland } else {
1163 1.12 dholland return bp->b32[index];
1164 1.12 dholland }
1165 1.12 dholland }
1166 1.12 dholland
1167 1.12 dholland static __unused inline void
1168 1.12 dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1169 1.12 dholland {
1170 1.12 dholland if (fs->lfs_is64) {
1171 1.12 dholland bp->b64[index] = val;
1172 1.12 dholland } else {
1173 1.12 dholland bp->b32[index] = val;
1174 1.12 dholland }
1175 1.12 dholland }
1176 1.12 dholland
1177 1.12 dholland static __unused inline void
1178 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1179 1.12 dholland {
1180 1.12 dholland if (fs->lfs_is64) {
1181 1.12 dholland bp->b64++;
1182 1.12 dholland } else {
1183 1.12 dholland bp->b32++;
1184 1.12 dholland }
1185 1.12 dholland }
1186 1.12 dholland
1187 1.12 dholland static __unused inline int
1188 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1189 1.12 dholland {
1190 1.12 dholland if (fs->lfs_is64) {
1191 1.12 dholland return bp1->b64 == bp2->b64;
1192 1.12 dholland } else {
1193 1.12 dholland return bp1->b32 == bp2->b32;
1194 1.12 dholland }
1195 1.12 dholland }
1196 1.12 dholland
1197 1.12 dholland static __unused inline int
1198 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1199 1.12 dholland {
1200 1.12 dholland /* (remember that the pointers are typed) */
1201 1.12 dholland if (fs->lfs_is64) {
1202 1.12 dholland return bp1->b64 - bp2->b64;
1203 1.12 dholland } else {
1204 1.12 dholland return bp1->b32 - bp2->b32;
1205 1.12 dholland }
1206 1.12 dholland }
1207 1.12 dholland
1208 1.12 dholland /*
1209 1.12 dholland * struct segment
1210 1.12 dholland */
1211 1.12 dholland
1212 1.4 dholland
1213 1.1 dholland /*
1214 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1215 1.1 dholland * of segment summaries and inode blocks taken into account.
1216 1.1 dholland */
1217 1.1 dholland /*
1218 1.1 dholland * Estimate number of clean blocks not available for writing because
1219 1.1 dholland * they will contain metadata or overhead. This is calculated as
1220 1.1 dholland *
1221 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1222 1.1 dholland * or more simply
1223 1.1 dholland * E = (C * M) / T
1224 1.1 dholland *
1225 1.1 dholland * where
1226 1.1 dholland * C is the clean space,
1227 1.1 dholland * D is the dirty space,
1228 1.1 dholland * M is the dirty metadata, and
1229 1.1 dholland * T = C + D is the total space on disk.
1230 1.1 dholland *
1231 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1232 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1233 1.1 dholland */
1234 1.1 dholland #define LFS_EST_CMETA(F) (int32_t)(( \
1235 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1236 1.1 dholland (lfs_sb_getnseg(F))))
1237 1.1 dholland
1238 1.1 dholland /* Estimate total size of the disk not including metadata */
1239 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1240 1.1 dholland
1241 1.1 dholland /* Estimate number of blocks actually available for writing */
1242 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1243 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1244 1.1 dholland
1245 1.1 dholland /* Amount of non-meta space not available to mortal man */
1246 1.1 dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1247 1.1 dholland (u_int64_t)lfs_sb_getminfree(F)) / \
1248 1.1 dholland 100)
1249 1.1 dholland
1250 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1251 1.1 dholland #define ISSPACE(F, BB, C) \
1252 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1253 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1254 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1255 1.1 dholland
1256 1.1 dholland /* Can an ordinary user write BB blocks */
1257 1.1 dholland #define IS_FREESPACE(F, BB) \
1258 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1259 1.1 dholland
1260 1.1 dholland /*
1261 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1262 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1263 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1264 1.1 dholland */
1265 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1266 1.1 dholland
1267 1.1 dholland
1268 1.1 dholland
1269 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1270