Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.18
      1  1.18  dholland /*	$NetBSD: lfs_accessors.h,v 1.18 2015/09/01 06:11:06 dholland Exp $	*/
      2   1.1  dholland 
      3   1.1  dholland /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4   1.1  dholland /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5   1.1  dholland /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6   1.1  dholland 
      7   1.1  dholland /*-
      8   1.1  dholland  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9   1.1  dholland  * All rights reserved.
     10   1.1  dholland  *
     11   1.1  dholland  * This code is derived from software contributed to The NetBSD Foundation
     12   1.1  dholland  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13   1.1  dholland  *
     14   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     15   1.1  dholland  * modification, are permitted provided that the following conditions
     16   1.1  dholland  * are met:
     17   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     18   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     19   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     20   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     21   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     22   1.1  dholland  *
     23   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24   1.1  dholland  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  dholland  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  dholland  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27   1.1  dholland  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1  dholland  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  dholland  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  dholland  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  dholland  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  dholland  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  dholland  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  dholland  */
     35   1.1  dholland /*-
     36   1.1  dholland  * Copyright (c) 1991, 1993
     37   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     38   1.1  dholland  *
     39   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     40   1.1  dholland  * modification, are permitted provided that the following conditions
     41   1.1  dholland  * are met:
     42   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     43   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     44   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     45   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     46   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     47   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     48   1.1  dholland  *    may be used to endorse or promote products derived from this software
     49   1.1  dholland  *    without specific prior written permission.
     50   1.1  dholland  *
     51   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.1  dholland  * SUCH DAMAGE.
     62   1.1  dholland  *
     63   1.1  dholland  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64   1.1  dholland  */
     65   1.1  dholland /*
     66   1.1  dholland  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67   1.1  dholland  * All rights reserved.
     68   1.1  dholland  *
     69   1.1  dholland  * This software was developed for the FreeBSD Project by Marshall
     70   1.1  dholland  * Kirk McKusick and Network Associates Laboratories, the Security
     71   1.1  dholland  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72   1.1  dholland  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73   1.1  dholland  * research program
     74   1.1  dholland  *
     75   1.1  dholland  * Copyright (c) 1982, 1989, 1993
     76   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     77   1.1  dholland  * (c) UNIX System Laboratories, Inc.
     78   1.1  dholland  * All or some portions of this file are derived from material licensed
     79   1.1  dholland  * to the University of California by American Telephone and Telegraph
     80   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
     82   1.1  dholland  *
     83   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     84   1.1  dholland  * modification, are permitted provided that the following conditions
     85   1.1  dholland  * are met:
     86   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     87   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     88   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     89   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     90   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     91   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     92   1.1  dholland  *    may be used to endorse or promote products derived from this software
     93   1.1  dholland  *    without specific prior written permission.
     94   1.1  dholland  *
     95   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105   1.1  dholland  * SUCH DAMAGE.
    106   1.1  dholland  *
    107   1.1  dholland  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108   1.1  dholland  */
    109   1.1  dholland /*
    110   1.1  dholland  * Copyright (c) 1982, 1986, 1989, 1993
    111   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
    112   1.1  dholland  * (c) UNIX System Laboratories, Inc.
    113   1.1  dholland  * All or some portions of this file are derived from material licensed
    114   1.1  dholland  * to the University of California by American Telephone and Telegraph
    115   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
    117   1.1  dholland  *
    118   1.1  dholland  * Redistribution and use in source and binary forms, with or without
    119   1.1  dholland  * modification, are permitted provided that the following conditions
    120   1.1  dholland  * are met:
    121   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
    122   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
    123   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
    124   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
    125   1.1  dholland  *    documentation and/or other materials provided with the distribution.
    126   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
    127   1.1  dholland  *    may be used to endorse or promote products derived from this software
    128   1.1  dholland  *    without specific prior written permission.
    129   1.1  dholland  *
    130   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140   1.1  dholland  * SUCH DAMAGE.
    141   1.1  dholland  *
    142   1.1  dholland  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143   1.1  dholland  */
    144   1.1  dholland 
    145   1.1  dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146   1.1  dholland #define _UFS_LFS_LFS_ACCESSORS_H_
    147   1.1  dholland 
    148  1.17  dholland #if defined(_KERNEL_OPT)
    149  1.17  dholland #include "opt_lfs.h"
    150  1.17  dholland #endif
    151  1.17  dholland 
    152  1.17  dholland #include <sys/bswap.h>
    153  1.17  dholland 
    154  1.11  dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
    155  1.11  dholland #include <assert.h>
    156  1.11  dholland #define KASSERT assert
    157  1.11  dholland #endif
    158  1.11  dholland 
    159   1.1  dholland /*
    160   1.9  dholland  * STRUCT_LFS is used by the libsa code to get accessors that work
    161   1.9  dholland  * with struct salfs instead of struct lfs, and by the cleaner to
    162   1.9  dholland  * get accessors that work with struct clfs.
    163   1.9  dholland  */
    164   1.9  dholland 
    165   1.9  dholland #ifndef STRUCT_LFS
    166   1.9  dholland #define STRUCT_LFS struct lfs
    167   1.9  dholland #endif
    168   1.9  dholland 
    169  1.13  dholland /*
    170  1.17  dholland  * byte order
    171  1.17  dholland  */
    172  1.17  dholland 
    173  1.17  dholland /*
    174  1.17  dholland  * For now at least, the bootblocks shall not be endian-independent.
    175  1.17  dholland  * We can see later if it fits in the size budget. Also disable the
    176  1.17  dholland  * byteswapping if LFS_EI is off.
    177  1.17  dholland  *
    178  1.17  dholland  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    179  1.17  dholland  * and if that changes will likely break silently.
    180  1.17  dholland  */
    181  1.17  dholland 
    182  1.17  dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    183  1.17  dholland #define LFS_SWAP_int16_t(fs, val) (val)
    184  1.17  dholland #define LFS_SWAP_int32_t(fs, val) (val)
    185  1.17  dholland #define LFS_SWAP_int64_t(fs, val) (val)
    186  1.17  dholland #define LFS_SWAP_uint16_t(fs, val) (val)
    187  1.17  dholland #define LFS_SWAP_uint32_t(fs, val) (val)
    188  1.17  dholland #define LFS_SWAP_uint64_t(fs, val) (val)
    189  1.17  dholland #else
    190  1.17  dholland #define LFS_SWAP_int16_t(fs, val) \
    191  1.17  dholland 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    192  1.17  dholland #define LFS_SWAP_int32_t(fs, val) \
    193  1.17  dholland 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    194  1.17  dholland #define LFS_SWAP_int64_t(fs, val) \
    195  1.17  dholland 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    196  1.17  dholland #define LFS_SWAP_uint16_t(fs, val) \
    197  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    198  1.17  dholland #define LFS_SWAP_uint32_t(fs, val) \
    199  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    200  1.17  dholland #define LFS_SWAP_uint64_t(fs, val) \
    201  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    202  1.17  dholland #endif
    203  1.17  dholland 
    204  1.17  dholland /*
    205  1.13  dholland  * dinodes
    206  1.13  dholland  */
    207   1.9  dholland 
    208   1.9  dholland /*
    209   1.1  dholland  * Maximum length of a symlink that can be stored within the inode.
    210   1.1  dholland  */
    211   1.1  dholland #define ULFS1_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    212   1.1  dholland #define ULFS2_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    213   1.1  dholland 
    214   1.1  dholland #define ULFS_MAXSYMLINKLEN(ip) \
    215   1.1  dholland 	((ip)->i_ump->um_fstype == ULFS1) ? \
    216   1.1  dholland 	ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
    217   1.1  dholland 
    218  1.13  dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    219  1.13  dholland 
    220  1.13  dholland #define DINO_IN_BLOCK(fs, base, ix) \
    221  1.13  dholland 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    222  1.13  dholland 
    223  1.14  dholland static __unused inline void
    224  1.14  dholland lfs_copy_dinode(STRUCT_LFS *fs,
    225  1.14  dholland     union lfs_dinode *dst, const union lfs_dinode *src)
    226  1.14  dholland {
    227  1.14  dholland 	/*
    228  1.14  dholland 	 * We can do structure assignment of the structs, but not of
    229  1.14  dholland 	 * the whole union, as the union is the size of the (larger)
    230  1.14  dholland 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    231  1.14  dholland 	 * be off the end of a buffer or otherwise invalid.
    232  1.14  dholland 	 */
    233  1.14  dholland 	if (fs->lfs_is64) {
    234  1.14  dholland 		dst->u_64 = src->u_64;
    235  1.14  dholland 	} else {
    236  1.14  dholland 		dst->u_32 = src->u_32;
    237  1.14  dholland 	}
    238  1.14  dholland }
    239  1.14  dholland 
    240  1.13  dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    241  1.13  dholland 	static __unused inline type				\
    242  1.13  dholland 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    243  1.13  dholland 	{							\
    244  1.13  dholland 		if (fs->lfs_is64) {				\
    245  1.17  dholland 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    246  1.13  dholland 		} else {					\
    247  1.17  dholland 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    248  1.13  dholland 		}						\
    249  1.13  dholland 	}							\
    250  1.13  dholland 	static __unused inline void				\
    251  1.13  dholland 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    252  1.13  dholland 	{							\
    253  1.13  dholland 		if (fs->lfs_is64) {				\
    254  1.13  dholland 			type *p = &dip->u_64.di_##field;	\
    255  1.13  dholland 			(void)p;				\
    256  1.17  dholland 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    257  1.13  dholland 		} else {					\
    258  1.13  dholland 			type32 *p = &dip->u_32.di_##field;	\
    259  1.13  dholland 			(void)p;				\
    260  1.17  dholland 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    261  1.13  dholland 		}						\
    262  1.13  dholland 	}							\
    263  1.13  dholland 
    264  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    265  1.13  dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    266  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    267  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    268  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    269  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    270  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    271  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    272  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    273  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    274  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    275  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    276  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    277  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    278  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    279  1.13  dholland 
    280  1.16  dholland /* XXX this should be done differently (it's a fake field) */
    281  1.16  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
    282  1.16  dholland 
    283  1.13  dholland static __unused inline daddr_t
    284  1.13  dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    285  1.13  dholland {
    286  1.13  dholland 	KASSERT(ix < ULFS_NDADDR);
    287  1.13  dholland 	if (fs->lfs_is64) {
    288  1.13  dholland 		return dip->u_64.di_db[ix];
    289  1.13  dholland 	} else {
    290  1.13  dholland 		return dip->u_32.di_db[ix];
    291  1.13  dholland 	}
    292  1.13  dholland }
    293  1.13  dholland 
    294  1.13  dholland static __unused inline daddr_t
    295  1.13  dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    296  1.13  dholland {
    297  1.13  dholland 	KASSERT(ix < ULFS_NIADDR);
    298  1.13  dholland 	if (fs->lfs_is64) {
    299  1.13  dholland 		return dip->u_64.di_ib[ix];
    300  1.13  dholland 	} else {
    301  1.13  dholland 		return dip->u_32.di_ib[ix];
    302  1.13  dholland 	}
    303  1.13  dholland }
    304  1.13  dholland 
    305  1.13  dholland static __unused inline void
    306  1.13  dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    307  1.13  dholland {
    308  1.13  dholland 	KASSERT(ix < ULFS_NDADDR);
    309  1.13  dholland 	if (fs->lfs_is64) {
    310  1.13  dholland 		dip->u_64.di_db[ix] = val;
    311  1.13  dholland 	} else {
    312  1.13  dholland 		dip->u_32.di_db[ix] = val;
    313  1.13  dholland 	}
    314  1.13  dholland }
    315  1.13  dholland 
    316  1.13  dholland static __unused inline void
    317  1.13  dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    318  1.13  dholland {
    319  1.13  dholland 	KASSERT(ix < ULFS_NIADDR);
    320  1.13  dholland 	if (fs->lfs_is64) {
    321  1.13  dholland 		dip->u_64.di_ib[ix] = val;
    322  1.13  dholland 	} else {
    323  1.13  dholland 		dip->u_32.di_ib[ix] = val;
    324  1.13  dholland 	}
    325  1.13  dholland }
    326  1.13  dholland 
    327  1.16  dholland /* birthtime is present only in the 64-bit inode */
    328  1.16  dholland static __unused inline void
    329  1.16  dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    330  1.16  dholland     const struct timespec *ts)
    331  1.16  dholland {
    332  1.16  dholland 	if (fs->lfs_is64) {
    333  1.16  dholland 		dip->u_64.di_birthtime = ts->tv_sec;
    334  1.16  dholland 		dip->u_64.di_birthnsec = ts->tv_nsec;
    335  1.16  dholland 	} else {
    336  1.16  dholland 		/* drop it on the floor */
    337  1.16  dholland 	}
    338  1.16  dholland }
    339  1.16  dholland 
    340  1.16  dholland /*
    341  1.16  dholland  * indirect blocks
    342  1.16  dholland  */
    343  1.16  dholland 
    344  1.16  dholland static __unused inline daddr_t
    345  1.16  dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    346  1.16  dholland {
    347  1.16  dholland 	if (fs->lfs_is64) {
    348  1.16  dholland 		// XXX re-enable these asserts after reorging this file
    349  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    350  1.16  dholland 		return (daddr_t)(((int64_t *)block)[ix]);
    351  1.16  dholland 	} else {
    352  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    353  1.16  dholland 		/* must sign-extend or UNWRITTEN gets trashed */
    354  1.16  dholland 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    355  1.16  dholland 	}
    356  1.16  dholland }
    357  1.16  dholland 
    358  1.16  dholland static __unused inline void
    359  1.16  dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    360  1.16  dholland {
    361  1.16  dholland 	if (fs->lfs_is64) {
    362  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    363  1.16  dholland 		((int64_t *)block)[ix] = val;
    364  1.16  dholland 	} else {
    365  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    366  1.16  dholland 		((int32_t *)block)[ix] = val;
    367  1.16  dholland 	}
    368  1.16  dholland }
    369  1.16  dholland 
    370   1.1  dholland /*
    371   1.1  dholland  * "struct buf" associated definitions
    372   1.1  dholland  */
    373   1.1  dholland 
    374   1.1  dholland # define LFS_LOCK_BUF(bp) do {						\
    375   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    376   1.1  dholland 		mutex_enter(&lfs_lock);					\
    377   1.1  dholland 		++locked_queue_count;					\
    378   1.1  dholland 		locked_queue_bytes += bp->b_bufsize;			\
    379   1.1  dholland 		mutex_exit(&lfs_lock);					\
    380   1.1  dholland 	}								\
    381   1.1  dholland 	(bp)->b_flags |= B_LOCKED;					\
    382   1.1  dholland } while (0)
    383   1.1  dholland 
    384   1.1  dholland # define LFS_UNLOCK_BUF(bp) do {					\
    385   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    386   1.1  dholland 		mutex_enter(&lfs_lock);					\
    387   1.1  dholland 		--locked_queue_count;					\
    388   1.1  dholland 		locked_queue_bytes -= bp->b_bufsize;			\
    389   1.1  dholland 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    390   1.1  dholland 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    391   1.1  dholland 			cv_broadcast(&locked_queue_cv);			\
    392   1.1  dholland 		mutex_exit(&lfs_lock);					\
    393   1.1  dholland 	}								\
    394   1.1  dholland 	(bp)->b_flags &= ~B_LOCKED;					\
    395   1.1  dholland } while (0)
    396   1.1  dholland 
    397   1.1  dholland /*
    398   1.1  dholland  * "struct inode" associated definitions
    399   1.1  dholland  */
    400   1.1  dholland 
    401   1.1  dholland #define LFS_SET_UINO(ip, flags) do {					\
    402   1.1  dholland 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    403   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    404   1.1  dholland 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    405   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    406   1.1  dholland 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    407   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    408   1.1  dholland 	(ip)->i_flag |= (flags);					\
    409   1.1  dholland } while (0)
    410   1.1  dholland 
    411   1.1  dholland #define LFS_CLR_UINO(ip, flags) do {					\
    412   1.1  dholland 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    413   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    414   1.1  dholland 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    415   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    416   1.1  dholland 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    417   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    418   1.1  dholland 	(ip)->i_flag &= ~(flags);					\
    419   1.1  dholland 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    420   1.1  dholland 		panic("lfs_uinodes < 0");				\
    421   1.1  dholland 	}								\
    422   1.1  dholland } while (0)
    423   1.1  dholland 
    424   1.1  dholland #define LFS_ITIMES(ip, acc, mod, cre) \
    425   1.1  dholland 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    426   1.1  dholland 		lfs_itimes(ip, acc, mod, cre)
    427   1.1  dholland 
    428   1.1  dholland /*
    429   1.1  dholland  * On-disk and in-memory checkpoint segment usage structure.
    430   1.1  dholland  */
    431   1.1  dholland 
    432   1.1  dholland #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    433   1.1  dholland #define	SEGTABSIZE_SU(fs)						\
    434   1.1  dholland 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    435   1.1  dholland 
    436   1.1  dholland #ifdef _KERNEL
    437   1.1  dholland # define SHARE_IFLOCK(F) 						\
    438   1.1  dholland   do {									\
    439   1.1  dholland 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    440   1.1  dholland   } while(0)
    441   1.1  dholland # define UNSHARE_IFLOCK(F)						\
    442   1.1  dholland   do {									\
    443   1.1  dholland 	rw_exit(&(F)->lfs_iflock);					\
    444   1.1  dholland   } while(0)
    445   1.1  dholland #else /* ! _KERNEL */
    446   1.1  dholland # define SHARE_IFLOCK(F)
    447   1.1  dholland # define UNSHARE_IFLOCK(F)
    448   1.1  dholland #endif /* ! _KERNEL */
    449   1.1  dholland 
    450   1.1  dholland /* Read in the block with a specific segment usage entry from the ifile. */
    451   1.1  dholland #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    452   1.1  dholland 	int _e;								\
    453   1.1  dholland 	SHARE_IFLOCK(F);						\
    454   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    455   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    456   1.1  dholland 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    457   1.1  dholland 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    458   1.1  dholland 		panic("lfs: ifile read: %d", _e);			\
    459   1.6  dholland 	if (lfs_sb_getversion(F) == 1)					\
    460   1.1  dholland 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    461   1.1  dholland 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    462   1.1  dholland 	else								\
    463   1.1  dholland 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    464   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    465   1.1  dholland } while (0)
    466   1.1  dholland 
    467   1.1  dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    468   1.1  dholland 	if ((SP)->su_nbytes == 0)					\
    469   1.1  dholland 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    470   1.1  dholland 	else								\
    471   1.1  dholland 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    472   1.1  dholland 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    473   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    474   1.1  dholland } while (0)
    475   1.1  dholland 
    476   1.1  dholland /*
    477  1.11  dholland  * FINFO (file info) entries.
    478  1.11  dholland  */
    479  1.11  dholland 
    480  1.11  dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
    481  1.11  dholland /* XXX: move to a more suitable location in this file */
    482  1.11  dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    483  1.11  dholland 
    484  1.12  dholland /* Size of an on-disk inode number. */
    485  1.12  dholland /* XXX: move to a more suitable location in this file */
    486  1.12  dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    487  1.12  dholland 
    488  1.12  dholland /* size of a FINFO, without the block pointers */
    489  1.12  dholland #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    490  1.12  dholland 
    491  1.11  dholland /* Full size of the provided FINFO record, including its block pointers. */
    492  1.11  dholland #define FINFO_FULLSIZE(fs, fip) \
    493  1.12  dholland 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    494  1.11  dholland 
    495  1.11  dholland #define NEXT_FINFO(fs, fip) \
    496  1.11  dholland 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    497  1.11  dholland 
    498  1.12  dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    499  1.12  dholland 	static __unused inline type				\
    500  1.12  dholland 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    501  1.12  dholland 	{							\
    502  1.12  dholland 		if (fs->lfs_is64) {				\
    503  1.12  dholland 			return fip->u_64.fi_##field; 		\
    504  1.12  dholland 		} else {					\
    505  1.12  dholland 			return fip->u_32.fi_##field; 		\
    506  1.12  dholland 		}						\
    507  1.12  dholland 	}							\
    508  1.12  dholland 	static __unused inline void				\
    509  1.12  dholland 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    510  1.12  dholland 	{							\
    511  1.12  dholland 		if (fs->lfs_is64) {				\
    512  1.12  dholland 			type *p = &fip->u_64.fi_##field;	\
    513  1.12  dholland 			(void)p;				\
    514  1.12  dholland 			fip->u_64.fi_##field = val;		\
    515  1.12  dholland 		} else {					\
    516  1.12  dholland 			type32 *p = &fip->u_32.fi_##field;	\
    517  1.12  dholland 			(void)p;				\
    518  1.12  dholland 			fip->u_32.fi_##field = val;		\
    519  1.12  dholland 		}						\
    520  1.12  dholland 	}							\
    521  1.12  dholland 
    522  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    523  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    524  1.12  dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    525  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    526  1.12  dholland 
    527  1.12  dholland static __unused inline daddr_t
    528  1.12  dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    529  1.12  dholland {
    530  1.12  dholland 	void *firstblock;
    531  1.12  dholland 
    532  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    533  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    534  1.12  dholland 	if (fs->lfs_is64) {
    535  1.12  dholland 		return ((int64_t *)firstblock)[index];
    536  1.12  dholland 	} else {
    537  1.12  dholland 		return ((int32_t *)firstblock)[index];
    538  1.12  dholland 	}
    539  1.12  dholland }
    540  1.12  dholland 
    541  1.12  dholland static __unused inline void
    542  1.12  dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    543  1.12  dholland {
    544  1.12  dholland 	void *firstblock;
    545  1.12  dholland 
    546  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    547  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    548  1.12  dholland 	if (fs->lfs_is64) {
    549  1.12  dholland 		((int64_t *)firstblock)[index] = blk;
    550  1.12  dholland 	} else {
    551  1.12  dholland 		((int32_t *)firstblock)[index] = blk;
    552  1.12  dholland 	}
    553  1.12  dholland }
    554  1.12  dholland 
    555  1.11  dholland /*
    556   1.1  dholland  * Index file inode entries.
    557   1.1  dholland  */
    558   1.1  dholland 
    559   1.1  dholland /*
    560   1.1  dholland  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    561   1.1  dholland  * may not be mapped!
    562   1.1  dholland  */
    563   1.1  dholland /* Read in the block with a specific inode from the ifile. */
    564   1.1  dholland #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    565   1.1  dholland 	int _e;								\
    566   1.1  dholland 	SHARE_IFLOCK(F);						\
    567   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    568   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    569   1.1  dholland 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    570   1.1  dholland 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    571   1.1  dholland 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    572  1.10  dholland 	if ((F)->lfs_is64) {						\
    573  1.10  dholland 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    574  1.10  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    575  1.10  dholland 	} else if (lfs_sb_getversion(F) > 1) {				\
    576  1.10  dholland 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    577  1.10  dholland 				(IN) % lfs_sb_getifpb(F)); 		\
    578  1.10  dholland 	} else {							\
    579   1.1  dholland 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    580   1.1  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    581  1.10  dholland 	}								\
    582   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    583   1.1  dholland } while (0)
    584  1.15   mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
    585  1.15   mlelstv 	if ((F)->lfs_is64) {						\
    586  1.15   mlelstv 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    587  1.15   mlelstv 	} else if (lfs_sb_getversion(F) > 1) {				\
    588  1.15   mlelstv 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    589  1.15   mlelstv 	} else {							\
    590  1.15   mlelstv 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    591  1.15   mlelstv 	}								\
    592  1.15   mlelstv } while (0)
    593   1.1  dholland 
    594  1.10  dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    595  1.10  dholland 	static __unused inline type				\
    596  1.10  dholland 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    597  1.10  dholland 	{							\
    598  1.10  dholland 		if (fs->lfs_is64) {				\
    599  1.10  dholland 			return ifp->u_64.if_##field; 		\
    600  1.10  dholland 		} else {					\
    601  1.10  dholland 			return ifp->u_32.if_##field; 		\
    602  1.10  dholland 		}						\
    603  1.10  dholland 	}							\
    604  1.10  dholland 	static __unused inline void				\
    605  1.10  dholland 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    606  1.10  dholland 	{							\
    607  1.10  dholland 		if (fs->lfs_is64) {				\
    608  1.10  dholland 			type *p = &ifp->u_64.if_##field;	\
    609  1.10  dholland 			(void)p;				\
    610  1.10  dholland 			ifp->u_64.if_##field = val;		\
    611  1.10  dholland 		} else {					\
    612  1.10  dholland 			type32 *p = &ifp->u_32.if_##field;	\
    613  1.10  dholland 			(void)p;				\
    614  1.10  dholland 			ifp->u_32.if_##field = val;		\
    615  1.10  dholland 		}						\
    616  1.10  dholland 	}							\
    617  1.10  dholland 
    618  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    619  1.10  dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    620  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    621  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
    622  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    623  1.10  dholland 
    624   1.1  dholland /*
    625   1.1  dholland  * Cleaner information structure.  This resides in the ifile and is used
    626   1.1  dholland  * to pass information from the kernel to the cleaner.
    627   1.1  dholland  */
    628   1.1  dholland 
    629   1.1  dholland #define	CLEANSIZE_SU(fs)						\
    630   1.9  dholland 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    631   1.9  dholland 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    632   1.9  dholland 
    633   1.9  dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    634   1.9  dholland 	static __unused inline type				\
    635   1.9  dholland 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    636   1.9  dholland 	{							\
    637   1.9  dholland 		if (fs->lfs_is64) {				\
    638   1.9  dholland 			return cip->u_64.field; 		\
    639   1.9  dholland 		} else {					\
    640   1.9  dholland 			return cip->u_32.field; 		\
    641   1.9  dholland 		}						\
    642   1.9  dholland 	}							\
    643   1.9  dholland 	static __unused inline void				\
    644   1.9  dholland 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    645   1.9  dholland 	{							\
    646   1.9  dholland 		if (fs->lfs_is64) {				\
    647   1.9  dholland 			type *p = &cip->u_64.field;		\
    648   1.9  dholland 			(void)p;				\
    649   1.9  dholland 			cip->u_64.field = val;			\
    650   1.9  dholland 		} else {					\
    651   1.9  dholland 			type32 *p = &cip->u_32.field;		\
    652   1.9  dholland 			(void)p;				\
    653   1.9  dholland 			cip->u_32.field = val;			\
    654   1.9  dholland 		}						\
    655   1.9  dholland 	}							\
    656   1.9  dholland 
    657   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    658   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    659   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    660   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    661   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    662   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    663   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    664   1.9  dholland 
    665   1.9  dholland static __unused inline void
    666   1.9  dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    667   1.9  dholland {
    668   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    669   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    670   1.9  dholland }
    671   1.9  dholland 
    672   1.9  dholland static __unused inline void
    673   1.9  dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    674   1.9  dholland {
    675   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    676   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    677   1.9  dholland }
    678   1.1  dholland 
    679   1.1  dholland /* Read in the block with the cleaner info from the ifile. */
    680   1.1  dholland #define LFS_CLEANERINFO(CP, F, BP) do {					\
    681   1.1  dholland 	SHARE_IFLOCK(F);						\
    682   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    683   1.1  dholland 	if (bread((F)->lfs_ivnode,					\
    684   1.1  dholland 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    685   1.1  dholland 		panic("lfs: ifile read");				\
    686   1.1  dholland 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    687   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    688   1.1  dholland } while (0)
    689   1.1  dholland 
    690   1.1  dholland /*
    691   1.1  dholland  * Synchronize the Ifile cleaner info with current avail and bfree.
    692   1.1  dholland  */
    693   1.1  dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    694   1.1  dholland     mutex_enter(&lfs_lock);						\
    695   1.9  dholland     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    696   1.9  dholland 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    697   1.1  dholland 	fs->lfs_favail) {	 					\
    698   1.9  dholland 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    699   1.9  dholland 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    700   1.9  dholland 		fs->lfs_favail);				 	\
    701   1.1  dholland 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    702   1.1  dholland 		fs->lfs_flags |= LFS_IFDIRTY;				\
    703   1.1  dholland 	}								\
    704   1.1  dholland 	mutex_exit(&lfs_lock);						\
    705   1.1  dholland 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    706   1.1  dholland     } else {							 	\
    707   1.1  dholland 	mutex_exit(&lfs_lock);						\
    708   1.1  dholland 	brelse(bp, 0);						 	\
    709   1.1  dholland     }									\
    710   1.1  dholland } while (0)
    711   1.1  dholland 
    712   1.1  dholland /*
    713   1.1  dholland  * Get the head of the inode free list.
    714   1.1  dholland  * Always called with the segment lock held.
    715   1.1  dholland  */
    716   1.1  dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    717   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    718   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    719   1.9  dholland 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    720   1.1  dholland 		brelse(BP, 0);						\
    721   1.1  dholland 	}								\
    722   1.1  dholland 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    723   1.1  dholland } while (0)
    724   1.1  dholland 
    725   1.1  dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    726   1.1  dholland 	lfs_sb_setfreehd(FS, VAL);					\
    727   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    728   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    729   1.9  dholland 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    730   1.1  dholland 		LFS_BWRITE_LOG(BP);					\
    731   1.1  dholland 		mutex_enter(&lfs_lock);					\
    732   1.1  dholland 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    733   1.1  dholland 		mutex_exit(&lfs_lock);					\
    734   1.1  dholland 	}								\
    735   1.1  dholland } while (0)
    736   1.1  dholland 
    737   1.1  dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    738   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    739   1.9  dholland 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    740   1.1  dholland 	brelse(BP, 0);							\
    741   1.1  dholland } while (0)
    742   1.1  dholland 
    743   1.1  dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    744   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    745   1.9  dholland 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
    746   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    747   1.1  dholland 	mutex_enter(&lfs_lock);						\
    748   1.1  dholland 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
    749   1.1  dholland 	mutex_exit(&lfs_lock);						\
    750   1.1  dholland } while (0)
    751   1.1  dholland 
    752   1.1  dholland /*
    753   1.1  dholland  * On-disk segment summary information
    754   1.1  dholland  */
    755   1.1  dholland 
    756  1.11  dholland #define SEGSUM_SIZE(fs) \
    757  1.11  dholland 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
    758  1.11  dholland 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
    759  1.11  dholland 
    760  1.11  dholland /*
    761  1.11  dholland  * The SEGSUM structure is followed by FINFO structures. Get the pointer
    762  1.11  dholland  * to the first FINFO.
    763  1.11  dholland  *
    764  1.11  dholland  * XXX this can't be a macro yet; this file needs to be resorted.
    765  1.11  dholland  */
    766  1.11  dholland #if 0
    767  1.11  dholland static __unused inline FINFO *
    768  1.11  dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
    769  1.11  dholland {
    770  1.12  dholland 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
    771  1.11  dholland }
    772  1.11  dholland #else
    773  1.11  dholland #define SEGSUM_FINFOBASE(fs, ssp) \
    774  1.12  dholland 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
    775  1.11  dholland #endif
    776  1.11  dholland 
    777  1.11  dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
    778  1.11  dholland 	static __unused inline type				\
    779  1.11  dholland 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
    780  1.11  dholland 	{							\
    781  1.11  dholland 		if (fs->lfs_is64) {				\
    782  1.11  dholland 			return ssp->u_64.ss_##field; 		\
    783  1.11  dholland 		} else {					\
    784  1.11  dholland 			return ssp->u_32.ss_##field; 		\
    785  1.11  dholland 		}						\
    786  1.11  dholland 	}							\
    787  1.11  dholland 	static __unused inline void				\
    788  1.11  dholland 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
    789  1.11  dholland 	{							\
    790  1.11  dholland 		if (fs->lfs_is64) {				\
    791  1.11  dholland 			type *p = &ssp->u_64.ss_##field;	\
    792  1.11  dholland 			(void)p;				\
    793  1.11  dholland 			ssp->u_64.ss_##field = val;		\
    794  1.11  dholland 		} else {					\
    795  1.11  dholland 			type32 *p = &ssp->u_32.ss_##field;	\
    796  1.11  dholland 			(void)p;				\
    797  1.11  dholland 			ssp->u_32.ss_##field = val;		\
    798  1.11  dholland 		}						\
    799  1.11  dholland 	}							\
    800  1.11  dholland 
    801  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
    802  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
    803  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
    804  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
    805  1.11  dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
    806  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
    807  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
    808  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
    809  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
    810  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
    811  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
    812  1.11  dholland 
    813  1.11  dholland static __unused inline size_t
    814  1.11  dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
    815  1.11  dholland {
    816  1.11  dholland 	/* These are actually all the same. */
    817  1.11  dholland 	if (fs->lfs_is64) {
    818  1.11  dholland 		return offsetof(SEGSUM64, ss_datasum);
    819  1.11  dholland 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
    820  1.11  dholland 		return offsetof(SEGSUM32, ss_datasum);
    821  1.11  dholland 	} /* else {
    822  1.11  dholland 		return offsetof(SEGSUM_V1, ss_datasum);
    823  1.11  dholland 	} */
    824  1.11  dholland 	/*
    825  1.11  dholland 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
    826  1.11  dholland 	 * defined yet.
    827  1.11  dholland 	 */
    828  1.11  dholland }
    829  1.11  dholland 
    830  1.11  dholland static __unused inline uint32_t
    831  1.11  dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
    832  1.11  dholland {
    833  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    834  1.11  dholland 	/* XXX need to resort this file before we can do this */
    835  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    836  1.11  dholland 
    837  1.11  dholland 	return ssp->u_v1.ss_create;
    838  1.11  dholland }
    839  1.11  dholland 
    840  1.11  dholland static __unused inline void
    841  1.11  dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
    842  1.11  dholland {
    843  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    844  1.11  dholland 	/* XXX need to resort this file before we can do this */
    845  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    846  1.11  dholland 
    847  1.11  dholland 	ssp->u_v1.ss_create = val;
    848  1.11  dholland }
    849  1.11  dholland 
    850   1.1  dholland 
    851   1.1  dholland /*
    852   1.1  dholland  * Super block.
    853   1.1  dholland  */
    854   1.1  dholland 
    855   1.1  dholland /*
    856   1.1  dholland  * Generate accessors for the on-disk superblock fields with cpp.
    857   1.1  dholland  */
    858   1.1  dholland 
    859   1.3  dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
    860   1.1  dholland 	static __unused inline type				\
    861   1.1  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
    862   1.1  dholland 	{							\
    863   1.7  dholland 		if (fs->lfs_is64) {				\
    864   1.7  dholland 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
    865   1.7  dholland 		} else {					\
    866   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
    867   1.7  dholland 		}						\
    868   1.1  dholland 	}							\
    869   1.1  dholland 	static __unused inline void				\
    870   1.1  dholland 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
    871   1.1  dholland 	{							\
    872   1.7  dholland 		if (fs->lfs_is64) {				\
    873   1.7  dholland 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
    874   1.7  dholland 		} else {					\
    875   1.7  dholland 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
    876   1.7  dholland 		}						\
    877   1.1  dholland 	}							\
    878   1.1  dholland 	static __unused inline void				\
    879   1.1  dholland 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
    880   1.1  dholland 	{							\
    881   1.7  dholland 		if (fs->lfs_is64) {				\
    882   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
    883   1.7  dholland 			*p64 += val;				\
    884   1.7  dholland 		} else {					\
    885   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
    886   1.7  dholland 			*p32 += val;				\
    887   1.7  dholland 		}						\
    888   1.1  dholland 	}							\
    889   1.1  dholland 	static __unused inline void				\
    890   1.1  dholland 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
    891   1.1  dholland 	{							\
    892   1.7  dholland 		if (fs->lfs_is64) {				\
    893   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
    894   1.7  dholland 			*p64 -= val;				\
    895   1.7  dholland 		} else {					\
    896   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
    897   1.7  dholland 			*p32 -= val;				\
    898   1.7  dholland 		}						\
    899   1.1  dholland 	}
    900   1.1  dholland 
    901   1.3  dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
    902   1.3  dholland 
    903   1.7  dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
    904   1.7  dholland 	static __unused inline type				\
    905   1.7  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
    906   1.7  dholland 	{							\
    907   1.7  dholland 		if (fs->lfs_is64) {				\
    908   1.7  dholland 			return val64;				\
    909   1.7  dholland 		} else {					\
    910   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
    911   1.7  dholland 		}						\
    912   1.7  dholland 	}
    913   1.7  dholland 
    914   1.1  dholland #define lfs_magic lfs_dlfs.dlfs_magic
    915   1.6  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
    916   1.3  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
    917   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
    918   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
    919   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
    920   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
    921   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
    922  1.18  dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
    923   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
    924  1.18  dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
    925   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
    926   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
    927   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
    928   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
    929   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
    930   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
    931   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
    932   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
    933   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
    934   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
    935   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
    936   1.1  dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
    937   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
    938   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
    939   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
    940   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
    941   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
    942   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
    943   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
    944   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
    945   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
    946   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
    947   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
    948   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
    949   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
    950   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
    951   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
    952   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
    953   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
    954   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
    955   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
    956   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
    957   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
    958   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
    959   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
    960   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
    961   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
    962   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
    963   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
    964   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
    965   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
    966   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
    967   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
    968   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
    969   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
    970   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
    971   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
    972   1.1  dholland 
    973   1.1  dholland /* special-case accessors */
    974   1.1  dholland 
    975   1.1  dholland /*
    976   1.1  dholland  * the v1 otstamp field lives in what's now dlfs_inopf
    977   1.1  dholland  */
    978   1.1  dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
    979   1.1  dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
    980   1.1  dholland 
    981   1.1  dholland /*
    982   1.1  dholland  * lfs_sboffs is an array
    983   1.1  dholland  */
    984   1.1  dholland static __unused inline int32_t
    985   1.2  dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
    986   1.1  dholland {
    987   1.1  dholland #ifdef KASSERT /* ugh */
    988   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
    989   1.1  dholland #endif
    990   1.7  dholland 	if (fs->lfs_is64) {
    991   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
    992   1.7  dholland 	} else {
    993   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
    994   1.7  dholland 	}
    995   1.1  dholland }
    996   1.1  dholland static __unused inline void
    997   1.2  dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
    998   1.1  dholland {
    999   1.1  dholland #ifdef KASSERT /* ugh */
   1000   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
   1001   1.1  dholland #endif
   1002   1.7  dholland 	if (fs->lfs_is64) {
   1003   1.7  dholland 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1004   1.7  dholland 	} else {
   1005   1.7  dholland 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1006   1.7  dholland 	}
   1007   1.1  dholland }
   1008   1.1  dholland 
   1009   1.1  dholland /*
   1010   1.1  dholland  * lfs_fsmnt is a string
   1011   1.1  dholland  */
   1012   1.1  dholland static __unused inline const char *
   1013   1.2  dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1014   1.1  dholland {
   1015   1.7  dholland 	if (fs->lfs_is64) {
   1016   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1017   1.7  dholland 	} else {
   1018   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1019   1.7  dholland 	}
   1020   1.7  dholland }
   1021   1.7  dholland 
   1022   1.7  dholland static __unused inline void
   1023   1.7  dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1024   1.7  dholland {
   1025   1.7  dholland 	if (fs->lfs_is64) {
   1026   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1027   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1028   1.7  dholland 	} else {
   1029   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1030   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1031   1.7  dholland 	}
   1032   1.1  dholland }
   1033   1.1  dholland 
   1034   1.8  dholland /* Highest addressable fsb */
   1035   1.8  dholland #define LFS_MAX_DADDR(fs) \
   1036   1.8  dholland 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1037   1.8  dholland 
   1038   1.1  dholland /* LFS_NINDIR is the number of indirects in a file system block. */
   1039   1.1  dholland #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1040   1.1  dholland 
   1041   1.1  dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1042   1.1  dholland #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1043   1.1  dholland /* LFS_INOPF is the number of inodes in a fragment. */
   1044   1.1  dholland #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1045   1.1  dholland 
   1046   1.1  dholland #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1047   1.1  dholland #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1048   1.1  dholland     ((int)((loc) & lfs_sb_getffmask(fs)))
   1049   1.1  dholland 
   1050   1.4  dholland /* XXX: lowercase these as they're no longer macros */
   1051   1.4  dholland /* Frags to diskblocks */
   1052   1.4  dholland static __unused inline uint64_t
   1053   1.4  dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1054   1.4  dholland {
   1055   1.1  dholland #if defined(_KERNEL)
   1056   1.4  dholland 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1057   1.1  dholland #else
   1058   1.4  dholland 	return b << lfs_sb_getfsbtodb(fs);
   1059   1.1  dholland #endif
   1060   1.4  dholland }
   1061   1.4  dholland /* Diskblocks to frags */
   1062   1.4  dholland static __unused inline uint64_t
   1063   1.4  dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1064   1.4  dholland {
   1065   1.4  dholland #if defined(_KERNEL)
   1066   1.4  dholland 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1067   1.4  dholland #else
   1068   1.4  dholland 	return b >> lfs_sb_getfsbtodb(fs);
   1069   1.4  dholland #endif
   1070   1.4  dholland }
   1071   1.1  dholland 
   1072   1.1  dholland #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1073   1.1  dholland #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1074   1.1  dholland 
   1075   1.4  dholland /* Frags to bytes */
   1076   1.4  dholland static __unused inline uint64_t
   1077   1.4  dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1078   1.4  dholland {
   1079   1.4  dholland 	return b << lfs_sb_getffshift(fs);
   1080   1.4  dholland }
   1081   1.4  dholland /* Bytes to frags */
   1082   1.4  dholland static __unused inline uint64_t
   1083   1.4  dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1084   1.4  dholland {
   1085   1.4  dholland 	return b >> lfs_sb_getffshift(fs);
   1086   1.4  dholland }
   1087   1.1  dholland 
   1088   1.1  dholland #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1089   1.1  dholland 	((loc) >> lfs_sb_getffshift(fs))
   1090   1.1  dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1091   1.1  dholland 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1092   1.1  dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1093   1.1  dholland 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1094   1.1  dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1095   1.1  dholland 	((frags) >> lfs_sb_getfbshift(fs))
   1096   1.1  dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1097   1.1  dholland 	((blks) << lfs_sb_getfbshift(fs))
   1098   1.1  dholland #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1099   1.1  dholland 	((fsb) & ((fs)->lfs_frag - 1))
   1100   1.1  dholland #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1101   1.1  dholland 	((fsb) &~ ((fs)->lfs_frag - 1))
   1102   1.1  dholland #define lfs_dblksize(fs, dp, lbn) \
   1103  1.13  dholland 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1104   1.1  dholland 	    ? lfs_sb_getbsize(fs) \
   1105  1.13  dholland 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1106   1.1  dholland 
   1107   1.6  dholland #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1108   1.1  dholland 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1109   1.1  dholland 			   lfs_sb_getssize(fs))
   1110   1.4  dholland /* XXX segtod produces a result in frags despite the 'd' */
   1111   1.4  dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1112   1.1  dholland #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1113   1.1  dholland 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1114   1.1  dholland #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1115   1.1  dholland 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1116   1.1  dholland 
   1117   1.4  dholland /* XXX, blah. make this appear only if struct inode is defined */
   1118   1.4  dholland #ifdef _UFS_LFS_LFS_INODE_H_
   1119   1.4  dholland static __unused inline uint32_t
   1120   1.4  dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1121   1.4  dholland {
   1122  1.16  dholland 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1123   1.4  dholland 		return lfs_sb_getbsize(fs);
   1124   1.4  dholland 	} else {
   1125  1.16  dholland 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1126   1.4  dholland 	}
   1127   1.4  dholland }
   1128   1.4  dholland #endif
   1129   1.4  dholland 
   1130  1.12  dholland /*
   1131  1.12  dholland  * union lfs_blocks
   1132  1.12  dholland  */
   1133  1.12  dholland 
   1134  1.12  dholland static __unused inline void
   1135  1.12  dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1136  1.12  dholland {
   1137  1.12  dholland 	if (fs->lfs_is64) {
   1138  1.12  dholland 		bp->b64 = p;
   1139  1.12  dholland 	} else {
   1140  1.12  dholland 		bp->b32 = p;
   1141  1.12  dholland 	}
   1142  1.12  dholland }
   1143  1.12  dholland 
   1144  1.12  dholland static __unused inline void
   1145  1.12  dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1146  1.12  dholland {
   1147  1.12  dholland 	void *firstblock;
   1148  1.12  dholland 
   1149  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
   1150  1.12  dholland 	if (fs->lfs_is64) {
   1151  1.12  dholland 		bp->b64 = (int64_t *)firstblock;
   1152  1.12  dholland 	}  else {
   1153  1.12  dholland 		bp->b32 = (int32_t *)firstblock;
   1154  1.12  dholland 	}
   1155  1.12  dholland }
   1156  1.12  dholland 
   1157  1.12  dholland static __unused inline daddr_t
   1158  1.12  dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
   1159  1.12  dholland {
   1160  1.12  dholland 	if (fs->lfs_is64) {
   1161  1.12  dholland 		return bp->b64[index];
   1162  1.12  dholland 	} else {
   1163  1.12  dholland 		return bp->b32[index];
   1164  1.12  dholland 	}
   1165  1.12  dholland }
   1166  1.12  dholland 
   1167  1.12  dholland static __unused inline void
   1168  1.12  dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
   1169  1.12  dholland {
   1170  1.12  dholland 	if (fs->lfs_is64) {
   1171  1.12  dholland 		bp->b64[index] = val;
   1172  1.12  dholland 	} else {
   1173  1.12  dholland 		bp->b32[index] = val;
   1174  1.12  dholland 	}
   1175  1.12  dholland }
   1176  1.12  dholland 
   1177  1.12  dholland static __unused inline void
   1178  1.12  dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1179  1.12  dholland {
   1180  1.12  dholland 	if (fs->lfs_is64) {
   1181  1.12  dholland 		bp->b64++;
   1182  1.12  dholland 	} else {
   1183  1.12  dholland 		bp->b32++;
   1184  1.12  dholland 	}
   1185  1.12  dholland }
   1186  1.12  dholland 
   1187  1.12  dholland static __unused inline int
   1188  1.12  dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1189  1.12  dholland {
   1190  1.12  dholland 	if (fs->lfs_is64) {
   1191  1.12  dholland 		return bp1->b64 == bp2->b64;
   1192  1.12  dholland 	} else {
   1193  1.12  dholland 		return bp1->b32 == bp2->b32;
   1194  1.12  dholland 	}
   1195  1.12  dholland }
   1196  1.12  dholland 
   1197  1.12  dholland static __unused inline int
   1198  1.12  dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1199  1.12  dholland {
   1200  1.12  dholland 	/* (remember that the pointers are typed) */
   1201  1.12  dholland 	if (fs->lfs_is64) {
   1202  1.12  dholland 		return bp1->b64 - bp2->b64;
   1203  1.12  dholland 	} else {
   1204  1.12  dholland 		return bp1->b32 - bp2->b32;
   1205  1.12  dholland 	}
   1206  1.12  dholland }
   1207  1.12  dholland 
   1208  1.12  dholland /*
   1209  1.12  dholland  * struct segment
   1210  1.12  dholland  */
   1211  1.12  dholland 
   1212   1.4  dholland 
   1213   1.1  dholland /*
   1214   1.1  dholland  * Macros for determining free space on the disk, with the variable metadata
   1215   1.1  dholland  * of segment summaries and inode blocks taken into account.
   1216   1.1  dholland  */
   1217   1.1  dholland /*
   1218   1.1  dholland  * Estimate number of clean blocks not available for writing because
   1219   1.1  dholland  * they will contain metadata or overhead.  This is calculated as
   1220   1.1  dholland  *
   1221   1.1  dholland  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1222   1.1  dholland  * or more simply
   1223   1.1  dholland  *		E = (C * M) / T
   1224   1.1  dholland  *
   1225   1.1  dholland  * where
   1226   1.1  dholland  * C is the clean space,
   1227   1.1  dholland  * D is the dirty space,
   1228   1.1  dholland  * M is the dirty metadata, and
   1229   1.1  dholland  * T = C + D is the total space on disk.
   1230   1.1  dholland  *
   1231   1.1  dholland  * This approximates the old formula of E = C * M / D when D is close to T,
   1232   1.1  dholland  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1233   1.1  dholland  */
   1234   1.1  dholland #define LFS_EST_CMETA(F) (int32_t)((					\
   1235   1.1  dholland 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1236   1.1  dholland 	(lfs_sb_getnseg(F))))
   1237   1.1  dholland 
   1238   1.1  dholland /* Estimate total size of the disk not including metadata */
   1239   1.1  dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1240   1.1  dholland 
   1241   1.1  dholland /* Estimate number of blocks actually available for writing */
   1242   1.1  dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1243   1.1  dholland 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1244   1.1  dholland 
   1245   1.1  dholland /* Amount of non-meta space not available to mortal man */
   1246   1.1  dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) *			     \
   1247   1.1  dholland 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1248   1.1  dholland 				  100)
   1249   1.1  dholland 
   1250   1.4  dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1251   1.1  dholland #define ISSPACE(F, BB, C)						\
   1252   1.1  dholland 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1253   1.1  dholland 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1254   1.1  dholland 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1255   1.1  dholland 
   1256   1.1  dholland /* Can an ordinary user write BB blocks */
   1257   1.1  dholland #define IS_FREESPACE(F, BB)						\
   1258   1.1  dholland 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1259   1.1  dholland 
   1260   1.1  dholland /*
   1261   1.1  dholland  * The minimum number of blocks to create a new inode.  This is:
   1262   1.1  dholland  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1263   1.1  dholland  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1264   1.1  dholland  */
   1265   1.1  dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1266   1.1  dholland 
   1267   1.1  dholland 
   1268   1.1  dholland 
   1269   1.1  dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1270