Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.22
      1  1.22  dholland /*	$NetBSD: lfs_accessors.h,v 1.22 2015/09/01 06:16:59 dholland Exp $	*/
      2   1.1  dholland 
      3   1.1  dholland /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4   1.1  dholland /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5   1.1  dholland /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6   1.1  dholland 
      7   1.1  dholland /*-
      8   1.1  dholland  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9   1.1  dholland  * All rights reserved.
     10   1.1  dholland  *
     11   1.1  dholland  * This code is derived from software contributed to The NetBSD Foundation
     12   1.1  dholland  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13   1.1  dholland  *
     14   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     15   1.1  dholland  * modification, are permitted provided that the following conditions
     16   1.1  dholland  * are met:
     17   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     18   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     19   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     20   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     21   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     22   1.1  dholland  *
     23   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24   1.1  dholland  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  dholland  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  dholland  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27   1.1  dholland  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1  dholland  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  dholland  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  dholland  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  dholland  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  dholland  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  dholland  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  dholland  */
     35   1.1  dholland /*-
     36   1.1  dholland  * Copyright (c) 1991, 1993
     37   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     38   1.1  dholland  *
     39   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     40   1.1  dholland  * modification, are permitted provided that the following conditions
     41   1.1  dholland  * are met:
     42   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     43   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     44   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     45   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     46   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     47   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     48   1.1  dholland  *    may be used to endorse or promote products derived from this software
     49   1.1  dholland  *    without specific prior written permission.
     50   1.1  dholland  *
     51   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.1  dholland  * SUCH DAMAGE.
     62   1.1  dholland  *
     63   1.1  dholland  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64   1.1  dholland  */
     65   1.1  dholland /*
     66   1.1  dholland  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67   1.1  dholland  * All rights reserved.
     68   1.1  dholland  *
     69   1.1  dholland  * This software was developed for the FreeBSD Project by Marshall
     70   1.1  dholland  * Kirk McKusick and Network Associates Laboratories, the Security
     71   1.1  dholland  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72   1.1  dholland  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73   1.1  dholland  * research program
     74   1.1  dholland  *
     75   1.1  dholland  * Copyright (c) 1982, 1989, 1993
     76   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
     77   1.1  dholland  * (c) UNIX System Laboratories, Inc.
     78   1.1  dholland  * All or some portions of this file are derived from material licensed
     79   1.1  dholland  * to the University of California by American Telephone and Telegraph
     80   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
     82   1.1  dholland  *
     83   1.1  dholland  * Redistribution and use in source and binary forms, with or without
     84   1.1  dholland  * modification, are permitted provided that the following conditions
     85   1.1  dholland  * are met:
     86   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     87   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     88   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     89   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     90   1.1  dholland  *    documentation and/or other materials provided with the distribution.
     91   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
     92   1.1  dholland  *    may be used to endorse or promote products derived from this software
     93   1.1  dholland  *    without specific prior written permission.
     94   1.1  dholland  *
     95   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105   1.1  dholland  * SUCH DAMAGE.
    106   1.1  dholland  *
    107   1.1  dholland  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108   1.1  dholland  */
    109   1.1  dholland /*
    110   1.1  dholland  * Copyright (c) 1982, 1986, 1989, 1993
    111   1.1  dholland  *	The Regents of the University of California.  All rights reserved.
    112   1.1  dholland  * (c) UNIX System Laboratories, Inc.
    113   1.1  dholland  * All or some portions of this file are derived from material licensed
    114   1.1  dholland  * to the University of California by American Telephone and Telegraph
    115   1.1  dholland  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116   1.1  dholland  * the permission of UNIX System Laboratories, Inc.
    117   1.1  dholland  *
    118   1.1  dholland  * Redistribution and use in source and binary forms, with or without
    119   1.1  dholland  * modification, are permitted provided that the following conditions
    120   1.1  dholland  * are met:
    121   1.1  dholland  * 1. Redistributions of source code must retain the above copyright
    122   1.1  dholland  *    notice, this list of conditions and the following disclaimer.
    123   1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
    124   1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
    125   1.1  dholland  *    documentation and/or other materials provided with the distribution.
    126   1.1  dholland  * 3. Neither the name of the University nor the names of its contributors
    127   1.1  dholland  *    may be used to endorse or promote products derived from this software
    128   1.1  dholland  *    without specific prior written permission.
    129   1.1  dholland  *
    130   1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131   1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132   1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133   1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134   1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135   1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136   1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137   1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138   1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139   1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140   1.1  dholland  * SUCH DAMAGE.
    141   1.1  dholland  *
    142   1.1  dholland  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143   1.1  dholland  */
    144   1.1  dholland 
    145   1.1  dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146   1.1  dholland #define _UFS_LFS_LFS_ACCESSORS_H_
    147   1.1  dholland 
    148  1.17  dholland #if defined(_KERNEL_OPT)
    149  1.17  dholland #include "opt_lfs.h"
    150  1.17  dholland #endif
    151  1.17  dholland 
    152  1.17  dholland #include <sys/bswap.h>
    153  1.17  dholland 
    154  1.11  dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
    155  1.11  dholland #include <assert.h>
    156  1.11  dholland #define KASSERT assert
    157  1.11  dholland #endif
    158  1.11  dholland 
    159   1.1  dholland /*
    160   1.9  dholland  * STRUCT_LFS is used by the libsa code to get accessors that work
    161   1.9  dholland  * with struct salfs instead of struct lfs, and by the cleaner to
    162   1.9  dholland  * get accessors that work with struct clfs.
    163   1.9  dholland  */
    164   1.9  dholland 
    165   1.9  dholland #ifndef STRUCT_LFS
    166   1.9  dholland #define STRUCT_LFS struct lfs
    167   1.9  dholland #endif
    168   1.9  dholland 
    169  1.13  dholland /*
    170  1.17  dholland  * byte order
    171  1.17  dholland  */
    172  1.17  dholland 
    173  1.17  dholland /*
    174  1.17  dholland  * For now at least, the bootblocks shall not be endian-independent.
    175  1.17  dholland  * We can see later if it fits in the size budget. Also disable the
    176  1.17  dholland  * byteswapping if LFS_EI is off.
    177  1.17  dholland  *
    178  1.17  dholland  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    179  1.17  dholland  * and if that changes will likely break silently.
    180  1.17  dholland  */
    181  1.17  dholland 
    182  1.17  dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    183  1.17  dholland #define LFS_SWAP_int16_t(fs, val) (val)
    184  1.17  dholland #define LFS_SWAP_int32_t(fs, val) (val)
    185  1.17  dholland #define LFS_SWAP_int64_t(fs, val) (val)
    186  1.17  dholland #define LFS_SWAP_uint16_t(fs, val) (val)
    187  1.17  dholland #define LFS_SWAP_uint32_t(fs, val) (val)
    188  1.17  dholland #define LFS_SWAP_uint64_t(fs, val) (val)
    189  1.17  dholland #else
    190  1.17  dholland #define LFS_SWAP_int16_t(fs, val) \
    191  1.17  dholland 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    192  1.17  dholland #define LFS_SWAP_int32_t(fs, val) \
    193  1.17  dholland 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    194  1.17  dholland #define LFS_SWAP_int64_t(fs, val) \
    195  1.17  dholland 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    196  1.17  dholland #define LFS_SWAP_uint16_t(fs, val) \
    197  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    198  1.17  dholland #define LFS_SWAP_uint32_t(fs, val) \
    199  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    200  1.17  dholland #define LFS_SWAP_uint64_t(fs, val) \
    201  1.17  dholland 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    202  1.17  dholland #endif
    203  1.17  dholland 
    204  1.17  dholland /*
    205  1.22  dholland  * For handling directories we will need to know if the volume is
    206  1.22  dholland  * little-endian.
    207  1.22  dholland  */
    208  1.22  dholland #if BYTE_ORDER == LITTLE_ENDIAN
    209  1.22  dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    210  1.22  dholland #else
    211  1.22  dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    212  1.22  dholland #endif
    213  1.22  dholland 
    214  1.22  dholland 
    215  1.22  dholland /*
    216  1.22  dholland  * directories
    217  1.22  dholland  */
    218  1.22  dholland 
    219  1.22  dholland /*
    220  1.22  dholland  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    221  1.22  dholland  * the directory entry.  This requires the amount of space in struct lfs_direct
    222  1.22  dholland  * without the d_name field, plus enough space for the name with a terminating
    223  1.22  dholland  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    224  1.22  dholland  */
    225  1.22  dholland #define	LFS_DIRECTSIZ(namlen) \
    226  1.22  dholland 	((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
    227  1.22  dholland 
    228  1.22  dholland #if (BYTE_ORDER == LITTLE_ENDIAN)
    229  1.22  dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    230  1.22  dholland     (((oldfmt) && !(needswap)) ?		\
    231  1.22  dholland     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    232  1.22  dholland #else
    233  1.22  dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    234  1.22  dholland     (((oldfmt) && (needswap)) ?			\
    235  1.22  dholland     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    236  1.22  dholland #endif
    237  1.22  dholland 
    238  1.22  dholland #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
    239  1.22  dholland 
    240  1.22  dholland /* Constants for the first argument of LFS_OLDDIRSIZ */
    241  1.22  dholland #define LFS_OLDDIRFMT	1
    242  1.22  dholland #define LFS_NEWDIRFMT	0
    243  1.22  dholland 
    244  1.22  dholland static __unused inline uint8_t
    245  1.22  dholland lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
    246  1.22  dholland {
    247  1.22  dholland 	if (fs->lfs_hasolddirfmt) {
    248  1.22  dholland 		return LFS_DT_UNKNOWN;
    249  1.22  dholland 	}
    250  1.22  dholland 	return dp->d_type;
    251  1.22  dholland }
    252  1.22  dholland 
    253  1.22  dholland static __unused inline uint8_t
    254  1.22  dholland lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
    255  1.22  dholland {
    256  1.22  dholland 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    257  1.22  dholland 		/* low-order byte of old 16-bit namlen field */
    258  1.22  dholland 		return dp->d_type;
    259  1.22  dholland 	}
    260  1.22  dholland 	return dp->d_namlen;
    261  1.22  dholland }
    262  1.22  dholland 
    263  1.22  dholland static __unused inline void
    264  1.22  dholland lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
    265  1.22  dholland {
    266  1.22  dholland 	if (fs->lfs_hasolddirfmt) {
    267  1.22  dholland 		/* do nothing */
    268  1.22  dholland 		return;
    269  1.22  dholland 	}
    270  1.22  dholland 	dp->d_type = type;
    271  1.22  dholland }
    272  1.22  dholland 
    273  1.22  dholland static __unused inline void
    274  1.22  dholland lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
    275  1.22  dholland {
    276  1.22  dholland 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    277  1.22  dholland 		/* low-order byte of old 16-bit namlen field */
    278  1.22  dholland 		dp->d_type = namlen;
    279  1.22  dholland 	}
    280  1.22  dholland 	dp->d_namlen = namlen;
    281  1.22  dholland }
    282  1.22  dholland 
    283  1.22  dholland /*
    284  1.22  dholland  * These are called "dirt" because they ought to be cleaned up.
    285  1.22  dholland  */
    286  1.22  dholland 
    287  1.22  dholland static __unused inline uint8_t
    288  1.22  dholland lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    289  1.22  dholland {
    290  1.22  dholland 	if (fs->lfs_hasolddirfmt) {
    291  1.22  dholland 		return LFS_DT_UNKNOWN;
    292  1.22  dholland 	}
    293  1.22  dholland 	return dp->dot_type;
    294  1.22  dholland }
    295  1.22  dholland 
    296  1.22  dholland static __unused inline uint8_t
    297  1.22  dholland lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    298  1.22  dholland {
    299  1.22  dholland 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    300  1.22  dholland 		/* low-order byte of old 16-bit namlen field */
    301  1.22  dholland 		return dp->dot_type;
    302  1.22  dholland 	}
    303  1.22  dholland 	return dp->dot_namlen;
    304  1.22  dholland }
    305  1.22  dholland 
    306  1.22  dholland static __unused inline uint8_t
    307  1.22  dholland lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    308  1.22  dholland {
    309  1.22  dholland 	if (fs->lfs_hasolddirfmt) {
    310  1.22  dholland 		return LFS_DT_UNKNOWN;
    311  1.22  dholland 	}
    312  1.22  dholland 	return dp->dotdot_type;
    313  1.22  dholland }
    314  1.22  dholland 
    315  1.22  dholland static __unused inline uint8_t
    316  1.22  dholland lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    317  1.22  dholland {
    318  1.22  dholland 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    319  1.22  dholland 		/* low-order byte of old 16-bit namlen field */
    320  1.22  dholland 		return dp->dotdot_type;
    321  1.22  dholland 	}
    322  1.22  dholland 	return dp->dotdot_namlen;
    323  1.22  dholland }
    324  1.22  dholland 
    325  1.22  dholland static __unused inline void
    326  1.22  dholland lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
    327  1.22  dholland     unsigned dt1, unsigned dt2)
    328  1.22  dholland {
    329  1.22  dholland 	if (fs->lfs_hasolddirfmt) {
    330  1.22  dholland 		/* do nothing */
    331  1.22  dholland 		return;
    332  1.22  dholland 	}
    333  1.22  dholland 	dtp->dot_type = dt1;
    334  1.22  dholland 	dtp->dotdot_type = dt2;
    335  1.22  dholland }
    336  1.22  dholland 
    337  1.22  dholland static __unused inline void
    338  1.22  dholland lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
    339  1.22  dholland     unsigned len1, unsigned len2)
    340  1.22  dholland {
    341  1.22  dholland 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    342  1.22  dholland 		/* low-order bytes of old 16-bit namlen field */
    343  1.22  dholland 		dtp->dot_type = len1;
    344  1.22  dholland 		dtp->dotdot_type = len2;
    345  1.22  dholland 		/* clear the high-order bytes */
    346  1.22  dholland 		dtp->dot_namlen = 0;
    347  1.22  dholland 		dtp->dotdot_namlen = 0;
    348  1.22  dholland 		return;
    349  1.22  dholland 	}
    350  1.22  dholland 	dtp->dot_namlen = len1;
    351  1.22  dholland 	dtp->dotdot_namlen = len2;
    352  1.22  dholland }
    353  1.22  dholland 
    354  1.22  dholland 
    355  1.22  dholland /*
    356  1.13  dholland  * dinodes
    357  1.13  dholland  */
    358   1.9  dholland 
    359   1.9  dholland /*
    360   1.1  dholland  * Maximum length of a symlink that can be stored within the inode.
    361   1.1  dholland  */
    362  1.20  dholland #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    363  1.20  dholland #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    364   1.1  dholland 
    365  1.20  dholland #define LFS_MAXSYMLINKLEN(fs) \
    366  1.20  dholland 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    367  1.20  dholland 
    368  1.13  dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    369  1.13  dholland 
    370  1.13  dholland #define DINO_IN_BLOCK(fs, base, ix) \
    371  1.13  dholland 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    372  1.13  dholland 
    373  1.14  dholland static __unused inline void
    374  1.14  dholland lfs_copy_dinode(STRUCT_LFS *fs,
    375  1.14  dholland     union lfs_dinode *dst, const union lfs_dinode *src)
    376  1.14  dholland {
    377  1.14  dholland 	/*
    378  1.14  dholland 	 * We can do structure assignment of the structs, but not of
    379  1.14  dholland 	 * the whole union, as the union is the size of the (larger)
    380  1.14  dholland 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    381  1.14  dholland 	 * be off the end of a buffer or otherwise invalid.
    382  1.14  dholland 	 */
    383  1.14  dholland 	if (fs->lfs_is64) {
    384  1.14  dholland 		dst->u_64 = src->u_64;
    385  1.14  dholland 	} else {
    386  1.14  dholland 		dst->u_32 = src->u_32;
    387  1.14  dholland 	}
    388  1.14  dholland }
    389  1.14  dholland 
    390  1.13  dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    391  1.13  dholland 	static __unused inline type				\
    392  1.13  dholland 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    393  1.13  dholland 	{							\
    394  1.13  dholland 		if (fs->lfs_is64) {				\
    395  1.17  dholland 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    396  1.13  dholland 		} else {					\
    397  1.17  dholland 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    398  1.13  dholland 		}						\
    399  1.13  dholland 	}							\
    400  1.13  dholland 	static __unused inline void				\
    401  1.13  dholland 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    402  1.13  dholland 	{							\
    403  1.13  dholland 		if (fs->lfs_is64) {				\
    404  1.13  dholland 			type *p = &dip->u_64.di_##field;	\
    405  1.13  dholland 			(void)p;				\
    406  1.17  dholland 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    407  1.13  dholland 		} else {					\
    408  1.13  dholland 			type32 *p = &dip->u_32.di_##field;	\
    409  1.13  dholland 			(void)p;				\
    410  1.17  dholland 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    411  1.13  dholland 		}						\
    412  1.13  dholland 	}							\
    413  1.13  dholland 
    414  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    415  1.13  dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    416  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    417  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    418  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    419  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    420  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    421  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    422  1.13  dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    423  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    424  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    425  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    426  1.13  dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    427  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    428  1.13  dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    429  1.13  dholland 
    430  1.16  dholland /* XXX this should be done differently (it's a fake field) */
    431  1.16  dholland LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
    432  1.16  dholland 
    433  1.13  dholland static __unused inline daddr_t
    434  1.13  dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    435  1.13  dholland {
    436  1.13  dholland 	KASSERT(ix < ULFS_NDADDR);
    437  1.13  dholland 	if (fs->lfs_is64) {
    438  1.13  dholland 		return dip->u_64.di_db[ix];
    439  1.13  dholland 	} else {
    440  1.13  dholland 		return dip->u_32.di_db[ix];
    441  1.13  dholland 	}
    442  1.13  dholland }
    443  1.13  dholland 
    444  1.13  dholland static __unused inline daddr_t
    445  1.13  dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    446  1.13  dholland {
    447  1.13  dholland 	KASSERT(ix < ULFS_NIADDR);
    448  1.13  dholland 	if (fs->lfs_is64) {
    449  1.13  dholland 		return dip->u_64.di_ib[ix];
    450  1.13  dholland 	} else {
    451  1.13  dholland 		return dip->u_32.di_ib[ix];
    452  1.13  dholland 	}
    453  1.13  dholland }
    454  1.13  dholland 
    455  1.13  dholland static __unused inline void
    456  1.13  dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    457  1.13  dholland {
    458  1.13  dholland 	KASSERT(ix < ULFS_NDADDR);
    459  1.13  dholland 	if (fs->lfs_is64) {
    460  1.13  dholland 		dip->u_64.di_db[ix] = val;
    461  1.13  dholland 	} else {
    462  1.13  dholland 		dip->u_32.di_db[ix] = val;
    463  1.13  dholland 	}
    464  1.13  dholland }
    465  1.13  dholland 
    466  1.13  dholland static __unused inline void
    467  1.13  dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    468  1.13  dholland {
    469  1.13  dholland 	KASSERT(ix < ULFS_NIADDR);
    470  1.13  dholland 	if (fs->lfs_is64) {
    471  1.13  dholland 		dip->u_64.di_ib[ix] = val;
    472  1.13  dholland 	} else {
    473  1.13  dholland 		dip->u_32.di_ib[ix] = val;
    474  1.13  dholland 	}
    475  1.13  dholland }
    476  1.13  dholland 
    477  1.16  dholland /* birthtime is present only in the 64-bit inode */
    478  1.16  dholland static __unused inline void
    479  1.16  dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    480  1.16  dholland     const struct timespec *ts)
    481  1.16  dholland {
    482  1.16  dholland 	if (fs->lfs_is64) {
    483  1.16  dholland 		dip->u_64.di_birthtime = ts->tv_sec;
    484  1.16  dholland 		dip->u_64.di_birthnsec = ts->tv_nsec;
    485  1.16  dholland 	} else {
    486  1.16  dholland 		/* drop it on the floor */
    487  1.16  dholland 	}
    488  1.16  dholland }
    489  1.16  dholland 
    490  1.16  dholland /*
    491  1.16  dholland  * indirect blocks
    492  1.16  dholland  */
    493  1.16  dholland 
    494  1.16  dholland static __unused inline daddr_t
    495  1.16  dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    496  1.16  dholland {
    497  1.16  dholland 	if (fs->lfs_is64) {
    498  1.16  dholland 		// XXX re-enable these asserts after reorging this file
    499  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    500  1.16  dholland 		return (daddr_t)(((int64_t *)block)[ix]);
    501  1.16  dholland 	} else {
    502  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    503  1.16  dholland 		/* must sign-extend or UNWRITTEN gets trashed */
    504  1.16  dholland 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    505  1.16  dholland 	}
    506  1.16  dholland }
    507  1.16  dholland 
    508  1.16  dholland static __unused inline void
    509  1.16  dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    510  1.16  dholland {
    511  1.16  dholland 	if (fs->lfs_is64) {
    512  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    513  1.16  dholland 		((int64_t *)block)[ix] = val;
    514  1.16  dholland 	} else {
    515  1.16  dholland 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    516  1.16  dholland 		((int32_t *)block)[ix] = val;
    517  1.16  dholland 	}
    518  1.16  dholland }
    519  1.16  dholland 
    520   1.1  dholland /*
    521   1.1  dholland  * "struct buf" associated definitions
    522   1.1  dholland  */
    523   1.1  dholland 
    524   1.1  dholland # define LFS_LOCK_BUF(bp) do {						\
    525   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    526   1.1  dholland 		mutex_enter(&lfs_lock);					\
    527   1.1  dholland 		++locked_queue_count;					\
    528   1.1  dholland 		locked_queue_bytes += bp->b_bufsize;			\
    529   1.1  dholland 		mutex_exit(&lfs_lock);					\
    530   1.1  dholland 	}								\
    531   1.1  dholland 	(bp)->b_flags |= B_LOCKED;					\
    532   1.1  dholland } while (0)
    533   1.1  dholland 
    534   1.1  dholland # define LFS_UNLOCK_BUF(bp) do {					\
    535   1.1  dholland 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    536   1.1  dholland 		mutex_enter(&lfs_lock);					\
    537   1.1  dholland 		--locked_queue_count;					\
    538   1.1  dholland 		locked_queue_bytes -= bp->b_bufsize;			\
    539   1.1  dholland 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    540   1.1  dholland 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    541   1.1  dholland 			cv_broadcast(&locked_queue_cv);			\
    542   1.1  dholland 		mutex_exit(&lfs_lock);					\
    543   1.1  dholland 	}								\
    544   1.1  dholland 	(bp)->b_flags &= ~B_LOCKED;					\
    545   1.1  dholland } while (0)
    546   1.1  dholland 
    547   1.1  dholland /*
    548   1.1  dholland  * "struct inode" associated definitions
    549   1.1  dholland  */
    550   1.1  dholland 
    551   1.1  dholland #define LFS_SET_UINO(ip, flags) do {					\
    552   1.1  dholland 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    553   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    554   1.1  dholland 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    555   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    556   1.1  dholland 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    557   1.1  dholland 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    558   1.1  dholland 	(ip)->i_flag |= (flags);					\
    559   1.1  dholland } while (0)
    560   1.1  dholland 
    561   1.1  dholland #define LFS_CLR_UINO(ip, flags) do {					\
    562   1.1  dholland 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    563   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    564   1.1  dholland 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    565   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    566   1.1  dholland 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    567   1.1  dholland 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    568   1.1  dholland 	(ip)->i_flag &= ~(flags);					\
    569   1.1  dholland 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    570   1.1  dholland 		panic("lfs_uinodes < 0");				\
    571   1.1  dholland 	}								\
    572   1.1  dholland } while (0)
    573   1.1  dholland 
    574   1.1  dholland #define LFS_ITIMES(ip, acc, mod, cre) \
    575   1.1  dholland 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    576   1.1  dholland 		lfs_itimes(ip, acc, mod, cre)
    577   1.1  dholland 
    578   1.1  dholland /*
    579   1.1  dholland  * On-disk and in-memory checkpoint segment usage structure.
    580   1.1  dholland  */
    581   1.1  dholland 
    582   1.1  dholland #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    583   1.1  dholland #define	SEGTABSIZE_SU(fs)						\
    584   1.1  dholland 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    585   1.1  dholland 
    586   1.1  dholland #ifdef _KERNEL
    587   1.1  dholland # define SHARE_IFLOCK(F) 						\
    588   1.1  dholland   do {									\
    589   1.1  dholland 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    590   1.1  dholland   } while(0)
    591   1.1  dholland # define UNSHARE_IFLOCK(F)						\
    592   1.1  dholland   do {									\
    593   1.1  dholland 	rw_exit(&(F)->lfs_iflock);					\
    594   1.1  dholland   } while(0)
    595   1.1  dholland #else /* ! _KERNEL */
    596   1.1  dholland # define SHARE_IFLOCK(F)
    597   1.1  dholland # define UNSHARE_IFLOCK(F)
    598   1.1  dholland #endif /* ! _KERNEL */
    599   1.1  dholland 
    600   1.1  dholland /* Read in the block with a specific segment usage entry from the ifile. */
    601   1.1  dholland #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    602   1.1  dholland 	int _e;								\
    603   1.1  dholland 	SHARE_IFLOCK(F);						\
    604   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    605   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    606   1.1  dholland 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    607   1.1  dholland 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    608   1.1  dholland 		panic("lfs: ifile read: %d", _e);			\
    609   1.6  dholland 	if (lfs_sb_getversion(F) == 1)					\
    610   1.1  dholland 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    611   1.1  dholland 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    612   1.1  dholland 	else								\
    613   1.1  dholland 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    614   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    615   1.1  dholland } while (0)
    616   1.1  dholland 
    617   1.1  dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    618   1.1  dholland 	if ((SP)->su_nbytes == 0)					\
    619   1.1  dholland 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    620   1.1  dholland 	else								\
    621   1.1  dholland 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    622   1.1  dholland 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    623   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    624   1.1  dholland } while (0)
    625   1.1  dholland 
    626   1.1  dholland /*
    627  1.11  dholland  * FINFO (file info) entries.
    628  1.11  dholland  */
    629  1.11  dholland 
    630  1.11  dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
    631  1.11  dholland /* XXX: move to a more suitable location in this file */
    632  1.11  dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    633  1.11  dholland 
    634  1.12  dholland /* Size of an on-disk inode number. */
    635  1.12  dholland /* XXX: move to a more suitable location in this file */
    636  1.12  dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    637  1.12  dholland 
    638  1.12  dholland /* size of a FINFO, without the block pointers */
    639  1.12  dholland #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    640  1.12  dholland 
    641  1.11  dholland /* Full size of the provided FINFO record, including its block pointers. */
    642  1.11  dholland #define FINFO_FULLSIZE(fs, fip) \
    643  1.12  dholland 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    644  1.11  dholland 
    645  1.11  dholland #define NEXT_FINFO(fs, fip) \
    646  1.11  dholland 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    647  1.11  dholland 
    648  1.12  dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    649  1.12  dholland 	static __unused inline type				\
    650  1.12  dholland 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    651  1.12  dholland 	{							\
    652  1.12  dholland 		if (fs->lfs_is64) {				\
    653  1.12  dholland 			return fip->u_64.fi_##field; 		\
    654  1.12  dholland 		} else {					\
    655  1.12  dholland 			return fip->u_32.fi_##field; 		\
    656  1.12  dholland 		}						\
    657  1.12  dholland 	}							\
    658  1.12  dholland 	static __unused inline void				\
    659  1.12  dholland 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    660  1.12  dholland 	{							\
    661  1.12  dholland 		if (fs->lfs_is64) {				\
    662  1.12  dholland 			type *p = &fip->u_64.fi_##field;	\
    663  1.12  dholland 			(void)p;				\
    664  1.12  dholland 			fip->u_64.fi_##field = val;		\
    665  1.12  dholland 		} else {					\
    666  1.12  dholland 			type32 *p = &fip->u_32.fi_##field;	\
    667  1.12  dholland 			(void)p;				\
    668  1.12  dholland 			fip->u_32.fi_##field = val;		\
    669  1.12  dholland 		}						\
    670  1.12  dholland 	}							\
    671  1.12  dholland 
    672  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    673  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    674  1.12  dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    675  1.12  dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    676  1.12  dholland 
    677  1.12  dholland static __unused inline daddr_t
    678  1.12  dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    679  1.12  dholland {
    680  1.12  dholland 	void *firstblock;
    681  1.12  dholland 
    682  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    683  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    684  1.12  dholland 	if (fs->lfs_is64) {
    685  1.12  dholland 		return ((int64_t *)firstblock)[index];
    686  1.12  dholland 	} else {
    687  1.12  dholland 		return ((int32_t *)firstblock)[index];
    688  1.12  dholland 	}
    689  1.12  dholland }
    690  1.12  dholland 
    691  1.12  dholland static __unused inline void
    692  1.12  dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    693  1.12  dholland {
    694  1.12  dholland 	void *firstblock;
    695  1.12  dholland 
    696  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
    697  1.12  dholland 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    698  1.12  dholland 	if (fs->lfs_is64) {
    699  1.12  dholland 		((int64_t *)firstblock)[index] = blk;
    700  1.12  dholland 	} else {
    701  1.12  dholland 		((int32_t *)firstblock)[index] = blk;
    702  1.12  dholland 	}
    703  1.12  dholland }
    704  1.12  dholland 
    705  1.11  dholland /*
    706   1.1  dholland  * Index file inode entries.
    707   1.1  dholland  */
    708   1.1  dholland 
    709   1.1  dholland /*
    710   1.1  dholland  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    711   1.1  dholland  * may not be mapped!
    712   1.1  dholland  */
    713   1.1  dholland /* Read in the block with a specific inode from the ifile. */
    714   1.1  dholland #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    715   1.1  dholland 	int _e;								\
    716   1.1  dholland 	SHARE_IFLOCK(F);						\
    717   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    718   1.1  dholland 	if ((_e = bread((F)->lfs_ivnode,				\
    719   1.1  dholland 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    720   1.1  dholland 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    721   1.1  dholland 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    722  1.10  dholland 	if ((F)->lfs_is64) {						\
    723  1.10  dholland 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    724  1.10  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    725  1.10  dholland 	} else if (lfs_sb_getversion(F) > 1) {				\
    726  1.10  dholland 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    727  1.10  dholland 				(IN) % lfs_sb_getifpb(F)); 		\
    728  1.10  dholland 	} else {							\
    729   1.1  dholland 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    730   1.1  dholland 				 (IN) % lfs_sb_getifpb(F));		\
    731  1.10  dholland 	}								\
    732   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    733   1.1  dholland } while (0)
    734  1.15   mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
    735  1.15   mlelstv 	if ((F)->lfs_is64) {						\
    736  1.15   mlelstv 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    737  1.15   mlelstv 	} else if (lfs_sb_getversion(F) > 1) {				\
    738  1.15   mlelstv 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    739  1.15   mlelstv 	} else {							\
    740  1.15   mlelstv 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    741  1.15   mlelstv 	}								\
    742  1.15   mlelstv } while (0)
    743   1.1  dholland 
    744  1.10  dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    745  1.10  dholland 	static __unused inline type				\
    746  1.10  dholland 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    747  1.10  dholland 	{							\
    748  1.10  dholland 		if (fs->lfs_is64) {				\
    749  1.10  dholland 			return ifp->u_64.if_##field; 		\
    750  1.10  dholland 		} else {					\
    751  1.10  dholland 			return ifp->u_32.if_##field; 		\
    752  1.10  dholland 		}						\
    753  1.10  dholland 	}							\
    754  1.10  dholland 	static __unused inline void				\
    755  1.10  dholland 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    756  1.10  dholland 	{							\
    757  1.10  dholland 		if (fs->lfs_is64) {				\
    758  1.10  dholland 			type *p = &ifp->u_64.if_##field;	\
    759  1.10  dholland 			(void)p;				\
    760  1.10  dholland 			ifp->u_64.if_##field = val;		\
    761  1.10  dholland 		} else {					\
    762  1.10  dholland 			type32 *p = &ifp->u_32.if_##field;	\
    763  1.10  dholland 			(void)p;				\
    764  1.10  dholland 			ifp->u_32.if_##field = val;		\
    765  1.10  dholland 		}						\
    766  1.10  dholland 	}							\
    767  1.10  dholland 
    768  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    769  1.10  dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    770  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    771  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
    772  1.10  dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    773  1.10  dholland 
    774   1.1  dholland /*
    775   1.1  dholland  * Cleaner information structure.  This resides in the ifile and is used
    776   1.1  dholland  * to pass information from the kernel to the cleaner.
    777   1.1  dholland  */
    778   1.1  dholland 
    779   1.1  dholland #define	CLEANSIZE_SU(fs)						\
    780   1.9  dholland 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    781   1.9  dholland 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    782   1.9  dholland 
    783   1.9  dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    784   1.9  dholland 	static __unused inline type				\
    785   1.9  dholland 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    786   1.9  dholland 	{							\
    787   1.9  dholland 		if (fs->lfs_is64) {				\
    788   1.9  dholland 			return cip->u_64.field; 		\
    789   1.9  dholland 		} else {					\
    790   1.9  dholland 			return cip->u_32.field; 		\
    791   1.9  dholland 		}						\
    792   1.9  dholland 	}							\
    793   1.9  dholland 	static __unused inline void				\
    794   1.9  dholland 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    795   1.9  dholland 	{							\
    796   1.9  dholland 		if (fs->lfs_is64) {				\
    797   1.9  dholland 			type *p = &cip->u_64.field;		\
    798   1.9  dholland 			(void)p;				\
    799   1.9  dholland 			cip->u_64.field = val;			\
    800   1.9  dholland 		} else {					\
    801   1.9  dholland 			type32 *p = &cip->u_32.field;		\
    802   1.9  dholland 			(void)p;				\
    803   1.9  dholland 			cip->u_32.field = val;			\
    804   1.9  dholland 		}						\
    805   1.9  dholland 	}							\
    806   1.9  dholland 
    807   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    808   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    809   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    810   1.9  dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    811   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    812   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    813   1.9  dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    814   1.9  dholland 
    815   1.9  dholland static __unused inline void
    816   1.9  dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    817   1.9  dholland {
    818   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    819   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    820   1.9  dholland }
    821   1.9  dholland 
    822   1.9  dholland static __unused inline void
    823   1.9  dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    824   1.9  dholland {
    825   1.9  dholland 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    826   1.9  dholland 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    827   1.9  dholland }
    828   1.1  dholland 
    829   1.1  dholland /* Read in the block with the cleaner info from the ifile. */
    830   1.1  dholland #define LFS_CLEANERINFO(CP, F, BP) do {					\
    831   1.1  dholland 	SHARE_IFLOCK(F);						\
    832   1.1  dholland 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    833   1.1  dholland 	if (bread((F)->lfs_ivnode,					\
    834   1.1  dholland 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    835   1.1  dholland 		panic("lfs: ifile read");				\
    836   1.1  dholland 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    837   1.1  dholland 	UNSHARE_IFLOCK(F);						\
    838   1.1  dholland } while (0)
    839   1.1  dholland 
    840   1.1  dholland /*
    841   1.1  dholland  * Synchronize the Ifile cleaner info with current avail and bfree.
    842   1.1  dholland  */
    843   1.1  dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    844   1.1  dholland     mutex_enter(&lfs_lock);						\
    845   1.9  dholland     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    846   1.9  dholland 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    847   1.1  dholland 	fs->lfs_favail) {	 					\
    848   1.9  dholland 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    849   1.9  dholland 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    850   1.9  dholland 		fs->lfs_favail);				 	\
    851   1.1  dholland 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    852   1.1  dholland 		fs->lfs_flags |= LFS_IFDIRTY;				\
    853   1.1  dholland 	}								\
    854   1.1  dholland 	mutex_exit(&lfs_lock);						\
    855   1.1  dholland 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    856   1.1  dholland     } else {							 	\
    857   1.1  dholland 	mutex_exit(&lfs_lock);						\
    858   1.1  dholland 	brelse(bp, 0);						 	\
    859   1.1  dholland     }									\
    860   1.1  dholland } while (0)
    861   1.1  dholland 
    862   1.1  dholland /*
    863   1.1  dholland  * Get the head of the inode free list.
    864   1.1  dholland  * Always called with the segment lock held.
    865   1.1  dholland  */
    866   1.1  dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    867   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    868   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    869   1.9  dholland 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    870   1.1  dholland 		brelse(BP, 0);						\
    871   1.1  dholland 	}								\
    872   1.1  dholland 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    873   1.1  dholland } while (0)
    874   1.1  dholland 
    875   1.1  dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    876   1.1  dholland 	lfs_sb_setfreehd(FS, VAL);					\
    877   1.6  dholland 	if (lfs_sb_getversion(FS) > 1) {				\
    878   1.1  dholland 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    879   1.9  dholland 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    880   1.1  dholland 		LFS_BWRITE_LOG(BP);					\
    881   1.1  dholland 		mutex_enter(&lfs_lock);					\
    882   1.1  dholland 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    883   1.1  dholland 		mutex_exit(&lfs_lock);					\
    884   1.1  dholland 	}								\
    885   1.1  dholland } while (0)
    886   1.1  dholland 
    887   1.1  dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    888   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    889   1.9  dholland 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    890   1.1  dholland 	brelse(BP, 0);							\
    891   1.1  dholland } while (0)
    892   1.1  dholland 
    893   1.1  dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    894   1.1  dholland 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    895   1.9  dholland 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
    896   1.1  dholland 	LFS_BWRITE_LOG(BP);						\
    897   1.1  dholland 	mutex_enter(&lfs_lock);						\
    898   1.1  dholland 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
    899   1.1  dholland 	mutex_exit(&lfs_lock);						\
    900   1.1  dholland } while (0)
    901   1.1  dholland 
    902   1.1  dholland /*
    903   1.1  dholland  * On-disk segment summary information
    904   1.1  dholland  */
    905   1.1  dholland 
    906  1.11  dholland #define SEGSUM_SIZE(fs) \
    907  1.11  dholland 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
    908  1.11  dholland 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
    909  1.11  dholland 
    910  1.11  dholland /*
    911  1.11  dholland  * The SEGSUM structure is followed by FINFO structures. Get the pointer
    912  1.11  dholland  * to the first FINFO.
    913  1.11  dholland  *
    914  1.11  dholland  * XXX this can't be a macro yet; this file needs to be resorted.
    915  1.11  dholland  */
    916  1.11  dholland #if 0
    917  1.11  dholland static __unused inline FINFO *
    918  1.11  dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
    919  1.11  dholland {
    920  1.12  dholland 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
    921  1.11  dholland }
    922  1.11  dholland #else
    923  1.11  dholland #define SEGSUM_FINFOBASE(fs, ssp) \
    924  1.12  dholland 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
    925  1.11  dholland #endif
    926  1.11  dholland 
    927  1.11  dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
    928  1.11  dholland 	static __unused inline type				\
    929  1.11  dholland 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
    930  1.11  dholland 	{							\
    931  1.11  dholland 		if (fs->lfs_is64) {				\
    932  1.11  dholland 			return ssp->u_64.ss_##field; 		\
    933  1.11  dholland 		} else {					\
    934  1.11  dholland 			return ssp->u_32.ss_##field; 		\
    935  1.11  dholland 		}						\
    936  1.11  dholland 	}							\
    937  1.11  dholland 	static __unused inline void				\
    938  1.11  dholland 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
    939  1.11  dholland 	{							\
    940  1.11  dholland 		if (fs->lfs_is64) {				\
    941  1.11  dholland 			type *p = &ssp->u_64.ss_##field;	\
    942  1.11  dholland 			(void)p;				\
    943  1.11  dholland 			ssp->u_64.ss_##field = val;		\
    944  1.11  dholland 		} else {					\
    945  1.11  dholland 			type32 *p = &ssp->u_32.ss_##field;	\
    946  1.11  dholland 			(void)p;				\
    947  1.11  dholland 			ssp->u_32.ss_##field = val;		\
    948  1.11  dholland 		}						\
    949  1.11  dholland 	}							\
    950  1.11  dholland 
    951  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
    952  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
    953  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
    954  1.11  dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
    955  1.11  dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
    956  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
    957  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
    958  1.11  dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
    959  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
    960  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
    961  1.11  dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
    962  1.11  dholland 
    963  1.11  dholland static __unused inline size_t
    964  1.11  dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
    965  1.11  dholland {
    966  1.11  dholland 	/* These are actually all the same. */
    967  1.11  dholland 	if (fs->lfs_is64) {
    968  1.11  dholland 		return offsetof(SEGSUM64, ss_datasum);
    969  1.11  dholland 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
    970  1.11  dholland 		return offsetof(SEGSUM32, ss_datasum);
    971  1.11  dholland 	} /* else {
    972  1.11  dholland 		return offsetof(SEGSUM_V1, ss_datasum);
    973  1.11  dholland 	} */
    974  1.11  dholland 	/*
    975  1.11  dholland 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
    976  1.11  dholland 	 * defined yet.
    977  1.11  dholland 	 */
    978  1.11  dholland }
    979  1.11  dholland 
    980  1.11  dholland static __unused inline uint32_t
    981  1.11  dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
    982  1.11  dholland {
    983  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    984  1.11  dholland 	/* XXX need to resort this file before we can do this */
    985  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    986  1.11  dholland 
    987  1.11  dholland 	return ssp->u_v1.ss_create;
    988  1.11  dholland }
    989  1.11  dholland 
    990  1.11  dholland static __unused inline void
    991  1.11  dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
    992  1.11  dholland {
    993  1.11  dholland 	KASSERT(fs->lfs_is64 == 0);
    994  1.11  dholland 	/* XXX need to resort this file before we can do this */
    995  1.11  dholland 	//KASSERT(lfs_sb_getversion(fs) == 1);
    996  1.11  dholland 
    997  1.11  dholland 	ssp->u_v1.ss_create = val;
    998  1.11  dholland }
    999  1.11  dholland 
   1000   1.1  dholland 
   1001   1.1  dholland /*
   1002   1.1  dholland  * Super block.
   1003   1.1  dholland  */
   1004   1.1  dholland 
   1005   1.1  dholland /*
   1006   1.1  dholland  * Generate accessors for the on-disk superblock fields with cpp.
   1007   1.1  dholland  */
   1008   1.1  dholland 
   1009   1.3  dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
   1010   1.1  dholland 	static __unused inline type				\
   1011   1.1  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1012   1.1  dholland 	{							\
   1013   1.7  dholland 		if (fs->lfs_is64) {				\
   1014   1.7  dholland 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1015   1.7  dholland 		} else {					\
   1016   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1017   1.7  dholland 		}						\
   1018   1.1  dholland 	}							\
   1019   1.1  dholland 	static __unused inline void				\
   1020   1.1  dholland 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1021   1.1  dholland 	{							\
   1022   1.7  dholland 		if (fs->lfs_is64) {				\
   1023   1.7  dholland 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1024   1.7  dholland 		} else {					\
   1025   1.7  dholland 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1026   1.7  dholland 		}						\
   1027   1.1  dholland 	}							\
   1028   1.1  dholland 	static __unused inline void				\
   1029   1.1  dholland 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1030   1.1  dholland 	{							\
   1031   1.7  dholland 		if (fs->lfs_is64) {				\
   1032   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1033   1.7  dholland 			*p64 += val;				\
   1034   1.7  dholland 		} else {					\
   1035   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1036   1.7  dholland 			*p32 += val;				\
   1037   1.7  dholland 		}						\
   1038   1.1  dholland 	}							\
   1039   1.1  dholland 	static __unused inline void				\
   1040   1.1  dholland 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1041   1.1  dholland 	{							\
   1042   1.7  dholland 		if (fs->lfs_is64) {				\
   1043   1.7  dholland 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1044   1.7  dholland 			*p64 -= val;				\
   1045   1.7  dholland 		} else {					\
   1046   1.7  dholland 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1047   1.7  dholland 			*p32 -= val;				\
   1048   1.7  dholland 		}						\
   1049   1.1  dholland 	}
   1050   1.1  dholland 
   1051   1.3  dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1052   1.3  dholland 
   1053   1.7  dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1054   1.7  dholland 	static __unused inline type				\
   1055   1.7  dholland 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1056   1.7  dholland 	{							\
   1057   1.7  dholland 		if (fs->lfs_is64) {				\
   1058   1.7  dholland 			return val64;				\
   1059   1.7  dholland 		} else {					\
   1060   1.7  dholland 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1061   1.7  dholland 		}						\
   1062   1.7  dholland 	}
   1063   1.7  dholland 
   1064   1.1  dholland #define lfs_magic lfs_dlfs.dlfs_magic
   1065   1.6  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
   1066   1.3  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
   1067   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
   1068   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
   1069   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
   1070   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
   1071   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
   1072  1.18  dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
   1073   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
   1074  1.18  dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
   1075   1.4  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
   1076   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
   1077   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
   1078  1.19  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
   1079   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
   1080   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
   1081   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
   1082   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
   1083   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
   1084   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
   1085   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
   1086   1.1  dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
   1087   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
   1088   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
   1089   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
   1090   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
   1091   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
   1092   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
   1093   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
   1094   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
   1095   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
   1096   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
   1097   1.7  dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
   1098   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
   1099   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
   1100   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
   1101   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
   1102   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
   1103   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
   1104   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
   1105   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
   1106   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
   1107   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
   1108   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
   1109   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
   1110   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
   1111   1.1  dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
   1112   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
   1113   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
   1114   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
   1115   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
   1116   1.5  dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
   1117   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
   1118   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
   1119   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
   1120   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
   1121   1.1  dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
   1122   1.1  dholland 
   1123   1.1  dholland /* special-case accessors */
   1124   1.1  dholland 
   1125   1.1  dholland /*
   1126   1.1  dholland  * the v1 otstamp field lives in what's now dlfs_inopf
   1127   1.1  dholland  */
   1128   1.1  dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1129   1.1  dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1130   1.1  dholland 
   1131   1.1  dholland /*
   1132   1.1  dholland  * lfs_sboffs is an array
   1133   1.1  dholland  */
   1134   1.1  dholland static __unused inline int32_t
   1135   1.2  dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1136   1.1  dholland {
   1137   1.1  dholland #ifdef KASSERT /* ugh */
   1138   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
   1139   1.1  dholland #endif
   1140   1.7  dholland 	if (fs->lfs_is64) {
   1141   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1142   1.7  dholland 	} else {
   1143   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1144   1.7  dholland 	}
   1145   1.1  dholland }
   1146   1.1  dholland static __unused inline void
   1147   1.2  dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1148   1.1  dholland {
   1149   1.1  dholland #ifdef KASSERT /* ugh */
   1150   1.1  dholland 	KASSERT(n < LFS_MAXNUMSB);
   1151   1.1  dholland #endif
   1152   1.7  dholland 	if (fs->lfs_is64) {
   1153   1.7  dholland 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1154   1.7  dholland 	} else {
   1155   1.7  dholland 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1156   1.7  dholland 	}
   1157   1.1  dholland }
   1158   1.1  dholland 
   1159   1.1  dholland /*
   1160   1.1  dholland  * lfs_fsmnt is a string
   1161   1.1  dholland  */
   1162   1.1  dholland static __unused inline const char *
   1163   1.2  dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1164   1.1  dholland {
   1165   1.7  dholland 	if (fs->lfs_is64) {
   1166   1.7  dholland 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1167   1.7  dholland 	} else {
   1168   1.7  dholland 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1169   1.7  dholland 	}
   1170   1.7  dholland }
   1171   1.7  dholland 
   1172   1.7  dholland static __unused inline void
   1173   1.7  dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1174   1.7  dholland {
   1175   1.7  dholland 	if (fs->lfs_is64) {
   1176   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1177   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1178   1.7  dholland 	} else {
   1179   1.7  dholland 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1180   1.7  dholland 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1181   1.7  dholland 	}
   1182   1.1  dholland }
   1183   1.1  dholland 
   1184   1.8  dholland /* Highest addressable fsb */
   1185   1.8  dholland #define LFS_MAX_DADDR(fs) \
   1186   1.8  dholland 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1187   1.8  dholland 
   1188   1.1  dholland /* LFS_NINDIR is the number of indirects in a file system block. */
   1189   1.1  dholland #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1190   1.1  dholland 
   1191   1.1  dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1192   1.1  dholland #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1193   1.1  dholland /* LFS_INOPF is the number of inodes in a fragment. */
   1194   1.1  dholland #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1195   1.1  dholland 
   1196   1.1  dholland #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1197   1.1  dholland #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1198   1.1  dholland     ((int)((loc) & lfs_sb_getffmask(fs)))
   1199   1.1  dholland 
   1200   1.4  dholland /* XXX: lowercase these as they're no longer macros */
   1201   1.4  dholland /* Frags to diskblocks */
   1202   1.4  dholland static __unused inline uint64_t
   1203   1.4  dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1204   1.4  dholland {
   1205   1.1  dholland #if defined(_KERNEL)
   1206   1.4  dholland 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1207   1.1  dholland #else
   1208   1.4  dholland 	return b << lfs_sb_getfsbtodb(fs);
   1209   1.1  dholland #endif
   1210   1.4  dholland }
   1211   1.4  dholland /* Diskblocks to frags */
   1212   1.4  dholland static __unused inline uint64_t
   1213   1.4  dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1214   1.4  dholland {
   1215   1.4  dholland #if defined(_KERNEL)
   1216   1.4  dholland 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1217   1.4  dholland #else
   1218   1.4  dholland 	return b >> lfs_sb_getfsbtodb(fs);
   1219   1.4  dholland #endif
   1220   1.4  dholland }
   1221   1.1  dholland 
   1222   1.1  dholland #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1223   1.1  dholland #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1224   1.1  dholland 
   1225   1.4  dholland /* Frags to bytes */
   1226   1.4  dholland static __unused inline uint64_t
   1227   1.4  dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1228   1.4  dholland {
   1229   1.4  dholland 	return b << lfs_sb_getffshift(fs);
   1230   1.4  dholland }
   1231   1.4  dholland /* Bytes to frags */
   1232   1.4  dholland static __unused inline uint64_t
   1233   1.4  dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1234   1.4  dholland {
   1235   1.4  dholland 	return b >> lfs_sb_getffshift(fs);
   1236   1.4  dholland }
   1237   1.1  dholland 
   1238   1.1  dholland #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1239   1.1  dholland 	((loc) >> lfs_sb_getffshift(fs))
   1240   1.1  dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1241   1.1  dholland 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1242   1.1  dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1243   1.1  dholland 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1244   1.1  dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1245   1.1  dholland 	((frags) >> lfs_sb_getfbshift(fs))
   1246   1.1  dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1247   1.1  dholland 	((blks) << lfs_sb_getfbshift(fs))
   1248   1.1  dholland #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1249   1.1  dholland 	((fsb) & ((fs)->lfs_frag - 1))
   1250   1.1  dholland #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1251   1.1  dholland 	((fsb) &~ ((fs)->lfs_frag - 1))
   1252   1.1  dholland #define lfs_dblksize(fs, dp, lbn) \
   1253  1.13  dholland 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1254   1.1  dholland 	    ? lfs_sb_getbsize(fs) \
   1255  1.13  dholland 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1256   1.1  dholland 
   1257   1.6  dholland #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1258   1.1  dholland 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1259   1.1  dholland 			   lfs_sb_getssize(fs))
   1260   1.4  dholland /* XXX segtod produces a result in frags despite the 'd' */
   1261   1.4  dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1262   1.1  dholland #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1263   1.1  dholland 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1264   1.1  dholland #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1265   1.1  dholland 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1266   1.1  dholland 
   1267   1.4  dholland /* XXX, blah. make this appear only if struct inode is defined */
   1268   1.4  dholland #ifdef _UFS_LFS_LFS_INODE_H_
   1269   1.4  dholland static __unused inline uint32_t
   1270   1.4  dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1271   1.4  dholland {
   1272  1.16  dholland 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1273   1.4  dholland 		return lfs_sb_getbsize(fs);
   1274   1.4  dholland 	} else {
   1275  1.16  dholland 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1276   1.4  dholland 	}
   1277   1.4  dholland }
   1278   1.4  dholland #endif
   1279   1.4  dholland 
   1280  1.12  dholland /*
   1281  1.12  dholland  * union lfs_blocks
   1282  1.12  dholland  */
   1283  1.12  dholland 
   1284  1.12  dholland static __unused inline void
   1285  1.12  dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1286  1.12  dholland {
   1287  1.12  dholland 	if (fs->lfs_is64) {
   1288  1.12  dholland 		bp->b64 = p;
   1289  1.12  dholland 	} else {
   1290  1.12  dholland 		bp->b32 = p;
   1291  1.12  dholland 	}
   1292  1.12  dholland }
   1293  1.12  dholland 
   1294  1.12  dholland static __unused inline void
   1295  1.12  dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1296  1.12  dholland {
   1297  1.12  dholland 	void *firstblock;
   1298  1.12  dholland 
   1299  1.12  dholland 	firstblock = (char *)fip + FINFOSIZE(fs);
   1300  1.12  dholland 	if (fs->lfs_is64) {
   1301  1.12  dholland 		bp->b64 = (int64_t *)firstblock;
   1302  1.12  dholland 	}  else {
   1303  1.12  dholland 		bp->b32 = (int32_t *)firstblock;
   1304  1.12  dholland 	}
   1305  1.12  dholland }
   1306  1.12  dholland 
   1307  1.12  dholland static __unused inline daddr_t
   1308  1.12  dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
   1309  1.12  dholland {
   1310  1.12  dholland 	if (fs->lfs_is64) {
   1311  1.12  dholland 		return bp->b64[index];
   1312  1.12  dholland 	} else {
   1313  1.12  dholland 		return bp->b32[index];
   1314  1.12  dholland 	}
   1315  1.12  dholland }
   1316  1.12  dholland 
   1317  1.12  dholland static __unused inline void
   1318  1.12  dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
   1319  1.12  dholland {
   1320  1.12  dholland 	if (fs->lfs_is64) {
   1321  1.12  dholland 		bp->b64[index] = val;
   1322  1.12  dholland 	} else {
   1323  1.12  dholland 		bp->b32[index] = val;
   1324  1.12  dholland 	}
   1325  1.12  dholland }
   1326  1.12  dholland 
   1327  1.12  dholland static __unused inline void
   1328  1.12  dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1329  1.12  dholland {
   1330  1.12  dholland 	if (fs->lfs_is64) {
   1331  1.12  dholland 		bp->b64++;
   1332  1.12  dholland 	} else {
   1333  1.12  dholland 		bp->b32++;
   1334  1.12  dholland 	}
   1335  1.12  dholland }
   1336  1.12  dholland 
   1337  1.12  dholland static __unused inline int
   1338  1.12  dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1339  1.12  dholland {
   1340  1.12  dholland 	if (fs->lfs_is64) {
   1341  1.12  dholland 		return bp1->b64 == bp2->b64;
   1342  1.12  dholland 	} else {
   1343  1.12  dholland 		return bp1->b32 == bp2->b32;
   1344  1.12  dholland 	}
   1345  1.12  dholland }
   1346  1.12  dholland 
   1347  1.12  dholland static __unused inline int
   1348  1.12  dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1349  1.12  dholland {
   1350  1.12  dholland 	/* (remember that the pointers are typed) */
   1351  1.12  dholland 	if (fs->lfs_is64) {
   1352  1.12  dholland 		return bp1->b64 - bp2->b64;
   1353  1.12  dholland 	} else {
   1354  1.12  dholland 		return bp1->b32 - bp2->b32;
   1355  1.12  dholland 	}
   1356  1.12  dholland }
   1357  1.12  dholland 
   1358  1.12  dholland /*
   1359  1.12  dholland  * struct segment
   1360  1.12  dholland  */
   1361  1.12  dholland 
   1362   1.4  dholland 
   1363   1.1  dholland /*
   1364   1.1  dholland  * Macros for determining free space on the disk, with the variable metadata
   1365   1.1  dholland  * of segment summaries and inode blocks taken into account.
   1366   1.1  dholland  */
   1367   1.1  dholland /*
   1368   1.1  dholland  * Estimate number of clean blocks not available for writing because
   1369   1.1  dholland  * they will contain metadata or overhead.  This is calculated as
   1370   1.1  dholland  *
   1371   1.1  dholland  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1372   1.1  dholland  * or more simply
   1373   1.1  dholland  *		E = (C * M) / T
   1374   1.1  dholland  *
   1375   1.1  dholland  * where
   1376   1.1  dholland  * C is the clean space,
   1377   1.1  dholland  * D is the dirty space,
   1378   1.1  dholland  * M is the dirty metadata, and
   1379   1.1  dholland  * T = C + D is the total space on disk.
   1380   1.1  dholland  *
   1381   1.1  dholland  * This approximates the old formula of E = C * M / D when D is close to T,
   1382   1.1  dholland  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1383   1.1  dholland  */
   1384   1.1  dholland #define LFS_EST_CMETA(F) (int32_t)((					\
   1385   1.1  dholland 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1386   1.1  dholland 	(lfs_sb_getnseg(F))))
   1387   1.1  dholland 
   1388   1.1  dholland /* Estimate total size of the disk not including metadata */
   1389   1.1  dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1390   1.1  dholland 
   1391   1.1  dholland /* Estimate number of blocks actually available for writing */
   1392   1.1  dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1393   1.1  dholland 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1394   1.1  dholland 
   1395   1.1  dholland /* Amount of non-meta space not available to mortal man */
   1396   1.1  dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) *			     \
   1397   1.1  dholland 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1398   1.1  dholland 				  100)
   1399   1.1  dholland 
   1400   1.4  dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1401   1.1  dholland #define ISSPACE(F, BB, C)						\
   1402   1.1  dholland 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1403   1.1  dholland 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1404   1.1  dholland 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1405   1.1  dholland 
   1406   1.1  dholland /* Can an ordinary user write BB blocks */
   1407   1.1  dholland #define IS_FREESPACE(F, BB)						\
   1408   1.1  dholland 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1409   1.1  dholland 
   1410   1.1  dholland /*
   1411   1.1  dholland  * The minimum number of blocks to create a new inode.  This is:
   1412   1.1  dholland  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1413   1.1  dholland  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1414   1.1  dholland  */
   1415   1.1  dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1416   1.1  dholland 
   1417   1.1  dholland 
   1418   1.1  dholland 
   1419   1.1  dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1420