lfs_accessors.h revision 1.30 1 1.30 dholland /* $NetBSD: lfs_accessors.h,v 1.30 2015/09/21 01:22:18 dholland Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.1 dholland /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 1.1 dholland /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.17 dholland #if defined(_KERNEL_OPT)
149 1.17 dholland #include "opt_lfs.h"
150 1.17 dholland #endif
151 1.17 dholland
152 1.17 dholland #include <sys/bswap.h>
153 1.17 dholland
154 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
155 1.11 dholland #include <assert.h>
156 1.11 dholland #define KASSERT assert
157 1.11 dholland #endif
158 1.11 dholland
159 1.1 dholland /*
160 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
161 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
162 1.9 dholland * get accessors that work with struct clfs.
163 1.9 dholland */
164 1.9 dholland
165 1.9 dholland #ifndef STRUCT_LFS
166 1.9 dholland #define STRUCT_LFS struct lfs
167 1.9 dholland #endif
168 1.9 dholland
169 1.13 dholland /*
170 1.17 dholland * byte order
171 1.17 dholland */
172 1.17 dholland
173 1.17 dholland /*
174 1.17 dholland * For now at least, the bootblocks shall not be endian-independent.
175 1.17 dholland * We can see later if it fits in the size budget. Also disable the
176 1.17 dholland * byteswapping if LFS_EI is off.
177 1.17 dholland *
178 1.17 dholland * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 1.17 dholland * and if that changes will likely break silently.
180 1.17 dholland */
181 1.17 dholland
182 1.17 dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 1.17 dholland #define LFS_SWAP_int16_t(fs, val) (val)
184 1.17 dholland #define LFS_SWAP_int32_t(fs, val) (val)
185 1.17 dholland #define LFS_SWAP_int64_t(fs, val) (val)
186 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) (val)
187 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) (val)
188 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) (val)
189 1.17 dholland #else
190 1.17 dholland #define LFS_SWAP_int16_t(fs, val) \
191 1.17 dholland ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 1.17 dholland #define LFS_SWAP_int32_t(fs, val) \
193 1.17 dholland ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 1.17 dholland #define LFS_SWAP_int64_t(fs, val) \
195 1.17 dholland ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) \
197 1.17 dholland ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) \
199 1.17 dholland ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) \
201 1.17 dholland ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 1.17 dholland #endif
203 1.17 dholland
204 1.17 dholland /*
205 1.22 dholland * For handling directories we will need to know if the volume is
206 1.22 dholland * little-endian.
207 1.22 dholland */
208 1.22 dholland #if BYTE_ORDER == LITTLE_ENDIAN
209 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 1.22 dholland #else
211 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 1.22 dholland #endif
213 1.22 dholland
214 1.22 dholland
215 1.22 dholland /*
216 1.22 dholland * directories
217 1.22 dholland */
218 1.22 dholland
219 1.22 dholland /*
220 1.22 dholland * The LFS_DIRSIZ macro gives the minimum record length which will hold
221 1.22 dholland * the directory entry. This requires the amount of space in struct lfs_direct
222 1.22 dholland * without the d_name field, plus enough space for the name with a terminating
223 1.22 dholland * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
224 1.22 dholland */
225 1.30 dholland #define LFS_DIRECTSIZ(fs, namlen) \
226 1.27 dholland (sizeof(struct lfs_dirheader) + (((namlen)+1 + 3) &~ 3))
227 1.22 dholland
228 1.30 dholland /*
229 1.30 dholland * The size of the largest possible directory entry. This is
230 1.30 dholland * used by ulfs_dirhash to figure the size of an array, so we
231 1.30 dholland * need a single constant value true for both lfs32 and lfs64.
232 1.30 dholland */
233 1.30 dholland #define LFS_MAXDIRENTRYSIZE \
234 1.30 dholland (sizeof(struct lfs_dirheader) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
235 1.30 dholland
236 1.22 dholland #if (BYTE_ORDER == LITTLE_ENDIAN)
237 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
238 1.22 dholland (((oldfmt) && !(needswap)) ? \
239 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
240 1.22 dholland #else
241 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
242 1.22 dholland (((oldfmt) && (needswap)) ? \
243 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
244 1.22 dholland #endif
245 1.22 dholland
246 1.30 dholland #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
247 1.22 dholland
248 1.22 dholland /* Constants for the first argument of LFS_OLDDIRSIZ */
249 1.22 dholland #define LFS_OLDDIRFMT 1
250 1.22 dholland #define LFS_NEWDIRFMT 0
251 1.22 dholland
252 1.23 dholland #define LFS_NEXTDIR(fs, dp) \
253 1.27 dholland ((struct lfs_dirheader *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
254 1.23 dholland
255 1.26 dholland static __unused inline char *
256 1.27 dholland lfs_dir_nameptr(const STRUCT_LFS *fs, struct lfs_dirheader *dh)
257 1.26 dholland {
258 1.27 dholland return (char *)(dh + 1);
259 1.26 dholland }
260 1.26 dholland
261 1.23 dholland static __unused inline uint32_t
262 1.27 dholland lfs_dir_getino(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
263 1.23 dholland {
264 1.27 dholland return LFS_SWAP_uint32_t(fs, dh->dh_ino);
265 1.23 dholland }
266 1.23 dholland
267 1.23 dholland static __unused inline uint16_t
268 1.27 dholland lfs_dir_getreclen(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
269 1.23 dholland {
270 1.27 dholland return LFS_SWAP_uint16_t(fs, dh->dh_reclen);
271 1.23 dholland }
272 1.23 dholland
273 1.22 dholland static __unused inline uint8_t
274 1.27 dholland lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
275 1.22 dholland {
276 1.22 dholland if (fs->lfs_hasolddirfmt) {
277 1.22 dholland return LFS_DT_UNKNOWN;
278 1.22 dholland }
279 1.27 dholland return dh->dh_type;
280 1.22 dholland }
281 1.22 dholland
282 1.22 dholland static __unused inline uint8_t
283 1.27 dholland lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
284 1.22 dholland {
285 1.22 dholland if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
286 1.22 dholland /* low-order byte of old 16-bit namlen field */
287 1.27 dholland return dh->dh_type;
288 1.22 dholland }
289 1.27 dholland return dh->dh_namlen;
290 1.22 dholland }
291 1.22 dholland
292 1.22 dholland static __unused inline void
293 1.27 dholland lfs_dir_setino(STRUCT_LFS *fs, struct lfs_dirheader *dh, uint32_t ino)
294 1.23 dholland {
295 1.27 dholland dh->dh_ino = LFS_SWAP_uint32_t(fs, ino);
296 1.23 dholland }
297 1.23 dholland
298 1.23 dholland static __unused inline void
299 1.27 dholland lfs_dir_setreclen(STRUCT_LFS *fs, struct lfs_dirheader *dh, uint16_t reclen)
300 1.23 dholland {
301 1.27 dholland dh->dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
302 1.23 dholland }
303 1.23 dholland
304 1.23 dholland static __unused inline void
305 1.27 dholland lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_dirheader *dh, uint8_t type)
306 1.22 dholland {
307 1.22 dholland if (fs->lfs_hasolddirfmt) {
308 1.22 dholland /* do nothing */
309 1.22 dholland return;
310 1.22 dholland }
311 1.27 dholland dh->dh_type = type;
312 1.22 dholland }
313 1.22 dholland
314 1.22 dholland static __unused inline void
315 1.27 dholland lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_dirheader *dh, uint8_t namlen)
316 1.22 dholland {
317 1.22 dholland if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
318 1.22 dholland /* low-order byte of old 16-bit namlen field */
319 1.27 dholland dh->dh_type = namlen;
320 1.22 dholland }
321 1.27 dholland dh->dh_namlen = namlen;
322 1.22 dholland }
323 1.22 dholland
324 1.25 dholland static __unused inline void
325 1.25 dholland lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
326 1.25 dholland unsigned namlen, unsigned reclen)
327 1.25 dholland {
328 1.28 dholland unsigned spacelen;
329 1.28 dholland
330 1.28 dholland KASSERT(reclen > sizeof(struct lfs_dirheader));
331 1.28 dholland spacelen = reclen - sizeof(struct lfs_dirheader);
332 1.28 dholland
333 1.25 dholland /* must always be at least 1 byte as a null terminator */
334 1.28 dholland KASSERT(spacelen > namlen);
335 1.25 dholland
336 1.25 dholland memcpy(dest, src, namlen);
337 1.28 dholland memset(dest + namlen, '\0', spacelen - namlen);
338 1.25 dholland }
339 1.25 dholland
340 1.22 dholland /*
341 1.13 dholland * dinodes
342 1.13 dholland */
343 1.9 dholland
344 1.9 dholland /*
345 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
346 1.1 dholland */
347 1.20 dholland #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
348 1.20 dholland #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
349 1.1 dholland
350 1.20 dholland #define LFS_MAXSYMLINKLEN(fs) \
351 1.20 dholland ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
352 1.20 dholland
353 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
354 1.13 dholland
355 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
356 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
357 1.13 dholland
358 1.14 dholland static __unused inline void
359 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs,
360 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src)
361 1.14 dholland {
362 1.14 dholland /*
363 1.14 dholland * We can do structure assignment of the structs, but not of
364 1.14 dholland * the whole union, as the union is the size of the (larger)
365 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might
366 1.14 dholland * be off the end of a buffer or otherwise invalid.
367 1.14 dholland */
368 1.14 dholland if (fs->lfs_is64) {
369 1.14 dholland dst->u_64 = src->u_64;
370 1.14 dholland } else {
371 1.14 dholland dst->u_32 = src->u_32;
372 1.14 dholland }
373 1.14 dholland }
374 1.14 dholland
375 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
376 1.13 dholland static __unused inline type \
377 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
378 1.13 dholland { \
379 1.13 dholland if (fs->lfs_is64) { \
380 1.17 dholland return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
381 1.13 dholland } else { \
382 1.17 dholland return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
383 1.13 dholland } \
384 1.13 dholland } \
385 1.13 dholland static __unused inline void \
386 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
387 1.13 dholland { \
388 1.13 dholland if (fs->lfs_is64) { \
389 1.13 dholland type *p = &dip->u_64.di_##field; \
390 1.13 dholland (void)p; \
391 1.17 dholland dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
392 1.13 dholland } else { \
393 1.13 dholland type32 *p = &dip->u_32.di_##field; \
394 1.13 dholland (void)p; \
395 1.17 dholland dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
396 1.13 dholland } \
397 1.13 dholland } \
398 1.13 dholland
399 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
400 1.13 dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
401 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
402 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
403 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
404 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
405 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
406 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
407 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
408 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
409 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
410 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
411 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
412 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
413 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
414 1.13 dholland
415 1.16 dholland /* XXX this should be done differently (it's a fake field) */
416 1.16 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
417 1.16 dholland
418 1.13 dholland static __unused inline daddr_t
419 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
420 1.13 dholland {
421 1.13 dholland KASSERT(ix < ULFS_NDADDR);
422 1.13 dholland if (fs->lfs_is64) {
423 1.13 dholland return dip->u_64.di_db[ix];
424 1.13 dholland } else {
425 1.13 dholland return dip->u_32.di_db[ix];
426 1.13 dholland }
427 1.13 dholland }
428 1.13 dholland
429 1.13 dholland static __unused inline daddr_t
430 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
431 1.13 dholland {
432 1.13 dholland KASSERT(ix < ULFS_NIADDR);
433 1.13 dholland if (fs->lfs_is64) {
434 1.13 dholland return dip->u_64.di_ib[ix];
435 1.13 dholland } else {
436 1.13 dholland return dip->u_32.di_ib[ix];
437 1.13 dholland }
438 1.13 dholland }
439 1.13 dholland
440 1.13 dholland static __unused inline void
441 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
442 1.13 dholland {
443 1.13 dholland KASSERT(ix < ULFS_NDADDR);
444 1.13 dholland if (fs->lfs_is64) {
445 1.13 dholland dip->u_64.di_db[ix] = val;
446 1.13 dholland } else {
447 1.13 dholland dip->u_32.di_db[ix] = val;
448 1.13 dholland }
449 1.13 dholland }
450 1.13 dholland
451 1.13 dholland static __unused inline void
452 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
453 1.13 dholland {
454 1.13 dholland KASSERT(ix < ULFS_NIADDR);
455 1.13 dholland if (fs->lfs_is64) {
456 1.13 dholland dip->u_64.di_ib[ix] = val;
457 1.13 dholland } else {
458 1.13 dholland dip->u_32.di_ib[ix] = val;
459 1.13 dholland }
460 1.13 dholland }
461 1.13 dholland
462 1.16 dholland /* birthtime is present only in the 64-bit inode */
463 1.16 dholland static __unused inline void
464 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
465 1.16 dholland const struct timespec *ts)
466 1.16 dholland {
467 1.16 dholland if (fs->lfs_is64) {
468 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec;
469 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec;
470 1.16 dholland } else {
471 1.16 dholland /* drop it on the floor */
472 1.16 dholland }
473 1.16 dholland }
474 1.16 dholland
475 1.16 dholland /*
476 1.16 dholland * indirect blocks
477 1.16 dholland */
478 1.16 dholland
479 1.16 dholland static __unused inline daddr_t
480 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
481 1.16 dholland {
482 1.16 dholland if (fs->lfs_is64) {
483 1.16 dholland // XXX re-enable these asserts after reorging this file
484 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
485 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]);
486 1.16 dholland } else {
487 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
488 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */
489 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
490 1.16 dholland }
491 1.16 dholland }
492 1.16 dholland
493 1.16 dholland static __unused inline void
494 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
495 1.16 dholland {
496 1.16 dholland if (fs->lfs_is64) {
497 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
498 1.16 dholland ((int64_t *)block)[ix] = val;
499 1.16 dholland } else {
500 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
501 1.16 dholland ((int32_t *)block)[ix] = val;
502 1.16 dholland }
503 1.16 dholland }
504 1.16 dholland
505 1.1 dholland /*
506 1.1 dholland * "struct buf" associated definitions
507 1.1 dholland */
508 1.1 dholland
509 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
510 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
511 1.1 dholland mutex_enter(&lfs_lock); \
512 1.1 dholland ++locked_queue_count; \
513 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
514 1.1 dholland mutex_exit(&lfs_lock); \
515 1.1 dholland } \
516 1.1 dholland (bp)->b_flags |= B_LOCKED; \
517 1.1 dholland } while (0)
518 1.1 dholland
519 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
520 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
521 1.1 dholland mutex_enter(&lfs_lock); \
522 1.1 dholland --locked_queue_count; \
523 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
524 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
525 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
526 1.1 dholland cv_broadcast(&locked_queue_cv); \
527 1.1 dholland mutex_exit(&lfs_lock); \
528 1.1 dholland } \
529 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
530 1.1 dholland } while (0)
531 1.1 dholland
532 1.1 dholland /*
533 1.1 dholland * "struct inode" associated definitions
534 1.1 dholland */
535 1.1 dholland
536 1.1 dholland #define LFS_SET_UINO(ip, flags) do { \
537 1.1 dholland if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
538 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
539 1.1 dholland if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
540 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
541 1.1 dholland if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
542 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
543 1.1 dholland (ip)->i_flag |= (flags); \
544 1.1 dholland } while (0)
545 1.1 dholland
546 1.1 dholland #define LFS_CLR_UINO(ip, flags) do { \
547 1.1 dholland if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
548 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
549 1.1 dholland if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
550 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
551 1.1 dholland if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
552 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
553 1.1 dholland (ip)->i_flag &= ~(flags); \
554 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
555 1.1 dholland panic("lfs_uinodes < 0"); \
556 1.1 dholland } \
557 1.1 dholland } while (0)
558 1.1 dholland
559 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
560 1.1 dholland while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
561 1.1 dholland lfs_itimes(ip, acc, mod, cre)
562 1.1 dholland
563 1.1 dholland /*
564 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
565 1.1 dholland */
566 1.1 dholland
567 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
568 1.1 dholland #define SEGTABSIZE_SU(fs) \
569 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
570 1.1 dholland
571 1.1 dholland #ifdef _KERNEL
572 1.1 dholland # define SHARE_IFLOCK(F) \
573 1.1 dholland do { \
574 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
575 1.1 dholland } while(0)
576 1.1 dholland # define UNSHARE_IFLOCK(F) \
577 1.1 dholland do { \
578 1.1 dholland rw_exit(&(F)->lfs_iflock); \
579 1.1 dholland } while(0)
580 1.1 dholland #else /* ! _KERNEL */
581 1.1 dholland # define SHARE_IFLOCK(F)
582 1.1 dholland # define UNSHARE_IFLOCK(F)
583 1.1 dholland #endif /* ! _KERNEL */
584 1.1 dholland
585 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
586 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
587 1.1 dholland int _e; \
588 1.1 dholland SHARE_IFLOCK(F); \
589 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
590 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
591 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
592 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
593 1.1 dholland panic("lfs: ifile read: %d", _e); \
594 1.6 dholland if (lfs_sb_getversion(F) == 1) \
595 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
596 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
597 1.1 dholland else \
598 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
599 1.1 dholland UNSHARE_IFLOCK(F); \
600 1.1 dholland } while (0)
601 1.1 dholland
602 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
603 1.1 dholland if ((SP)->su_nbytes == 0) \
604 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
605 1.1 dholland else \
606 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
607 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
608 1.1 dholland LFS_BWRITE_LOG(BP); \
609 1.1 dholland } while (0)
610 1.1 dholland
611 1.1 dholland /*
612 1.11 dholland * FINFO (file info) entries.
613 1.11 dholland */
614 1.11 dholland
615 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
616 1.11 dholland /* XXX: move to a more suitable location in this file */
617 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
618 1.11 dholland
619 1.12 dholland /* Size of an on-disk inode number. */
620 1.12 dholland /* XXX: move to a more suitable location in this file */
621 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
622 1.12 dholland
623 1.12 dholland /* size of a FINFO, without the block pointers */
624 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
625 1.12 dholland
626 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
627 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
628 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
629 1.11 dholland
630 1.11 dholland #define NEXT_FINFO(fs, fip) \
631 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
632 1.11 dholland
633 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
634 1.12 dholland static __unused inline type \
635 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
636 1.12 dholland { \
637 1.12 dholland if (fs->lfs_is64) { \
638 1.12 dholland return fip->u_64.fi_##field; \
639 1.12 dholland } else { \
640 1.12 dholland return fip->u_32.fi_##field; \
641 1.12 dholland } \
642 1.12 dholland } \
643 1.12 dholland static __unused inline void \
644 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
645 1.12 dholland { \
646 1.12 dholland if (fs->lfs_is64) { \
647 1.12 dholland type *p = &fip->u_64.fi_##field; \
648 1.12 dholland (void)p; \
649 1.12 dholland fip->u_64.fi_##field = val; \
650 1.12 dholland } else { \
651 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
652 1.12 dholland (void)p; \
653 1.12 dholland fip->u_32.fi_##field = val; \
654 1.12 dholland } \
655 1.12 dholland } \
656 1.12 dholland
657 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
658 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
659 1.12 dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
660 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
661 1.12 dholland
662 1.12 dholland static __unused inline daddr_t
663 1.12 dholland lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
664 1.12 dholland {
665 1.12 dholland void *firstblock;
666 1.12 dholland
667 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
668 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
669 1.12 dholland if (fs->lfs_is64) {
670 1.12 dholland return ((int64_t *)firstblock)[index];
671 1.12 dholland } else {
672 1.12 dholland return ((int32_t *)firstblock)[index];
673 1.12 dholland }
674 1.12 dholland }
675 1.12 dholland
676 1.12 dholland static __unused inline void
677 1.12 dholland lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
678 1.12 dholland {
679 1.12 dholland void *firstblock;
680 1.12 dholland
681 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
682 1.12 dholland KASSERT(index < lfs_fi_getnblocks(fs, fip));
683 1.12 dholland if (fs->lfs_is64) {
684 1.12 dholland ((int64_t *)firstblock)[index] = blk;
685 1.12 dholland } else {
686 1.12 dholland ((int32_t *)firstblock)[index] = blk;
687 1.12 dholland }
688 1.12 dholland }
689 1.12 dholland
690 1.11 dholland /*
691 1.1 dholland * Index file inode entries.
692 1.1 dholland */
693 1.1 dholland
694 1.1 dholland /*
695 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
696 1.1 dholland * may not be mapped!
697 1.1 dholland */
698 1.1 dholland /* Read in the block with a specific inode from the ifile. */
699 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
700 1.1 dholland int _e; \
701 1.1 dholland SHARE_IFLOCK(F); \
702 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
703 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
704 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
705 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
706 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
707 1.10 dholland if ((F)->lfs_is64) { \
708 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
709 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
710 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
711 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
712 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
713 1.10 dholland } else { \
714 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
715 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
716 1.10 dholland } \
717 1.1 dholland UNSHARE_IFLOCK(F); \
718 1.1 dholland } while (0)
719 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
720 1.15 mlelstv if ((F)->lfs_is64) { \
721 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
722 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \
723 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
724 1.15 mlelstv } else { \
725 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
726 1.15 mlelstv } \
727 1.15 mlelstv } while (0)
728 1.1 dholland
729 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
730 1.10 dholland static __unused inline type \
731 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
732 1.10 dholland { \
733 1.10 dholland if (fs->lfs_is64) { \
734 1.10 dholland return ifp->u_64.if_##field; \
735 1.10 dholland } else { \
736 1.10 dholland return ifp->u_32.if_##field; \
737 1.10 dholland } \
738 1.10 dholland } \
739 1.10 dholland static __unused inline void \
740 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
741 1.10 dholland { \
742 1.10 dholland if (fs->lfs_is64) { \
743 1.10 dholland type *p = &ifp->u_64.if_##field; \
744 1.10 dholland (void)p; \
745 1.10 dholland ifp->u_64.if_##field = val; \
746 1.10 dholland } else { \
747 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
748 1.10 dholland (void)p; \
749 1.10 dholland ifp->u_32.if_##field = val; \
750 1.10 dholland } \
751 1.10 dholland } \
752 1.10 dholland
753 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
754 1.10 dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
755 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
756 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
757 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
758 1.10 dholland
759 1.1 dholland /*
760 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
761 1.1 dholland * to pass information from the kernel to the cleaner.
762 1.1 dholland */
763 1.1 dholland
764 1.1 dholland #define CLEANSIZE_SU(fs) \
765 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
766 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
767 1.9 dholland
768 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
769 1.9 dholland static __unused inline type \
770 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
771 1.9 dholland { \
772 1.9 dholland if (fs->lfs_is64) { \
773 1.9 dholland return cip->u_64.field; \
774 1.9 dholland } else { \
775 1.9 dholland return cip->u_32.field; \
776 1.9 dholland } \
777 1.9 dholland } \
778 1.9 dholland static __unused inline void \
779 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
780 1.9 dholland { \
781 1.9 dholland if (fs->lfs_is64) { \
782 1.9 dholland type *p = &cip->u_64.field; \
783 1.9 dholland (void)p; \
784 1.9 dholland cip->u_64.field = val; \
785 1.9 dholland } else { \
786 1.9 dholland type32 *p = &cip->u_32.field; \
787 1.9 dholland (void)p; \
788 1.9 dholland cip->u_32.field = val; \
789 1.9 dholland } \
790 1.9 dholland } \
791 1.9 dholland
792 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
793 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
794 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
795 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
796 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
797 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
798 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
799 1.9 dholland
800 1.9 dholland static __unused inline void
801 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
802 1.9 dholland {
803 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
804 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
805 1.9 dholland }
806 1.9 dholland
807 1.9 dholland static __unused inline void
808 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
809 1.9 dholland {
810 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
811 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
812 1.9 dholland }
813 1.1 dholland
814 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
815 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
816 1.1 dholland SHARE_IFLOCK(F); \
817 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
818 1.1 dholland if (bread((F)->lfs_ivnode, \
819 1.1 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
820 1.1 dholland panic("lfs: ifile read"); \
821 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
822 1.1 dholland UNSHARE_IFLOCK(F); \
823 1.1 dholland } while (0)
824 1.1 dholland
825 1.1 dholland /*
826 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
827 1.1 dholland */
828 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
829 1.1 dholland mutex_enter(&lfs_lock); \
830 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
831 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
832 1.1 dholland fs->lfs_favail) { \
833 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
834 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
835 1.9 dholland fs->lfs_favail); \
836 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
837 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
838 1.1 dholland } \
839 1.1 dholland mutex_exit(&lfs_lock); \
840 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
841 1.1 dholland } else { \
842 1.1 dholland mutex_exit(&lfs_lock); \
843 1.1 dholland brelse(bp, 0); \
844 1.1 dholland } \
845 1.1 dholland } while (0)
846 1.1 dholland
847 1.1 dholland /*
848 1.1 dholland * Get the head of the inode free list.
849 1.1 dholland * Always called with the segment lock held.
850 1.1 dholland */
851 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
852 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
853 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
854 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
855 1.1 dholland brelse(BP, 0); \
856 1.1 dholland } \
857 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
858 1.1 dholland } while (0)
859 1.1 dholland
860 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
861 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
862 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
863 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
864 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
865 1.1 dholland LFS_BWRITE_LOG(BP); \
866 1.1 dholland mutex_enter(&lfs_lock); \
867 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
868 1.1 dholland mutex_exit(&lfs_lock); \
869 1.1 dholland } \
870 1.1 dholland } while (0)
871 1.1 dholland
872 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
873 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
874 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
875 1.1 dholland brelse(BP, 0); \
876 1.1 dholland } while (0)
877 1.1 dholland
878 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
879 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
880 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
881 1.1 dholland LFS_BWRITE_LOG(BP); \
882 1.1 dholland mutex_enter(&lfs_lock); \
883 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
884 1.1 dholland mutex_exit(&lfs_lock); \
885 1.1 dholland } while (0)
886 1.1 dholland
887 1.1 dholland /*
888 1.1 dholland * On-disk segment summary information
889 1.1 dholland */
890 1.1 dholland
891 1.11 dholland #define SEGSUM_SIZE(fs) \
892 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
893 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
894 1.11 dholland
895 1.11 dholland /*
896 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
897 1.11 dholland * to the first FINFO.
898 1.11 dholland *
899 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
900 1.11 dholland */
901 1.11 dholland #if 0
902 1.11 dholland static __unused inline FINFO *
903 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
904 1.11 dholland {
905 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
906 1.11 dholland }
907 1.11 dholland #else
908 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
909 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
910 1.11 dholland #endif
911 1.11 dholland
912 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
913 1.11 dholland static __unused inline type \
914 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
915 1.11 dholland { \
916 1.11 dholland if (fs->lfs_is64) { \
917 1.11 dholland return ssp->u_64.ss_##field; \
918 1.11 dholland } else { \
919 1.11 dholland return ssp->u_32.ss_##field; \
920 1.11 dholland } \
921 1.11 dholland } \
922 1.11 dholland static __unused inline void \
923 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
924 1.11 dholland { \
925 1.11 dholland if (fs->lfs_is64) { \
926 1.11 dholland type *p = &ssp->u_64.ss_##field; \
927 1.11 dholland (void)p; \
928 1.11 dholland ssp->u_64.ss_##field = val; \
929 1.11 dholland } else { \
930 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
931 1.11 dholland (void)p; \
932 1.11 dholland ssp->u_32.ss_##field = val; \
933 1.11 dholland } \
934 1.11 dholland } \
935 1.11 dholland
936 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
937 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
938 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
939 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
940 1.11 dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
941 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
942 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
943 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
944 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
945 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
946 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
947 1.11 dholland
948 1.11 dholland static __unused inline size_t
949 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
950 1.11 dholland {
951 1.11 dholland /* These are actually all the same. */
952 1.11 dholland if (fs->lfs_is64) {
953 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
954 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
955 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
956 1.11 dholland } /* else {
957 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
958 1.11 dholland } */
959 1.11 dholland /*
960 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
961 1.11 dholland * defined yet.
962 1.11 dholland */
963 1.11 dholland }
964 1.11 dholland
965 1.11 dholland static __unused inline uint32_t
966 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
967 1.11 dholland {
968 1.11 dholland KASSERT(fs->lfs_is64 == 0);
969 1.11 dholland /* XXX need to resort this file before we can do this */
970 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
971 1.11 dholland
972 1.11 dholland return ssp->u_v1.ss_create;
973 1.11 dholland }
974 1.11 dholland
975 1.11 dholland static __unused inline void
976 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
977 1.11 dholland {
978 1.11 dholland KASSERT(fs->lfs_is64 == 0);
979 1.11 dholland /* XXX need to resort this file before we can do this */
980 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
981 1.11 dholland
982 1.11 dholland ssp->u_v1.ss_create = val;
983 1.11 dholland }
984 1.11 dholland
985 1.1 dholland
986 1.1 dholland /*
987 1.1 dholland * Super block.
988 1.1 dholland */
989 1.1 dholland
990 1.1 dholland /*
991 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
992 1.1 dholland */
993 1.1 dholland
994 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
995 1.1 dholland static __unused inline type \
996 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
997 1.1 dholland { \
998 1.7 dholland if (fs->lfs_is64) { \
999 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1000 1.7 dholland } else { \
1001 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1002 1.7 dholland } \
1003 1.1 dholland } \
1004 1.1 dholland static __unused inline void \
1005 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1006 1.1 dholland { \
1007 1.7 dholland if (fs->lfs_is64) { \
1008 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1009 1.7 dholland } else { \
1010 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1011 1.7 dholland } \
1012 1.1 dholland } \
1013 1.1 dholland static __unused inline void \
1014 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1015 1.1 dholland { \
1016 1.7 dholland if (fs->lfs_is64) { \
1017 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1018 1.7 dholland *p64 += val; \
1019 1.7 dholland } else { \
1020 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1021 1.7 dholland *p32 += val; \
1022 1.7 dholland } \
1023 1.1 dholland } \
1024 1.1 dholland static __unused inline void \
1025 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1026 1.1 dholland { \
1027 1.7 dholland if (fs->lfs_is64) { \
1028 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1029 1.7 dholland *p64 -= val; \
1030 1.7 dholland } else { \
1031 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1032 1.7 dholland *p32 -= val; \
1033 1.7 dholland } \
1034 1.1 dholland }
1035 1.1 dholland
1036 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1037 1.3 dholland
1038 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1039 1.7 dholland static __unused inline type \
1040 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
1041 1.7 dholland { \
1042 1.7 dholland if (fs->lfs_is64) { \
1043 1.7 dholland return val64; \
1044 1.7 dholland } else { \
1045 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1046 1.7 dholland } \
1047 1.7 dholland }
1048 1.7 dholland
1049 1.1 dholland #define lfs_magic lfs_dlfs.dlfs_magic
1050 1.6 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1051 1.3 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1052 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1053 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1054 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1055 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1056 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1057 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1058 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1059 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1060 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1061 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1062 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1063 1.19 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1064 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1065 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1066 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1067 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1068 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1069 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1070 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1071 1.1 dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1072 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1073 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1074 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1075 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1076 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1077 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1078 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1079 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1080 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1081 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1082 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1083 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1084 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1085 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1086 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1087 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1088 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1089 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1090 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1091 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1092 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1093 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1094 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1095 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1096 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1097 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1098 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1099 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1100 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1101 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1102 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1103 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1104 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1105 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1106 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1107 1.1 dholland
1108 1.1 dholland /* special-case accessors */
1109 1.1 dholland
1110 1.1 dholland /*
1111 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
1112 1.1 dholland */
1113 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1114 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1115 1.1 dholland
1116 1.1 dholland /*
1117 1.1 dholland * lfs_sboffs is an array
1118 1.1 dholland */
1119 1.1 dholland static __unused inline int32_t
1120 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1121 1.1 dholland {
1122 1.1 dholland #ifdef KASSERT /* ugh */
1123 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1124 1.1 dholland #endif
1125 1.7 dholland if (fs->lfs_is64) {
1126 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1127 1.7 dholland } else {
1128 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1129 1.7 dholland }
1130 1.1 dholland }
1131 1.1 dholland static __unused inline void
1132 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1133 1.1 dholland {
1134 1.1 dholland #ifdef KASSERT /* ugh */
1135 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1136 1.1 dholland #endif
1137 1.7 dholland if (fs->lfs_is64) {
1138 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1139 1.7 dholland } else {
1140 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1141 1.7 dholland }
1142 1.1 dholland }
1143 1.1 dholland
1144 1.1 dholland /*
1145 1.1 dholland * lfs_fsmnt is a string
1146 1.1 dholland */
1147 1.1 dholland static __unused inline const char *
1148 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
1149 1.1 dholland {
1150 1.7 dholland if (fs->lfs_is64) {
1151 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1152 1.7 dholland } else {
1153 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1154 1.7 dholland }
1155 1.7 dholland }
1156 1.7 dholland
1157 1.7 dholland static __unused inline void
1158 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1159 1.7 dholland {
1160 1.7 dholland if (fs->lfs_is64) {
1161 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1162 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1163 1.7 dholland } else {
1164 1.7 dholland (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1165 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1166 1.7 dholland }
1167 1.1 dholland }
1168 1.1 dholland
1169 1.8 dholland /* Highest addressable fsb */
1170 1.8 dholland #define LFS_MAX_DADDR(fs) \
1171 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1172 1.8 dholland
1173 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
1174 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1175 1.1 dholland
1176 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
1177 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1178 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
1179 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1180 1.1 dholland
1181 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1182 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1183 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
1184 1.1 dholland
1185 1.4 dholland /* XXX: lowercase these as they're no longer macros */
1186 1.4 dholland /* Frags to diskblocks */
1187 1.4 dholland static __unused inline uint64_t
1188 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1189 1.4 dholland {
1190 1.1 dholland #if defined(_KERNEL)
1191 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1192 1.1 dholland #else
1193 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
1194 1.1 dholland #endif
1195 1.4 dholland }
1196 1.4 dholland /* Diskblocks to frags */
1197 1.4 dholland static __unused inline uint64_t
1198 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1199 1.4 dholland {
1200 1.4 dholland #if defined(_KERNEL)
1201 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1202 1.4 dholland #else
1203 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
1204 1.4 dholland #endif
1205 1.4 dholland }
1206 1.1 dholland
1207 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1208 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1209 1.1 dholland
1210 1.4 dholland /* Frags to bytes */
1211 1.4 dholland static __unused inline uint64_t
1212 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1213 1.4 dholland {
1214 1.4 dholland return b << lfs_sb_getffshift(fs);
1215 1.4 dholland }
1216 1.4 dholland /* Bytes to frags */
1217 1.4 dholland static __unused inline uint64_t
1218 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1219 1.4 dholland {
1220 1.4 dholland return b >> lfs_sb_getffshift(fs);
1221 1.4 dholland }
1222 1.1 dholland
1223 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1224 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
1225 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1226 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1227 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1228 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1229 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1230 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
1231 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1232 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
1233 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1234 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
1235 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1236 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
1237 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
1238 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1239 1.1 dholland ? lfs_sb_getbsize(fs) \
1240 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1241 1.1 dholland
1242 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1243 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1244 1.1 dholland lfs_sb_getssize(fs))
1245 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
1246 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1247 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1248 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1249 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1250 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1251 1.1 dholland
1252 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1253 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1254 1.4 dholland static __unused inline uint32_t
1255 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1256 1.4 dholland {
1257 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1258 1.4 dholland return lfs_sb_getbsize(fs);
1259 1.4 dholland } else {
1260 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1261 1.4 dholland }
1262 1.4 dholland }
1263 1.4 dholland #endif
1264 1.4 dholland
1265 1.12 dholland /*
1266 1.12 dholland * union lfs_blocks
1267 1.12 dholland */
1268 1.12 dholland
1269 1.12 dholland static __unused inline void
1270 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1271 1.12 dholland {
1272 1.12 dholland if (fs->lfs_is64) {
1273 1.12 dholland bp->b64 = p;
1274 1.12 dholland } else {
1275 1.12 dholland bp->b32 = p;
1276 1.12 dholland }
1277 1.12 dholland }
1278 1.12 dholland
1279 1.12 dholland static __unused inline void
1280 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1281 1.12 dholland {
1282 1.12 dholland void *firstblock;
1283 1.12 dholland
1284 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1285 1.12 dholland if (fs->lfs_is64) {
1286 1.12 dholland bp->b64 = (int64_t *)firstblock;
1287 1.12 dholland } else {
1288 1.12 dholland bp->b32 = (int32_t *)firstblock;
1289 1.12 dholland }
1290 1.12 dholland }
1291 1.12 dholland
1292 1.12 dholland static __unused inline daddr_t
1293 1.12 dholland lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1294 1.12 dholland {
1295 1.12 dholland if (fs->lfs_is64) {
1296 1.12 dholland return bp->b64[index];
1297 1.12 dholland } else {
1298 1.12 dholland return bp->b32[index];
1299 1.12 dholland }
1300 1.12 dholland }
1301 1.12 dholland
1302 1.12 dholland static __unused inline void
1303 1.12 dholland lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1304 1.12 dholland {
1305 1.12 dholland if (fs->lfs_is64) {
1306 1.12 dholland bp->b64[index] = val;
1307 1.12 dholland } else {
1308 1.12 dholland bp->b32[index] = val;
1309 1.12 dholland }
1310 1.12 dholland }
1311 1.12 dholland
1312 1.12 dholland static __unused inline void
1313 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1314 1.12 dholland {
1315 1.12 dholland if (fs->lfs_is64) {
1316 1.12 dholland bp->b64++;
1317 1.12 dholland } else {
1318 1.12 dholland bp->b32++;
1319 1.12 dholland }
1320 1.12 dholland }
1321 1.12 dholland
1322 1.12 dholland static __unused inline int
1323 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1324 1.12 dholland {
1325 1.12 dholland if (fs->lfs_is64) {
1326 1.12 dholland return bp1->b64 == bp2->b64;
1327 1.12 dholland } else {
1328 1.12 dholland return bp1->b32 == bp2->b32;
1329 1.12 dholland }
1330 1.12 dholland }
1331 1.12 dholland
1332 1.12 dholland static __unused inline int
1333 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1334 1.12 dholland {
1335 1.12 dholland /* (remember that the pointers are typed) */
1336 1.12 dholland if (fs->lfs_is64) {
1337 1.12 dholland return bp1->b64 - bp2->b64;
1338 1.12 dholland } else {
1339 1.12 dholland return bp1->b32 - bp2->b32;
1340 1.12 dholland }
1341 1.12 dholland }
1342 1.12 dholland
1343 1.12 dholland /*
1344 1.12 dholland * struct segment
1345 1.12 dholland */
1346 1.12 dholland
1347 1.4 dholland
1348 1.1 dholland /*
1349 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1350 1.1 dholland * of segment summaries and inode blocks taken into account.
1351 1.1 dholland */
1352 1.1 dholland /*
1353 1.1 dholland * Estimate number of clean blocks not available for writing because
1354 1.1 dholland * they will contain metadata or overhead. This is calculated as
1355 1.1 dholland *
1356 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1357 1.1 dholland * or more simply
1358 1.1 dholland * E = (C * M) / T
1359 1.1 dholland *
1360 1.1 dholland * where
1361 1.1 dholland * C is the clean space,
1362 1.1 dholland * D is the dirty space,
1363 1.1 dholland * M is the dirty metadata, and
1364 1.1 dholland * T = C + D is the total space on disk.
1365 1.1 dholland *
1366 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1367 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1368 1.1 dholland */
1369 1.1 dholland #define LFS_EST_CMETA(F) (int32_t)(( \
1370 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1371 1.1 dholland (lfs_sb_getnseg(F))))
1372 1.1 dholland
1373 1.1 dholland /* Estimate total size of the disk not including metadata */
1374 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1375 1.1 dholland
1376 1.1 dholland /* Estimate number of blocks actually available for writing */
1377 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1378 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1379 1.1 dholland
1380 1.1 dholland /* Amount of non-meta space not available to mortal man */
1381 1.1 dholland #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1382 1.1 dholland (u_int64_t)lfs_sb_getminfree(F)) / \
1383 1.1 dholland 100)
1384 1.1 dholland
1385 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1386 1.1 dholland #define ISSPACE(F, BB, C) \
1387 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1388 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1389 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1390 1.1 dholland
1391 1.1 dholland /* Can an ordinary user write BB blocks */
1392 1.1 dholland #define IS_FREESPACE(F, BB) \
1393 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1394 1.1 dholland
1395 1.1 dholland /*
1396 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1397 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1398 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1399 1.1 dholland */
1400 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1401 1.1 dholland
1402 1.1 dholland
1403 1.1 dholland
1404 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1405